
E. Bonelli (Ed.): 5th International Workshop
on Higher-Order Rewriting (HOR’10)
EPTCS 49, 2011, pp. 16–30, doi:10.4204/EPTCS.49.2

c© T. Balabonski
This work is licensed under the
Creative Commons Attribution License.

On the Implementation of Dynamic Patterns

Thibaut Balabonski
Laboratoire PPS, CNRS and Université Paris Diderot

thibaut.balabonski@pps.jussieu.fr

The evaluation mechanism of pattern matching with dynamic patterns is modelled in the Pure Pattern
Calculus by one single meta-rule. This contribution presents a refinement which narrows the gap
between the abstract calculus and its implementation. A calculus is designed to allow reasoning on
matching algorithms. The new calculus is proved to be confluent, and to simulate the original Pure
Pattern Calculus. A family of new, matching-driven, reduction strategies is proposed.

Introduction: Dynamic Patterns

Pattern matching is a basic mechanism used to deal with algebraic data structures in functional pro-
gramming languages. It allows to define a function by reasoning on the shape of the arguments. For
instance, define a binary tree to be either a single data or a node with two subtrees (code on the left, in
ML-like syntax). Then a function on binary trees may be defined by reasoning on the shapes generated
by these two possibilities (code on the right).

type ’a tree =

| Data ’a

| Node of ’a tree * ’a tree

let f t = match t with

| Data d -> <code1>

| Node (Data d) r -> <code2>

| Node l r -> <code3>

An argument given to the function f is first compared to (or matched against) the shape Data d (called
a pattern). In case of success, the occurrences of d in <code1> are replaced by the corresponding part
of the argument, and <code1> is executed. In case of failure of this first matching (the argument is not a
data) the argument is matched against the second pattern, and so on until a matching succeeds or there is
no pattern left.

One limit of this approach is that patterns are fixed expressions mentioning explicitly the constructors
to which they can apply, which restricts polymorphism and reusability of the code. This can be improved
by allowing patterns to be parametrised: one single function can be specialised in various ways by in-
stantiating the parameters of its patterns by different constructors or even by functions building patterns.
For instance in the following code, the function f would take an additional parameter p which would
then be used to define the first two patterns. In this case, instantiating p with the constructor Data would
yield the same function as before, but any other function building a pattern can be used for p!

let f p t = match t with

| p d -> <code1>

| Node (p d) r -> <code2>

| Node l r -> <code3>

However, introducing parameters and functions inside patterns deeply modifies their nature: they
become dynamic objects that have to be evaluated. This disrupts the matching algorithms and intro-
duces new evaluation behaviours. This paper intends to give tools to study these extended evaluation
possibilities.

http://dx.doi.org/10.4204/EPTCS.49.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

T. Balabonski 17

The Pure Pattern Calculus (PPC) of B. Jay and D. Kesner [JK09, Jay09] models the behaviour of
dynamic patterns by using a meta-level notion of pattern matching. The present contribution analyses the
content of the meta pattern matching of PPC (reviewed in Section 1), and proposes an explicit pattern
matching calculus (Section 2) which is confluent, which simulates PPC, and which allows the descrip-
tion of new reduction strategies (Section 3.1). An extension of the explicit calculus is then discussed
(Section 3.2) before a conclusion is drawn.

1 The Pure Pattern Calculus

This section only reviews some key aspects of PPC. Please refer to [JK09] for a complete story with
more examples. The syntax of PPC is close to the one of λ -calculus. The main difference is the re-
placement of the abstraction over a variable λx.b by an abstraction over a pattern (with a list of matching
variables) written [θ]p � b. There is also a new distinction between variable occurrences x and match-
able occurrences x̂ of a name x. Variable occurrences are usual variables which may be substituted while
matchable occurrences are immutable and used as matching variables or constructors.

t ::= x | x̂ | tt | [θ]t � t PPC Terms

where θ is a list of names. Letter a (resp. b, p) is used to indicate a term in position of argument (resp.
function body, pattern).

As pictured below, in the abstraction [θ]p � b the list of names θ binds matchable occurrences in
the pattern p and variable occurrences in the body b. Substitution of free variables and α-conversion
are deduced (see [JK09] for details on PPC, or Figures 1 and 2 for a formal definition in an extended
setting).

[x] x x̂ � x x̂ =α [y] x ŷ � y x̂

One of the features of PPC is the use of a single syntactic application for two different meanings:
the term t1t2 may represent either the usual functional application of a function t1 to an argument t2 or
the construction of a data structure by structural application of a constructor to one or more arguments.
The latter is invariant: any structural application is forever a data structure, whereas the functional appli-
cation may be evaluated or instantiated someday (and then turn into anything else, including a structural
application).

The simplest notion of pattern matching is syntactic: an argument a matches a pattern p if and only
if there is a substitution σ such that a = pσ . However, with arbitrary patterns, this solution generates
non-confluent calculi [vOo90]. To recover confluence, syntactic matching can be used together with
a restriction on patterns, as for instance the rigid pattern condition of the lambda-calculus with pat-
terns [KvOdV08]. The alternative solution of PPC allows a priori any term to be a pattern, and checks
the validity of patterns only a posteriori, when pattern matching is performed. In particular, the restriction
on patterns applies only once the evaluation of the pattern is completed. This allows a greater freedom
of evaluation and a greater polymorphism of patterns, and hence a greater expressivity.

