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We consider constrained Horn clause solving from the more general point of view of solving formula

equations. Constrained Horn clauses correspond to the subclass of Horn formula equations. We state

and prove a fixed-point theorem for Horn formula equations which is based on expressing the fixed-

point computation of a minimal model of a set of Horn clauses on the object level as a formula in

first-order logic with a least fixed point operator. We describe several corollaries of this fixed-point

theorem, in particular concerning the logical foundations of program verification, and sketch how to

generalise it to incorporate abstract interpretations.

1 Introduction

Constrained Horn clauses are a versatile and practical formalism for representing and solving a variety

of problems in program verification and model checking [4, 17]. In this paper we approach constrained

Horn clause solving from a theoretical point of view. In logic, related problems have a long history:

solving Boolean equations goes back to the 19th century and was already investigated in [32], see [30] for

a comprehensive textbook. Solving Boolean equations is closely related to Boolean unification, a subject

of thorough study in computer science, see, e.g., [26] for a survey. The generalisation of this problem

from propositional to first-order logic has been made explicit as early as [2, 3]. Solving a formula

equation in first-order logic is closely related to second-order quantifier elimination, a problem with

applications in a variety of areas in computer science, e.g., databases or common-sense reasoning [14].

A seminal work on second-order quantifier elimination and basis of several algorithms still in use today

is Ackermann’s [1]. See [35] for a recent survey of this area of related problems.

Solving constrained Horn clauses is closely related to solving formula equations. In fact, constrained

Horn clauses correspond to a natural class of formula equations which we will call Horn formula equa-

tions. This relationship allows for an elegant theoretical description of the connections between problems

considered from Ackermann to contemporary verification.

Fixed-point theorems play an important role for solving equations in many areas of mathematics. In

recursion theory, a subject with close ties to verification, the recursion theorem guarantees the existence

of a solution of a system of recursion equations by computing a fixed point. But also in areas quite remote

from verification similar constructions can be found, as in the use of Banach’s fixed-point theorem in the

proof of the Picard-Lindelöf theorem on the unique solvability of ordinary differential equations. In

constrained Horn clause solving we have a comparable situation: it is a well-known result from logic

programming and constraint logic programming that every set of Horn clauses has a unique minimal

model (in the sense of identifying a model with the ground atoms true in it) and that this minimal model

can be computed as the fixed-point of an operator induced by the clause set [33, 22].
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In this paper we formulate and prove a fixed-point theorem for Horn formula equations which (es-

sentially) makes the construction of the minimal model explicit in the logic. Expressing this construction

will be achieved by using FO[LFP], first-order logic with a least fixed-point operator, thus providing a

canonical solution for any Horn formula equation. The fixed-point theorem has a number of applications:

it helps to explain, at least from a theoretical point of view, the efficacy of interpolation for Horn clause

solving and invariant generation. Moreover, as a simple corollary one can obtain the expressibility of the

weakest precondition and the strongest postcondition, and thus the partial correctness of an imperative

program in FO[LFP]. As another corollary it allows a generalisation of a result by Ackermann [1] on

second-order quantifier-elimination in a direction different from the recent generalisation [34]. A result

from a recently introduced approach to inductive theorem proving with tree grammars described in [10]

on generating a proof with induction based on partial information about that proof can be obtained from

our fixed-point theorem as another straightforward corollary. Last, but not least, an abstract form of the

fixed-point theorem, stated here as Conjecture 24, would permit to considerably simplify the proof of the

decidability of affine formula equations [19].

In Section 2 we relate constrained Horn clause solving with solving formula equations. The fixed-

point theorem is stated and proved in detail in Section 3. Section 4 describes some of its applications

to the foundations of program verification. In Section 5 we sketch how to generalise our fixed-point

theorem to accommodate abstract interpretation based on Galois connections. This paper is an improved

presentation of some of the main results of the second authors master’s thesis [25].

2 Constrained Horn clauses and formula equations

We use standard notation from logic. In particular, for a first-order language L , an L -structure M , an

L -formula ϕ , and an interpretation I of the free variables of ϕ in M we write M , I |= ϕ to express that

ϕ is true in M under the interpretation I (in the usual sense of Tarski semantics). Occasionally we will,

in a slight abuse of notation, also allow elements of M or relations over M to appear on the right-hand

side of |= by which we intend to denote truth in M under an accordingly modified interpretation I. We

write |= ϕ to express that ϕ is a valid formula. Individual variables will be denoted by lowercase Latin

letters x,y,z,u,v . . .. Predicate variables will be denoted by uppercase Latin letters X ,Y, . . .. If X is a k-

ary predicate variable and χ is a first-order formula with the free variables v1, . . . ,vk we write [X\χ ] for

the substitution of X by χ inserting the i-th argument of an X -atom for vi. We write [X1\χ1, . . . ,Xn\χn]
for the simultaneous substitution of Xi by χi for i = 1, . . . ,n. A substitution [X1\χ1, . . . ,Xn\χn] is called

first-order substitution if χ1, . . . ,χn are first-order formulas. The logical symbol ⊥ is a nullary predicate

constant which is false in all structures.

Let L be a first-order language and let T be an L -theory. A constrained Horn clause is an L -

formula of the form ϕ ∧X1(t1)∧ ·· · ∧Xn(tn) → Y (s) or ϕ ∧X1(t1)∧ ·· · ∧Xn(tn) → ⊥ where t1, . . . , tn,s
are tuples of first-order terms of appropriate arity and ϕ is a first-order formula, i.e., a formula not

containing predicate variables. Note that a constrained Horn clause is allowed to (and typically does)

contain free individual variables which, as usual in clause logic, are treated as universally quantified.

