Higher-order Rewriting for Executable Compiler
Specifications

Kristoffer H. Rose

IBM Thomas J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598, USA

krisrose@us.ibm.com

In this paper we outline how a simple compiler can be compylefeecified using higher order rewrit-
ing in all stages: parsing, analysis/optimization, andecenhission, specifically using tlvesx.sf.net
system for a small declarative language called “X” inspiogdkQuery (for which we are building a
production quality compiler in the same way).

1 Introduction

A compiler typically consists of a parser generating anralbssyntax tree (AST) for some source lan-
guage (SL), a “normalization” to a canonical form in an intediate language (IL), some rewrites in-
serting analysis results into and performing simplificagief the IL, and finally code emission to the
target language (TL).

Normalize i
sL Parse AST r iz IL Emit TL

)

Rewrite

Each arrow in the diagram can be understood as a rewriting:
1. parsing to an AST is a rewriting from the string of charexta the input file to a term representing
the source program, usually formalized and implementedgusome variation of context free
grammars12];

2. normalization of the AST into the IL involves rewrite ral® eliminate “syntactic sugar” and other
redundant aspects of the source language;

3. rewriting of the IL involves adding annotations, simgliions, and sometimes using parts of the
program itself like rewrite rules (for example for inlinirdefined functions); often some rewrites
depend on the result of other rewrites (like an optimizatdepending on an analysis); finally,

4. code emission is usually a direct expansion of the “firdshke program into sequences (or tem-
plates) of instructions that are directly executable byramater.
We'll show how each of these steps is specified using the CRSiém [L8, 19], an implementation of
a variation of Combinatory Reduction Systemg][The actual samples we’ll present below are mere
toys, of course, but they do illustrate the ideas in a mariraris consistent with a production compiler
that we are building for XQueryZJ.

We first summarize the CRSX system notation, including thereions, in Sectio, before we
introduce the parser specification in Sect®followed by the normalizer rules in Sectidn Section5
then explains a few simple sample rewrites, and Sedipnesents code emission rules. Finally, we
conclude and discuss some related work in Section

E. Bonelli (Ed.): 5th International Workshop
on Higher-Order Rewriting (HOR'10)
EPTCS 49, 2011, pp. 345, doi:10.4204/EPTCS.49.3

http://dx.doi.org/10.4204/EPTCS.49.3

32 Higher-order Rewriting for Compilers

2 CRSX Summary

Our setting isCombinatory Reduction Systeffidl] as realized by the “CRSX" systeni§]. Here we
briefly summarize the used notation and where it differs frefarence CRS.
Terms are constructed from the basic grammar

t:=v|{e}C[s,...,q | {e}M[t,... 1] (Terms)
su=Vt|t (Scope)
ex=M|gv:t|eC:t (Environment)

where variablesy, are written with a lower case letter (including compositgtsilike v"$x"), meta-
variables M, must include a hash mark)(in the name, and all other units (including literal conssan
are constructors;.

Term formation is as shown, where constructige¥Cs, ..., s| are non-standard in two ways:

e Each subterm of a construction iseope which may include a vector of distinct variable “binders”
(Vdenotessvs. .. v, for n > 0), which can then occur as variables inside the scope (vhusual
caveat that the innermost possible scope is used for eatibupar variable name; this is the only
location where the formalism accepts abstraction).

e Each construction has an associagedironmentcomponent, which is a collection of mappings
from constructors and variables to terms (in addition torpiing meta-variables for pattern
matching against environments).

Meta-applicationge}M[t,...,t] are used in rewrite rules of the form
nameoptiong : pattern— contraction

with the following extended version of the CRS conventions:
e Thenamebecomes the name of the rule; it can be replaced withd' use a default name.

e Theoptionsis a comma-separated list of instructions to relax the reguent that all used meta-
variables occur exactly once on each side of the rule, thatdhbles are explicitly scoped, and
that all pattern meta-applications permit all in-scopealdes (to avoid accidental-style rules).

e Thepatternis a term that must be a construction wherein contained aygtieations are applied
exclusively to distinct bound variables. The pattern defwdat the rule willmatch specifically
the rule will match any subterm where the top constructoctreg including have the same number
of parameters and binders on the parameter scopes, matthieguired environment members,
and matching the shape of each parameter term recursivétyting addition that pattern meta-
applications match any corresponding parameter term gredvonly the included bound variables
occur in the matched term (as usual for CRS; we give examales | The mapping from the meta-
variables with the parameter bound variables to the reat #nd its bound variables is called
a valuation CRSX extends valuations to also mafhole environment meta-variablesd free
variablesto parts of the matched term.

e The— is the Unicode U2192 character.

e Thecontractionexplains what the matched subterm should be replaced withéoyewrite step.
Constructions stand for themselves. Meta-applicatioasdstor copies of what the meta-variable

K.H. Rose 33

matched where in turn the matched bound variablessabstitutedby the corresponding argu-
ments provided in the contraction meta-application, inal§iRS fashion. Variables bound in the
contraction just stand for themselves but free variablggestand for occurrences of the variable
they matched or, as a special feature can be declared “figkith means a new globally unique
fresh variable is created]. Environments in the contraction can reference matcheui@mment
meta-variables extended with additional bindings.

