
Hossein Hojjat and Bishoksan Kafle (Eds.): 8th Workshop on

Horn Clauses for Verification and Synthesis (HCVS 2021)

EPTCS 344, 2021, pp. 36–64, doi:10.4204/EPTCS.344.4

© Jerome Jochems

This work is licensed under the

Creative Commons Attribution License.

Reducing Higher-order Recursion Scheme Equivalence

to Coinductive Higher-order Constrained Horn Clauses

Jerome Jochems
Department of Computer Science

University of Bristol*

Bristol, UK

jerome.jochems@bristol.ac.uk

Higher-order constrained Horn clauses (HoCHC) are a semantically-invariant system of higher-order

logic modulo theories. With semi-decidable unsolvability over a semi-decidable background theory,

HoCHC is suitable for safety verification. Less is known about its relation to larger classes of higher-

order verification problems. Motivated by program equivalence, we introduce a coinductive version

of HoCHC that enjoys a greatest model property. We define an encoding of higher-order recursion

schemes (HoRS) into HoCHC logic programs. Correctness of this encoding reduces decidability of

the open HoRS equivalence problem – and, thus, the λ Y-calculus Böhm tree equivalence problem –

to semi-decidability of coinductive HoCHC over a complete and decidable theory of trees.

1 Introduction

Cathcart Burn et al. [6] have proposed a promising logical framework for higher-order safety verification.

They frame the search for “safe” program invariants as a satisfiability problem for systems of HoCHC:

these higher-order constrained Horn clauses – which extend constrained Horn clauses to higher-order

logic with constraints from a first-order background theory – aim to act as a universal setting in which

disparate verification algorithms can be compared, independent of application or programming language.

Thanks to its higher-order predicates, the HoCHC fragment expresses certain invariants of higher-

order programs quite directly. Even so, it retains many of the excellent algorithmic properties to which

first-order constrained Horn clauses owe their suitability for first-order model checking [3, 2]. Given a

semi-decidable background theory, HoCHC unsolvability (unsatisfiability) is semi-decidable [24, 23].

We study the relation between (the logic-program presentation of) HoCHC and higher-order recur-

sion schemes (HoRS). Whilst higher-order model checking has grown out of the decidability of HoRS

model checking [21, 15] and flourished, higher-order program equivalence is relatively underdeveloped;

decidability of HoRS equivalence is a long-standing open problem [7, 22]. Note that the HoRS model

checking safety problem can be solved via a decidable higher-order Datalog fragment of HoCHC [32].

A HoRS of order n is essentially an nth-order tree grammar: the trees generated at orders 0, 1 and 2

are regular trees, algebraic trees (i.e. those generated by context-free tree grammars), and hyperalgebraic

trees, respectively [9]. These potentially infinite trees generated by HoRS correspond to (abstractions of)

computation trees of higher-order functional programs.

Let us consider (deterministic) HoRS G1 and HoRS G2 in Figure 1 that both generate an infinite

tree with the prefix on the right (by unfolding the rewrite rules ad infinitum, starting from S1 and S2,

respectively). To determine whether these HoRS generate the same tree, we define a HoCHC logic

program that contains one predicate RN (of arity n+1) for each nonterminal symbol N (of arity n) in the

*Most of the work was concluded while the author was a Research Associate at the University of Oxford.

http://dx.doi.org/10.4204/EPTCS.344.4
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Jerome Jochems 37

S1 = Gzero

G = λx.cons (succx)(G(succx))

S2 = F succ

F = λϕ .cons (ϕ zero)(F (Bϕ ϕ))

B = λϕ ψ x.ϕ (ψ x)

(a) Their respective rewrite rules

cons

succ

zero

cons

succ

succ

zero

. . .

(b) A common prefix of the

trees generated by G1 and G2

1. Eliminate divergent ⊥-labelled

leaves from HoRS (Sec 2.2.2)

2. Encode HoRS into coinductive

HoCHC logic program (Sec 3)

3. Solve the two HoCHC instances

from Sec 4.2 concurrently (outside

the scope of this paper)

(c) The “decision” procedure for HoRS

equivalence, pending semi-decidability

Figure 1: Example order-1 HoRS G1 and order-2 HoRS G2 over tree constructors {cons,succ,zero}

input HoRS. In particular, we want RS1
(resp. RS2

) to be the characteristic function of the tree generated

from S1 by G1 (resp. from S2 by G2), so we can query the existence of a tree t such that RS1
t ∧RS2

t.

Encoding HoRS into HoCHC (in “continuation-passing style”) is natural, as this program shows:

RS1
= λ r.∃r1.RG r1 r∧ (zero= r1)

RG = λx′ r.∃r1 r2 r3.(cons r1 r2 = r)∧ (succx′ = r1)∧RG r3 r2∧ (succx′ = r3)

RS2
= λ r.RF (λyr′.succy = r′)r

RF = λϕ ′ r.∃r1 r2 r3.(cons r1 r2 = r)∧ϕ ′ r3 r1∧ (zero= r3)∧RF (λyr′.RB ϕ ′ϕ ′ yr′)r2

RB = λϕ ′ψ ′ x′ r.∃r1 r2.ϕ
′ r1 r∧ψ ′ r2 r1∧ (x

′ = r2)

Each HoRS subterm is represented by a conjunct whose arguments are ri bounded by a subsequent

conjunct (if a tree) or are inlined (if higher type). Unfortunately though, this HoCHC logic program

has no natural inductive interpretation. The empty assignment is a model (a fixpoint) of the program,

because the program contains no “base cases” to break out of the recursion. In fact, there does not exist

a HoCHC term such that the characteristic function of an infinite tree arises in its least fixpoint.

To tackle this disparity between HoCHC and HoRS, we define a coinductive HoCHC framework that

enjoys a greatest model property (under the monotone interpretation). We interpret the above clauses

coinductively over a complete and decidable background theory of trees first introduced by Maher [20].

In our example, RS1
is assigned the characteristic function of the tree generated by G1 in the greatest

model (and RS2
of G2). We can (independently) query the existence of two identical and two distinct trees

t1 and t2 such that RS1
t1∧RS2

t2. Only two distinct such trees exist; after the common prefix in Figure 1,

the trees deviate. The left children of cons have shape succn zero in t1 and succ2n−1
zero in t2, for n≥ 1.

This new framework allows us to characterise HoRS in HoCHC logic programs and, thus, reduce de-

cidability of the HoRS equivalence problem to semi-decidability of coinductive HoCHC over a decidable

background theory. This has implications for the λY-calculus Böhm tree equivalence problem [7], which

asks whether the Böhm trees of two given λY-terms are equal; this problem is recursively equivalent to

the HoRS equivalence problem and can also be reduced to semi-decidability of coinductive HoCHC.

Contributions. The (open) HoRS equivalence problem asks whether two given deterministic HoRS

generate the same tree. We prove that decidability of this problem can be reduced to the (open) semi-

decidability of coinductive HoCHC over a decidable background theory (see Figure 1c).

First, we prove that there is an algorithm that, given a HoRS (which may contain “diverging” ⊥-

labelled nodes), returns its ⊥-free transform – i.e. a HoRS that generates the same tree, except that every

38 Reducing HoRS Equivalence to Coinductive HoCHC

⊥-labelled node is replaced by the infinite linear tree b (b (b · · ·)). The proof appeals to the logical

reflectivity of HoRS with respect to properties definable in monadic second-order logic, in the sense of

[5]. Notice that two HoRS are equivalent if and only if their respective ⊥-free transforms are equivalent.

Next, we exhibit a natural encoding of HoRS into constrained logic programs, with the sort of indi-

viduals interpreted as the set of finite and infinite trees. Given two⊥-free HoRS, we define two instances

of the coinductive HoCHC problem, call them positive and negative. We use Maher’s first-order theory of

equations of finite and infinite trees [20], which is complete and decidable, as the background theory. The

positive and the negative problem instance share a logic program: the union of the respective HoRS-to-

HoCHC encodings. The goal formulas of the problem instances are so designed that the two input HoRS

are equivalent (resp. inequivalent) iff the positive (resp. negative) instance is solvable. Provided that the

resulting coinductive HoCHC instances are semi-decidable, we obtain two semi-decision procedures,

one for checking equivalence of the input HoRS and one for inequivalence. A decision procedure for the

equivalence of the input HoRS could then be obtained by dovetailing the two semi-decision procedures.

Outline. Building on Cathcart Burn et al.’s (inductive) HoCHC [6], we introduce coinductive HoCHC

in Section 2.1. We define HoRS and their denotational semantics in Section 2.2, where we also prove the

existence of an algorithm that generates the⊥-free transform of HoRS. We encode HoRS into constrained

logic programs in Section 3. Section 4 shows how to use these HoRS-to-HoCHC encodings to reduce

decidability of the HoRS equivalence problem to semi-decidability of coinductive HoCHC over Maher’s

complete and decidable theory of trees. Finally, we consider implications and related work in Section 5.

2 Preliminaries

2.1 Higher-order constrained Horn clauses

Following [6], we work in higher-order logic presented as a typed (sorted) lambda calculus. We follow

their (monotone logic-program) definitions until we introduce the coinductive HoCHC decision problem.