A finite set S of constrained Horn clauses is considered as the conjunction of these clauses and is thus

logically equivalent to a formula of the form ∀∗
∧

C∈S C where ∀∗ denotes the universal closure w.r.t.

individual variables. We are interested in solving a given finite set of constrained Horn clauses. There

are different notions of solvability in the literature which we will discuss in detail below.

In this paper we embed constrained Horn clauses in the more general framework of formula equa-
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tions. In the context of logical formulas, we consider an equation to be

an L -formula ϕ1 ↔ ϕ2 containing predicate variables X = X1, . . . ,Xn. (1)

A solution of (1) is a first-order substitution [X\χ ] s.t. |= (ϕ1 ↔ ϕ2)[X\χ ]. A solution in T has to satisfy

T |= (ϕ1 ↔ ϕ2)[X\χ ] instead. Since the concept of solution in T subsumes that of solution (by setting

T = /0) we will only use the former. We can simplify equations to instead considering

an L -formula ϕ containing predicate variables X = X1, . . . ,Xn. (2)

Then, as a solution in T , we ask for a first-order substitution [X\χ ] s.t. T |= ϕ [X\χ ]. Note that every

instance of (1) is an instance of (2) by letting ϕ be ϕ1 ↔ ϕ2 and every instance of (2) is an instance

of (1) by letting ϕ1 be ϕ and ϕ2 be ⊤. Moreover, it will be notationally useful to explicitly indicate the

predicate variables by existential quantifiers. Consequently we define:

Definition 1. A formula equation is a closed L -formula ∃X ϕ where ϕ contains only first-order quanti-

fiers. A solution of ∃X ϕ in T is a first-order substitution [X\χ ] s.t. T |= ϕ [X\χ ].

The problem of computing a solution to a formula equation given as input will be denoted as FEQ in

the sequel. A formula equation ∃X ϕ is called valid if it is a valid second-order formula and satisfiable if

it is a satisfiable second-order formula. If S is a set of constrained Horn clauses in the predicate variables

X = X1, . . . ,Xn, then ∃X∀∗
∧

C∈S C will be called Horn formula equation. Thus constrained Horn clauses

correspond to existential second order Horn logic, which also plays a significant role in finite model

theory, see [15].

There are different notions of solvability for constrained Horn clauses in the literature: satisfiability

of [17] is satisfiability of a Horn formula equation, semantic solvability of [31] is validity of a Horn

formula equation, and syntactic solvability of [31] is solvability of a Horn formula equation. In this paper

we will primarily be interested in this last notion: solvability of a Horn formula equation. Every solvable

formula equation is valid and every valid formula equation is satisfiable but neither of the converse

implications are true as the following example shows.

Example 2. If ϕ is a first-order formula which is satisfiable but not valid and does not contain X then,

trivially, ∃X ϕ is a formula equation which is satisfiable but not valid.

Towards an example for a valid but unsolvable Horn formula equation we work in the first-order

language L = {0/0,s/1}. Let A1 be ∀xs(x) 6= 0 and let A2 be ∀x∀y(s(x) = s(y)→ x = y) and consider

the formula

A1 ∧A2 →∃X∃Y∀u
(

X(0)∧Y(s(0))∧ (X(u)→ Y (s(u)))∧ (Y (u)→ X(s(u)))∧¬(X(u)∧Y(u))
)

which, up to some simple logical equivalence transformations, is a Horn formula equation Φ. Now Φ is

valid since, in a model M of A1 ∧A2, interpreting X by {s2n(0) | n ∈ N} and Y by {s2n+1(0) | n ∈ N}
makes the remaining formula true.

For unsolvability suppose that Φ has a solution [X\χ(u),Y\ψ(u)], then, since the standard model N

in the language L satisfies A1 ∧A2, we would have

N |= χ(0)∧ψ(s(0))∧∀u(χ(u)→ ψ(s(u)))∧∀u(ψ(u)→ χ(s(u)))∧∀u¬(χ(u)∧ψ(u)),

in particular χ would be a definition of the even numbers. However, the theory of N in L admits

quantifier elimination [11, Theorem 31G] which has the consequence that the L-definable sets in N are

the finite and co-finite subsets of N [11, Section 3.1, Exercise 4] and thus we obtain a contradiction to χ

being a definition of the even numbers (which is neither finite nor co-finite).
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Solving formula equations (FEQ) is closely related to the problem of second-order quantifier elim-

ination (SOQE): given a formula ∃X ϕ where ϕ contains only first-order quantifiers find a first-order

formula ψ s.t. |= ∃X ϕ ↔ ψ . The relationship between FEQ and SOQE often hinges on a third problem:

second-order quantifier elimination by a witness (WSOQE): given a formula ∃X ϕ where ϕ contains

only first-order quantifiers find a first-order substitution [X\χ ] s.t. |= ∃X ϕ ↔ ϕ [X\χ ], see [35] for more

details. This complex of problems has a long history in logic and a wealth of applications in com-

puter science, see the textbook [14] on second-order quantifier elimination. A number of algorithms for

second-order quantifier elimination have been developed, for example: The SCAN algorithm introduced

in [13] (tries to) compute(s) a first-order formula equivalent to ∃X ϕ for a conjunctive normal form ϕ

by forming the closure of ϕ under constraint resolution which only resolves on X -literals. The DLS

algorithm has been introduced in [8] and consists essentially of formula rewriting steps tailored to allow

application of Ackermann’s lemma (which instantiates a predicate variable provided some conditions on

the polarity of its occurrences are met).