This is done by a more subtle notion of matching, called compound matching, which tests whether
patterns and arguments are in a so-called matchable form. A matchable form denotes a term which is
understood as a value, or in other words a term whose current form is stable and then allows matching.
Matchable forms are described in PPC at the meta-level by the following grammar:

d ::= x̂ | dt PPC data structures
m ::= d | [θ]t � t PPC matchable forms

18 On the Implementation of Dynamic Patterns

Compound matching is then defined (still at the meta-level) by the following equations, taken in order.

{{a/θ x̂}} := {x 7→ a} if x ∈ θ

{{x̂/θ x̂}} := {} if x 6∈ θ

{{a1a2 /θ p1 p2}} := {{a1 /θ p1}}]{{a2 /θ p2}} if a1a2 and p1 p2 are matchable forms
{{a/θ p}} := ⊥ if a and p are matchable forms, otherwise
{{a/θ p}} := wait otherwise

Its result, called a match and denoted by ρ , may be a substitution (written σ), a matching failure
(written ⊥) or the special value wait. The latter case represents undefined cases of matching, when the
pattern or the argument has still to be evaluated or instantiated before being matched.

Decomposition of compound patterns in the equations above is associated with an operation] of
disjoint union which ensures linearity of patterns: no matching variable should be used twice in the same
pattern, or confluence would be broken [Klo80]. Its formal definition is:

•] is commutative.

• ⊥]ρ =⊥ for any ρ (even wait).

• wait]ρ = wait for ρ 6=⊥.

• σ1]σ2 =⊥ if domains of σ1 and σ2 overlap.

• σ1]σ2 is the union of σ1 and σ2 otherwise.

Finally, PPC has to deal with a problem related to the dynamics of patterns: a matching variable
may be erased from a pattern during its evaluation. In this case, no part of the argument would be bound
to this matching variable and then no term would be substituted to the corresponding variable. Hence
free variables would not be preserved, which would make reduction ill-defined (see Example 1). This is
avoided in PPC by a last (meta-level) test, called check: the result {a/θ p} of the matching of a against
p is defined as follows.

• if {{a/θ p}}=⊥ then {a/θ p}=⊥.

• if {{a/θ p}}= σ with dom(σ) 6= θ then {a/θ p}=⊥.

• if {{a/θ p}}= σ with dom(σ) = θ then {a/θ p}= σ .

Remark that {a/θ p} is not defined if {{a/θ p}}= wait.
Finally, the reduction −→PPC of PPC is defined by a unique reduction rule (applied in any context):

([θ]p � b)a −→βm b{a/θ p}

where for any b and σ the expression bσ denotes the application of the substitution σ to the term b, and
b⊥ denotes some fixed closed normal term ⊥.

Example 1. Let t be a PPC term. The redex ([x]ĉx̂� x) (ĉt) reduces to t: the constructor ĉ matches itself
and the matchable x̂ is associated to t. On the other hand, ([x,y]ĉx̂ � xy) (ĉt) reduces to ⊥: whereas
the compound matching is defined and successful, the check fails since there is no match for y and the
result would be ty where y appears as a free variable. The redex ([x]ĉx̂ � x) (ĉ) also reduces to ⊥ since
a constructor will never match a structural application. And last, ([x]yx̂� x) (ĉt) is not a redex since the
pattern yx̂ has to be instantiated.

T. Balabonski 19

2 Explicit Matching

This section defines the Pure Pattern Calculus with Explicit Matching (PPCEM), a calculus which gives
an account of all the steps of a pattern matching process of PPC. The first point discussed is the iden-
tification of structural application (Section 2.1). An explicit calculus is then fully detailed (Section 2.2)
and some of its basic properties are proved (Section 2.3). Explicit formulations of simpler pattern calculi
already appear in [CK04, For02, CFK04].

2.1 Explicit Data Structures

Firstly, a new syntactic construct is introduced to discriminate between functional and structural appli-
cations (as in [FMS06] for the rewriting calculus for instance). Any application is supposed functional a
priori, and two reduction rules propagate structural information. The explicit structural application of t
to u is written t •u.

t ::= x | x̂ | tt | t • t | [θ]t � t PPC• terms
d ::= x̂ | t • t PPC• data structures

x̂ t −→• x̂• t
(t1 • t2) t3 −→• (t1 • t2)• t3

The identity morphism embeds PPC into PPC•. The subset of PPC• defined by PPC is referred to as
the set of pure terms. On the other hand, a “forgetful” morphism maps PPC• terms back to PPC terms
(or pure terms):

JxK := x
Jx̂K := x̂

Jt1t2K := Jt1KJt2K
Jt1 • t2K := Jt1KJt2K

J[θ]p � bK := [θ]JpK � JbK

Some PPC• data structures are not mapped to data structures of PPC, for instance ([θ]p � b) • a.
However, for any pure term t, if t −→∗• t ′ and t ′ is a PPC• data structure, then t is a PPC data structure
(proof by induction on t). One can also observe that for every PPC data structure t, there exists a
reduction t −→∗• t ′ with t ′ a PPC• data structure. Call well-formed a term t such that JtK −→∗• t.

2.2 Explicit Pattern Matching

Another new syntactic object has to be introduced to represent an ongoing matching operation. The basic
information contained in such an object are: the list of matching variables, a partial result recording what
has already been computed, and a representation of what has still to be solved.

This new object is called matching and is written 〈θ |µ|∆〉 with θ a list of names, µ a decided
match (that means, ⊥ or a substitution), and ∆ the collection of submatchings that have still to be solved
(a multiset of pairs of terms). For now on, we will consider only decided matches, written µ (wait does
not exist as such in PPCEM).

