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In this paper we outline how a simple compiler can be completely specified using higher order rewrit-
ing in all stages: parsing, analysis/optimization, and code emission, specifically using thecrsx.sf.net
system for a small declarative language called “X” inspiredby XQuery (for which we are building a
production quality compiler in the same way).

1 Introduction

A compiler typically consists of a parser generating an abstract syntax tree (AST) for some source lan-
guage (SL), a “normalization” to a canonical form in an intermediate language (IL), some rewrites in-
serting analysis results into and performing simplifications of the IL, and finally code emission to the
target language (TL).

SL AST
Parse

IL
Normalize

Rewrite

TL
Emit

Each arrow in the diagram can be understood as a rewriting:
1. parsing to an AST is a rewriting from the string of characters in the input file to a term representing

the source program, usually formalized and implemented using some variation of context free
grammars [12];

2. normalization of the AST into the IL involves rewrite rules to eliminate “syntactic sugar” and other
redundant aspects of the source language;

3. rewriting of the IL involves adding annotations, simplifications, and sometimes using parts of the
program itself like rewrite rules (for example for inliningdefined functions); often some rewrites
depend on the result of other rewrites (like an optimizationdepending on an analysis); finally,

4. code emission is usually a direct expansion of the “finished” IL program into sequences (or tem-
plates) of instructions that are directly executable by a computer.

We’ll show how each of these steps is specified using the CRSX system [18, 19], an implementation of
a variation of Combinatory Reduction Systems [11]. The actual samples we’ll present below are mere
toys, of course, but they do illustrate the ideas in a manner that is consistent with a production compiler
that we are building for XQuery [2].

We first summarize the CRSX system notation, including the extensions, in Section2, before we
introduce the parser specification in Section3 followed by the normalizer rules in Section4. Section5
then explains a few simple sample rewrites, and Section6 presents code emission rules. Finally, we
conclude and discuss some related work in Section7.

http://dx.doi.org/10.4204/EPTCS.49.3
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2 CRSX Summary

Our setting isCombinatory Reduction Systems[11] as realized by the “CRSX” system [19]. Here we
briefly summarize the used notation and where it differs fromreference CRS.

Terms are constructed from the basic grammar

t ::= v | {e}C[s, . . . ,s] | {e}M[t, . . . , t] (Terms)

s ::=~v.t | t (Scope)

e ::= M | e; v : t | e; C : t (Environment)

where variables,v, are written with a lower case letter (including composite units like v"$x"), meta-
variables,M, must include a hash mark (#) in the name, and all other units (including literal constants)
are constructors,C.

Term formation is as shown, where constructions{e}C[s, . . . ,s] are non-standard in two ways:

• Each subterm of a construction is ascope, which may include a vector of distinct variable “binders”
(~v denotesv1v2 . . .vn for n> 0), which can then occur as variables inside the scope (with the usual
caveat that the innermost possible scope is used for each particular variable name; this is the only
location where the formalism accepts abstraction).

• Each construction has an associatedenvironmentcomponent, which is a collection of mappings
from constructors and variables to terms (in addition to permitting meta-variables for pattern
matching against environments).

Meta-applications{e}M[t, . . . , t] are used in rewrite rules of the form

name[options] : pattern→ contraction

with the following extended version of the CRS conventions:

• Thenamebecomes the name of the rule; it can be replaced with “-” to use a default name.

• Theoptions is a comma-separated list of instructions to relax the requirement that all used meta-
variables occur exactly once on each side of the rule, that all variables are explicitly scoped, and
that all pattern meta-applications permit all in-scope variables (to avoid accidentalη-style rules).

• Thepattern is a term that must be a construction wherein contained meta-applications are applied
exclusively to distinct bound variables. The pattern defines what the rule willmatch: specifically
the rule will match any subterm where the top constructor matches including have the same number
of parameters and binders on the parameter scopes, matchingall required environment members,
and matching the shape of each parameter term recursively with the addition that pattern meta-
applications match any corresponding parameter term provided only the included bound variables
occur in the matched term (as usual for CRS; we give examples later). The mapping from the meta-
variables with the parameter bound variables to the real term and its bound variables is called
a valuation; CRSX extends valuations to also mapwhole environment meta-variablesand free
variablesto parts of the matched term.