3 The fixed-point theorem

It is well-known that a set of Horn clauses has a minimal model and that it can be obtained as least

fixed point of an operator induced by the clause set. In order to integrate this insight seamlessly into the

framework of formula equations we will express it on the object level by representing this least fixed-

point by means of an explicit least fixed-point operator. An adequate tool to that end is first-order logic

with least fixed points, FO[LFP], which plays an important role in finite model theory and descriptive

complexity [21].

In order to introduce FO[LFP] we first define, by induction on a formula ϕ , what it means for a

predicate variable X to occur positively (negatively) in ϕ :

1. If ϕ is an atom of the form X(t) then X occurs positively in ϕ .

2. X occurs positively (negatively) in ¬ϕ iff X occurs negatively (positively) in ϕ .

3. For ◦ ∈ {∧,∨}, X occurs positively (negatively) in ϕ ◦ψ iff X occurs positively (negatively) in ϕ

or X occurs postively (negatively) in ψ .

4. X occurs positively (negatively) in ϕ → ψ iff X occurs positively (negatively) in ψ or X occurs

negatively (positively) in ϕ .

5. For Q ∈ {∀,∃}, X occurs positively (negatively) in Qxϕ iff X occurs positively (negatively) in ϕ .

Example 3. X occurs positively but not negatively in ∀u(P(u) → X(u)). X occurs both positively and

negatively in ∀u(X(u)→ X(s(u))).

FO[LFP] is first-order logic, augmented with a least fixed point operator lfp which allows to add new

predicates to the logic that have the form [lfpX ϕ(X ,u)] where ϕ is a formula in which X occurs only

positively and the length of u is the arity of X . Then ϕ defines a monotone function Fϕ : P(M)k →
P(M)k and since the power set lattice P(M)k is complete, the Knaster-Tarski theorem applies and the

least fixed point of Fϕ is well-defined. The predicate [lfpX ϕ(X ,u)] is interpreted as that least fixed point.

Example 4. Working in the language {E/2} of graphs, let X be a binary predicate variable and define

ϕ(X ,u,v) ≡ u = v∨∃w(X(u,w)∧E(w,v)).

As X occurs only positively in ϕ we can form [lfpX ϕ(X ,u,v)] and observe that [lfpX ϕ(X ,u,v)](a,b) is

true iff there is a path from a to b.
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In this paper we will consider first-order logic with an operator for simultaneous least fixed points

(which corresponds to introducing mutual recursion). Then we require a tuple Φ= (ϕi(X1, . . . ,Xn,ui))
n
i=1

of formulas containing the Xi only positively where the length of ui is the arity ki of Xi. For a structure

M with domain M we define

Fi : Mk1 ×·· ·×Mkn → Mki ,

(R1, . . . ,Rn) 7→ {a ∈ Mki | M |= ϕi(R1, . . . ,Rn,a)}.

and the operator FΦ = (F1, ...,Fn) : Mk1 ×·· ·×Mkn → Mk1 ×·· ·×Mkn . Since the Xi occur only positively

in the ϕ j, the operator FΦ is monotone and, again, the Knaster-Tarski theorem applies. Thus we obtain

new predicates [lfpXi
Φ] for i = 1, . . . ,n which are interpreted by the i-th component of the least fixed

point of the operator FΦ. For more details, the reader is referred to [7].

Let ∃X1 · · ·∃Xn ψ be a Horn formula equation. We distinguish three different types of clauses in ψ :

(B) ϕ → Xi0(s),
(I) ϕ ∧Xi1(t1)∧ ·· ·∧Xim(tm) → Xi0(s),
(E) ϕ ∧Xi1(t1)∧ ·· ·∧Xim(tm) →⊥,

where the constraint ϕ is a formula in L not containing a predicate variable, m ≥ 1, t1, .., tm,s are tuples

of first-order terms in L of appropriate arity and i0, i1, . . . , im ∈ {1, . . . ,n}. Note that free variables y may

occur in the formulas ϕ and the terms s, t1, . . . , tm. We call the first base clauses, the second induction

clauses, and the third end clauses. The idea now is to build an inductive relation from the base and

induction clauses for every formula variable. For j = 1, . . . ,n let B j and I j be the sets of clauses of the

form (B) and (I), respectively, where i0 = j. In order to abbreviate notation we write ι := (i1, . . . , im)
and τ := (t1, . . . , tm). A clause in I j is determined by the tuple (ϕ , ι ,τ ,s), thus we write (ϕ , ι ,τ ,s) for the

clause ϕ ∧Xi1(t1)∧ ·· ·∧Xim(tm)→ X j(s) in I j. Analogously we write (ϕ ,s) for the clause ϕ → X j(s) in

B j.

Definition 5. Let ∃X1 · · ·∃Xn ψ be a Horn formula equation. Define the n-tuple Φψ =(ϕ j(X1, . . . ,Xn,x j))
n
j=1

where, for j = 1, . . . ,n,

ϕ j(X1, . . . ,Xn,x j) is ∃y





∨

(ϕ ,s)∈B j

(ϕ ∧ x j = s)∨
∨

(ϕ ,ι ,τ ,s)∈I j

(

ϕ ∧
m
∧

k=1

Xik(tk)∧ x j = s

)





where y are the free variables of the clauses in B j ∪ I j and x j is a tuple of variables s.t. |x j| equals the

arity of X j.