The complete new grammar is:

t ::= x | x̂ | tt | t • t | [θ]t � t | t 〈θ |µ|∆〉 PPCEM terms
d ::= x̂ | t • t PPCEM data structures
m ::= d | [θ]t � t PPCEM matchable forms

20 On the Implementation of Dynamic Patterns

The set of free names of a term t is fn(t) = fv(t)∪ fm(t).

Free variables
fv(x) := {x}
fv(x̂) := /0

fv(t1t2) := fv(t1)∪ fv(t2)
fv(t1 • t2) := fv(t1)∪ fv(t2)

fv([θ]p � b) := fv(p)∪ (fv(b)\θ)
fv(t 〈θ |µ|∆〉) := (fv(t)\θ)∪ fv(codom(µ))∪ fv(∆)

Free matchables
fm(x) := /0
fm(x̂) := {x}

fm(t1t2) := fm(t1)∪ fm(t2)
fm(t1 • t2) := fm(t1)∪ fm(t2)

fm([θ]p � b) := (fm(p)\θ)∪ fm(b)
fm(t 〈θ |µ|∆〉) := fm(t)∪ fm(codom(µ))∪ fm(π1(∆))∪ (fm(π2(∆))\θ)

where if ∆ = (a1, p1)...(an, pn) then fm(π1(∆)) =
⋃

i fm(ai) and fm(π2(∆)) =
⋃

i fm(pi).
Figure 1: Free names of a PPCEM term

xσ := σx x ∈ dom(σ)
xσ := x x 6∈ dom(σ)
x̂σ := x̂

(tu)σ := tσ uσ

(t •u)σ := tσ •uσ

([θ]p � b)σ := ([θ]pσ � bσ) θ ∩ (dom(σ)∪ fn(σ)) = /0
(t 〈θ |µ|∆〉)σ := tσ 〈θ |µσ |∆σ 〉 θ ∩ (dom(σ)∪ fn(σ)) = /0

where in ∆σ (resp. µσ) the substitution propagates in all terms of ∆ (resp. of the codomain of µ).
Figure 2: Substitution in PPCEM

T. Balabonski 21

Initialisation

([θ]p � b)a −→B b〈θ | /0|(a, p)〉

Structural application

x̂ t −→• x̂• t
(t1 • t2) t3 −→• (t1 • t2)• t3

Matching
Since ∆ has been defined as a multiset of pairs of terms, its elements are not ordered. In the following
rules (a, p)∆ denotes the (multiset) union of ∆ with the singleton {(a, p)}.

The first three matching rules are for successful matching steps.

b〈θ |µ|(a, x̂)∆〉 −→m b〈θ |µ]{x 7→ a}|∆〉 if x ∈ θ and fn(a)∩θ = /0
b〈θ |µ|(x̂, x̂)∆〉 −→m b〈θ |µ|∆〉 if x 6∈ θ

b〈θ |µ|(a1 •a2, p1 • p2)∆〉 −→m b〈θ |µ|(a1, p1)(a2, p2)∆〉

The last six matching rules are for failure, and could be summed up as “for any other matchable forms a
and p, let b〈θ |µ|(a, p)∆〉 reduce to b〈θ |⊥|∆〉”.

b〈θ |µ|(ŷ, x̂)∆〉 −→m b〈θ |⊥|∆〉 if x 6∈ θ and x 6= y
b〈θ |µ|(a1 •a2, x̂)∆〉 −→m b〈θ |⊥|∆〉 if x 6∈ θ

b〈θ |µ|([θa]pa � ba, x̂)∆〉 −→m b〈θ |⊥|∆〉 if x 6∈ θ

b〈θ |µ|(x̂, p1 • p2)∆〉 −→m b〈θ |⊥|∆〉
b〈θ |µ|([θa]pa � ba, p1 • p2)∆〉 −→m b〈θ |⊥|∆〉

b〈θ |µ|(a, [θp]pp � bp)∆〉 −→m b〈θ |⊥|∆〉

Resolution

b〈θ |σ | /0〉 −→r bσ if dom(σ) = θ (substitution rule)
b〈θ |σ | /0〉 −→r ⊥ if dom(σ) 6= θ

b〈θ |⊥|∆〉 −→r ⊥

Figure 3: Rules of PPCEM

22 On the Implementation of Dynamic Patterns

A pure term of PPCEM is a term without any structural application or matching (that means a PPC
term). As in PPC, the symbol ⊥ used as a term denotes a fixed closed pure normal term.

Free variables and matchables are defined in Figure 1 as a natural extension of PPC mechanisms
to explicit matching. Similarly, a notion of (meta-level) substitution is deduced from this definition
(Figure 2). Finally, a notion of α-conversion is associated, and from now, on it is supposed that all bound
names in a term are different, and disjoint from free names.

New rules for matching are of three kinds: an initialisation rule−→B which triggers a new matching
operation, several matching rules −→m corresponding to all possible elementary matching steps and
three resolution rules −→r that apply the result of a completed matching. The complete set of rules of
PPCEM is given in Figure 3.

Reduction −→EM of PPCEM is defined by application of any rule of −→B, −→•, −→m or −→r in
any context. The subsystem −→p = −→• ∪ −→m ∪ −→r computes (when possible) already existing
pattern matchings but does not create new ones.