• The→ is the Unicode U2192 character.

• Thecontractionexplains what the matched subterm should be replaced with bythe rewrite step.
Constructions stand for themselves. Meta-applications stand for copies of what the meta-variable
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matched where in turn the matched bound variables aresubstitutedby the corresponding argu-
ments provided in the contraction meta-application, in usual CRS fashion. Variables bound in the
contraction just stand for themselves but free variables either stand for occurrences of the variable
they matched or, as a special feature can be declared “fresh,” which means a new globally unique
fresh variable is created [17]. Environments in the contraction can reference matched environment
meta-variables extended with additional bindings.

Finally, the CRSX parser permits the following abbreviations borrowed fromλ calculus and program-
ming languages:

• Parenthesis are allowed around every term, so(t) is the same ast;

• c~v.t abbreviatesc[v1.c[v2. · · · c[vn.t] · · · ]] (think λxyz.t);

• t1t2 abbreviates@[t1,t2] and is left recursive sot1t2t3 is the same as(t1t2)t3;

• t1;t2 abbreviates$Cons[t1,t2] and is right recursive with the addition that omitted segments cor-
respond to$Nil, so(t1;t2;) corresponds to the term$Cons[t1,$Cons[t2,$Nil]]; and

• empty brackets[] can be omitted.

3 Parser

The first component of our X compiler is the parsing from X syntax to the AST, which are terms in
a higher-order abstract syntax representation [16] of X. Thus the parser has to be instructed for every
production in the language how the AST subterm for that production must look, including what binders
should be introduced and how they can occur. Figure1 shows the actual file used to achieve this with
the CRSX system’s PG parser generator. (Note that like all files used by the CRSX system, the parser
generator file is a Unicode text file which permits us to use special characters.)

The grammar itself is specified as follows:

• // introduces comments.

• The first line declares the external “class” name we’ll use for the parser as well as the default and
other externally visible non-terminals that the parser canbe explicitly requested to parse.

• The rest of the file consists of units that start with a name or some special keyword and end with a
period.

• The unit starting withmeta gives the special notation used for meta-variables when writing rules
involving parsed expressions; we’ll return to this in the following section and here just remark that
we use a notation for meta-variables inside parsed text which is a subset of the CRSX meta-variable
notation, and the unit starting withskip declares the white space convention.

• In general, non-terminals are written in angle brackets, like <P>, terminals (or defined tokens) are
written as simple identifiers, likev, and literal tokens are written as strings like",".

• Units starting with a non-terminal name are the proper productions. In productions, non-terminals
and terminals stand for themselves, we use parenthesis() for grouping, and vertical bar| for
choice—all else is annotations, explained below. So the first two productions could have been
written as

<P> ::= <E> .

<E> ::= <S> ("," <E> |) .
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// Grammar for X (simple XQuery-like language).

class net.sf.crsx.samples.x.X : <P>, <E>, <S>, <Q>

meta[<E>] ::= "#<PRODUCTION_NAME>" i?, "[", "]" . // Meta-applications over AST.

skip ::= " " | "\r" | "\n" | "\t" . // White space.

<P> ::= {program} <E> . // Program.

<E> ::= <S>:#S (","_$ J#SK <E> | J#SK) . // Expression.

<S> ::= "(" (<E> | {empty}) ")" // Simple expression.

| "element"_$ <N> "{" <E> "}"

| {query} <Q>

| "if"_$ <S> "then" <S> "else" <S>

| {call} <N> "(" (<E> | {empty}) ")"

| v_?

| {literal} <L>

.

<Q> ::= "for"_$ v_x "in" <S> <Q>[x] // Query.

| "let"_$ v_x ":=" <S> <Q>[x]

| "where"_$ <S> <Q>

| "return"_$ <S>

.

token v ::= "$" n . // Variable tokens.

<N> ::= n_$ . // Names.

token n ::= [A-Za-z_] [A-Za-z0-9_-]* .

<L> ::= l_$ . // Literals.

token l ::= i | s .

token i ::= [0-9]+ .

token s ::= "’" (¬[\’] | "’’")* "’" .

Figure 1:x.pg—parsing X to AST.
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// for $x in child(doc()) for $y in child(doc()) where eq($x,$y) return plus($x,$y)

"program"[

"query"[

"for"[

"call"["child", "call"["doc", "empty"]],

v"$x" .