From the point of view of (constraint) logic programming, the above tuple of formulas is a first-order

definition of the operator TP induced by ∃X ψ when considered as a constraint logic program P, see,

e.g., [22]. Note that X1, . . . ,Xn only occur positively in Φψ , hence we can introduce the simultaneous

fixed-point formulas [lfpX j
Φψ ] for j ∈ {1, . . . ,n}.

Lemma 6. Let ∃X1 · · ·∃Xn ψ be a Horn formula equation and µ j := [lfpX j
Φψ ] for j ∈ {1, . . . ,n}, then

1. |= ∃X ψ ↔ ψ [X\µ ] and

2. if M |= ψ [X\R] for some structure M and relations R1, . . . ,Rn in M , then M |=
∧n

j=1(µ j → R j).
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Proof. The right-to-left direction of 1 is clear. For the left-to-right direction we first observe that the

formulas µ1, . . . ,µn satisfy all clauses in (B) and (I), i.e., for all j ∈ {1, . . . ,n} we have

|=∀y(ϕ → µ j(s)), ∀(ϕ ,s) ∈ B j,

|=∀y(ϕ ∧µi1(t1)∧ ·· ·∧µim(tm)→ µ j(s)), ∀(ϕ , ι ,τ ,s) ∈ I j.

To see this let M be a structure and a s.t. M , [y := a] |= ϕ ∧µi1(t1)∧ ·· · ∧µim(tm), then, as (µ1, . . . ,µn)
is a fixed point of FΦ, we have M , [y := a] |= µ j(s). The argumentation is analogous for clauses of the

form (B).

Now let M be a structure s.t. M |= ∃X ψ . Let R1, . . . ,Rn be relations in M s.t. M |= ψ [X\R]. Then

for all j ∈ {1, . . . ,n}:

M |=∀y(ϕ → R j(s)), ∀(ϕ ,s) ∈ B j, (3)

M |=∀y(ϕ ∧Ri1(t1)∧ ·· ·∧Rim(tm)→ R j(s)), ∀(ϕ , ι ,τ ,s) ∈ I j. (4)

Assume a j ∈ FΦ(R1, . . . ,Rn) j. Then there either exists (ϕ ,s)∈ B j s.t. M |= ∃y(ϕ ∧a j = s) or there exists

(ϕ , ι ,τ ,s) ∈ I j s.t. M , [X := R] |= ∃y(ϕ ∧
∧m

k=1 Xik(tk)∧a j = s). We assume the latter, the proof for the

former is analogous. Thus let a be s.t.

M , [X := R,y := a] |= ϕ ∧
m
∧

k=1

Xik(tk)∧ x j = s.

From (4) we obtain M , [y := a] |= R j(s) and thus M |= R j(a j).

Hence FΦ(R1, . . . ,Rn) ⊆ (R1, . . . ,Rn) and as (µ1, . . . ,µn) is the least fixed point of FΦ we obtain

M |=
∧n

j=1(µ j → R j).
For all clauses in (E) we have

M , [X := R] |= ∀y(ϕ ∧Xi1(t1)∧ ·· ·∧Xim(tm)→⊥),

and therefore, as X1, . . . ,Xn occur only negatively in this formula, we obtain

M , [X := µ ] |= ∀y(ϕ ∧Xi1(t1)∧ ·· ·∧Xim(tm)→⊥).

Thus M , [X := µ ] satisfies all clauses in ψ and we conclude that M |= ψ [X\µ ]. For 2. we get M |=
∧n

j=1(µ j → R j) analogously to the proof of 1.

Theorem 7 (Fixed-Point theorem). Let ∃X1 · · ·∃Xn ψ be a valid Horn formula equation and let µ j =
[lfpX j

Φψ ] for j ∈ {1, . . . ,n}. Then:

1. |= ψ [X\µ ],

2. If |= ψ [X\χ ] for FO[LFP]-formulas χ1, . . . ,χn, then |=
∧n

j=1(µ j → χ j).

Proof. Follows immediately from Lemma 6.

We now turn to dual and linear Horn formula equations. A dual constrained Horn clause is an L-

formula of the form ϕ ∧X(t) → Y1(s1)∨ ·· · ∨Yn(sn) or ϕ → Y1(s1)∨ ·· · ∨Yn(sn) where t,s1, . . . ,sn are

tuples of first-order terms of appropriate arity and ϕ is a first-order formula, i.e., a formula not containing

predicate variables. A dual Horn formula equation is a formula equation of the form ∃X∀y
∧m

i=1 Hi,
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where Hi is a constrained dual Horn clause for i ∈ {1, . . . ,m}. A linear Horn formula equation is a

formula equation that is both Horn and dual Horn.

For a formula ψ we define ψD as ψ [X1\¬X1, . . . ,Xn\¬Xn] where X1, . . . ,Xn are all predicate variables

occurring in ψ . Note that |= ψ ↔ (ψD)D for all formulas ψ . Moreover, note that |= ∃X ψ ↔ ∃X ψD

where X = X1, . . . ,Xn are all predicate variables occurring in ψ . If ∃X ψ is a Horn formula equation,

then ∃X ψD is logically equivalent to a dual Horn formula equation and if ∃X ϕ is a dual Horn formula

equation, then ∃X ϕD is logicall equivalent to a Horn formula equation. Note that dualisation of a (dual)

Horn formula equation interchanges (B)- and (E)-clauses.