2.3 Confluence and Simulation properties

This section states and proves four theorems on basic properties of PPCEM and its links with PPC. The
first one is a result on the normalization of already existing pattern matchings.
Theorem 1. −→p is confluent and strongly normalizing.

Proof.

• We define two well-founded orders ≺N and ≺S , whose lexicographic product contains p←−.
This will enforce strong normalization.

– ≺N sorts terms with respect to the nesting of matchings. It is based on an over-approximation
of the depth of potentially nested matchings (matchings that are syntactically nested or that
may become such after some substitutions). For any lists of names θi, decided matches µi,
and lists of pairs of terms ∆i, the sequence 〈θ1|µ1|∆1〉 ; ...;〈θn|µn|∆n〉 is called a potentially
nested chain of length n if for each i ∈ {1...n−1} one of these conditions holds:
∗ Nesting: 〈θi+1|µi+1|∆i+1〉 appears in ∆i or in the codomain of µi.
∗ Potential nesting: a variable of θi+1 appears in ∆i or in the codomain of µi.

The set of maximal chains of a term t is the set of all potentially nested chains that can be
built using the matchings appearing in t and that can not be extended (neither by the left nor
by the right) using other matchings of t. For this extraction, remember that all bound names
in t are supposed to be different, and disjoint from free names. The depth of t is the multiset
of the lengths of the maximal chains of t.
Example 2. Write t = ĉ

〈
/0 | /0 |(x, ĉ)(x, ĉ)

〉 〈
x |x 7→ y〈y| /0|(ĉ, ŷ)〉 | /0

〉
. The term t contains

three matchings and has one maximal chain of length 3, which is〈
/0 | /0 |(x, ĉ)(x, ĉ)

〉
;
〈

x |x 7→ y〈y| /0|(ĉ, ŷ)〉 | /0
〉

;
〈

y | /0 |(ĉ, ŷ)
〉

The reduction t −→r t ′ = ĉ
〈

/0 | /0 |(y1 〈y1| /0|(ĉ, ŷ1)〉 , ĉ) (y2 〈y2| /0|(ĉ, ŷ2)〉 , ĉ)
〉

yields a new
term t ′ which still contains three matchings (one was reduced and disappeared but another
one was duplicated) and admits two maximal chains of length 2, namely〈

/0 | /0 |(y1 〈y1| /0|(ĉ, ŷ1)〉 , ĉ) (y2 〈y2| /0|(ĉ, ŷ2)〉 , ĉ)
〉

;
〈

y1 | /0 |(ĉ, ŷ1)
〉

〈
/0 | /0 |(y1 〈y1| /0|(ĉ, ŷ1)〉 , ĉ) (y2 〈y2| /0|(ĉ, ŷ2)〉 , ĉ)

〉
;
〈

y2 | /0 |(ĉ, ŷ2)
〉

T. Balabonski 23

The usual order on natural integers gives a well-founded order on the lengths of potentially
nested chains. ≺N is defined as the multiset extension of this order, applied to the depths of
terms. It strictly decreases for any reduction by the substitution rule, and is less or equal for
any other reduction.

– ≺S is the natural order on the size of terms, defined as follows:

S (x) := 1
S (x̂) := 1

S (t1t2) := S (t1)+S (t2)+2
S (t1 • t2) := S (t1)+S (t2)+1

S ([θ]p � b) := S (p)+S (b)
S (b〈θ |µ|∆〉) := S (b)+S (⊥)+∑x∈dom(µ)S (µx)+∑(a,p)∈k∆ k(S (a)+S (p))

where we write e ∈k ∆ when the element e appears in the multiset ∆ with multiplicity k.
≺S strictly decreases for any reduction except by the substitution rule.

• Matching rules generate some critical pairs, most of which are trivially convergent. The most
subtle case is the reduction of a non linear matching:

〈θ |µ]{x 7→ a1}|(a2, x̂)∆〉 p −→ 〈θ |µ|(a1, x̂)(a2, x̂)∆〉 −→p 〈θ |µ]{x 7→ a2}|(a1, x̂)∆〉

Since] is a disjoint union of substitutions, both sides can be reduced to 〈θ |⊥|∆〉.
Finally, −→p is weakly confluent, and then confluent by Newman’s Lemma [Ter03].

The second theorem states the confluence of −→EM. Since the reduction of PPCEM is defined by
several rules, the result does not fall into the modular framework of [JK09]. It is proved here directly by
the Tait and Martin-Löf’s technique. The main construction of the proof is the definition (in Figure 4)
of a parallel reduction relation =⇒ enjoying the diamond property (Lemma 3). The relation =⇒ is first
linked to −→EM in Lemma 1.

Lemma 1. −→EM ⊆ =⇒ ⊆ −→∗EM

Proof.

• −→EM ⊆ =⇒ by induction on the definition of −→EM.

• =⇒ ⊆ −→∗EM by induction on the definition of =⇒.

Lemma 2. If t =⇒ t ′ and σ =⇒ σ ′ then tσ =⇒ t ′σ
′
.

Proof. By induction on the derivation of t =⇒ t ′.

Lemma 3. ⇐==⇒ ⊆ =⇒⇐=

Proof. Suppose t1⇐= t =⇒ t2. Induction on the derivations of t =⇒ t1 and t =⇒ t2:

• If one of the reductions is by “Id”, the conclusion is immediate.

• If one reduction is by a “Cgr” rule, and the other by a “Cgr”, “Init”, “Struct”, or “Match” rule, then
the induction hypothesis applies straightforwardly.