"for"[

"call"["child", "call"["doc", "empty"]],

v"$y" .

"where"[

"call"["eq", ","[v"$x", v"$y"]],

"return"["call"["plus", ","[v"$x", v"$y"]]]]]]]]

Figure 2: Example parse from X program to AST.

if we were not interested in generating an AST term.

• Units starting withtoken give the regular expression for the defined token. We use conventional
regular expression syntax with character classes written in []s (negated by a preceding¬ and
including ranges), choice with|, optionality and repetition with?+*, and literal characters as
strings.

The purpose of the parsing, however, is to build an AST for theparsed X program. This is achieved by
the annotations in the productions.

• The default behaviour is that tokens are (parsed but) ignored and non-terminals are parsed and
submitted as subterms to the current context.

• When a production includes a name in braces, like{program} in the<P> production, this specifies
that the production generates an AST term with the tagprogram with all following subtrees as
children (specifically up to the end of the current choice).

• When a token is followed by$ then this specifies that an AST term using the token as the tag
with all following subtrees as children (up to the end of the surrounding choice). So in the<N>
production, then token is directly used as the tag (with no children since there are no following
parsed non-terminals).

• When a generated subterm is followed by a colon (:) and a meta-variable name starting with a hash
#, then this means that the subtree generated from the non-terminal is not echoed to the context but
stored with that name for later use in an inserted term in double bracketsJ. . .K. So, for example,
we can read the<E> production as follows:

1. Parse the<S> subterm and remember it as#S instead of including it in the context.

2. If the next token is a comma then the result is a term rooted by a comma-tag and with two
subtems: the one stored as#S generated byJ#SK and the one generated by the following<E>.

3. Otherwise, the result is just what was stored as#S generated by (the second)J#SK without
any additional tag.

(The fact that a tag can be omitted is a powerful feature that permits us to confuse the<E> and<S>
non-terminals in the normalization rules, as we shall see.)
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• An annotation of x, wherex can be any lower case variable name identifier, promotes the token
value to ascoped identifier definitionand makes[x] after a single non-terminal in the same pro-
duction indicate that the scope ofx is that non-terminal. So, for example, in the first choice of the
<Q> production, thev token is used as a variable name which is scoped in the<Q> subterm.

• Finally, ? after a token indicates that the token must be anoccurrenceof a bound variable.

In summary, the parser specification looks like many other abstract syntax tree generation notations,
such as MetaPRL [9] or ANTLR Tree Grammars [15], except for the additional direct support for higher
order abstract syntax by explicitly specifying the scopingand a pleasantly compact way to generate terms
where tokens are used directly as constructors, which reduces the size of large parsers considerably.

Figure2 shows a sample AST printed by the CRSX engine for the term shown in the comment. The
generated tags are quoted because they would otherwise be mistaken for other CRSX syntax; similarly,
actual CRSX variables that do not start with a lower case letter are written asv"$x", etc., which allows
us to retain the original X names in the AST. Notice how the ASTterm binds two variables, one for
each"for" construct, following the CRSX constraint that binders are only permitted on construction
subterms.

4 Normalization

Our sample intermediate language is a variant of nested-relational algebra [21, 5] modified to make the
binders of dependent operators explicit so we can exploit the higher-order rewriting capabilities,e.g., we
write the map operator as

Map[Dep[id.p2], p1]

with an explicitDep dependency abstraction to scope the “context tuple” (usually denoted by a context
sensitive symbol likeID in relational algebra).

The actual normalization rules are shown in Figure3, and exercise most of the features of CRSX:

• We first check that we have the grammar from Section3 loaded. The grammar enables two nota-
tions:

1. In CRSX syntax,%PJ...K denotesinline parsingof the . . . text using the<P> production of
some grammar (that must have been loaded in advance).

2. Inside parsed text,#P denotesany subterm where a<P> subterm is allowed; for disam-
biguation, such subterms further permit a numeric marker like #P2. (This is what themeta
declaration in Figure1 is for.)

The first rule then expresses that a<P>-program containing an<E> subterm (they all do) rewrites to
the shownAlgebraic-term, where theN-subterm is the one representing the compilation scheme
that will lead to the entire AST being normalized recursively.