2.1.1 Syntax

Sorts. Given a sort ι of individuals (for example int), and a sort o of (boolean) truth values, sorts are

just the simple types generated by σ ::= ι | o | σ → σ . Relational sorts (typically denoted by ρ) have the

following restricted form: ρ ::=o | ι → ρ | ρ → ρ .

Background theory. Assume a fixed, first-order language over a first-order signature, consisting of

distinguished subsets of first-order terms Tm and first-order formulas (or constraints) (ϕ ∈) Fm, and a

first-order theory Th in which to interpret those. We fix a standard model A of Th we often leave implicit.

We refer to this first-order language as the constraint language, and Th as the background theory.

Goal terms. The class of well-sorted goal terms ∆ ⊢ G : ρ is given by the sorting judgements defined

by the following rules, where σ stands for the sort of individuals ι or some relational sort.

(GConstr) ∆ ⊢ ϕ : o ∈ Fm
∆ ⊢ ϕ : o

(GVar)
∆1,x : ρ ,∆2 ⊢ x : ρ

∆ ⊢ G : o ∆ ⊢ H : o(GCst) ∗ ∈ {∧,∨}
∆ ⊢ G∗H : o

∆,x : σ ⊢ G : o
(GEx) σ = ι or ρ

∆ ⊢ ∃x:σ .G : o

Jerome Jochems 39

∆ ⊢ G : ι → ρ
(GAppI) ∆ ⊢ N : ι ∈ Tm

∆ ⊢ G N : ρ

∆ ⊢ G : ρ1→ ρ2 ∆ ⊢ H : ρ1
(GAppR)

∆ ⊢ G H : ρ2

∆,x : σ ⊢G : ρ
(GAbs) x /∈ dom(∆)

∆ ⊢ λx.G : σ → ρ

From now on, we use G and H (and variants thereof) to stand for arbitrary goal terms and disambiguate

as necessary, and use uppercase R to stand for relational variables (i.e. variables of a relational sort).

Constrained logic program. A higher-order constrained logic program, P, over a sort environment

∆ = {R1 : ρ1, . . . ,Rk : ρk} is a finite system of (mutually) recursive definitions of shape Ri : ρi = Gi for

some goal term Gi. Such a program is well sorted when ∆ ⊢ Gi : ρi, for each 1≤ i≤ k. Since each Ri is

distinct, we will sometimes regard a program P as a finite map from variables to terms, defined so that

P(Ri) = Gi. We write ⊢ P : ∆ to mean that P is a well-sorted program over ∆.

2.1.2 Semantics

Motivated by the fact that unlike its first-order counterpart, HoCHC has no least model property for

standard semantics, Cathcart Burn et al. consider an equivalent monotone semantics that does have a

least model property. This interpretation suits us too, because it also has a greatest model property.

Monotone sort frame. We define the monotone sort frame MJ−K over the domain Aι of the back-

ground theory recursively by:

MJιK := Aι MJoK := B :={0≤ 1} MJρ1→ ρ2K :=MJρ1K⇒mMJρ2K

where X ⇒m Y is the monotone function space between X and Y w.r.t. a partial ordering ⊑; this partial

order is the discrete ordering on Aι , satisfies 0⊑ 1, and is lifted to higher sorts in a pointwise manner. It

is easy to see that eachMJρK is a complete lattice.

We extend this ordering to sort environments with MJ∆K := ∏x ∈ dom(∆).MJ∆(x)K, pointwise

over its elements, i.e., for β ,γ ∈MJ∆K, β ⊑ γ if and only if β (x)⊑ γ(x) for all x : ρ ∈ ∆.

Denotation of goal terms. The meaningMJ∆ ⊢ G : ρK :MJ∆K→MJρK of a goal term ∆ ⊢ G : ρ is

defined as follows, for β ∈MJ∆K:

MJ∆ ⊢ ϕ : oK(β) :=ThJϕK(β)
MJ∆1,x : ρ ,∆2 ⊢ x : ρK(β) :=β (x)

MJ∆ ⊢G∧H : oK(β) :=min{MJ∆ ⊢ G : oK(β),MJ∆ ⊢H : oK(β)}
MJ∆ ⊢G∨H : oK(β) :=max{MJ∆ ⊢ G : oK(β),MJ∆ ⊢H : oK(β)}

MJ∆ ⊢ ∃x : σ .G : oK(β) :=max{MJ∆,x : σ ⊢ G : oK(β [x 7→ x′]) | x′ ∈MJσK}
MJ∆ ⊢ λx : σ .G : σ → ρK(β) :=λx′ ∈MJσK.MJ∆,x : σ ⊢G : ρK(β [x 7→ x′])

MJ∆ ⊢GH : ρ2K(β) :=MJ∆ ⊢ G : ρ1→ ρ2K(β)(MJ∆ ⊢ H : ρ1KJHK(β))
MJ∆ ⊢ GN : ρK(β) :=MJ∆ ⊢ G : ι → ρK(β)(ThJNK(β))

In the above, min and max denote the greatest lower bound and the least upper bound, resp., within

the complete lattice of booleans MJoK, and ThJ−K(β) denotes the interpretation of − in the (standard)

model of the background theory. We write A,β � G : o, i.e. A,β satisfies G, just ifMJ∆ ⊢G : oK(β) = 1.

40 Reducing HoRS Equivalence to Coinductive HoCHC

One-step consequence operator. Logic programs give rise to an endofunction TM
P:∆ :MJ∆K→MJ∆K,

defined by TM
P:∆ (β)(Ri) :=MJ∆ ⊢ P(Ri) : ∆(Ri)K(β), called the one-step consequence operator. We call

β a model of ⊢ P : ∆, written A,β � P for model A of the background theory, just if β = TM
P:∆(β).

2.1.3 Coinductive decision problem

Definition 2.1 (Coinductive HoCHC problem). A coinductive HoCHC problem 〈∆,P,G〉, where ∆ is a

sorting of relational variables, ⊢ P : ∆ is a constrained logic program, and ∆ ⊢ G : o is a constrained

goal formula, is solvable just if, for the standard model A of the background theory Th, there exists a

valuation β of the variables in ∆ such that A,β � P and A,β � G.

Note that the problem triple 〈∆,P,G〉 is identical to its inductive counterpart, but the definition of

“solvability” differs; in the original HoCHC problem, solvability requires the existence of prefixed point

β of P such that A,β 6� G. The background theory Th could be any first-order theory – in which the

constraints in P and G can be interpreted – but in Section 4 we fix a specific theory of trees.

Interpreting satisfaction w.r.t. standard and monotone semantics gives rise to two distinct but equiv-

alent HoCHC decision problems. A dual argument to Cathcart Burn et al.’s Lemma 5 for inductive

HoCHC [6] shows that a coinductive HoCHC problem is solvable under the standard interpretation iff

it is solvable under the monotone interpretation. We consider the monotone interpretation.

By the Knaster-Tarski theorem and MJ∆K being a complete lattice for relational ∆, the set of fix-

points of the monotone one-step consequence operator TM
P:∆ forms a complete lattice. This guarantees the

existence of a greatest fixpoint of TM
P:∆. Thus, monotone HoCHC enjoys a greatest model property.

Theorem 2.2 (Greatest model property for monotone HoCHC). Under the monotone interpretation,

HoCHC definite clauses possess greatest models.

Thus, a greatest model witnesses the solvability of a coinductive HoCHC problem in the monotone

setting, like a least model witnesses solvability for traditional HoCHC. Instead of building up a least

model from the least valuation, we start with the greatest valuation and work our way down. Intuitively,

we are taking the backwards closure of our logic program.

Theorem 2.3. A coinductive HoCHC problem 〈∆,P,G〉 is solvable under the monotone interpretation if

and only ifMJGK(MP) = 1 for greatest model MP of P.

Proof. Recall that a coinductive HoCHC problem 〈∆,P,G〉 is solvable iff, for the standard model A of

the background theory Th, there exists a valuation β of the variables in ∆ such that A,β � P and A,β � G.

Clearly,MJGK(MP) = 1 for greatest model MP of P implies solvability of 〈∆,P,G〉. For the converse,

let β ∈MJ∆K be a valuation such that A,β � P and A,β � G, for standard model A of the background

theory. By Knaster-Tarski, β ⊑MP. By monotonicity, A,β � G implies A,MP � G, as required.

HoCHC and coinductive HoCHC are not equivalent in the sense that the standard and the monotone

interpretation are, as the following example demonstrates; it is not the case that a HoCHC problem

〈∆,P,G〉 is solvable if and only if the corresponding coinductive HoCHC problem 〈∆,P,G〉 is solvable.

Example 2.4. Consider the HoCHC triples Pa = 〈{RS},P,RS aω〉 and Pb = 〈{RS},P,RS bω〉, where P

consists of RS = λ r. (∃r1.(ar1 = r)∧RS r1) and aω is the infinite unary tree of only as (and bω of bs).

The logic program P has two models; relational variable RS corresponds to the empty set in least model

M/0, and to the singleton set {aω} in greatest model M{aω}.

When we consider these HoCHC triples as inductive HoCHC problems, we find both Pa and Pb

solvable, since M/0 is a witness to the refutation of both goal clauses. If we consider them as coinductive

Jerome Jochems 41

problems, however, Pa is solvable, while Pb is unsolvable. This follows from M{aω} witnessing the

satisfiability of goal clause RS aω , while neither M{aω} nor M/0 witnesses the satisfiability of RS bω .