Finally, the CRSX parser permits the following abbreviatidoorrowed from\ calculus and program-
ming languages:

Parenthesis are allowed around every termt3as the same afs
c V.t abbreviateg|v1.C[Vs. - - - C[Vp.t] - - -]] (think Axyzt);
t;t, abbreviate® [t;,t,] and is left recursive stttz is the same afito)ts;

t1;t> abbreviate$Cons [t;,t2] and is right recursive with the addition that omitted segimenr-
respond tahNil, so (t1;tp;) corresponds to the terfiCons [t;,$Cons [tp, $Nill]; and

empty bracket§] can be omitted.

3 Parser

The first component of our X compiler is the parsing from X synto the AST, which are terms in
a higher-order abstract syntax representatitf] ff X. Thus the parser has to be instructed for every
production in the language how the AST subterm for that prtido must look, including what binders
should be introduced and how they can occur. Figushiows the actual file used to achieve this with
the CRSX system’s PG parser generator. (Note that like aBi fised by the CRSX system, the parser
generator file is a Unicode text file which permits us to useigpeharacters.)

The grammar itself is specified as follows:

// introduces comments.

The first line declares the external “class” name we’ll ugelie parser as well as the default and
other externally visible non-terminals that the parserlmaexplicitly requested to parse.

The rest of the file consists of units that start with a nameooresspecial keyword and end with a
period.

The unit starting withmeta gives the special notation used for meta-variables whetingriules
involving parsed expressions; we’ll return to this in thiédwing section and here just remark that
we use a hotation for meta-variables inside parsed textwhia subset of the CRSX meta-variable
notation, and the unit starting widkip declares the white space convention.

In general, non-terminals are written in angle brackeke, 4P>, terminals (or defined tokens) are
written as simple identifiers, like, and literal tokens are written as strings likg".

Units starting with a non-terminal name are the proper pcodnos. In productions, non-terminals
and terminals stand for themselves, we use parentl{@sier grouping, and vertical bat for
choice—all else is annotations, explained below. So thétivs productions could have been
written as

<p> ::
<E> ::

<E> .
<S> (ll’ll <E> |)

34

Higher-order Rewriting for Compilers

// Grammar for X (simple XQuery-like language).
class net.sf.crsx.samples.x.X : <P>, <E>, <S>, <Q>

meta[<E>] ::= "#<PRODUCTION_NAME>" i?, "[", "]" . // Meta-applications over AST.
skip ::= " " | "\r" | "\n" | "\t" . // White space.
<P> ::= {program} <E> . // Program.
<E> ::= <S>:#S (","_$ [#S] <E> | [#S]) . // Expression.
<S> = "(" (<E> | {empty}) ")" // Simple expression.
| "element"_$ <N> "{" <E> "}"
| {query} <Q>
| "if"_$ <S> "then" <S> "else" <S>
| {call} <N> "(" (<E> | {empty}) ")"
| wv_?
| {literal} <L>
<Q> ::= "for"_$ v_x "in" <S> <Q>[x] // Query.
| "let"_$ v_x ":=" <S> <Q>[x]
| "where"_$ <S> <Q>
| "return"_$ <S>
token v ::= "$" n . // Variable tokens.
<N> ::=n_$. // Names.
token n ::= [A-Za-z_] [A-Za-z0-9_-]1x% .
<L> ::=1_% . // Literals.
token 1 ::=1i | s .
token i ::= [0-9]+ .
token s = nhon (_‘[\)] | ||;;||)* non

Figure 1:x.pg—parsing X to AST.

K.H. Rose 35

// for $x in child(doc()) for $y in child(doc()) where eq($x,$y) return plus($x,$y)
"program" [

"query" [
"for" [
"call"["child", "call"["doc", "empty"l],
v'gx" .
"for" [
"call"["child", "call"["doc", "empty"l],
v'$y" .
"where" [
"call"["eq", ","[v"$x", v"$y"]1],
"return"["call" ["plus", ","[v"$x", v"$y"1]111111]

Figure 2: Example parse from X program to AST.

if we were not interested in generating an AST term.

e Units starting withtoken give the regular expression for the defined token. We useettional
regular expression syntax with character classes writtefl § (negated by a preceding and
including ranges), choice with, optionality and repetition witlr++, and literal characters as
strings.

The purpose of the parsing, however, is to build an AST forpdwesed X program. This is achieved by
the annotations in the productions.

e The default behaviour is that tokens are (parsed but) igharel non-terminals are parsed and

submitted as subterms to the current context.

e When a production includes a hame in braces,{ikeogram} in the<P> production, this specifies
that the production generates an AST term with thegaggram with all following subtrees as
children (specifically up to the end of the current choice).

e When a token is followed by$ then this specifies that an AST term using the token as the tag

with all following subtrees as children (up to the end of thergunding choice). So in then>
production, then token is directly used as the tag (with no children sincedfse no following
parsed non-terminals).

e When a generated subterm is followed by a colgnand a meta-variable name starting with a hash

#, then this means that the subtree generated from the nmirtdris not echoed to the context but
stored with that name for later use in an inserted term in Bobtacketq]. ..]. So, for example,
we can read theE> production as follows:

1. Parse th&S> subterm and remember it &S instead of including it in the context.

2. If the next token is a comma then the result is a term rooyed tomma-tag and with two
subtems: the one stored#&generated b{#s] and the one generated by the followixEp>.