Example 8. Consider the constrained Horn clauses

ψ ≡ X(a)∧ (X(u)∧X(v)→Y ( f (u,v)))∧ (Y (w)→⊥).

The dualisation of ψ is

ψD ≡ ¬X(a)∧ (¬X(u)∧¬X(v)→¬Y ( f (u,v)))∧ (¬Y (w)→⊥)

which is logically equivalent to the dual constrained Horn clauses

(X(a)→⊥)∧ (Y ( f (u,v))→ X(u)∨X(v))∧Y(w).

We can now prove the following result which is dual to Lemma 6.

Lemma 9. Let ∃X1 · · ·∃Xn ψ be a dual Horn formula equation and ν j := ¬[lfpX j
ΦψD ] for j ∈ {1, . . . ,n},

then

1. |= ∃X ψ ↔ ψ [X\ν ] and

2. if M |= ψ [X\R], for a structure M and relations R1, . . . ,Rn in M , then M |=
∧n

j=1(R j → ν j).

Proof. Let µ j := [lfpX j
ΦψD] for j = 1, . . . ,n. For 1. note that, since ∃X ψ is a dual Horn formula

equation, ∃X ψD is logically equivalent to a Horn formula equation. An application of Lemma 6/1.

yields |= ∃X ψD ↔ ψD[X\µ ]. Since ψD[X\µ ] is syntactically equal to ψ [X\ν ] we obtain |= ∃X ψ ↔
∃XψD ↔ ψD[X\µ ]↔ ψ [X\ν ].

For 2. assume that M |= ψ [X\R] for a structure M and relations R1, . . . ,Rn in M . Then M |=
ψD[X1\Rc

1, . . . ,Xn\Rc
n], so, by Lemma 6/2., M |=

∧n
j=1(µ j → Rc

j) which yields M |=
∧n

j=1(R j → ν j) by

contraposition.

Theorem 10 (Dual Horn fixed-point theorem). Let ∃X1 · · ·∃Xnψ be a valid dual Horn formula equation

and let ν j = ¬[lfpX j
ΦψD ] for j = 1, . . . ,n, then

1. |= ψ [X\ν ] and

2. if |= ψ [X\χ ] for FO[LFP]-formulas χ1, . . . ,χn, then |=
∧n

j=1(χ j → ν j).

Proof. Follows immediately from Lemma 9.

Note that the operator induced by ΦψD is not the dual operator of the one induced by Φψ in the sense

of [12] because ΦψD is not the (pointwise) negation of Φψ . Therefore ν is not the greatest fixed point of

Φψ . The question whether ν permits a sensible definition as a greatest fixed point is left as future work

by this paper. For the case of linear Horn formula equations we obtain:
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Theorem 11 (Linear Horn fixed-point theorem). Let ∃X1 · · ·∃Xn ψ be a valid linear Horn formula equa-

tion, let µ j = [lfpX j
Φψ ] and ν j = ¬[lfpYj

ΦψD ] for j = 1, . . . ,n, then

1. |= ψ [X\µ ] and |= ψ [X\ν ] and

2. if |= ψ [X\χ ] for FO[LFP]-formulas χ1, . . . ,χn, then |=
∧n

j=1((µ j → χ j)∧ (χ j → ν j)).

Theorem 11/2. shows that solving a linear Horn formula equation is equivalent to solving an inter-

polation problem in FO[LFP] in the sense that, given two tuples of FO[LFP]-formulas we seek to find

a tuple of first-order, i.e., fixed-point free, formulas which is between them in the implication ordering.

At least from a theoretical point of view this result helps to explain the efficacy of interpolation-based

methods for solving constrained Horn clauses, see, e.g., [28]. The relationship between interpolation and

Horn clauses has also been studied by encoding interpolation problems with a language condition on the

constant symbols as Horn clause sets [31, 16].

4 Applications to program verification

In this section we will describe some direct applications of our fixed-point theorem to the foun-

dations of program verification. As an exemplary framework we will consider the Hoare calculus for

a simple imperative programming language as in [36]. We fix the first-order language of arithmetic

L = {0,1,+,−, ·,≤}. The set of programs is defined by

p ::= skip | x := t | p0; p1 | if B then p0 else p1 | while B do p0,

where t is an L -term, B a quantifier-free first-order formula in L and x is a program variable.

The denotational semantics of programs is defined as usual based on a set of states Σ: we write C(p)
for the partial function from Σ to Σ that is the denotational semantics of the program p. A Hoare triple is

written as {ϕ}p{ψ}. For the purposes of this paper we fix the program variables to taking values in the

integers and thus we can work in the standard model Z. We write σ |= {ϕ}p{ψ} if Z,σ |= ϕ implies that

Z,C(p)(σ) |= ψ and |= {ϕ}p{ψ} if σ |= {ϕ}p{ψ} for all σ ∈ Σ. The Hoare calculus can be defined as

usual, see, e.g. [36]. We write ⊢ {ϕ}p{ψ} if {ϕ}p{ψ} is provable in the Hoare calculus. We can then

consider the verification condition of a Hoare triple as a Horn formula equation as follows:

Definition 12. The verification condition of a Hoare triple {ϕ}p{ψ}, written vc({ϕ}p{ψ}), is a formula

equation ∃I∀∗ ṽc({ϕ}p{ψ}), where ṽc({ϕ}p{ψ}) is defined by structural induction on p as follows:

ṽc({ϕ}skip{ψ}) = ϕ → ψ (1)

ṽc({ϕ}x j := t{ψ}) = ϕ → ψ [x j\t] (2)

ṽc({ϕ}p0; p1{ψ}) = ṽc({ϕ}p0{I})∧ ṽc({I}p1{ψ}) (3)

ṽc({ϕ}if B then p0 else p1{ψ}) = ṽc({ϕ ∧B}p0{ψ})∧ ṽc({ϕ ∧¬B}p1{ψ}) (4)

ṽc({ϕ}while B do p0{ψ}) = ṽc({I ∧B}p0{I})∧ (ϕ → I)∧ (I∧¬B → ψ) (5)

where, in clauses (3) and (5), I is a fresh predicate variable which does not appear in ϕ nor in ψ . Then

vc({ϕ}p{ψ}) = ∃I∀∗ ṽc({ϕ}p{ψ}) is obtained from ṽc({ϕ}p{ψ}) by existential quantification of all

predicate variables in ∀∗ ṽc({ϕ}p{ψ}).

Note that this is an purely syntactic definition, thus we can define vc({ϕ}p{ψ}) analogously for a

program p and second-order formulas ϕ ,ψ . We then obtain the following completeness result which

characterises Hoare provability by truth of a formula equation.
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Theorem 13. Let {ϕ}p{ψ} be a Hoare triple. Then ⊢ {ϕ}p{ψ} iff Z |= {ϕ}p{ψ} iff Z |= vc({ϕ}p{ψ}).

Proof Sketch. ⊢ {ϕ}p{ψ} iff Z |= {ϕ}p{ψ} is soundness and completeness of the Hoare calculus. The

implication from ⊢ {ϕ}p{ψ} to ⇒ Z |= vc({ϕ}p{ψ}) is proved by a straightforward induction on the

structure of the Hoare proof of {ϕ}p{ψ} The implication from Z |= vc({ϕ}p{ψ}) to Z |= {ϕ}p{ψ} is

proved by translating the semantics.

As a corollary we can now obtain the statement that a partial correctness assertion of an imperative

program is expressible as a formula in FO[LFP], a point also made in [5] for existential least fixed-point

logic.

Corollary 14. Let {ϕ}p{ψ} be a Hoare triple and let µ be the solution of vc({ϕ}p{ψ}) obtained from

Theorem 7, then Z |= vc({ϕ}p{ψ}) iff Z |= ṽc({ϕ}p{ψ})[I\µ ].

A second corollary is based on the observation that vc({ϕ}p{ψ}) is a linear Horn formula equa-

tion (which can be shown by a straightforward induction). Therefore we can apply Theorem 11 to the

verification condition and obtain:

Corollary 15. Let {ϕ}p{ψ} be a Hoare triple, then ∃I1 · · ·∃In π ≡ vc({ϕ}p{ψ}) is a linear Horn for-

mula equation. Let πD be the dual formula of π with predicate variables K1, . . . ,Kn. Assume Z |=
vc({ϕ}p{ψ}) and let µ j = [lfpI j

Φπ ] and ν j = ¬[lfpK j
ΦπD ] for j = 1, . . . ,n. Then

1. Z |= ṽc({ϕ}p{ψ})[I\µ ] and Z |= ṽc({ϕ}p{ψ})[I\ν ].

2. If Z, [I := R] |= ṽc({ϕ}p{ψ}) for relations R1, . . . ,Rn, then Z |=
∧n

j=1((µ j → R j)∧ (R j → ν j)).

This corollary shows that finding first-order formulas as loop invariants is equivalent to an interpo-

lation problem in the sense of finding a fixed-point free interpolant. Just as Theorem 11 does for linear

Horn clauses, this corollary contributes to explaining the efficacy of interpolation-based methods for loop

invariant generation, see, e.g. [27].

As a third corollary we will show that the weakest precondition and the strongest postcondition are

expressed by the least and greatest solutions µ and ν of linear Horn formula equations based on the

verification condition.

Definition 16. Let p be a program and ϕ ,ψ be first-order formulas in L . The weakest precondition1 of

p and ψ , written wp(p,ψ), is defined as

wp(p,ψ) = {σ ∈ Σ | Z,C(p)(σ) |= ψ}.

The strongest postcondition of p and ϕ , written sp(p,ϕ), is defined as

sp(p,ϕ) = {σ ∈ Σ | ∃σ ′ ∈ Σ : Z,σ ′ |= ϕ and C(p)(σ ′) = σ}.

The following property of the weakest precondition and the strongest postcondition justifies the ter-

minology and is of fundamental importance.

Lemma 17. Let {ϕ}p{ψ} be a Hoare triple, then |= {ϕ}p{ψ} iff [ϕ ]⊆ wp(p,ψ) iff [ψ ]⊇ sp(p,ϕ).

1In the literature this is mostly called weakest liberal precondition and the term weakest precondition is reserved for the

context of total correctness. As we only talk about partial correctness of programs there is no need for us to do so.
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For a formula ϕ all of whose free variables are program variables we define [ϕ ] = {σ ∈ Σ |Z,σ |=ϕ},

the set of states defined by ϕ . It is well-known that for any program p and any formula ψ there is a first-

order formula ϕwp which defines wp(p,ψ), i.e., [ϕwp] = wp(p,ψ) and, symmetrically, for any program

p and any formula ϕ there is a first-order formula ψsp which defines sp(p,ϕ), i.e., [ψsp] = sp(p,ϕ). Note

that these formulas rely on the expressivity of the assertion language, i.e, in our setting, on an encoding

of finite sequences in Z.