Coinductive higher-order constrained Horn clauses allow us to reason about programs with datatypes

inhabited by infinite objects, notably the (potentially) infinite trees generated by HoRS. These clauses are

not merely an academic indulgence, though. There is a tradition of coinduction and corecursion in logic

programming (see e.g. [12, 11, 28, 17]). This is hardly surprising, given that some well-formed logic

programs do not have natural inductive interpretations, as we have seen in the introduction. Examples of

other infinite data types that arise in practice include infinite lists and streams.

2.2 Higher-order recursion schemes

We fix a ranked alphabet Σ of tree constructors and write Σ⊥ = Σ∪{⊥}. The set of all finite and infinite

Σ⊥-labelled trees, written TΣ⊥ , is a pointed poset with least element ⊥ over the subtree ordering ⊑, which

is the least partial order such that C[⊥]⊑C[t] for every tree context C[] ∈ T{ }∪Σ⊥ and t ∈ TΣ⊥ .

Let G = 〈N ,Σ,R,S〉 be a (deterministic) higher-order recursion scheme (HoRS). That is, N maps

a nonterminal symbol to its sort, Σ maps a terminal symbol to its sort, S ∈ N is the designated start

symbol, and there exists one rewrite rule in R for each F ∈ N such that R(F) = λx1 . . .xn. t, where t : ι

is an applicative term over N ∪Σ∪{x1, . . . ,xn} for some distinct x1, . . . ,xn∈VRS drawn from a finite set

of recursion scheme variables VRS.

The HoRS equivalence problem asks whether two given HoRS generate the same tree (i.e. have the

same semantics). Decidability of this problem is perhaps the best known and most challenging open

problem in higher-order model checking.

2.2.1 Denotational semantics

The meaning of a HoRS can be given by a number of different formalisms. We introduce an infinite

“Herbrand” interpretation that treats the rewrite rules as definitional equality in the style of a HoCHC

logic program. Models are built incrementally from the smallest tree ⊥.

Our interpretation of HoRS is Herbrandesque in that constants and function symbols are assigned

very simple meanings. However, unlike typical Herbrand models, our models may contain infinite terms.

Let us define an interpretation of the sorts over ι (i.e. the sorts of HoRS terms):

HJιK :=〈TΣ⊥ ,⊑〉 HJσ1→ σ2K :=HJσ1K⇒c HJσ2K
where X ⇒c Y is the continuous function space between directed-complete partial orders (dcpos) X and

Y , ordered pointwise with respect to subtree ordering ⊑ on HJιK.

Given the environment Γ = {x1 : τ1, . . . ,xk : τk}, let N ′ denote the extended environment N ,Γ :=
N ∪Γ, which we view as a sort function whose domain is dom(N)∪{x1, . . . ,xk}, mapping each symbol

to its sort. SetHJN ′K : ∏x ∈ dom(N ′).HJN ′(x)K with typical element α . Define

HJN ′ ⊢ t : σK :HJN ′K⇒HJσK
by cases and recursion on syntax:

HJN ′ ⊢ x :N ′(x)K(α) = α(x)

HJN ′ ⊢ f : ιar(f)→ ιK(α) = F̂f

HJN ′ ⊢ st : τK(α) =HJN ′ ⊢ s : σ → τK(α)(HJN ′ ⊢ t : σK(α))

HJN ′ ⊢ λx : σ1. t : σ2K(α) = λv ∈HJσ1K.HJN ′,x : σ1 ⊢ tK(α [x 7→ v])

42 Reducing HoRS Equivalence to Coinductive HoCHC

for F̂f ∈ HJιar(f) → ιK the usual Herbrand interpretation of f : ιar(f) → ι ∈ Σ. We define HJGKN ′ :

HJN ′K⇒HJN ′K pointwise by HJGKN ′ (α)(x) :=HJN ′ ⊢R(x) :N ′(x)K(α).

Lemma 2.5. HJGKN :HJN K⇒HJN K is continuous for all deterministic HoRS G = 〈N ,Σ,R,S〉.

We define the (denotational) semantics of G as lfp(HJGKN), the least fixpoint of the continuous endo-

functionHJGKN , which is well-defined by Kleene’s Theorem. Henceforth we write JGK := lfp(HJGKN)(S),
where S ∈ N is the start symbol of G. Note that JGK is the Σ⊥-labelled tree generated by G.

2.2.2 Computability of ⊥-free transform of HoRS

Intuitively, eliminating ⊥ from JGK allow us to distinguish “unfinished” trees from “finished” (but di-

verging) trees in e.g. the proofs in Section 3.1.

As usual, let Σ⊥ be a finite ranked alphabet Σ extended with (nullary) ⊥. Let b : ι → ι /∈ Σ⊥ (for

“bottom”) be a fresh terminal symbol.

Definition 2.6. Given a Σ⊥-labelled tree, its⊥-free conversion is obtained by replacing every⊥-labelled

node by the infinite linear tree b (b (b . . .)).

Lemma 2.7 (Computability of ⊥-free transform of HoRS). There is an algorithm that, given a HoRS G,

returns a HoRS – call it the ⊥-free transform of G – that generates the ⊥-free conversion of JGK.

For clarity, we convert trees, but transform HoRS (their generators).

It is clear from freshness of b : ι → ι /∈ Σ⊥ that the following holds.

Proposition 2.8. HoRS are equivalent if and only if their respective ⊥-free transforms are equivalent.

Before we present a three-stage algorithm to transform a HoRS G = 〈N ,Σ,R,S〉 to its ⊥-free trans-

form and an example in Figure 2, we require some background on logical reflection.

Logical reflection of HoRS

Let R be a class of generators of Σ-labelled trees, and L be a set of correctness properties of these trees.

Define the ranked alphabet Σ′ := { f : σ | f : σ ∈ Σ}, which is a copy of Σ. Given a generator G ∈R and

property ϕ ∈ L, we say that Gϕ is a ϕ-reflection of G just if

1. G and Gϕ generate the same underlying tree, and

2. if node α of JGK has label f , then node α of JGϕK is labelled f if α satisfies ϕ and f otherwise.

We say that R is reflective w.r.t. L just if there is an algorithm that transforms a given pair 〈G,ϕ〉 to Gϕ .

Theorem 2.9 ([5]). HoRS are reflective w.r.t. modal µ-calculus and monadic second-order logic.

Stage 1: From Σ⊥-labelling G to Σ∪{b}-labelling G1. The input HoRS G is first transformed to a

b-productive counterpart G1 := 〈N ,Σ∪{b},R′,S〉. The idea is that in the potentially infinite process of

generating the tree JG1K from the start nonterminal S by leftmost-outermost rewriting, each rewriting step

is witnessed by either a terminal symbol from Σ or by b. The set R′ of rewrite rules of G1 is defined as

follows. For every F : σ1→ ··· → σn→ ι ∈ N :

• ifR(F) = λx1 . . .xn. f t1 . . . tm for some f ∈ Σ, then R′(F) :=R(F)

• ifR(F) = λx1 . . .xn.$t1 . . . tm for $ ∈ N ∪VRS, then R′(F) :=λx1 . . .xn.b($t1 . . . tm)

Notice that the tree JG1K, by construction, does not have any ⊥-labelled nodes. Intuitively we can get

JGK back from JG1K by erasing finite b∗, and replacing infinite bω by ⊥.

Jerome Jochems 43

Stage 2: From Σ∪{b}-labelling G1 to Σ∪{b,s}-labelling G2. We define a modal µ-calculus formula:

ϕ := pb∧µX .

(
∨

f∈Σ

⋄1 p f ∨⋄1X

)

where pb (resp. p f for f ∈ Σ) is a propositional variable that denotes that a node is labelled with b

(resp. f ∈ Σ). Refer to [4] for the syntax and semantics of the modal µ-calculus. Note that this formula

holds for b-labelled nodes that are not “part of some infinite bω ”.

Let s : ι → ι 6∈ Σ⊥ (for “step”) be another fresh arity-1 terminal symbol. Consider the following

operation on Σ∪{b}-labelled trees.

For every node α , if α � ϕ then rewrite the label at α to s, otherwise do nothing.

This operation leaves exactly those occurrences of b in some infinite bω (which witnesses ⊥) intact,

while rewriting finite paths b∗ to s∗. We call this operation b-to-s conversion.

Thanks to Theorem 2.9, the main result in [5], there is an algorithm that, given G1, returns a HoRS G2

over Σ∪{b,s} that generates the b-to-s conversion of JG1K. In the language of [5], G2 is the ϕ-reflection

of G1 where ϕ (above) is a property definable in the modal µ-calculus.

Stage 3: From Σ∪{b,s}-labelling G2 to Σ∪{b}-labelling G3. Although the tree JG2K does not have

infinite paths exclusively labelled by s, it may still have nodes labelled by s. We construct a Σ∪{b}-
labelling HoRS G3 that generates the tree JG2K but with these remaining s-labelled nodes cut out, which

is easily achieved by replacing every occurrence of the terminal symbol s in the rewrite rules of G2 by

the identity nonterminal I. To be precise, if R2 is the set of rewrite rules of G2, then the resultant HoRS

G3 := 〈N ∪{I},Σ∪{b},{F = λx.t[I/s] | F = λx.t ∈R2}∪{I = λx.x},S〉

is the ⊥-free transform of the input HoRS G.