3. Otherwise, the result is just what was storedtagenerated by (the seconfhs] without
any additional tag.

(The fact that a tag can be omitted is a powerful feature thahijis us to confuse thee> and<sS>
non-terminals in the normalization rules, as we shall see.)

36 Higher-order Rewriting for Compilers

e An annotation of x, wherex can be any lower case variable name identifier, promotesoient
value to ascoped identifier definitioand makedx] after a single non-terminal in the same pro-
duction indicate that the scope ofs that non-terminal. So, for example, in the first choicehaf t
<Q> production, ther token is used as a variable name which is scoped ir@Qhesubterm.

e Finally, _7 after a token indicates that the token must b@ecurrenceof a bound variable.

In summary, the parser specification looks like many othatrabt syntax tree generation notations,
such as MetaPRL9] or ANTLR Tree Grammars]5], except for the additional direct support for higher
order abstract syntax by explicitly specifying the scopang a pleasantly compact way to generate terms
where tokens are used directly as constructors, which esdilhe size of large parsers considerably.
Figure2 shows a sample AST printed by the CRSX engine for the term shiothe comment. The
generated tags are quoted because they would otherwisestakeri for other CRSX syntax; similarly,
actual CRSX variables that do not start with a lower caserlette written as"$x", etc, which allows
us to retain the original X names in the AST. Notice how the A8fm binds two variables, one for
each"for" construct, following the CRSX constraint that binders amty permitted on construction
subterms.

4 Normalization

Our sample intermediate language is a variant of nestatioehl algebraql, 5] modified to make the
binders of dependent operators explicit so we can expleihigher-order rewriting capabilities,g, we
write the map operator as

Map|Depl[id.py], pi]

with an explicitDep dependency abstraction to scope the “context tuple” (isdehoted by a context
sensitive symbol likgD in relational algebra).
The actual normalization rules are shown in FigBrand exercise most of the features of CRSX:

e We first check that we have the grammar from SecBdmaded. The grammar enables two nota-
tions:

1. In CRSX syntaxy,P[. . .] denotesnline parsingof the ... text using theP> production of
some grammar (that must have been loaded in advance).

2. Inside parsed tex#P denotesany subterm where &P> subterm is allowed; for disam-
biguation, such subterms further permit a numeric marker#pP2. (This is what theneta
declaration in Figurd. is for.)

The first rule then expresses thatke-program containing akkE> subterm (they all do) rewrites to
the shownilgebraic-term, where thé&l-subterm is the one representing the compilation scheme
that will lead to the entire AST being normalized recursjvel

e Notice that the right hand side of the first rule introducesnaléx: id is bound in the invocation
of N. In all the rules fomw we shall explicitly refer to this variable, however, in tkosases it will
(locally) be afreevariable where we do not know the binder.
Thus all the following rules include theptionFree [id] to indicate that the pattern can usgto
match a free variable. (This is otherwise not permitted aslikely to be the result of mistyping.)
Matching of free variables in this way is inherently probbio for confluence, because it breaks
the confluence of developments: if the variable is subsiititty something then the rule no longer
applies! Thus we need an assurance tzatables that are matched against and substitued are

K.H. Rose 37

// N: Normalization scheme: compile from X AST to nested relational algebra IL.

N[(

$CheckGrammar [’net.sf.crsx.samples.x.X’] ; // we need to parse X fragments

// Program.

N[%P[#E]1 — Algebraic[Deplid.N[#E, id]1] ;

// Expressions: N[expression, input-tuple] rewrites to operator.
-[Free[id]] : N[%E[(#S , #E)], id] — Concat[N[#S, id], N[#E, id]] ;
-[Free[id]] : N[%S[O], id]l — Empty ;

-[Freelid]] : N[%S[#L [, id]l — Literall[#L] ;

-[Freel[id]] : N[%S[element #N {#E}]|, id] — Element[Literal[#N], N[#E, id]] ;
-[Free[id]] : N[%S[#N(#E)], id] — Call[#N, N[¥E, id]] ;

-[Freel[id]] : N[%S[if #S then #S1 else #S52 |, id]
—» Conditional [N[#S, id], N[#S1, id], N[#S2, idl] ;

-[Freelf,id]] : N[f, id] — Extract([id, f] ;

// Queries.
-[Freel[id]] : N[%Sﬂ #Q ﬂ, id] — NQ[#Q, id, t.t] ;

// NQ[query source, input-variable, t.prefix-operator[t]]

-[Free[id] ,Fresh[f]] :
NQL%Q[for $v in #S #Q[$v]], id, t.#opl[tl]
— NQ[#Q[£f], id, id3.MapConcat[Dep[id2.
Map [Dep[idl.Tuple[ACons[f id1l, ANil]]], N[#S, id2]]1], #op[id3]]] ;

- [Free[id] ,Fresh[f]] :
NQL%Q[let $v := #S #Q[$v]], id, t.#opl[tl]
— NQ[#Q[£f], id, id2.MapConcat[Dep[idl.Tuple[(f N[#S, id1];)]1], #op[id2]1]1] ;

-[Free[id]] :
NQL%Q[where #S #Q], id, t.#op[tl]
— NQ[#Q, id, id2.Select[Dep[idl.N[#S, id1]], #opl[id2]1] ;
-[Free[id]] :
NQ[%Q[return #S], id, t.#op[t]]
— Map[Dep[idl.N[#S, id11]1, #op[id]] ;

)]

Figure 3:N.crs—normalizing X terms to nested-relational algebra.