• Notice that the right hand side of the first rule introduces a binder: id is bound in the invocation
of N. In all the rules forN we shall explicitly refer to this variable, however, in those cases it will
(locally) be afreevariable where we do not know the binder.

Thus all the following rules include theoptionFree[id] to indicate that the pattern can useid to
match a free variable. (This is otherwise not permitted as itis likely to be the result of mistyping.)

Matching of free variables in this way is inherently problematic for confluence, because it breaks
the confluence of developments: if the variable is substituted by something then the rule no longer
applies! Thus we need an assurance thatvariables that are matched against and substitued are
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// N: Normalization scheme: compile from X AST to nested relational algebra IL.

N[(

$CheckGrammar[’net.sf.crsx.samples.x.X’] ; // we need to parse X fragments

// Program.

N[%PJ #E K] → Algebraic[Dep[id.N[#E, id]]] ;

// Expressions: N[expression, input-tuple] rewrites to operator.

-[Free[id]] : N[%EJ ( #S , #E ) K, id] → Concat[N[#S, id], N[#E, id]] ;

-[Free[id]] : N[%SJ () K, id] → Empty ;

-[Free[id]] : N[%SJ #L K, id] → Literal[#L] ;

-[Free[id]] : N[%SJ element #N {#E} K, id] → Element[Literal[#N], N[#E, id]] ;

-[Free[id]] : N[%SJ #N(#E) K, id] → Call[#N, N[#E, id]] ;

-[Free[id]] : N[%SJ if #S then #S1 else #S2 K, id]

→ Conditional[N[#S, id], N[#S1, id], N[#S2, id]] ;

-[Free[f,id]] : N[f, id] → Extract[id, f] ;

// Queries.

-[Free[id]] : N[%SJ #Q K, id] → NQ[#Q, id, t.t] ;

// NQ[query source, input-variable, t.prefix-operator[t]]

-[Free[id],Fresh[f]] :

NQ[%QJ for $v in #S #Q[$v] K, id, t.#op[t]]

→ NQ[#Q[f], id, id3.MapConcat[Dep[id2.

Map[Dep[id1.Tuple[ACons[f id1, ANil]]], N[#S, id2]]], #op[id3]]] ;

-[Free[id],Fresh[f]] :

NQ[%QJ let $v := #S #Q[$v] K, id, t.#op[t]]

→ NQ[#Q[f], id, id2.MapConcat[Dep[id1.Tuple[(f N[#S, id1];)]], #op[id2]]] ;

-[Free[id]] :

NQ[%QJ where #S #Q K, id, t.#op[t]]

→ NQ[#Q, id, id2.Select[Dep[id1.N[#S, id1]], #op[id2]]] ;

-[Free[id]] :

NQ[%QJ return #S K, id, t.#op[t]]

→ Map[Dep[id1.N[#S, id1]], #op[id]] ;

)]

Figure 3:N.crs—normalizing X terms to nested-relational algebra.
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Algebraic[

(Dep id .

Map[

(Dep id1 . Call["plus", Concat[Extract[id1, v"$x"], Extract[id1, v"$y"]]]),

Select[

(Dep id1_1 . Call["eq", Concat[Extract[id1_1, v"$x"], Extract[id1_1, v"$y"]]]),

MapConcat[

(Dep id2 .

Map[(Dep id1_2 . Tuple[ACons[(v"$y" id1_2), ANil]]), Call["child", Call["doc", Empty]]]),

MapConcat[

(Dep id2_1 .

Map[(Dep id1_3 . Tuple[ACons[(v"$x" id1_3), ANil]]), Call["child", Call["doc", Empty]]]),

id]]]])]

Figure 4: Normalized version of sample query.

disjoint. For the present system this is ensured by the AST data structures being pure input data in
the sense that no rule produces an AST construction, and no AST data is allowed to escape from
theN wrapper. (The other way to ensure non-substitution is to create globally fresh free variables
since only bound variables can be substituted.)

• The next block of rules defines all the easy cases of normalization of sequences, literals, element
creation, function calls, conditional, and finally field extraction, which does not involve any X
syntax because all fields are converted to free field tag variables, as we shall see.