S = b(F zero)

F = λx.cons (Gx)(F (succx))

G = λx.b(G(succx))

cons

⊥ cons

⊥ . . .

7→ b

cons

bω cons

bω . . .

7→ s

cons

bω cons

bω . . .

7→ cons

bω cons

bω . . .

Figure 2: Conversion JGK 7→ JG1K 7→ JG2K 7→ JG3K, with HoRS G on the left (w/o bs; G1 with bs)

3 Encoding HoRS-to-HoCHC logic program

In this section, we encode a (deterministic) HoRS G = 〈N ,Σ,R,S〉 into a HoCHC logic program that

captures the meaning of the HoRS under the coinductive monotone interpretation. We assume JGK does

not contain ⊥-labelled nodes, which is WLOG by Lemma 2.7.

We define the HoRS-to-HoCHC encoding ⊢ PG : ∆G of HoRS G over the coinductive monotone

HoCHC interpretation where MJιK is interpreted as the underlying set of HJιK, which is the set of

finite and infinite trees over Σ⊥. The constrained logic program ⊢ PG : ∆G is defined by:

∆G :=
{

RF : Rel+(σ) | F : σ ∈N
}

PG :=
{

RF : Rel+(σ) = pR(F)q | F : σ ∈ N
}

where

Rel−(ι) := ι Rel+(ι) := ι → o Rel−(σ1→ σ2) :=Rel+(σ1→ σ2) :=Rel−(σ1)→ Rel+(σ2).

44 Reducing HoRS Equivalence to Coinductive HoCHC

In the HoRS-to-HoCHC encoding below, we annotate variables with superscripts of not merely sorts

but of interpreted sorts –HJσK orMJσK for sort σ – to distinguish HoRS and HoCHC variables.

Let the metavariable $ range over N ∪Σ∪VRS. We define a transformation $ 7→ $′ according to:

$ $′

Variables x : ι Dx′ : Rel+(ι)
x : σ1→ σ2 x′ : Rel+(σ1→ σ2)

Terminals f : ιn→ ι D f : Rel+(ιn→ ι)
Nonterminals F : σ RF : Rel+(σ)

where

D f := λx1 . . .xar(f)r.(f x1 . . .xar(f) = r).

Note that RF is a relational variable, but D f is merely a shorthand; D f is not a symbol – and neither is

Dx′ . This shorthand allows us to present the relational lift p−q in a simpler way. Whenever D f occurs

in some encoded HoRS term, it occurs in a fully applied term D f t1 . . . tar(f) r, which is β -equivalent to

f t1 . . . tar(f) = r. It is this latter term we use in practice (similarly for Dx′).

For each F : σ ∈ N , we define pR(F)q : Rel+(σ), called the relational lift, as follows. We write

x′ : Rel−(τ) for the HoCHC variable that is the relational clone of HoRS variable x : τ ∈VRS, such that:

pλx
HJσ1K
1 . . .x

HJσmK
m .eq :=λx′

MJRel−(σ1)K
1 . . .x′

MJRel−(σm)K
m .peq

For HoRS term $e1 . . .el , we define the relational lift as:

p$e1 . . .elq :=
λy

MJRel−(σ1)K
1 . . .y

MJRel−(σn)K
n r.

∃r1 . . .rl .

(
$′ pp(e1,r1)qq . . .pp(el ,rl)qqy1 . . .yn r

∧
∧l

i=1 Prop(ei,ri)

)

for fresh HoCHC variables y1, . . . ,yn, where $: τ1→ . . . → τl → σ1→ . . . → σn→ ι and

pp(e : σ ,r)qq :=

{
r if σ = ι

pe : σq o/w
Prop(e : σ ,r) :=

{
pe : σqr if σ = ι

true o/w.

It is worth pointing out that pe : σq : Rel+(σ), pp(e : σ ,r)qq : Rel−(σ), and Prop(e : σ ,r) : o.

3.1 Correctness

Our HoRS-to-HoCHC encoding ⊢ PG : ∆G contains a relational variable for each nonterminal symbol in

the original HoRS G= 〈N ,Σ,R,S〉. We claim that the HoCHC rational variable RS : ι→ o corresponding

to start symbol S valuates to the characteristic function of JGK in the greatest model of ⊢ PG : ∆G:

Theorem 3.6 (Correctness). MJ∆G ⊢ RSK(gfp(TM
PG :∆G

)) t = 1 if and only if t = JGK.

To prove the theorem, we establish a lockstep between iterations of the HoRS endofunction HJGKN
(in the ascending Kleene chain) and (descending) iterations of the HoCHC one-step consequence opera-

tor TM
∆G :PG

. The proof consists of four parts, corresponding to the respective sections of Appendix A.

First, we define two families of mappings between HoRS semantics and (coinductive) HoCHC se-

mantics. These mappings allow us to embed HoRS semantics into HoCHC relations. Second, we

show that there exists a ⊥-free tree t such that MJ∆G ⊢ pSqK(TMn
PG :∆G

(⊤∆G
)) t = 1, for every itera-

tion n of the one-step consequence operator (Lemma 3.4, “nonemptiness”). Third, we show that each

Jerome Jochems 45

MJ∆G ⊢ pSqK(TMn
PG :∆G

(⊤∆G
)) is included in the embedding of HJN ⊢ SK(HJGKn

N (⊥N)) into HoCHC

(Corollary 3.5, “inclusion”).

Finally, we prove that these “nonemptiness” and “inclusion” results suffice to show that RS valuates

to the characteristic function of JGK in the greatest model of ⊢ PG : ∆G (Theorem 3.6).

Appendix A details the full proof. Although our results in this section pertain to ground sort ι , we

require logical relations and proofs lifted to higher-sorts to attain them. This starts with the families

of mappings iσ , jσ between HoRS semantics and HoCHC relations that are markedly simpler for sort ι

(Definition 3.1) than the full mappings defined in Definition A.2.

Definition 3.1 (Embedding of trees into HoCHC relations). We define a function iι :HJιK→MJRel+(ι)K
by iι(t) := λ s. t ⊑ s, for all t ∈HJιK.

Note that the function iι allows us to embed HoRS trees into HoCHC relations; it is antitone and

injective. Because we are trying to relate a least fixpoint (HoRS semantics) to a greatest fixpoint (coin-

ductive HoCHC), the following lemma is key. Please refer to Appendix A for the proofs.

Lemma 3.2. For all directed sets D⊆HJιK, iι (
⊔

D) =
d
{iι(d) | d ∈ D}.

Greatest upper bounds of chains are preserved by the semantics of relationally lifted HoRS terms.

Lemma 3.3. For all typing judgementsN ⊢ e : σ of the HoRS G, and non-increasing chains of valuations

I ⊆MJ∆GK,

MJ∆G ⊢ pe : σqK
(l
I
)
=

l

I∈I

MJ∆G ⊢ pe : σqK(I).

Let us write αn for HJGKn
N (⊥N) and β n for TMn

PG :∆G
(⊤∆G

), so that the following hold.

Lemma 3.4 (Nonemptiness). There exists a ⊥-free tree t ∈MJιK such thatMJ∆G ⊢ pSqK(dβ n) t.

Corollary 3.5 (Inclusion). For all n≥ 0,MJ∆G ⊢ pSqK(β n)⊑ iι(HJN ⊢ SK(αn)).

Theorem 3.6 (Correctness). MJ∆G ⊢ RSK(gfp(TM
PG :∆G

)) t = 1 if and only if t = JGK.

Proof.

MJ∆G ⊢ RSK(gfp(TM
PG :∆G

)) =
l
{MJ∆G ⊢ pSqK(β n) | n≥ 0} Lem 3.3

⊑
l
{iι(HJN ⊢ SK(αn)) | n≥ 0} Cor 3.5

= iι

(⊔
{HJN ⊢ SK(αn) | n≥ 0}

)
Lem 3.2

= iι

(
HJN ⊢ SK

(⊔
αn
))

Lem 2.5

= λ r.(JGK = r) ⊥-freeness

Either MJ∆G ⊢ RSK(gfp(TM
PG :∆G

)) is the constant false function, or it is λ r.(JGK = r). By Lemma 3.4,

MJ∆G ⊢ RSK(gfp(TM
PG :∆G

)) is not λ r.0, so we conclude that it is λ r.(JGK = r), instead.

It follows thatMJ∆G ⊢ RSK(gfp(TM
PG :∆G

)) t = 1 if and only if t = JGK. �

4 HoRS equivalence problem

The higher-order recursion scheme (HoRS) equivalence problem asks whether two given deterministic

recursion schemes G1,G2 generate the same tree (i.e. whether JG1K = JG2K, see e.g. [22]).

Here, we reduce the HoRS equivalence problem to coinductive HoCHC. Our procedure formulates

a positive and negative instance of the coinductive monotone HoCHC problem over a decidable back-

ground theory. We present the background theory in Section 4.1 and the HoCHC instances in Section 4.2.

46 Reducing HoRS Equivalence to Coinductive HoCHC

If coinductive HoCHC is semi-decidable over a decidable background theory – or our HoRS-to-

HoCHC encodings are semi-decidable over Maher’s theory of trees in particular [20] – then these two

instances can be solved concurrently for a full decision procedure for the HoRS equivalence problem.

4.1 Maher’s theory of trees

A theory T is a set of sentences, which is complete if either T � ϕ or T � ¬ϕ , for every sentence ϕ .