We will consider the formula equation ∃X0 vc({ϕ}p{X0}), which asks for a formula X0 s.t. all states

satisfying ϕ satisfy X0 after running the program p. Symmetrically we will consider the formula equa-

tion ∃X0 vc({X0}p{ψ}). Note that these are linear Horn formula equations and therefore we can apply

Theorem 11. In general there also occur predicate variables in vc({ϕ}p{ψ}), yet here we will only be

interested in the solution for the outermost predicate variable.

Corollary 18. Let p be a program, let ϕ be a formula, let ∃X π ≡ ∃X0 vc({ϕ}p{X0}), and let µ =
[lfpX0

Φπ ], then [µ ] = sp(p,ϕ).

Proof. Since Z |= vc({ϕ}p{⊤}) we have Z |= ∃X vc({ϕ}p{X0}). From Lemma 6/1. we obtain Z |=
vc({ϕ}p{µ}) which, by Theorem 13, is equivalent to |= {ϕ}p{µ}. By Lemma 17 we obtain [µ ] ⊇
sp(p,ϕ).

For the other direction let ψsp be a first-order formula with [ψsp] = sp(p,ϕ). By Lemma 17 we have

|= {ϕ}p{ψsp}, which is equivalent to Z |= vc({ϕ}p{ψsp}). By Lemma 6/2. we have Z |= ∀x(µ(x) →
ψsp(x)) and thus [µ ]⊆ [ψsp] = sp(p,ϕ).

Corollary 19. Let p be a program and let ψ be a formula, let ∃X π ≡ ∃X0 vc({X0}p{ψ}), and let

ν = ¬[lfpX0
ΦπD ], then [ν ] = wp(p,ψ).

Proof. Symmetric to that of Corollary 18

Note that the formulas µ and ν thus obtained do not rely on an expressivity hypothesis anymore. The

encoding of sequences is replaced by the least fixed-point operator.

5 Towards an abstract fixed-point theorem

Abstract interpretation, originally introduced in [6], is one of the most important techniques in static

analysis and software verification. Since many verification techniques could successfully be generalised

from programs to the logical level of constrained Horn clauses it is also natural to expect this possibility

for abstract interpretation. And indeed, abstract interpretations have been used in tools for solving Horn

clauses [20, 23]. In this section we briefly outline how we expect this generalisation to apply to our fixed-

point theorem. Proving the main statement of this section, Conjecture 24, is currently work-in-progress.

An application we have in mind is the following: in the recent article [19] the decidability of the

existence of affine invariants for programs with affine assignments (essentially due to Karr [24]) has

been generalised to formula equations of the form ∃X∀∗ϕ for ϕ being a quantifier-free formula. The

essential difference between the proof in [19] and Theorem 7 is that in [19] the fixed point is formed

in the lattice of affine subspaces and not in the power set lattice. We can allow for this possibility as

follows.

Definition 20. Let A = (A,⊆) and B = (B,⊑) be two partially ordered sets. A Galois connection

between A and B consists of two functions α : A → B and γ : B → A, s.t. for all X ∈ A and Y ∈ B:

X ⊆ γ(Y ) ⇔ α(X)⊑ Y.
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Definition 21. Let L be a language. A model abstraction is a pair (M ,G), where M is an L -structure

and G = (Vk,αk,γk)k∈N is a sequence of triples, s.t. for all k ∈ N : Vk = (Vk,⊑) is a complete lattice and

αk : P(Mk)→Vk and γk : Vk → P(Mk) form a Galois-connection between (P(Mk),⊆) and Vk.

Example 22. Consider the language Laff = (0,1,+,(c)c∈Q) where the intended interpretation of the

unary function symbol c for c ∈Q is multiplication with c. Let Gaff = ((Aff Qk,⊆),affk, idk)k∈N, where

Aff Qk is the set of all affine subspaces of Qk, affk maps every subset of Qk to its affine hull and idk is

the embedding of Aff Qk in P(Qk). Then (Q,Gaff) is a model abstraction.

We will now introduce the semantics of model abstractions. We will interpret FO[LFP]- and second-

order-formulas ϕ by defining a satisfaction relation (M ,G) |=a ϕ . The crucial difference between |=a

and standard Tarski semantics |= will be that second-order quantifiers and the least fixed-point operator

will not be interpreted in the power set of the domain but in G instead (for the appropriate arity). This

restriction of the domain of second-order quantification is reminiscent of (but different from) Henkin

semantics of second- and higher-order logic [18].

Definition 23. The defining clauses for first-order atoms, propositional connectives, and first-order quan-

tifiers for |=a are identical to those for |=. For formulas of the form ∃X ψ , where X is a k-ary predicate

variable, we define

(M ,G) |=a ∃Xψ ⇔ ∃S ∈Vk : (M ,G) |=a ψ [X\γk(S)],

and analogously for formulas of the form ∀Xψ . The semantics of the lfp-operator is defined as follows.