• Finally, queries are translated backwards [8] using an “operator accumulator” third argument with
theNQ helper compilation scheme. The first two rules of theNQ scheme involve replacing a bound
variable with a globally fresh one, which is achieved by the use of higher-order matching and
rewriting:

1. the pattern of the rules includes the fragment#Q[$v], which establishes that the<Q> subterm
should be matched with “tracking” of all occurrences of the variable bound by thefor or let
construct, respectively (the notation used here is determined by themeta declaration in the
parser description file);

2. the rules include the optionFresh[f], which makes the usedf variable in the rules denote
a fresh variable instance for each rewrite;

3. the replacement (orcontraction) of the rules includes the fragment#Q[f], which substitutes
the variable matched in that position with the new fresh variablef.

If we try to normalize the same term as before, CRSX outputs what is shown in Figure4. Notice how
the bound variables from the X program are now converted to field tags, which are free variables in the
CRSX representation of the nested-relational algebra.

5 Rewriting

The purpose of using a relational algebra intermediate language is usually to rewrite queries to a more
optimized form. Figure5 contains a few such standard optimizations:

• The rules are not related to a compilation scheme and can thus“fire” at any time. This means that
implementations should do some kind of completion procedure [13] to ensure that the rules are
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// R scheme: basic traditional relational optimizations.

R[(

RemoveDepMap[Weak[#dop]] : Dep[id1.MapConcat[#dop[], id1]] → #dop ;

Productize[Weak[#op1]] : MapConcat[Dep[id.#op1[]], #op2] → Product[#op1, #op2] ;

)]

Figure 5:R.crs—simple relational optimizations.

Algebraic[

(Dep id .

Map[

(Dep id1 . Call["plus", Concat[Extract[id1, v"$x"], Extract[id1, v"$y"]]]),

Select[

(Dep id1_1 . Call["eq", Concat[Extract[id1_1, v"$x"], Extract[id1_1, v"$y"]]]),

Product[

Map[(Dep id1_2 . Tuple[ACons[(v"$y" id1_2), ANil]]), Call["child", Call["doc", Empty]]],

Product[

Map[(Dep id1_3 . Tuple[ACons[(v"$x" id1_3), ANil]]), Call["child", Call["doc", Empty]]],

id]]]])]

Figure 6: Rewritten version of sample query.

applied properly, for example inserting a check for the application of these rules when aDep term
in one of the involved constructors is created.

• The RemoveDepMap rule includes the specialWeak[#dop] option. This option states that the
pattern for the#dop meta-variablemay have an incomplete list of binders to indicate that the
missing binders do not occur (free) in matching subterms. Weexploit this in the pattern by not
listing the one bound variable,id1, as an argument to the meta-application of#dop to ensure that
the subterm matching the meta-application does not containid1, which permits us to use it in
the replacement without providing a substitution forid1. Thus the rule states that nesting of a
dependent operator can be ignored if the dependent operatordoes not in fact depend on the nested
tuple.

• Similarly, theProductize rule states that if the dependent operator of nesting is independent of
the dependency then the two can be rewritten to a simple product. The final rewrite here merely
permits delaying tests, which allows combining the tests.

We shall not show any specific rules that perform annotation but just mention that they typically take the
form of an “annotation scheme” like

{id:#cType}Type[id] → #cType

where an environment in{}s is used to pass the types of variables to the individual subterms and construct
their type (for the specifics of the CRSX environment notation see the appendix). For more complex
analyses, inference rules like

ρ ⊢ p2 : t2 ρ +(i : t2) ⊢ p1 : t
ρ ⊢ Map[Dep i.p1, p2] : t

are encoded with generated rule schemes that rewrite terms like {ρ}⊢?[p] to ⊢![t] when the rules can
proveρ ⊢ p : t, which is encoded for the above rule as follows (shown without options):
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{#rho}"⊢?"[Map[Dep i.#p1[i], #p2]]

→ {#rho}"⊢??"[∀ i."⊢?1"[i, #p1[i], #p2, {#rho}"⊢?"[#p2]]] ;

{#rho}"⊢?1"[i, #p1, #p2, "⊢!"[#t2]]
→ {#rho}"⊢?2"[i, #p1, #p2, #t2, {#rho;i:#t2}"⊢?"[#p1]] ;

{#rho}"⊢?2"[i, #p1, #p2, #t2, "⊢!"[#t]] → "⊢!!"[i, #p1, #p2, #t2, #t] ;

{#rho}"⊢??"[∀ i."⊢!!"[i, #p1[i], #p2, #t2, #t]] → "⊢!"[#t] ;

that introduce helper translation schemes to build the proof of the inference rules in a strictly deterministic
left to right fashion. (This is automated by a CRSX meta-rewrite system in the real compiler.)