An axiomatisation of an algebra A is a recursive set of sentences which are true of A. The theory of an

algebra A is a the set of all sentences true of A.

Maher’s (equational) theory of trees TΣ is complete for any finite or infinite alphabet Σ [20]. It is

axiomatised by three axioms:

∀ f ∈ Σ. ∀xy. f x = f y↔ x = y (1)

∀ f ,g ∈ Σ. f 6≡ g→∀xy. f x 6= gy (2)

∀y.∃!x. x = t(x,y) (3)

where x = t(x,y) ranges over rational solved forms (see [20], p. 355).

In case Σ is finite, we need to add the Domain Closure Axiom to obtain completeness:

∀x.
∨

f∈Σ

∃z.x = f z (DCA)

Fix a ranked alphabet Σ, viewed as tree constructors. We write TΣ for the first-order theory of equa-

tions of finite and infinite trees constructed from Σ. The theory TΣ is complete and decidable, making

it an exceedingly appropriate choice of background theory for HoCHC. The theory has several models,

including the set of finite and infinite trees over Σ that we are interested in.

Djelloul et al. have presented a full first-order constraint solver for (an augmented version of) the

theory TΣ [10]. Questions of expressivity and complexity of the Maher theory are explored in [8]. Recent

work by Zaiser and Ong has improved the performance of Djelloul et al.’s solver and adapted the theory

to algebraic (co)datatypes [34].

We are interested in the theory TΣ⊥ over finite alphabet Σ⊥, for input HoRS G1 = 〈N1,Σ,R1,S1〉 and

G2 = 〈N2,Σ,R2,S2〉. Note that the assumption that both HoRS have the same alphabet Σ is WLOG; if

they have distinct alphabets, we can take Σ to be their union. In the Maher theory TΣ⊥ , the “unfinished”

tree ⊥ is treated as any other nullary terminal symbol.

4.2 Decision procedure

Let G1 = 〈N1,Σ,R1,S1〉 and G2 = 〈N2,Σ,R2,S2〉 be deterministic HoRS. Assume the trees they generate

are ⊥-free, which is WLOG due to Section 2.2.2. Consider these HoCHC goal formulas:

Eq1 :=∃r1 r2.(RS1
r1∧RS2

r2)∧ (r1 = r2) Eq0 :=∃r1 r2.(RS1
r1∧RS2

r2)∧ (r1 6= r2)

Using the definitions from Section 3, we define HoCHC problems Pi := 〈∆G1
∪∆G2

,PG1
∪PG2

,Eqi〉, for

i ∈ {0,1}, with the Maher theory TΣ⊥ as the constraint language and the set TΣ⊥ of finite and infinite trees

as the designated model.

Thanks to Theorem 3.6, we have: JG1K = JG2K iff P1 is solvable, and JG1K 6= JG2K iff P0 is solvable.

Recall that the Maher theory TΣ⊥ is decidable – to be exact, the question TΣ⊥ � ϕ for first-order tree

constraints ϕ like r1 = r2 and r1 6= r2 above. Note, however, that P1 and P0 are coinductive HoCHC

Jerome Jochems 47

problems. It is an open question whether coinductive HoCHC problems over a (semi-)decidable back-

ground theory – like the Maher theory TΣ⊥ – can be semi-decided via a reduction to a first-order problem,

like inductive HoCHC can [24, 23]. If there exists a such semi-decision procedure for solving (mono-

tone) coinductive HoCHC over TΣ⊥ , then we can decide JG1K = JG2K by dovetailing our two HoCHC

problems.

The full “decision” procedure for the HoRS equivalence problem is outlined in Figure 1c, so that:

Theorem 4.1. The HoRS equivalence problem is decidable if the HoRS-to-HoCHC encoding lives in a

semi-decidable fragment of coinductive HoCHC over Maher’s complete and decidable theory of trees.

5 Conclusion and related work

Higher-order recursion scheme equivalence problem. To the best of our knowledge, the HoRS

equivalence problem [7] remains open. We obtain a full decision procedure for this problem if: (a) coin-

ductive HoCHC over Maher’s theory of trees [20] is semi-decidable, or (b) the image of our HoRS–

to-HoCHC encoding over Maher’s theory lives in a semi-decidable fragment of coinductive HoCHC.

Restricted to order 1, the HoRS equivalence problem is equivalent to the DPDA equivalence problem

[9]. Thus, the fundamental result of [26], and subsequent refinements by [30], [27], and [13] provide a

decision procedure for the equivalence of first-order HoRS.

λY-calculus Böhm tree equivalence problem. The HoRS equivalence problem is recursively equiv-

alent to λY-calculus Böhm tree equivalence problem, which asks whether the Böhm trees of two given

λY-terms are equal [7]. The question of the decidability “has been there from the beginning of the

subject” [33]. Semi-decidability of coinductive HoCHC would also allow us to decide this problem.

Note that the closely related λY-calculus word problem (are two closed λY-terms βηY-equivalent?)

is undecidable [29]. Although HoRS are programs of a simply-typed λY-calculus, constructed from

uninterpreted function symbols, they define a strict subsystem of the λY-calculus: the same set of trees

as ground-type λY-terms with free variables (corresponding to terminal symbols) of order at most 1 [25].

Semi-decidability of coinductive HoCHC. Existing semi-decidability results for inductive HoCHC

[24, 23] do not carry over to coinductive HoCHC, because proofs for coinductive programs may have

infinite length.

For first-order Horn clauses, Coinductive Logic Programming (CoLP, [11, 28]) provides an approach

to computing solutions for infinite sequences of reductions. Resolution proof systems for coinductive

logic programs rely on loop detection in infinite proofs, see e.g. [19, 18] and refinements [17, 1]. Intu-

itively, our characterisation of HoRS in HoCHC has not necessarily made such loop detection computa-

tionally simpler.

Our best hope is that our HoRS-to-HoCHC encodings live in a semi-decidable fragment of coinduc-

tive HoCHC. There are some indications that this could be the case, e.g. Lemma 3.3 shows the semantics

of encoded HoRS behaves better than (monotone) coinductive HoCHC as a whole.

Relation to HFL. In recent years, HFL model checking – where properties are expressed in higher-

order modal fixpoint logic [31] – has gained traction [14, 16]. HoCHC roughly corresponds to a fragment

of HFLZ without modal operators and fixpoint alternations. HoCHC unsolvability captures HFL non-

reachability [16]. It seems that coinductive HoCHC unsolvability corresponds to must-reachability.

Clarifying this relation may help us understand the complexity of coinductive HoCHC.

48 Reducing HoRS Equivalence to Coinductive HoCHC

References

[1] Henning Basold, Ekaterina Komendantskaya & Yue Li (2019): Coinduction in Uniform: Foundations for

Corecursive Proof Search with Horn Clauses. Lecture Notes in Computer Science, pp. 783–813, doi:10.

1007/978-3-030-17184-1_28.

[2] Nikolaj Bjørner, Arie Gurfinkel, Kenneth McMillan & Andrey Rybalchenko (2015): Horn clause solvers

for program verification. In: Fields of Logic and Computation II, Springer, pp. 24–51, doi:10.1007/

978-3-319-23534-9_2. Available at https://www.microsoft.com/en-us/research/wp-content/

uploads/2016/02/nbjorner-yurifest.pdf.

[3] Nikolaj Bjørner, Kenneth McMillan & Andrey Rybalchenko (2012): Program Verification as Satisfiability

Modulo Theories. In Pascal Fontaine & Amit Goel, editors: SMT 2012. 10th International Workshop on

Satisfiability Modulo Theories, EPiC Series in Computing 20, EasyChair, pp. 3–11, doi:10.29007/1l7f.

[4] Julian Bradfield & Colin Stirling (2001): CHAPTER 4 - Modal Logics and mu-Calculi: An Introduction. In

J.A. Bergstra, A. Ponse & S.A. Smolka, editors: Handbook of Process Algebra, Elsevier Science, Amsterdam,

pp. 293–330, doi:10.1016/B978-044482830-9/50022-9. Available at http://citeseerx.ist.psu.

edu/viewdoc/summary?doi=10.1.1.9.5944.

[5] Christopher H. Broadbent, Arnaud Carayol, C.-H. Luke Ong & Olivier Serre (2010): Recursion Schemes and

Logical Reflection. In: Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science,

LICS 2010, 11-14 July 2010, Edinburgh, United Kingdom, IEEE Computer Society, pp. 120–129, doi:10.

1109/LICS.2010.40. Available at https://hal.archives-ouvertes.fr/hal-00479818.

[6] Toby Cathcart Burn, C.-H. Luke Ong & Steven J. Ramsay (2017): Higher-order Constrained Horn Clauses

for Verification. Proc. ACM Program. Lang. 2(POPL), pp. 11:1–11:28, doi:10.1145/3158099.

[7] Pierre Clairambault & Andrzej S. Murawski (2013): Böhm Trees as Higher-Order Recursive Schemes. In

Anil Seth & Nisheeth K. Vishnoi, editors: IARCS Annual Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science (FSTTCS 2013), Leibniz International Proceedings in Informatics

(LIPIcs) 24, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp. 91–102, doi:10.

4230/LIPIcs.FSTTCS.2013.91.