24 On the Implementation of Dynamic Patterns

Id.

t =⇒ t

Cgr.
t1 =⇒ t ′1 t2 =⇒ t ′2

t1t2 =⇒ t ′1t ′2

t1 =⇒ t ′1 t2 =⇒ t ′2
t1 • t2 =⇒ t ′1 • t ′2

p =⇒ p′ b =⇒ b′

[θ]p � b =⇒ [θ]p′ � b′

b =⇒ b′ µ =⇒ µ ′ ∆ =⇒ ∆′

b〈θ |µ|∆〉=⇒ b′ 〈θ |µ ′|∆′〉
Init.

p =⇒ p′ b =⇒ b′ a =⇒ a′

([θ]p � b)a =⇒ b′ 〈θ | /0|(a′, p′)〉
Struct.

t =⇒ t ′

x̂ t =⇒ x̂• t ′
t1 =⇒ t ′1 t2 =⇒ t ′2 t3 =⇒ t ′3

(t1 • t2) t3 =⇒ (t ′1 • t ′2)• t ′3
Match.

b =⇒ b′ µ =⇒ µ ′ a =⇒ a′ ∆ =⇒ ∆′
x ∈ θ , fn(a)∩θ = /0

b〈θ |µ|(a, x̂)∆〉=⇒ b′ 〈θ |µ ′]{x 7→ a′}|∆′〉

b =⇒ b′ µ =⇒ µ ′ ∆ =⇒ ∆′
x 6∈ θ

b〈θ |µ|(x̂, x̂)∆〉=⇒ b′ 〈θ |µ ′|∆′〉

b =⇒ b′ µ =⇒ µ ′ ∆ =⇒ ∆′ ai =⇒ a′i pi =⇒ p′i
b〈θ |µ|(a1 •a2, p1 • p2)∆〉=⇒ b′ 〈θ |µ ′|(a′1, p′1)(a

′
2, p′2)∆

′〉

b =⇒ b′ ∆ =⇒ ∆′ a and p other matchable forms
b〈θ |µ|(a, p)∆〉=⇒ b′ 〈θ |⊥|∆′〉

Res.
b =⇒ b′ σ =⇒ σ ′ dom(σ) = θ
b〈θ |σ | /0〉=⇒ (b′)σ ′

dom(σ) 6= θ

b〈θ |σ | /0〉=⇒⊥
b〈θ |⊥|∆〉=⇒⊥

As in Figure 3, the last “Match” rule could be explicited in six fail rules.
Parallel reduction is straightforwardly extended:

• to decided matches (µ) by applying =⇒ to all terms in the codomain of a substitution (with more-
over ⊥=⇒⊥).

• to multisets of pairs of terms (∆) by applying =⇒ to all terms.

Figure 4: Definition of parallel reduction relation =⇒

T. Balabonski 25

• If one reduction is by a “Cgr” rule and the other by a “Res” rule, there is one non trivial case:
suppose t1 〈θ |σ1| /0〉 ⇐= t 〈θ |σ | /0〉 =⇒ tσ2

2 . By induction hypothesis there are t3 and σ3 such that
t1 =⇒ t3⇐= t2 and σ1 =⇒σ3⇐=σ2. Then we can derive t1 〈θ |σ1| /0〉=⇒ tσ3

3 . Finally, by Lemma 2
we conclude that tσ2

2 =⇒ tσ3
3 .

• If both reductions are by a “Init” rule, then the induction hypotheses apply straightforwardly.

• Idem for two “Struct” or two “Match” rules.

• Case where both reductions are by a “Res” rule. Reductions to ⊥ are straightforward. Then
consider the following case: tσ1

1 ⇐= t 〈θ |σ | /0〉 =⇒ tσ2
2 . By induction hypotheses t1 =⇒ t3 ⇐= t2

and σ1 =⇒ σ3⇐= σ2. By Lemma 2 tσ1
1 =⇒ tσ3

3 ⇐= tσ2
2 .

Theorem 2. PPCEM is confluent.

Proof. Since =⇒ has the diamond property (Lemma 3), its transitive closure =⇒∗ also enjoys the di-
amond property ([Ter03]). Moreover Lemma 1 implies −→∗EM = =⇒∗, and then −→∗EM enjoys the
diamond property. Finally, −→EM is confluent.

The last two theorems establish a link between the calculus with explicit matching PPCEM and the
original implicit PPC.

Lemma 4. If {{a/θ p}} = µ with µ a decided match, then for any µ0 and ∆ there are µ ′ with Jµ ′K = µ

and a reduction
〈θ |µ0|(a, p)∆〉 (−→• ∪ −→m)

∗ 〈
θ |µ0]µ

′|∆
〉

Proof. Induction on {{a/θ p}}.

• {{a/θ x̂}} with x ∈ θ or {{x̂/θ x̂}} with x 6∈ θ : immediate.

• {{aa0 /θ pp0}} with aa0 and pp0 matchable forms. Hence a = an...a1 and p = pm...p1 with an

and pm constructors. Then an...a1a0 −→∗• an • ... • a1 • a0 and pm...p1 p0 −→∗• pm • ... • p1 • p0.
Suppose n ≥ m, then {{aa0 /θ pp0}} = {{am...an /θ pn}}] {{an−1 /θ pn−1}}] ...]{{a0 /θ p0}} and
〈θ |µ0|(an • ...•a0, pm • ...• p0)∆〉 −→∗m 〈θ |µ0|(am • ...•an, pn)(an−1, pn−1)...(a0, p0)∆〉. Case on
pn = x̂:

– If x ∈ θ then the matching reduces to 〈θ |µ0]{x 7→ am • ...•an}|(an−1, pn−1)...(a0, p0)∆〉.
– If x 6∈ θ then the matching reduces to 〈θ |µ ′0|(an−1, pn−1)...(a0, p0)∆〉with µ ′0 = µ0 or µ ′0 =⊥.