6 Code Emission

The generated code will use data flow macros, as is established practice for such compilers, but using
higher-order terms. The rules for code emission are shown inFigure7, and correspond closely to the
usual operational semantics of the nested-relational operators:

• The top level emission translation scheme isE, which creates a “main” target program with explicit
binders for the input and output channels.

• The body of the main program is a “pipe,” which connects the input to the program and the program
to the output. It is implemented byTPipe, the workhorse that creates a pair of a handler and a
cursor, where the cursor is iterated over once for each valuereceived by the handler: this iteration
is what enables the identification of “tuple” with the usual “frame” because a tuple of values sent
to a handler is the same as the frame of registers received by the iteration code through the cursor.

• The subscehemeE2 translates each algebraic construct to an explicit data flow. Concatenation, for
example, is achieved by doing the code in sequence with output to the same handler.

• Function call is interesting as the data flow architecture dictate that the way to instantiate a new
frame for executing the function is to create a handler to send the function’s arguments to and then
invoke the function including the handler to which the result should be sent.

• Records (in relational algebra called “tuples”) are represented as terms by recursive lists with a
member per field.

• We use CRSX variables as “data flow register” represented by field tags, cursors representing the
current value of an iteration, and handlers that can receivevalues for iteration; one can say that we
use free CRSX variables similar to the way traditional code generation uses an “infinite register
model.”

• Control instructions combine existing pieces of code; theTSwitch code generator is the only
branch construct that receives a single value on a handler and delegates to the branch marked with
that value (or, for elements, the tag of the value).

• The data manipulation macros correspond to usual register lookup, frame copy, and frame merge
operations.

• The last rules show how relational algebraic operators are translated into pipes and merges.

Running our example through code emission gives the result shown in Figure8.1

1The mechanisms used are rather crude. Notice for example howtheProduct operators result in the code building element
containers to cache the columns.
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// E scheme: emit executable "pipeline code" from nested-relational algebra.

E[(

// Main program is a pipe from input cursor to output handler.

E[Algebraic[Dep id.#op[id]]] → TMain[in out.TPipe[h.TCopy[in, h], c.E2[#op[c], out]]] ;

// E2[ operator, handler ] generates code for operator to send the result value to the handler.

-[Free[h]] : E2[Concat[#1, #2] , h] → TSeq[E2[#1, h], E2[#2, h]] ;

-[Free[h]] : E2[Empty , h] → TNoop ;

-[Free[h]] : E2[Literal[#N] , h] → TLiteral[#N, h] ;

-[Free[h]] : E2[Element[#1, #2] , h]

→ TMakeElement[labelh.E2[#1, labelh], contenth.E2[#2, contenth], h] ;

-[Free[h]] : E2[Call[#fun, #args], h] → TCall[#fun, argsh . E2[#args, argsh], h] ;

-[Free[c,f,h]] : E2[Extract[c,f] , h] → TPick[c, f, h] ;

-[Free[h]] : E2[Tuple[#fs] , h] → MkT[#fs, TDNil, vh.TNoop, h] ;

// Helper to generate tuples.

-[Free[f,h]] : MkT[ACons[f #, #fs], #td, vh.#e[vh], h]

→ MkT[#fs, TDCons[f, #td], vh.TSeq[E2[#,vh], #e[vh]], h] ;

-[Free[h]] : MkT[ANil , #td, vh.#e[vh], h] → TMakeTuple[#td, vh.#e[vh], h] ;

-[Free[h]] : E2[Conditional[#,#1,#2], h]

→ TSwitch[caseh . E2[#, caseh], TCase[True, E2[#1, h], TOtherwise[E2[#2, h]]]] ;

// Basic queries.