[8] Alain Colmerauer & Thi-Bich-Hanh Dao (2003): Expressiveness of Full First-Order Constraints in the Al-

gebra of Finite or Infinite Trees. Constraints 8(3), pp. 283–302, doi:10.1023/A:1025675127871. Available

at https://hal.archives-ouvertes.fr/hal-00144924.

[9] Bruno Courcelle (1978): A Representation of Trees by Languages I. Theor. Comput. Sci. 6, pp. 255–279,

doi:10.1016/0304-3975(78)90008-7. Available at https://core.ac.uk/download/pdf/82601565.

pdf.

[10] Khalil Djelloul, Thi-Bich-Hanh Dao & Thom Frühwirth (2008): Theory of finite or infinite trees revis-

ited. Theory Pract. Log. Program. 8(04), pp. 431–489, doi:10.1017/S1471068407003171. Available at

https://arxiv.org/abs/0706.4323.

[11] Gopal Gupta, Ajay Bansal, Richard Min, Luke Simon & Ajay Mallya (2007): Coinductive Logic Program-

ming and Its Applications. In: Log. Program., Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 27–

44, doi:10.1007/978-3-540-74610-2_4. Available at https://personal.utdallas.edu/~gupta/

iclp07paper.pdf.

[12] Joxan Jaffar & Peter J. Stuckey (1986): Semantics of infinite tree logic programming. Theor. Comput. Sci.
46, pp. 141–158, doi:10.1016/0304-3975(86)90027-7.

[13] Petr Jancar (2012): Decidability of DPDA Language Equivalence via First-Order Grammars. In: Proceedings

of the 27th Annual IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June
25-28, 2012, pp. 415–424, doi:10.1109/LICS.2012.51. Available at https://citeseerx.ist.psu.

edu/viewdoc/download?doi=10.1.1.1080.2859&rep=rep1&type=pdf.

[14] Naoki Kobayashi, Étienne Lozes & Florian Bruse (2017): On the Relationship between Higher-Order Recur-

sion Schemes and Higher-Order Fixpoint Logic. In: Proceedings of the 44th ACM SIGPLAN Symposium

http://dx.doi.org/10.1007/978-3-030-17184-1_28
http://dx.doi.org/10.1007/978-3-030-17184-1_28
http://dx.doi.org/10.1007/978-3-319-23534-9_2
http://dx.doi.org/10.1007/978-3-319-23534-9_2
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/nbjorner-yurifest.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/nbjorner-yurifest.pdf
http://dx.doi.org/10.29007/1l7f
http://dx.doi.org/10.1016/B978-044482830-9/50022-9
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.5944
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.5944
http://dx.doi.org/10.1109/LICS.2010.40
http://dx.doi.org/10.1109/LICS.2010.40
https://hal.archives-ouvertes.fr/hal-00479818
http://dx.doi.org/10.1145/3158099
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.91
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.91
http://dx.doi.org/10.1023/A:1025675127871
https://hal.archives-ouvertes.fr/hal-00144924
http://dx.doi.org/10.1016/0304-3975(78)90008-7
https://core.ac.uk/download/pdf/82601565.pdf
https://core.ac.uk/download/pdf/82601565.pdf
http://dx.doi.org/10.1017/S1471068407003171
https://arxiv.org/abs/0706.4323
http://dx.doi.org/10.1007/978-3-540-74610-2_4
https://personal.utdallas.edu/~gupta/iclp07paper.pdf
https://personal.utdallas.edu/~gupta/iclp07paper.pdf
http://dx.doi.org/10.1016/0304-3975(86)90027-7
http://dx.doi.org/10.1109/LICS.2012.51
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1080.2859&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1080.2859&rep=rep1&type=pdf

Jerome Jochems 49

on Principles of Programming Languages, POPL 2017, Association for Computing Machinery, New York,

NY, USA, pp. 246–259, doi:10.1145/3009837.3009854.

[15] Naoki Kobayashi & C.-H. Luke Ong (2009): A Type System Equivalent to the Modal Mu-Calculus Model

Checking of Higher-Order Recursion Schemes. In: Proceedings of the 24th Annual IEEE Symposium on

Logic in Computer Science, LICS 2009, 11-14 August 2009, Los Angeles, CA, USA, IEEE Computer Soci-

ety, pp. 179–188, doi:10.1109/LICS.2009.29. Available at https://www-kb.is.s.u-tokyo.ac.jp/

~koba/papers/hors-type.pdf.

[16] Naoki Kobayashi, Takeshi Tsukada & Keiichi Watanabe (2018): Higher-Order Program Verification via HFL

Model Checking. In Amal Ahmed, editor: Programming Languages and Systems, Springer International

Publishing, Cham, pp. 711–738, doi:10.1007/978-3-319-89884-1_25. Available at https://arxiv.

org/abs/1710.08614.

[17] Ekaterina Komendantskaya & Yue Li (2017): Productive corecursion in logic programming. Theory and

Practice of Logic Programming 17(5-6), pp. 906–923, doi:10.1017/S147106841700028X. Available at

http://arxiv.org/abs/1707.01541.

[18] Ekaterina Komendantskaya & Yue Li (2018): Towards Coinductive Theory Exploration in Horn Clause

Logic: Position Paper. In Temesghen Kahsai & German Vidal, editors: Proceedings 5th Workshop on Horn

Clauses for Verification and Synthesis, Oxford, UK, 13th July 2018, Electronic Proceedings in Theoretical
Computer Science 278, Open Publishing Association, pp. 27–33, doi:10.4204/EPTCS.278.5.

[19] Ekaterina Komendantskaya, John Power & Martin Schmidt (2016): Coalgebraic logic programming: from

Semantics to Implementation. Journal of Logic and Computation 26(2), pp. 745–783, doi:10.1093/logcom/

exu026. Available at https://arxiv.org/abs/1312.6568.

[20] Michael J. Maher (1988): Complete axiomatizations of the algebras of finite, rational and infinite trees. In:

LICS, pp. 348–357, doi:10.1109/LICS.1988.5132. Available at https://www.computer.org/csdl/

pds/api/csdl/proceedings/download-article/12OmNyLiuB4/pdf.

[21] C.-H. Luke Ong (2006): On Model-Checking Trees Generated by Higher-Order Recursion Schemes. In: 21th

IEEE Symposium on Logic in Computer Science (LICS 2006), 12-15 August 2006, Seattle, WA, USA, Pro-
ceedings, pp. 81–90, doi:10.1109/LICS.2006.38. Available at https://www.cs.ox.ac.uk/people/

luke.ong/personal/publications/lics06.pdf.

[22] C.-H. Luke Ong (2015): Higher-Order Model Checking: An Overview. In: 30th Annual ACM/IEEE Sym-

posium on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pp. 1–15, doi:10.1109/

LICS.2015.9. Available at http://www.cs.ox.ac.uk/people/luke.ong/personal/publications/

LICS15.pdf.

[23] C.-H. Luke Ong & Dominik Wagner (2019): HoCHC: A Refutationally Complete and Semantically Invariant

System of Higher-order Logic Modulo Theories. In: 2019 34th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pp. 1–14, doi:10.1109/LICS.2019.8785784. Available at https://arxiv.

org/abs/1902.10396.

[24] Long Pham, Steven J. Ramsay & C.-H. Luke Ong (2018): Defunctionalization of Higher-Order Constrained

Horn Clauses. CoRR abs/1810.03598. Available at http://arxiv.org/abs/1810.03598.

[25] Sylvain Salvati & Igor Walukiewicz (2014): Krivine machines and higher-order schemes. Information and
Computation 239, pp. 340–355, doi:10.1016/j.ic.2014.07.012. Available at https://hal.inria.

fr/inria-00589407/document.

[26] Géraud Sénizergues (2001): L(A)=L(B)? decidability results from complete formal systems. Theor. Comput.

Sci. 251(1-2), pp. 1–166, doi:10.1016/S0304-3975(00)00285-1.

[27] Géraud Sénizergues (2002): L(A)=L(B)? A simplified decidability proof. Theor. Comput. Sci. 281(1-2), pp.

555–608, doi:10.1016/S0304-3975(02)00027-0.