38 Higher-order Rewriting for Compilers

Algebraicl
(Dep id .
Map[
(Dep idl . Call["plus", Concat[Extract[idl, v"$x"], Extract[idl, v"$y"111),
Select[
(Dep id1_1 . Call["eq", Concat[Extract[idl_1, v"$x"], Extract[idi_1, v"$y"111),
MapConcat [
(Dep id2 .
Map[(Dep id1_2 . Tuple[ACons[(v"$y" id1_2), ANilll), Call["child", Call["doc", Emptylll),
MapConcat [
(Dep id2_1 .
Map[(Dep id1_3 . Tuple[ACons[(v"$x" id1_3), ANilll), Call["child", Call["doc", Emptylll),
id1111)1

Figure 4: Normalized version of sample query.

disjoint For the present system this is ensured by the AST data stescbeing pure input data in
the sense that no rule produces an AST construction, and fiodA is allowed to escape from
theN wrapper. (The other way to ensure non-substitution is taterglobally fresh free variables
since only bound variables can be substituted.)

e The next block of rules defines all the easy cases of norntigizaf sequences, literals, element
creation, function calls, conditional, and finally field edtion, which does not involve any X
syntax because all fields are converted to free field taghlasaas we shall see.

e Finally, queries are translated backwar8kUsing an “operator accumulator” third argument with
theNQ helper compilation scheme. The first two rules of fitfescheme involve replacing a bound
variable with a globally fresh one, which is achieved by tise of higher-order matching and
rewriting:

1. the pattern of the rules includes the fragm#mi$v], which establishes that tk@> subterm
should be matched with “tracking” of all occurrences of tagable bound by théor or 1et
construct, respectively (the notation used here is deterthby themeta declaration in the
parser description file);

2. the rules include the optidfresh [£], which makes the usetivariable in the rules denote
a fresh variable instance for each rewrite;

3. the replacement (@ontractior) of the rules includes the fragme# [£], which substitutes
the variable matched in that position with the new freshalaaf.

If we try to normalize the same term as before, CRSX outputatwghshown in Figurel. Notice how
the bound variables from the X program are now converted ko fégys, which are free variables in the
CRSX representation of the nested-relational algebra.

5 Rewriting
The purpose of using a relational algebra intermediateulage is usually to rewrite queries to a more
optimized form. Figuré contains a few such standard optimizations:

e The rules are not related to a compilation scheme and carffireisat any time. This means that
implementations should do some kind of completion procedi] to ensure that the rules are

K.H. Rose 39

// R scheme: basic traditional relational optimizations.

R[(

RemoveDepMap [Weak [#dop]] : Deplidl.MapConcat [#dop[], id1]] — #dop ;
Productize[Weak [#op1]] : MapConcat[Deplid.#op1[]], #op2] — Product [#opl, #op2] ;
)]

Figure 5:R.crs—simple relational optimizations.

Algebraic[
(Dep id .
Map [
(Dep idl . Call["plus", Concat[Extract[idl, v"$x"], Extract[idl, v"$y"111),
Select[
(Dep id1_1 . Call["eq", Concat[Extract[idl_1, v"$x"], Extract[idi_1, v"$y"111),
Product [
Map[(Dep id1_2 . Tuple[ACons[(v"$y" id1_2), ANill]), Call["child", Call["doc", Emptyll],
Product [
Map[(Dep id1_3 . Tuple[ACons[(v"$x" id1_3), ANill]), Call["child", Call["doc", Emptyll],
id]111D)]

Figure 6: Rewritten version of sample query.

applied properly, for example inserting a check for the igpgibn of these rules whentep term
in one of the involved constructors is created.

e The RemoveDepMap rule includes the specialeak [#dop] option. This option states that the
pattern for the#dop meta-variablemay have an incomplete list of binders to indicate that the
missing binders do not occur (free) in matching subterms. e¥ydoit this in the pattern by not
listing the one bound variabled1, as an argument to the meta-applicatiort@bp to ensure that
the subterm matching the meta-application does not contiin which permits us to use it in
the replacement without providing a substitution i@rt. Thus the rule states that nesting of a
dependent operator can be ignored if the dependent opel@smot in fact depend on the nested
tuple.

e Similarly, theProductize rule states that if the dependent operator of nesting ispmagent of
the dependency then the two can be rewritten to a simple ptodine final rewrite here merely
permits delaying tests, which allows combining the tests.