-[Free[h]] : E2[Map[Dep id.#dop[id], #], h] → TPipe[h1.E2[#, h1], c1.E2[#dop[c1], h]] ;

-[Free[h]] : E2[Select[Dep id.#dop[id], #], h]

→ TPipe[h1.E2[#, h1],

c1.TSwitch[caseh . E2[#dop[c1], caseh], TCase[True, TCopy[c1, h], TOtherwise[TEmpty]]]] ;

-[Free[h]] : E2[MapConcat[Dep id.#dop[id], #], h]

→ TPipe[h1.E2[#, h1], c1.TPipe[h2.E2[#dop[c1], h2], c2.TMerge[c1, c2, h]]] ;

-[Free[h]] : E2[Product[#1, #2], h]

→ TPipe[h2.TMakeElement[lh.TLiteral[’Columns’, lh], ch.E2[#2,ch],

c2.TPipe[h1.E2[#1, h1], c1.TPipe[h2.TCall["child", nh.TCopy[c2,nh]], c3.TMerge[c1, c3, h]]]]] ;

)]

Figure 7:E.crs—emit code.
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TMain[

in out .

TPipe[

h. TCopy[in, h],

id .

TPipe[

h1 .

TPipe[

h1_1 .

TPipe[

h2 .

TMakeElement[

lh. TLiteral[Columns, lh],

ch .

TPipe[

h2_1. TMakeElement[lh_1. TLiteral[Columns, lh_1], ch_1. TCopy[id, ch_1]],

c2 .

TPipe[

h1_2 .

TPipe[

h1_3. TCall["child", argsh. TCall["doc", argsh_1. TNoop, argsh], h1_3],

id1. TMakeTuple[TDCons[v"$x", TDNil], vh. TSeq[TCopy[id1, vh], TNoop], h1_2]],

c1. TPipe[h2_2. TCall["child", nh. TCopy[c2, nh]], c3. TMerge[c1, c3, ch]]]]],

c2_1 .

TPipe[

h1_4 .

TPipe[

h1_5. TCall["child", argsh_2. TCall["doc", argsh_3. TNoop, argsh_2], h1_5],

id1_1. TMakeTuple[TDCons[v"$y", TDNil], vh_1. TSeq[TCopy[id1_1, vh_1], TNoop], h1_4]],

c1_1. TPipe[h2_3. TCall["child", nh_1. TCopy[c2_1, nh_1]], c3_1. TMerge[c1_1, c3_1, h1_1]]]],

id1_2 .

TSwitch[

caseh .

TCall["eq", argsh_4. TSeq[TPick[id1_2, v"$x", argsh_4], TPick[id1_2, v"$y", argsh_4]], caseh],

TCase[True, TCopy[id1_2, h1], TOtherwise[TEmpty]]]],

id1_3 .

TCall["plus", argsh_5. TSeq[TPick[id1_3, v"$x", argsh_5], TPick[id1_3, v"$y", argsh_5]], out]]]]

Figure 8: Sample emitted code.

One important issue that we have to resolve in practice is to get all the optimizations to be applied
beforecode generation. This requires a study of the critical pairsof the system. The system as presented
here, for example, has an overlap between theRemoveDepMap optimization rule and theE2 MapConcat
rule. The solution in this case isnot traditional completion as that will effectively mean that all optimiza-
tions have to be equivalently implemented in the IL and TL butrather we simple block the cases for code
generation that can be handled by an optimization rule. So the actualE2 MapConcat rule looks like this:

-[Free[h]] : E2[MapConcat[Dep id.$[NotMatch,#dop[],#dop[id]], #], h]

→ TPipe[h1.E2[#, h1], c1.TPipe[h2.E2[#dop[c1], h2], c2.TMerge[c1, c2, h]]] ;

(In practice, such choices are delegated to an analysis phase which drops cookies of some kind into the
term to serve as enablers of the overlapping rewrite steps.)