Let X1, . . . ,Xn be formula variables with Xi having arity ki, let Φ = (ϕi(X1, . . . ,Xn,ui))
n
i=1 be a tuple of

formulas s.t. |ui|= ki and X1, . . . ,Xn occur only positively in ϕi for all i ∈ {1, . . . ,n}. Let

F#
i : Vk1

×·· ·×Vkn
→Vki

(Y1, . . . ,Yn) 7→ αki
◦Fi(γk1

(Y1), . . . ,γkn
(Yn)),

where Fi is defined as in Section 3 and let F#
Φ = (F#

1 , . . . ,F
#
n ). Then

(M ,G) |=a [lfpXi
Φ](a) ⇔ a ∈ γki

(lfp(F#
Φ)i).

Note that the semantics of the least fixed-point operator is well-defined: We already know that Fi is

a monotone operator and αki
and γki

are monotone as they form a Galois connection for i ∈ {1, . . . ,n}.

Thus F#
i is monotone for all i ∈ {1, . . . ,n} and therefore F#

Φ is monotone as well. As Vk is a complete

lattice for all k ∈N, we can use the Knaster-Tarski theorem to obtain the least fixed point of F#
Φ.

Conjecture 24 (Abstract fixed-point theorem). Let L be a language and (M ,G) be a model abstraction.

Let ∃X1 · · ·∃Xn ψ be a Horn formula equation and let µ j = [lfpX j
Φψ ] for j = 1, . . . ,n. Then:

1. (M ,G) |=a ∃X ψ ↔ ψ [X\µ ] and

2. if (M ,G) |=a ψ [X\χ ] for FO[LFP]-formulas χ1, . . . ,χn, then (M ,G) |=a

∧n
j=1 (α j → χ j).

Example 25. In continuation of Example 22 consider an Laff formula equation ∃X ∀∗ψ where ψ is a

quantifier-free formula. We want to decide whether there are formulas χ s.t. Q |= ψ [X\χ ] and χ1, . . . ,χn

are conjunctions of affine equations, i.e., they define affine subspaces of Qk in the model Q. As in [19]

we reduce the solvability of ∃X∀∗ψ to solvability of one of its finitely many projections which are Horn

formula equations. Let ∃X∀∗ϕ be one of them, then an application of Conjecture 24 yields a tuple of

FO[LFP]-formulas µ s.t. (Q,Gaff) |=a ∃X ϕ ↔ ϕ [X\µ ]. Since all lattices Aff Qk have finite height we

can compute fixed-point free formulas χ equivalent to µ from µ and therefore (Q,Gaff) |=a ∃X ϕ ↔
ϕ [X\χ ]. Now ϕ [X\χ ] is a first-order formula and hence (Q,Gaff) |=a ϕ [X\χ ] iff Q |= ϕ [X\χ ]. The

latter statement can now be checked by a decision procedure for linear arithmetic.
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6 Conclusion

We have shown a fixed-point theorem for Horn formula equations and applied it to dual Horn formula

equations and linear Horn formula equations. The proof of this result essentially consists of expressing

the construction of a minimal model of a set of Horn clauses, which is familiar from logic programming,

on the object level as a formula in first-order logic with least fixed points, thus providing a canonical

solution to a Horn formula equation in FO[LFP].

Note that Theorem 7 applies equally to constraints ϕ being FO[LFP]-formulas. It therefore shows

that FO[LFP], in contrast to first-order logic, has the property of being closed under solving Horn formula

equations. It thus shows that in FO[LFP] validity and solvability of Horn formula equations coincide.

This is in contrast to formula equations in first-order logic, cf. Example 2.

Explicit fixed-point operators have been employed for second-order quantifier elimination in the

DLS∗ algorithm introduced in [29, 9]. In this algorithm Ackermann’s lemma is generalised to a fixed-

point lemma that covers additional situations. While the DLS∗ algorithm as such will fail on Horn

formula equations due to its priority of shifting universal quantifiers inwards, the fixed-point lemma

of the DLS∗ algorithm could be used for solving Horn formula equations with a single variable when

combined with a different preprocessing. However, for Horn formula equations with more than one

predicate variable it would result in solutions with iterated fixed points. In this sense our fixed-point

theorem can be considered a generalisation of the fixed-point lemma of [29]. On the other hand the

fixed-point lemma of [29] is not restricted to Horn formula equations.

These fixed-point theorems contribute to our theoretical understanding of the logical foundations of

constrained Horn clause solving and software verification: Theorem 11 and Corollary 15 help to ex-

plain, from a theoretical point of view, the efficacy of interpolation for Horn clause solving and invariant

generation respectively. Moreover, as corollary to our fixed point theorem we have obtained the express-

ibility of the weakest precondition and the strongest postcondition, and thus the partial correctness of an

imperative program in FO[LFP].

As shown in [25], our fixed-point theorem has a number of further corollaries in a variety of applica-

tion areas: it allows a generalisation of a result by Ackermann [1] on second-order quantifier-elimination

in a direction different from the recent generalisation [34] of that result. It allows to obtain a result on

the generation of a proof with induction based on partial information about that proof shown in [10] as

straightforward corollary. Last, but not least, an abstract form of the fixed-point theorem, Conjecture 24,

would permit to considerably simplify the proof of the decidability of affine formula equations given

in [19].

In conclusion, we believe that it is fruitful to consider constrained Horn clause solving from the more

general point of view of solving formula equations. On the theoretical level this perspective uncovers

connections to a number of topics such as second-order quantifier elimination and results such as Ack-

ermann’s [1]. On the practical level it suggests to study the applicability of algorithms such as DLS

and SCAN for constrained Horn clauses and vice versa, that of algorithms for constrained Horn clause

solving for applications of second-order quantifier elimination.
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