We shall not show any specific rules that perform annotatigrust mention that they typically take the
form of an “annotation scheme” like

{id:#cType}Typel[id] — #cType

where an environment ifi}s is used to pass the types of variables to the individuaksuistand construct
their type (for the specifics of the CRSX environment notasee the appendix). For more complex
analyses, inference rules like
pEp2ity p+(iity)Fpr:t
p - Map[Depi.ps, o] : t
are encoded with generated rule schemes that rewrite téten§d}-7[p] to ! [t] when the rules can
provep - p:t, which is encoded for the above rule as follows (shown witlomiions):

40

Higher-order Rewriting for Compilers

{#trho}"F7" [Map [Dep i.#pl1[i], #p2]]

— {#rho}"F7?"[V i."F?1"[1, #pl[il, #p2, {#rho}"F7"[#p211] ;

{#rho}"F71"[i, #p1, #p2, "F!"[#t2]]

— {#rho}"F72"[i, #pl, #p2, #t2, {#rho;i:#t2}"F7"[#p1]] ;

{#rho}"72" [i, #pl, #p2, #t2, "FI"[#t]] — "F!1"[i, #pl, #p2, #t2, #t] ;
{#rho}"F?7" [V i."FVI"[i, #pl[i], #p2, #t2, #t]] — "HI"[#t] ;

that introduce helper translation schemes to build thefofthe inference rules in a strictly deterministic
left to right fashion. (This is automated by a CRSX meta-r@\system in the real compiler.)

6 Code Emission

The generated code will use data flow macros, as is estathlgtaetice for such compilers, but using
higher-order terms. The rules for code emission are shoviigare 7, and correspond closely to the
usual operational semantics of the nested-relationalatqe:

The top level emission translation schemg,iwhich creates a “main” target program with explicit
binders for the input and output channels.

The body of the main program is a “pipe,” which connects tipeifrio the program and the program
to the output. It is implemented I5BPipe, the workhorse that creates a pair of a handler and a
cursor, where the cursor is iterated over once for each vakeaived by the handler: this iteration

is what enables the identification of “tuple” with the usufrhfne” because a tuple of values sent
to a handler is the same as the frame of registers receivduklitetation code through the cursor.

The subscehemig2 translates each algebraic construct to an explicit data fimmcatenation, for
example, is achieved by doing the code in sequence with btdghe same handler.

Function call is interesting as the data flow architectuctadie that the way to instantiate a new
frame for executing the function is to create a handler ta $ka function’s arguments to and then
invoke the function including the handler to which the réshbuld be sent.

Records (in relational algebra called “tuples”) are repnésd as terms by recursive lists with a
member per field.

We use CRSX variables as “data flow register” representedely thgs, cursors representing the
current value of an iteration, and handlers that can reagiltees for iteration; one can say that we
use free CRSX variables similar to the way traditional codeegation uses an “infinite register
model.”

Control instructions combine existing pieces of code; Theitch code generator is the only
branch construct that receives a single value on a handiedelegates to the branch marked with
that value (or, for elements, the tag of the value).

The data manipulation macros correspond to usual regmsbé&up, frame copy, and frame merge
operations.

The last rules show how relational algebraic operatorsrareiated into pipes and merges.

Running our example through code emission gives the reisoitis in Figure8.!

1The mechanisms used are rather crude. Notice for exampléteRroduct operators result in the code building element
containers to cache the columns.

K.H. Rose 41

// E scheme: emit executable "pipeline code" from nested-relational algebra.

E[(

// Main program is a pipe from input cursor to output handler.
E[Algebraic[Dep id.#op[id]]] — TMain[in out.TPipe[h.TCopy[in, h]l, c.E2[#op[c]l, outll] ;

// E2[operator, handler] generates code for operator to send the result value to the handler.

-[Free[h]] : E2[Concat [#1, #2] , h] — TSeq[E2[#1, h], E2[#2, hl] ;
-[Free[h]] : E2[Empty , hl — TNoop ;

-[Free[h]] : E2[Literal [#N] , h] — TLiteral[#N, h] ;

-[Free[h]l] : E2[Element [#1, #2] , h]

— TMakeElement [labelh.E2[#1, labelh], contenth.E2[#2, contenth], h] ;

-[Free[h]] : E2[Call[#fun, #args], h] — TCall[#fun, argsh . E2[#args, argsh], h] ;
-[Freelc,f,h]] : E2[Extract[c,f] , h] — TPickl[c, f, h] ;
-[Free[h]] : E2[Tuple[#£fs] , h] — MkT[#fs, TDNil, vh.TNoop, h] ;

// Helper to generate tuples.

-[Free[f,h]] : MkT[ACons[f #, #fs], #td, vh.#e[vh], h]

— MkT[#fs, TDCons[f, #td], vh.TSeq[E2[#,vh], #e[vhl]l, h] ;

-[Free[h]] : MkT[ANil , #td, vh.#el[vh], h]l — TMakeTuple[#td, vh.#e[vh]l, h] ;

-[Free[h]] : E2[Conditional [#,#1,#2], h]
— TSwitch[caseh . E2[#, caseh], TCase[True, E2[#1, h], TOtherwise[E2[#2, h]]]] ;

// Basic queries.