[28] Luke Simon, Ajay Bansal, Ajay Mallya & Gopal Gupta (2007): Co-Logic Programming: Extending Logic

Programming with Coinduction. In: Autom. Lang. Program., Springer Berlin Heidelberg, Berlin, Heidelberg,

pp. 472–483, doi:10.1007/978-3-540-73420-8_42.

http://dx.doi.org/10.1145/3009837.3009854
http://dx.doi.org/10.1109/LICS.2009.29
https://www-kb.is.s.u-tokyo.ac.jp/~koba/papers/hors-type.pdf
https://www-kb.is.s.u-tokyo.ac.jp/~koba/papers/hors-type.pdf
http://dx.doi.org/10.1007/978-3-319-89884-1_25
https://arxiv.org/abs/1710.08614
https://arxiv.org/abs/1710.08614
http://dx.doi.org/10.1017/S147106841700028X
http://arxiv.org/abs/1707.01541
http://dx.doi.org/10.4204/EPTCS.278.5
http://dx.doi.org/10.1093/logcom/exu026
http://dx.doi.org/10.1093/logcom/exu026
https://arxiv.org/abs/1312.6568
http://dx.doi.org/10.1109/LICS.1988.5132
https://www.computer.org/csdl/pds/api/csdl/proceedings/download-article/12OmNyLiuB4/pdf
https://www.computer.org/csdl/pds/api/csdl/proceedings/download-article/12OmNyLiuB4/pdf
http://dx.doi.org/10.1109/LICS.2006.38
https://www.cs.ox.ac.uk/people/luke.ong/personal/publications/lics06.pdf
https://www.cs.ox.ac.uk/people/luke.ong/personal/publications/lics06.pdf
http://dx.doi.org/10.1109/LICS.2015.9
http://dx.doi.org/10.1109/LICS.2015.9
http://www.cs.ox.ac.uk/people/luke.ong/personal/publications/LICS15.pdf
http://www.cs.ox.ac.uk/people/luke.ong/personal/publications/LICS15.pdf
http://dx.doi.org/10.1109/LICS.2019.8785784
https://arxiv.org/abs/1902.10396
https://arxiv.org/abs/1902.10396
http://arxiv.org/abs/1810.03598
http://dx.doi.org/10.1016/j.ic.2014.07.012
https://hal.inria.fr/inria-00589407/document
https://hal.inria.fr/inria-00589407/document
http://dx.doi.org/10.1016/S0304-3975(00)00285-1
http://dx.doi.org/10.1016/S0304-3975(02)00027-0
http://dx.doi.org/10.1007/978-3-540-73420-8_42

50 Reducing HoRS Equivalence to Coinductive HoCHC

[29] Rick Statman (2004): On the Lambda-Y calculus. Annals of Pure and Applied Logic 130(1-3 SPEC. ISS.),

pp. 325–337, doi:10.1016/j.apal.2004.04.004. Available at https://core.ac.uk/download/pdf/

82358399.pdf.

[30] Colin Stirling (2001): Decidability of DPDA equivalence. Theor. Comput. Sci. 255(1-2), pp. 1–31, doi:10.

1016/S0304-3975(00)00389-3. Available at http://homepages.inf.ed.ac.uk/cps/dpda.pdf.

[31] Mahesh Viswanathan & Ramesh Viswanathan (2004): A Higher Order Modal Fixed Point Logic. In Philippa

Gardner & Nobuko Yoshida, editors: CONCUR 2004 - Concurrency Theory, Springer Berlin Heidelberg,

Berlin, Heidelberg, pp. 512–528, doi:10.1007/978-3-540-28644-8_33. Available at http://vmahesh.

cs.illinois.edu/papers/concur04.pdf.

[32] Dominik Wagner (2019): private communication.

[33] Igor Walukiewicz (2016): Automata Theory and Higher-Order Model-Checking. ACM SIGLOG News
3(4), pp. 13–31, doi:10.1145/3026744.3026745. Available at https://www.labri.fr/perso/igw/

Papers/igw-siglog16.pdf.

[34] Fabian Zaiser & C.-H. Luke Ong (2020): The Extended Theory of Trees and Algebraic (Co)datatypes. Elec-
tronic Proceedings in Theoretical Computer Science 320, pp. 167–196, doi:10.4204/eptcs.320.14.

http://dx.doi.org/10.1016/j.apal.2004.04.004
https://core.ac.uk/download/pdf/82358399.pdf
https://core.ac.uk/download/pdf/82358399.pdf
http://dx.doi.org/10.1016/S0304-3975(00)00389-3
http://dx.doi.org/10.1016/S0304-3975(00)00389-3
http://homepages.inf.ed.ac.uk/cps/dpda.pdf
http://dx.doi.org/10.1007/978-3-540-28644-8_33
http://vmahesh.cs.illinois.edu/papers/concur04.pdf
http://vmahesh.cs.illinois.edu/papers/concur04.pdf
http://dx.doi.org/10.1145/3026744.3026745
https://www.labri.fr/perso/igw/Papers/igw-siglog16.pdf
https://www.labri.fr/perso/igw/Papers/igw-siglog16.pdf
http://dx.doi.org/10.4204/eptcs.320.14

Jerome Jochems 51

A Correctness proofs from Section 3

A.1 Mappings between HoRS and HoCHC semantics

We define a relaxation of the monotone HoCHC sort frame that we call relatively monotone. This new

sort frame coincides with our trusted monotone sort frame for sorts ι and ι → o.

Definition A.1 (Relatively monotone sort frame). For each sort σ over ι , we define

Imσ :={θ ∈ DJRel−(σ)K | ∃h ∈HJσK. i−σ (h) = θ}

where i−σ is defined as in Definition A.2, and DJ−K denotes the relatively monotone frame:

DJιK :=MJιK
DJRel+(ι)K :=MJι → oK

DJRel+(σ1→ σ2)K :=
[
DJRel−(σ1)K⇒m[Imσ1

] DJRel+(σ2)K
]

The latter denotes the space of functions that are monotone with respect to Imσ1
, i.e. f :DJRel−(σ1)K→

DJRel+(σ2)K is an element of DJRel+(σ1→ σ2)K just if: z1 ⊑ z2 implies f z1 ⊑ f z2 for all z1,z2 ∈ Imσ1
.

For relational sorts ρ larger than ι → o, DJρK captures a strictly larger set of functions thanMJρK.

The following definition extends Definition 3.1 to higher sorts.

Definition A.2. For all sorts σ over ι , we define two pairs of mappings:

DJRel+(σ)K−−−→←−−−
jσ

iσ
HJσK DJRel−(σ)K−−−→←−−−

j−σ

i−σ
HJσK

For sort ι , all t ∈HJιK and p ∈DJRel+(ι)K, we define:

iι(t) := λ s. t ⊑ s jι(p) :=

{
⊥ if p = λ s.0
choice min{t | pt} otherwise

where choice denotes an arbitrary choice function, which exists by the Axiom of Choice.

For σ = σ1→ ··· → σm→ ι with m > 0, we define the following for all h ∈HJσK:

iσ h := λx
DJRel−(σ1)K
1 . . .x

DJRel−(σm)K
m . iι

(
h(j−σ1

x1) . . . (j
−
σm

xm)
)

with

j−σ :DJRel−(σ)K→HJσK :=

{
inclusion DJιK →֒ HJιK if σ = ι

jσ otherwise.

Similarly, for all θ ∈DJRel+(σ)K:

jσ θ := choice max{h ∈HJσK | θ ⊑ iσ h}

with

i−σ :HJσK→DJRel−(σ)K :=

{
inclusion HJιK →֒ DJιK if σ = ι

iσ otherwise.

The top case of jι will not used in practice.

Lemma A.3. For all sorts σ over ι ,

52 Reducing HoRS Equivalence to Coinductive HoCHC

(1) iσ
(
⊥HJσK

)
=⊤DJRel+(σ)K

(2) iσ is injective

(3) iσ is antitone

(4) jσ ◦ iσ = idHJσK

(5) j−σ ◦ i−σ = idHJσK

Lemma 3.2. For all directed sets D⊆HJιK, iι (
⊔

D) =
d
{iι(d) | d ∈ D}.

Proof. Recall that HJιK is a dcpo andMJRel+(ι)K a complete lattice, so that the bounds are defined.

iι

(⊔
D
)
= λ s.

(⊔
D⊑ s

)
= λ s.

l
{d ⊑ s | d ∈D}=

l
{λ s.(d ⊑ s) | d ∈ D}=

l
{iι(d) | d ∈D}

To see that the second equality holds: suppose that
⊔

D ⊑ s for some s ∈ DJιK =HJιK. By transitivity,

d ⊑
⊔

D ⊑ s for all d ∈ D. Since the greatest lower bound on MJoK is conjunction, this implies thatd
{d ⊑ s | d ∈ D}. For the converse, suppose

d
{d ⊑ s | d ∈ D}. This means that d ⊑ s, for all d ∈ D.

Thus, s is an upper bound on D. However,
⊔

D is the least upper bound on this set, so
⊔

D⊑ s.

A.2 Nonemptiness

We aim to show there exists a tree t that does not contain ⊥ such thatMJ∆G ⊢ pSqK(TMn
PG :∆G

(⊤∆G
)) t = 1,

for every n≥ 0 (Corollary A.7). To this end, we define a family of logical relations in Definition A.4 to

capture this notion at higher sorts and for larger sort environments, as proved in Lemma A.6.

Intuitively, such a relation holds whenever a predicate maps nonempty inputs to nonempty outputs,

where “nonempty” is taken to mean with respect to ⊥-free trees.

Definition A.4. We define a family of logical relations ⊥-freeσ ⊆MJσK:

⊥-freeι(t) := t has no ⊥-labelled leaves

⊥-free
Rel

+(ι)(p) :=∃s ∈MJιK.⊥-freeι(s)∧ ps = 1

⊥-free
Rel

+(σ1→σ2)
(p) :=∀s ∈MJRel−(σ1)K.⊥-free

Rel
−(σ1)

(s)⇒⊥-free
Rel

+(σ2)
(ps)

⊥-free
Rel
−(Γ)(θ) :=dom(pΓq) = dom(θ)∧

∧

x′:Rel−(σ)∈pΓq

⊥-free
Rel
−(σ)(θ(x

′))

Alternatively, we can define, for all s from the appropriate domains:

⊥-free
Rel

+(σ1→···→σm→ι)(p) :=∀s.

 ∧

i∈[m]

⊥-free
Rel
−(σi)

(si)

⇒⊥-free

Rel
+(ι)(ps1 . . . sm)

Lemma A.5. For all p1, p2 ∈MJRel+(ι)K, if p1 ⊑ p2 and ⊥-free
Rel

+(ι)(p1), then ⊥-free
Rel

+(ι)(p2).