In any of these two cases, the induction hypothesis gives the conclusion. In the case where m > n,
the same method allows to derive a reduction to ⊥.

• Cases of matching failure: for instance {{x̂/θ ŷt}}. The following reduction gives the conclusion:
〈θ |µ0|(x̂, ŷt)∆〉 −→• 〈θ |µ0|(x̂, ŷ• t)∆〉 −→m 〈θ |⊥|∆〉.

Theorem 3. For any terms t and t ′ of PPC, if t −→PPC t ′ then t −→∗EM t ′.

Proof. Suppose t −→PPC t ′. There is a context C[] such that t =C[([θ]p � b)a] −→PPC C[b′] = t ′ and
{{a/θ p}}= µ with µ a decided match.
By Lemma 4 ([θ]p � b)a −→B b〈θ | /0|(a, p)〉 (−→• ∪ −→m)

∗ b〈θ |µ| /0〉.

26 On the Implementation of Dynamic Patterns

Case on µ:

• If µ =⊥ then b′ =⊥ and b〈θ |⊥| /0〉 −→r ⊥.

• Else µ = σ and:

– If dom(σ) = θ then b′ = bσ and b〈θ |σ | /0〉 −→r bσ .
– Else b′ =⊥ and b〈θ |⊥| /0〉 −→r ⊥.

The map J·K is naturally extended to any PPCEM term, set of PPCEM terms and decided match, as well
as the notion of well-formedness. Then, for any µ and ∆ not containing any explicit matching, define the
semantics of the matching 〈θ |µ|∆〉 by:

Jθ |µ|∆K= JµK]

 ⊎
(a,p)∈∆

{{JaK/θ JpK}}

Note that the semantics can be wait.

Lemma 5. For any well-formed µ , µ ′, ∆ and ∆′ which do not contain any explicit matching,
if 〈θ |µ|∆〉 −→m 〈θ |µ ′|∆′〉 or 〈θ |µ|∆〉 −→• 〈θ |µ ′|∆′〉 then Jθ |µ|∆K= Jθ |µ ′|∆′K.

Proof. Case on the reduction rules.

Lemma 6 ([JK09]). If t −→PPC t ′, then tσ −→PPC t ′σ .

Let t be a PPCEM term, and t ′ the unique normal form of t by −→p. Write t↓ and call purification of t
the term Jt ′K. Note that the purification may not be a pure term if there is an unsolvable matching in it.

Theorem 4. For any well-formed terms t and t ′ of PPCEM,
if t −→EM t ′ and t↓ and t ′↓ are pure, then t↓= t ′↓ or t↓ −→PPC t ′↓ .

Proof. Induction on t −→EM t ′.

• Case t = ([θ]p � b)a −→B b〈θ | /0|(p,a)〉 = t ′. The term t ′↓ is pure, then there is a sequence
b↓ 〈θ | /0|(p↓ ,a↓)〉 (−→• ∪−→m)

∗ b↓ 〈θ |µ|∆〉 −→r t ′′ where Jt ′′K= t ′↓ and where ∆= /0 or µ =⊥.
By Lemma 5, JµK= {{a↓ /θ p↓}}. Then, by case on matching resolution, t↓−→PPC Jt ′′K= t ′↓ .

• Other base cases: if t −→p t ′, then t↓ = t ′↓ .

• Case t = b〈θ |µ|∆〉 −→EM b′ 〈θ |µ|∆〉 = t ′. The term t↓ is pure. Then 〈θ |µ|∆〉 −→∗p 〈θ |µ ′|∆′〉
where ∆′ = /0 or µ ′ =⊥. If µ ′ =⊥ or dom(µ ′) 6= θ , then t↓= t ′↓=⊥. Suppose ∆′ = /0 and µ ′ = σ

with dom(σ) = θ . Hence t↓= (b↓)σ and t ′↓= (b′↓)σ . By induction hypothesis b↓−→PPC b′↓ ,
and then by Lemma 6 t↓−→PPC t ′↓ .

• Other inductive cases are straightforward.

This section introduced the new calculus PPCEM for explicit matching with dynamic patterns, and
proved its confluence. It also expressed a bidirectional simulation between PPC and PPCEM: first any
reduction of PPC is reflected in PPCEM by a sequence. On the other hand, a reduction of PPCEM can
be mapped on zero or one step of PPC if and only if its source and its target are well-formed and can be
purified. Next section discusses how this new calculus can be used.

T. Balabonski 27

3 Discussion

3.1 Reduction Strategies

Pattern matching raises at least two new issues concerning reduction strategies (i.e. the evaluation order
of programs). One is related to the order in which pattern matching steps are performed, the other
concerns the amount of evaluation of the pattern and of the argument performed before pattern matching
is solved.