-[Free[h]l] : E2[Map[Dep id.#dop[id], #], hl] — TPipe[h1l.E2[#, h1], cl.E2[#dop[c1], h]l] ;
—-[Free[h]] : E2[Select([Dep id.#dopl[id]l, #], h]

— TPipe[h1.E2[#, hil,

cl.TSwitch[caseh . E2[#dopl[cl], caseh], TCase[True, TCopylcl, h], TOtherwise[TEmptylll] ;

-[Free[h]] : E2[MapConcat[Dep id.#doplid]l, #], h]
— TPipe[h1.E2[#, h1], c1.TPipe[h2.E2[#dop[c1], h2], c2.TMergelcl, c2, h]ll] ;

-[Free[h]] : E2[Product[#1, #2], h]
— TPipe[h2.TMakeElement [1h.TLiteral[’Columns’, 1h], ch.E2[#2,ch],
c2.TPipe[h1.E2[#1, h1], c1.TPipe[h2.TCall["child", nh.TCopyl[c2,nh]], c3.TMergelcl, c3, h]111] ;

)]

Figure 7:E.crs—emit code.

42 Higher-order Rewriting for Compilers

TMain[
in out .
TPipel
h. TCopyl[in, h],
id .
TPipel
hi .
TPipe[
hi_ 1 .
TPipel
h2 .
TMakeElement [
lh. TLiteral[Columns, 1lh],
ch .
TPipe[
h2_1. TMakeElement[lh_1. TLiteral[Columns, 1lh_1], ch_1. TCopyl[id, ch_1]],
c2 .
TPipe[
hi 2 .
TPipel
h1_3. TCall["child", argsh. TCall["doc", argsh_1. TNoop, argsh], hi_3],
id1l. TMakeTuple[TDCons[v"$x", TDNill, vh. TSeq[TCopyl[idl, vh], TNoop], hi_2]1],
cl. TPipe[h2_2. TCall["child", nh. TCopy[c2, nhl], c3. TMergelcl, c3, chl]l]l],
c2_1 .
TPipel
hi 4 .
TPipe[
h1_5. TCall["child", argsh_2. TCall["doc", argsh_3. TNoop, argsh_2], hi_5],
id1_1. TMakeTuple[TDCons[v"$y", TDNill, vh_1. TSeq[TCopy[idi_1, vh_1], TNoopl, h1_411,
cl_1. TPipe[h2_3. TCall["child", nh_1. TCopy[c2_1, nh_1]], c3_1. TMergelci_1, c3_1, hi_1]111],
id1_2 .
TSwitchl[
caseh .

TCall["eq", argsh_4. TSeq[TPick[id1_2, v"$x", argsh_4], TPick[id1_2, v"$y", argsh_4]], caseh],
TCase[True, TCopyl[idi_2, hi], TOtherwise[TEmpty]lll],

id1_3 .

TCall["plus", argsh_5. TSeq[TPick[id1_3, v"$x", argsh_5], TPick[id1_3, v"$y", argsh_5]]1, out]]]]

Figure 8: Sample emitted code.

One important issue that we have to resolve in practice i®t@l) the optimizations to be applied
beforecode generation. This requires a study of the critical pitbke system. The system as presented
here, for example, has an overlap betweerRiéoveDepMap optimization rule and th&2 MapConcat
rule. The solution in this case it traditional completion as that will effectively mean thiitogtimiza-
tions have to be equivalently implemented in the IL and TLratiter we simple block the cases for code
generation that can be handled by an optimization rule. 8at¢tuaE2 MapConcat rule looks like this:

-[Free[h]] : E2[MapConcat[Dep id.$[NotMatch,#dopl[],#dopl[id]], #], h]
— TPipe[h1.E2[#, h1], cl1.TPipe[h2.E2[#dop[c1], h2], c2.TMergel[cl, c2, hl]l] ;

(In practice, such choices are delegated to an analysi®piiaish drops cookies of some kind into the
term to serve as enablers of the overlapping rewrite steps.)

7 Discussion

At the end what remains is to put all the pieces together. Tiverds the top-level X symbol introduced
by parsing. We add a small “driver file” that essentially re@gE[N[q]] for queriesq.

K.H. Rose 43

| have found that this kind of architecture is quite consisteith what compiler development teams
expect even if the notations used are of a more formal nalame most developers usually work with.
The support for traditional “compiler block diagrams” likee one in the introduction, where the fact
that each analysis and translation is specified indepelydmakes using a structured approach realistic.
The chaotic nature of the resulting execution of the spetifin comes out as an advantage and our im-
plementation using a standard functional innermost-retsttategy often ends up interleaving the stages
of the compilation in interesting ways, for example elinting dead code before type checking, usually
making mistakes in dependencies blatantly obvious. (lddesvriting permits tweaking the reduction
order or using tricks such as completion to discover bad mi#grecies early.) However, debugging of
rule systems is very different from usual debugging in thetakes show up as “unsimplified blobs or
term,” which is different from actual crashes (and requstest discipline in naming the various modular
components in a globally identifyable way, something weatside-stepped in this brief presentation).

Although we have not covered it here, we have observed teakthrite systems obtained can even
themselves be translated mechanically to low-level codakimg it feasible to implement the actual
production compiler direclty from the rewrite rules. Imgant factors in this has been the disciplined
use of systems that can be transformed into orthogonal remhsi systems, for which a table-driven
normalizing strategy can be used in almost all cases (teer@érformance penalty for some substitution
cases).