7 Discussion

At the end what remains is to put all the pieces together. The driver is the top-level X symbol introduced
by parsing. We add a small “driver file” that essentially rewritesE[N[q]] for queriesq.
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I have found that this kind of architecture is quite consistent with what compiler development teams
expect even if the notations used are of a more formal nature than most developers usually work with.
The support for traditional “compiler block diagrams” likethe one in the introduction, where the fact
that each analysis and translation is specified independently makes using a structured approach realistic.
The chaotic nature of the resulting execution of the specification comes out as an advantage and our im-
plementation using a standard functional innermost-needed strategy often ends up interleaving the stages
of the compilation in interesting ways, for example eliminating dead code before type checking, usually
making mistakes in dependencies blatantly obvious. (Indeed, rewriting permits tweaking the reduction
order or using tricks such as completion to discover bad dependencies early.) However, debugging of
rule systems is very different from usual debugging in that mistakes show up as “unsimplified blobs or
term,” which is different from actual crashes (and requiresstrict discipline in naming the various modular
components in a globally identifyable way, something we have side-stepped in this brief presentation).

Although we have not covered it here, we have observed that the rewrite systems obtained can even
themselves be translated mechanically to low-level code, making it feasible to implement the actual
production compiler direclty from the rewrite rules. Important factors in this has been the disciplined
use of systems that can be transformed into orthogonal constructor systems, for which a table-driven
normalizing strategy can be used in almost all cases (there is a performance penalty for some substitution
cases).

The CRSX system implements higher order rewriting fully in the form of CRS, thus can handle full
substitution and thus express transformations such as inlining. However, it turns out that many specific
systems share with the small ones presented here the property that they use only “explicit substitution”
style rewrites, which only permits observing variables [1]. Indeed it seems that the fact that the approach
is not functional or a full logical framework is an advantage: the expressive power of explicit substitution
is strictly smaller (in a complexity sense) than general functions.

Finally, a crucial component in using rewriting for specifying large rule sets as is the case in the real
compiler is the strict shape requirements on rules: basically every aspect of a rule that is not strictly
linear and only substitutes bound variables for bound variables without any constraints is an error unless
it is explicitly requested: this purely syntactic approachcatches numerous errors early.

Related Work. The area of verifying a compiler specification is well established using both hand-
written and mechanical proofs [6]. Work has also been done on linking correct compiler specification
and implementations using generic proof theoretic tools [14]. Tools supporting mechanical generation
of compilers from specifications, such as SDF+ASF [3] and Stratego [4], have focused on compilers
restricted to first-order representations of intermediatelanguages used by the compiler and on using
explicit rewriting strategies to guide compilation. Our goal is the opposite: to only specify dependencies
between components of the compiler and leave the actual rewriting strategy to the system (in practice
using analysis-guided rule transformations coupled with ageneric normalizing strategy).

We are only aware of one published work that uses higher orderfeatures with compiler construc-
tion, namely the work by Hickey and Nogin on specifying compilers using logical frameworks [9]. The
resulting specification looks very similar to ours, and indeed one can see the code synthesis that could
be done for their logic system as similar to the code generation we are employing. Also, both systems
employ embedded source language syntax and higher-order abstract syntax. However, there are differ-
ences as well. First, CRSX is explicitly designed to implement just the kind of rewrite systems that we
have described, and is tuned to generate code that drives transformation through lookup tables. Second,
variables are first class in CRSX and not linked to meta-levelabstraction, thus closer to the approach
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used by explicit substitution for CRS [1] and “nominal” rewriting [7]. This permits us, for example, to
use an assembly language with mutable registers. Third, we find that the focus on local rewriting rules is
easier to explain to compiler writers, and the inclusion of environments and inference rules in the basic
notation further helps. Finally, the CRSX engine has no assumed strategy so we find the notion of local
correctness easier to grasp.

What’s Next? With CRSX we continue to experiment with pushing the envelope for supporting more
higher-order features without sacrificing efficiency.

An important direction is to connect with nominal rewritingand understand the relationship between
what the two formalisms can express.

Another interesting direction for both performance and analysis is to introduce explicitweakening
operators that “unbind” a given bound variable in a part of its scope. While used in this way with explicit
substitution [20, 10], the interaction with higher-order rewriting is not yet clear.

In companion papers we explain the details of the translation from the supported three forms of
rules, “recursive compilation scheme,” “chaotic annotation rules,” and “deterministic inference rules,”
into effective native executables, and we explain annotations that make it feasible to avoid rewriting-
specific static mistakes.

Acknowledgements. The author is grateful for insightful comments by the anonymous referees in-
cluding being made aware of the work in logical frameworks.
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