Some remarks about the order of pattern matching steps.
PPCEM uses a multiset as the third component of a matching 〈θ |µ|∆〉 to represent all the remaining work.
The calculus is thus able to cover all the possible orders of pattern matching steps. A particular strategy
may be enforced by giving more structure to the multiset ∆ and by adapting the matching reduction rules.
Example 3. Suppose that ∆ is now a list of pairs of terms, and (a, p)∆ denotes the usual “cons”: it
builds the list whose head is (a, p) and whose tail is ∆. Then the rules of Figure 3 implement a depth-
first, left-to-right pattern matching algorithm.
Example 4. Now assume the list structure of Example 3 and replace the right member of the reduction
rule 〈θ |µ|(a1 •a2, p1 • p2)∆〉 −→m 〈θ |µ|(a1, p1)(a2, p2)∆〉 by 〈θ |µ|∆(a1, p1)(a2, p2)〉. Then pattern
matching is done in a completely different order!
More generally, if some permutations of the elements of ∆ are allowed, lots of richer matching behaviours
may be described in PPCEM.

Pattern and argument evaluation: what is needed?
In PPC, a naive evaluation strategy for a term ([θ]p � b)a could be: evaluate the pattern p and the
argument a, then solve the matching (atomically). As the usual call-by-value, this solution may perform
unneeded evaluation of the argument, for instance in parts that are not reused in the body b of the
function. The most basic solution to this problem, call-by-name, allows the substitution of non-evaluated
arguments. But how can such a solution be described in a pattern calculus?

In the context of pattern matching, some evaluation of the argument has to be done before pattern
matching is solved. However the exact amount of needed evaluation depends on the pattern. Hence
pattern matching enforces some kind of call-by-value where the notion of value is context-sensitive.
Moreover, even the evaluation of the pattern may depend on the argument!

This makes the description of a strategy performing a minimal evaluation of the dynamic pattern
and the argument rather difficult. One may keep for the object-level a compact formalism like PPC
by defining complex meta-level operations finely parametrised by terms. This is done in [KLR10] to
describe standard reductions in a simpler pattern calculus. In contrast to this solution, we want to show
here how the richer syntax of PPCEM allows a simple description of such a reduction strategy.

Indeed PPCEM allows to interleave pattern and argument reduction with pattern matching steps.
This finer control allows for instance an easy definition of a “matching-driven” reduction, as pictured in
Figure 5.

The idea here is to trigger pattern matchings as soon as possible. Then the pattern and the argument
are evaluated until they become matchable, and one or more pattern matching steps are performed be-
fore the story goes on. A formal definition of a strategy implementing this picture is by restricting the
reduction under a context to the only four rules given in Figure 6.

Moreover, it can be checked that the list structure of Example 3 associated with the rules of Figure 3
and the context rules of Figure 6 gives a deterministic reduction strategy for PPCEM (which means that
any term has at most one authorised redex).

28 On the Implementation of Dynamic Patterns

Reduce pattern
to matchable form

Reduce argument to
matchable form

Perform pattern
matching steps

Select next pair

if matching variable

or abstraction

if datastructure

Figure 5: Matching-driven reduction strategy

t1 −→ t ′1
t1t2 −→ t ′1t2

p −→ p′

b〈θ |µ|(a, p)∆〉 −→ b〈θ |µ|(a, p′)∆〉

a −→ a′ x 6∈ θ
b〈θ |µ|(a, x̂)∆〉 −→ b〈θ |µ|(a′, x̂)∆〉

a −→ a′

b〈θ |µ|(a, p1 • p2)∆〉 −→ b〈θ |µ|(a′, p1 • p2)∆〉

Figure 6: Context rules for matching-driven reduction

b〈θ |τ|(a, x̂)∆〉 −→r b{x 7→a} 〈θ |τ ∪{x}|∆〉 if x ∈ θ , x 6∈ τ and fn(a)∩θ = /0

b〈θ |θ | /0〉 −→r bσ

b〈θ |τ| /0〉 −→r ⊥ if τ 6= θ

b〈θ |⊥|∆〉 −→r ⊥

Figure 7: Partial substitution rules

T. Balabonski 29

3.2 An Extension: Partial Substitution

Relaxing the matching procedure generates new possibilities of evaluation, which may bring more partial
evaluation, more sharing or more parallelism. We explore here an extension of PPCEM where the partial
result of a matching can be applied to the function body before the matching process is completed.

Example 5. Consider the following reduction:

([x]x̂z � (([/0]x � b)ĉ))(ĉt)

−→B ([x]x̂z � (b〈 /0| /0|(ĉ,x)〉))(ĉt)

The matching 〈 /0| /0|(ĉ,x)〉 is blocked because of the presence of the variable x in the pattern. Still, the
external application can be evaluated:

−→B (b〈 /0| /0|(ĉ,x)〉) 〈x| /0|(ĉt, x̂z)〉
−→2

• (b〈 /0| /0|(ĉ,x)〉) 〈x| /0|(ĉ• t, x̂• z)〉
−→m (b〈 /0| /0|(ĉ,x)〉) 〈x| /0|(ĉ, x̂)(t,z)〉
−→m (b〈 /0| /0|(ĉ,x)〉) 〈x|{x 7→ ĉ}|(t,z)〉

Now, the external matching 〈x|{x 7→ ĉ}|(t,z)〉 is also blocked because of the variable z. However, its
partial result is a substitution for x which, if applied, may unlock the internal matching. Indeed, allowing
this partial substitution could lead to a reduction like:

−→ (b〈 /0| /0|(ĉ, ĉ)〉) 〈x|{x 7→ ĉ}|(t,z)〉
−→m (b〈 /0| /0| /0〉) 〈x|{x 7→ ĉ}|(t,z)〉
−→r b〈x|{x 7→ ĉ}|(t,z)〉

where the internal matching is finally solved!