The CRSX system implements higher order rewriting fullyhe form of CRS, thus can handle full
substitution and thus express transformations such amsrgli However, it turns out that many specific
systems share with the small ones presented here the proipatrthey use only “explicit substitution”
style rewrites, which only permits observing variablg&s [ndeed it seems that the fact that the approach
is notfunctional or a full logical framework is an advantage: tlpressive power of explicit substitution
is strictly smaller (in a complexity sense) than generatfioms.

Finally, a crucial component in using rewriting for speaify large rule sets as is the case in the real
compiler is the strict shape requirements on rules: bdgiezkry aspect of a rule that is not strictly
linear and only substitutes bound variables for bound féegawithout any constraints is an error unless
it is explicitly requested: this purely syntactic approaeliches numerous errors early.

Related Work. The area of verifying a compiler specification is well esiti®#d using both hand-
written and mechanical proof§]] Work has also been done on linking correct compiler speatifin
and implementations using generic proof theoretic tob#§. [Tools supporting mechanical generation
of compilers from specifications, such as SDF+ASF4dnd Stratego4], have focused on compilers
restricted to first-order representations of intermediatgjuages used by the compiler and on using
explicit rewriting strategies to guide compilation. Ourlf the opposite: to only specify dependencies
between components of the compiler and leave the actualtirgyvstrategy to the system (in practice
using analysis-guided rule transformations coupled wigeeric normalizing strategy).

We are only aware of one published work that uses higher dedgures with compiler construc-
tion, namely the work by Hickey and Nogin on specifying colers using logical framework®]. The
resulting specification looks very similar to ours, and iedl®ne can see the code synthesis that could
be done for their logic system as similar to the code germratie are employing. Also, both systems
employ embedded source language syntax and higher-ordeaetsyntax. However, there are differ-
ences as well. First, CRSX is explicitly designed to implaijast the kind of rewrite systems that we
have described, and is tuned to generate code that drivefdrenation through lookup tables. Second,
variables are first class in CRSX and not linked to meta-labstraction, thus closer to the approach

44 Higher-order Rewriting for Compilers

used by explicit substitution for CRS][and “nominal” rewriting [7/]. This permits us, for example, to
use an assembly language with mutable registers. Third ndeffat the focus on local rewriting rules is
easier to explain to compiler writers, and the inclusionmfimnments and inference rules in the basic
notation further helps. Finally, the CRSX engine has nomagslstrategy so we find the notion of local
correctness easier to grasp.

What's Next? With CRSX we continue to experiment with pushing the envelfgy supporting more
higher-order features without sacrificing efficiency.

An important direction is to connect with nominal rewritingd understand the relationship between
what the two formalisms can express.

Another interesting direction for both performance andymig is to introduce explicitveakening
operators that “unbind” a given bound variable in a part®stope. While used in this way with explicit
substitution R0, 10], the interaction with higher-order rewriting is not yeeat.

In companion papers we explain the details of the transiatiom the supported three forms of
rules, “recursive compilation scheme,” “chaotic annatatrules,” and “deterministic inference rules,”
into effective native executables, and we explain anrmitatithat make it feasible to avoid rewriting-
specific static mistakes.

Acknowledgements. The author is grateful for insightful comments by the anoaymreferees in-
cluding being made aware of the work in logical frameworks.

References

[1] Roel Bloo & Kristoffer H. Rose (1996)Combinatory Reduction Systems with Explicit Substitutiem Pre-
serve Strong Normalisatiotn Harald Ganzinger, editoRTA '96—Rewriting Techniques and Applications
Lecture Notes in Computer Scient®03, Rutgers University, Springer-Verlag, New Brunswidkw Jersey,
pp. 169-183, d0i:0.1007/3-540-61464-8_51.

[2] Scott Boag, Don Chamberlain, Mary F. Fernandez, Dankdbrescu, Jonathan Robie & Jéerdme Siméon
(2007): XQuery 1.0: An XML Query Languagé/N3C Recommendation, World Wide Web Consortium.
Available athttp: //www.w3.0rg/TR/2007 /REC-xquery-20070123/.

[3] M.G.J. van den Brand, J. Heering, P. Klint & P. A. Olivie2002): Compiling Language Definitions: The
ASF+SDF Compiler ACM Transactions on Programming Languages and Sysgt#%), pp. 334—368,
doi:10.1145/567097.567099.

[4] Martin Bravenboer, Arthur van Dam, Karina Olmos & Eelc@sser (2006):Program Transformation with
Scoped Dynamic Rewrite Rulgsundamenta Informatic&®(1-2), pp. 123-178.

[5] Sophie Cluet & Guido Moerkotte (1993Nested Queries in Object Basem: In Proc. Int. Workshop on
Database Programming Languagss. 226—242.

[6] Maulik A. Dave (2003):Compiler verification: a bibliographySIGSOFT Softw. Eng. NoteZ3(6), pp. 2-2,
doi:10.1145/966221.966235.