This kind of power may be of interest in two situations:

• By allowing more reduction in open terms, we gain more partial evaluation capabilities. This may
be interesting for greater sharing and efficient evaluation [HG91].

• Suppose now that z is replaced in the example by a possibly big term. In a parallel implementation
we could complete the external matching and evaluate the internal one in parallel. As pointed out
in [FMS06], this might represent another gain in efficiency.

A light variation on PPCEM gives this new power to our formalism. The principle of this variant is to
systematically apply partial results (substitutions) as soon as they are obtained. Hence they do not need
to be remembered in the object representing ongoing matching operations. Only a list of used variables
is remembered for linearity verification.

The object representing a matching is now 〈θ |τ|∆〉 where τ is either ⊥ or the list of the names of
the matching variables that have already been used. Now the test of disjoint union of substitutions is
replaced by a simple test against τ , while the final check compares θ and τ .

Initialisation, structural application, and most matching rules are the same in this variant. The only
differences are for the first matching rule and the resolution rules, which are now as in Figure 7.

Any PPCEM term can be translated into a term of this new calculus by applying the following trans-
formation: turn any b〈θ |σ |∆〉 into bσ 〈θ |dom(σ)|∆〉 (there is nothing to change in a failed matching).

The simulation between PPCEM and this extension is only one way: any reduction of PPCEM is
mapped by the previous morphism to a reduction sequence, but the converse is not true. Indeed the
calculus with partial substitution allows new reductions, as pictured in Example 5. Confluence for this
variant seems to be provable using the same technique as for plain PPCEM.

30 On the Implementation of Dynamic Patterns

Conclusion

The Pure Pattern Calculus is a compact framework modelling pattern matching with dynamic patterns.
However, the conciseness of PPC is due to the use of several meta-level notions which deepens the
gap between the calculus and implementation-related problems. This contribution defines the Pure Pat-
tern Calculus with Explicit Matching, a refinement which is confluent and simulates PPC, and allows
reasoning on the pattern matching mechanisms.

This enables a very simple definition of new reduction strategies in the spirit of call-by-name, which
is new in this kind of framework since the reduction of the argument of a function depends on the pattern
of the function, pattern which is itself a dynamic object. In the same direction, it would be interesting to
express standardisation in pattern calculi (as presented for example in [KLR10]) using explicit matching.

References
[CK04] S. Cerrito and D. Kesner: Pattern Matching as Cut Elimination. TCS, 323:71–127, 2004.

doi:10.1016/j.tcs.2004.03.032.
[CFK04] H. Cirstea, G. Faure and C. Kirchner: A Rho-Calculus of Explicit Constraint Application. 5th Workshop

on Rewriting Logic and Applications. ENTCS, vol. 117, 51–67, 2005. doi:10.1016/j.entcs.2004.06.029.
[FMS06] M. Fernández, I. Mackie, F.-R. Sinot: Interaction Nets vs the Rho-Calculus: Introducing Bigraphical

Nets. ENTCS, 154(3):19–32, 2006. doi:10.1016/j.entcs.2006.05.004.
[For02] J. Forest: A Weak Calculus with Explicit Operators for Pattern Matching and Substitution. 13th Inter-

national Conference on Rewriting Techniques and Applications. LNCS, 2378:174–191, 2002. doi:10.1007/3-
540-45610-4 13.

[HG91] C. K. Holst and D. K. Gomard: Partial Evaluation is Fuller Laziness. PEPM’91, 223–233, 1991.
doi:10.1145/115866.115890.

[Jay09] B. Jay. Pattern Calculus: Computing with Functions and Data Structures. Springer, 2009.
[JK09] B. Jay and D. Kesner: First-Class Patterns. J. Funct. Programming, 19(2):191–225, 2009.

doi:10.1017/S0956796808007144.
[KLR10] D. Kesner, C. Lombardi and A. Rı́os: Standardisation for Constructor Based Pattern Calculi. 5th

International Workshop on Higher-Order Rewriting: HOR 2010.
[Klo80] J. W. Klop: Combinatory Reduction Systems. Ph.D. Thesis, Mathematisch Centrum, Amstermdam, 1980
[KvOdV08] J. W. Klop, V. van Oostrom, and R. de Vrijer: Lambda Calculus with Patterns. TCS, 398:16–31,

2008. doi:10.1016/j.tcs.2008.01.019.
[Ter03] Terese. Term Rewriting Systems. Cambridge University Press, 2003.
[vOo90] V. van Oostrom. Lambda Calculus with Patterns. Technical Report IR228, Vrije Universiteit, Amster-

dam, 1990.

http://dx.doi.org/10.1016/j.tcs.2004.03.032
http://dx.doi.org/10.1016/j.entcs.2004.06.029
http://dx.doi.org/10.1016/j.entcs.2006.05.004
http://dx.doi.org/10.1007/3-540-45610-4_13
http://dx.doi.org/10.1007/3-540-45610-4_13
http://dx.doi.org/10.1145/115866.115890
http://dx.doi.org/10.1017/S0956796808007144
http://dx.doi.org/10.1016/j.tcs.2008.01.019

	1 The Pure Pattern Calculus
	2 Explicit Matching
	2.1 Explicit Data Structures
	2.2 Explicit Pattern Matching
	2.3 Confluence and Simulation properties

	3 Discussion
	3.1 Reduction Strategies
	3.2 An Extension: Partial Substitution