[7] Maribel Fernandez & Murdoch J. Gabbay (200®Rominal rewriting Inf. Comput.205(6), pp. 917-965,
doi:10.1016/j.ic.2006.12.002.

[8] Giorgio Ghelli, Nicola Onose, Kristoffer H. Rose & dame Siméon (2007)A better semantics for XQuery
with side-effectsin: DBPL'07: Proceedings of the 11th international confereme®atabase programming
languagesSpringer-Verlag, Berlin, Heidelberg, pp. 81-96, d0i:1007/978-3-540-75987-4_6.

[9] Jason Hickey & Aleksey Nogin (2006Formal Compiler Construction in a Logical Frameworldigher-
Order and Symb. Comf9(2-3), pp. 197-230, ddio . 1007/s10990-006-8746-6.

http://dx.doi.org/10.1007/3-540-61464-8_51
http://www.w3.org/TR/2007/REC-xquery-20070123/
http://dx.doi.org/10.1145/567097.567099
http://dx.doi.org/10.1145/966221.966235
http://dx.doi.org/10.1016/j.ic.2006.12.002
http://dx.doi.org/10.1007/978-3-540-75987-4_6
http://dx.doi.org/10.1007/s10990-006-8746-6

K.H. Rose 45

[10] Delia Kesner & Fabien Renaud (2009jhe Prismoid of Resourcesn: 34th International Symposium on
Mathematical Foundations of Computer Science (MEC8)CS 5734, Springer-Verlag, Novy Smokovec,
High Tatras, Slovakia, pp. 464-476, dai. 1007/978-3-642-03816-7_40.

[11] Jan Willem Klop, Vincent van Oostrom & Femke van Raanmdd@1993): Combinatory Reduction
Systems: Introduction and Survey Theoretical Computer Scienc1, pp. 279-308, ddio.1016/
0304-3975(93)90091-7.

[12] Donald E. Knuth (1968)Semantics of Context-Free Languagddathematical Systems Theo?(2), pp.
127-145.

[13] Donald E. Knuth & P. Bendix (1970)Simple Word Problems in Universal Algebram J. Leech, editor:
Computational Problems in Abstract AlgebPergamon Press, Elmsford, N.Y., pp. 263-297.

[14] Koji Okuma & Yasuhiko Minamide (2003)Executing Verified Compiler Specificatioi Atsushi Ohori,
editor: APLAS 2003—First Asian Symposium on Programming LanguagesSystemd_ecture Notes in
Computer Scienc2895, Springer, Beijing, China, pp. 178-194, d0i:1007/978-3-540-40018-9_13.

[15] Terence Parr (2008 ANTLR v3 Tree GrammardAvailable athttp://www.antlr.org/wiki/display/
ANTLR3/Tree+construction.

[16] Frank Pfenning, & Conal Elliot (1988}igher-Order Abstract SyntaxSIGPLAN Notices23(7), pp. 199—
208, d0i10.1145/960116.54010.

[17] Kristoffer H. Rose (1996)Operational Reduction Models for Functional Programmiranguages Ph.D.
thesis, DIKU, University of Copenhagen, Universitetsgarkl, DK-2100 Kgbenhavn @. http://
krisrose.net/thesis.pdf.

[18] Kristoffer H. Rose (2007)CRSX — An Open Source Platform for Experimenting with Higbreler Rewrit-
ing. Presented in absentia at HOR 200ft+p: //kristoffer.rose.name/papers.

[19] Kristoffer H. Rose (2010)Combinatory Reduction Systems with Extensiansp: //crsx.sourceforge.
net.

[20] Kristoffer H. Rose, Roel Bloo & Frédéric Lang (2009n Explicit Substitution with NametBM Research
Report RC24909, IBM Thomas J. Watson Research Center, RO784, Yorktown Heights, NY 10598,
USA. Available athttp://domino.research.ibm.com/library/cyberdig.nsf/reportnumber/
rc24909. To appear in Journal of Automated Reasoning.

[21] Mark A. Roth, Herry F. Korth & Abraham Silberschatz (B8 Extended algebra and calculus for nested
relational databasesACM Trans. Database Sydt3(4), pp. 389-417, ddi0.1145/49346.49347.

http://dx.doi.org/10.1007/978-3-642-03816-7_40
http://dx.doi.org/10.1016/0304-3975(93)90091-7
http://dx.doi.org/10.1016/0304-3975(93)90091-7
http://dx.doi.org/10.1007/978-3-540-40018-9_13
http://www.antlr.org/wiki/display/ANTLR3/Tree+construction
http://www.antlr.org/wiki/display/ANTLR3/Tree+construction
http://dx.doi.org/10.1145/960116.54010
http://krisrose.net/thesis.pdf
http://krisrose.net/thesis.pdf
http://kristoffer.rose.name/papers
http://crsx.sourceforge.net
http://crsx.sourceforge.net
http://domino.research.ibm.com/library/cyberdig.nsf/reportnumber/rc24909
http://domino.research.ibm.com/library/cyberdig.nsf/reportnumber/rc24909
http://dx.doi.org/10.1145/49346.49347

	1 Introduction
	2 CRSX Summary
	3 Parser
	4 Normalization
	5 Rewriting
	6 Code Emission
	7 Discussion