Proof. Trivial, using that witness t ∈MJιK of ⊥-free
Rel

+(ι)(p1) also witnesses ⊥-free
Rel

+(ι)(p2).

Lemma A.6. For all n≥ 0, all typing judgements N ,Γ ⊢ e : σ of the HoRS G where Γ = {x1 : τ1, . . . ,xk :

τk}, and valuations θ ∈MJpΓqK,

N ,Γ ⊢ e : σ ∧⊥-free
Rel
−(Γ)(θ) ⇒ ⊥-free

Rel
+(σ) (MJ∆G,pΓq ⊢ peqK(β n))

where

pΓq := {x′1 : Rel−(τ1), . . . ,x
′
k : Rel−(τk)}

β n :=
(

TMn
PG :∆G

(⊤∆G
)
)
[x′ 7→ θ(x′)] ∈MJ∆G,pΓqK.

Notice that N ,Γ ⊢ e : σ implies ∆G ,pΓq ⊢ peq : Rel+(σ).

Jerome Jochems 53

Proof. We proceed by induction on n ≥ 0 within which (both in the base case and the induction step)

we use structural induction on HoRS term e. Some parts of the proof are presented out of order to avoid

duplication. Figure 3 outlines the structure of the proof. We assume WLOG that e contains no λ s.

We use the following shorthand, for e : σ = σ1 → ··· → σm → ι and zi ∈MJRel−(σi)K such that

⊥-free
Rel
−(σi)

(zi), for all i ∈ [m]:

A =MJ∆G,pΓq ⊢ pe : σqK(β n)z

Our proof strategy is to rewrite A and provide a witness to ⊥-free
Rel

+(ι)(MJ∆G ,pΓq ⊢ pe : σqK(β n)z),
which proves ⊥-free

Rel
+(σ)(MJ∆G,pΓq ⊢ pe : σqK(β n)).

We present the following base cases w.r.t. the structure of e (also denoted b for base case expression).

Case e = x : ι ∈VRS. For all n≥ 0, the tree θ(x′) is a witness thanks to ⊥-free
Rel
−(Γ)(θ):

A =MJ∆G ,pΓq ⊢ pxqK(β n) =MJ∆G,pΓq ⊢ λ r.x′ = rK(β n) = λ s.
(
β n(x′) = s

)
= λ s.

(
θ(x′) = s

)

Case e = f : σ1→ ··· → σm→ ι ∈ Σ. For all n≥ 0, the ⊥-free tree F̂f z is a witness:

A =MJ∆G ,pΓq ⊢ p fqK(β n)z =MJ∆G,pΓq ⊢ λyr. f y = rK(β n)z = λ s.
(

F̂f z = s
)

Case e = x : σ1→ ··· → σm→ ι ∈VRS and m > 0. For all n≥ 0, it holds that ⊥-free
Rel

+(ι)(θ(x
′)z):

A =MJ∆G ,pΓq ⊢ pxqK(β n)z =MJ∆G,pΓq ⊢ λyr.x′ yrK(β n)z = λ s.β n(x′)z s = θ(x′)z

Case e = F : σ1→ ··· → σm→ ι ∈N and n = 0. Any ⊥-free tree (e.g. JGK) is a witness:

A =MJ∆G ,pΓq ⊢ pFqK(β 0)z =MJ∆G,pΓq ⊢ λyr.RF yrK(β 0)z = λ s.β 0(RF)zs =⊤MJRel+(σ)K z

This covers n = 0 for all base case expressions. We distinguish three induction hypotheses, where

S(n,e) denotes that the claim holds for n and expression e. The proof consists of four parts (in a logical

sense but not a physical, to prevent duplication) which are related as in Figure 3. Thus, we have now

proved S(0,b) for all base case expressions b. Next, we use IH1 to show S(0,e) for all expressions e.

IH1 S(0,e′) for all expressions e′ simpler than e

IH2 S(n,e′′) for n and all e′′

IH3 S(n+1,e′) for all expressions e′ simpler than e

∀b.S(0,b)
IH1

✲ ∀e.S(0,e)

∀b.S(n+1,b)
IH3
✲

✛

IH2

∀e.S(n+1,e)

IH2
❄

Figure 3: The inductive structure of the correctness proof of the HoRS-to-HoCHC encoding.

In this inductive case, we consider expressions e = $e1 . . .eℓ : σ1→ ···→ σm→ ι for some ℓ > 0. As

before, let zi ∈MJRel−(σi)K such that⊥-free
Rel
−(σi)

(zi), for each i∈ [m]. We introduce some shorthands:

∆′G :=∆G ,pΓq,y,r ∆′′G :=∆G,pΓq,y,r,r β n,z,s :=β n[y 7→ z,r 7→ s]

Note that the sort τ of $ is of the form

τ = τ1→ ··· → τℓ→ σ1→ ··· → σm→ ι

where e1 : τ1, . . . ,eℓ : τℓ, for some ℓ > 0. Sometimes we abbreviate σ1→ ··· → σm→ ι to σ .

54 Reducing HoRS Equivalence to Coinductive HoCHC

In the sequel, steps marked with † use IH1 for n = 0, and IH3 for n > 0.

For all n≥ 0 and expressions e = $e, we can rewrite A:

A =MJ∆G,pΓq ⊢ p$eqK(β n)z

=MJ∆G,pΓq ⊢ λyr.∃r.$′ pp(e1,r1)qq . . .pp(eℓ,rℓ)qqyr∧
∧

i∈[ℓ]

Prop(ei,ri)K(β n)z

= λ s.MJ∆′G ⊢ ∃r.$
′
pp(e1,r1)qq . . .pp(eℓ,rℓ)qqyr∧

∧

i∈[ℓ]

Prop(ei,ri)K(β n,z,s)

= λ s. max
{

min{

MJ∆′′G ⊢ $′K(β n,z,s[r 7→ r′])(MJ∆′′G ⊢ pp(e1,r1)qqK(β n,z,s[r 7→ r′]))

. . . (MJ∆′′G ⊢ pp(eℓ,rℓ)qqK(β n,z,s[r 7→ r′]))z s,

min{MJ∆′′G ⊢ Prop(ei,ri)K(β n,z,s[r 7→ r′]) | i ∈ [ℓ]}

}

| ∀i ∈ [ℓ].r′i ∈MJRel−(τi)K
}

We now distinguish two cases for each subexpression ei : τi, namely τi = ι and τi = τ ′1→ τ ′2.

If ei is of sort ι , then the following holds.

MJ∆′′G ⊢ Prop(ei : ι ,ri)K(β n,z,s[r 7→ r′]) =MJ∆G,pΓq ⊢ peiqK(β n)r′i

MJ∆′′G ⊢ pp(ei : ι ,ri)qqK(β n,z,s[r 7→ r′]) = r′i

We know from † that ⊥-free
Rel

+(ι)(MJ∆G,pΓq ⊢ peiqK(β n)). This means that there exists r′′ ∈MJιK
such that ⊥-freeι(r

′′) andMJ∆G ,pΓq ⊢ peiqK(β n)r′′ = 1.

Otherwise, in case ei : τi = τ ′1→ τ ′2, the following holds:

MJ∆′′G ⊢ Prop(ei : τi,ri)K(β n,z,s[r 7→ r′]) = 1

MJ∆′′G ⊢ pp(ei : τi,ri)qqK(β n,z,s[r 7→ r′]) =MJ∆G,pΓq ⊢ peiqK(β n)

We know from † that ⊥-free
Rel

+(τi)
(MJ∆G ,pΓq ⊢ peiqK(β n)).

As “semantic equivalents” of the above terms, let us write

Pi : o :=

{
MJ∆G,pΓq ⊢ peiqK(β n)r′i if τi = ι

1 if τi = τ ′1→ τ ′2

and

Ti : Rel−(τi) :=

{
r′i if τi = ι

MJ∆G,pΓq ⊢ peiqK(β n) if τi = τ ′1→ τ ′2

for all i ∈ [ℓ]. Additionally, we define:

Si : Rel−(τi) :=

{
r′′i if τi = ι

MJ∆G,pΓq ⊢ peiqK(β n) if τi = τ ′1→ τ ′2

where r′′i is an arbitrary (⊥-free) witness to ⊥-free
Rel

+(ι)(MJ∆G,pΓq ⊢ peiqK(β n)), which exists by †.

This gives us ⊥-free
Rel
−(τi)

(Si) for all i ∈ [m].

Jerome Jochems 55

We derive by abuse of notation, using the above:

A = λ s.∃r′.

MJ∆′′G ⊢ $′K(β n,z,s[r 7→ r′])T zs∧

∧

i∈[ℓ]

Pi

We continue by case analysis on $.

Case e = f e1 . . .eℓ with f ∈ Σ. For all n≥ 0, the ⊥-free tree F̂f r′′ z is a witness:

A = λ s.∃r′.

MJ∆′′G ⊢ D f K(β n,z,s[r 7→ r′])r′ z s∧

∧

i∈[ℓ]

MJ∆G ,pΓq ⊢ peiqK(β n)r′i

= λ s.∃r′.

F̂f r′ z = s∧

∧

i∈[ℓ]

MJ∆G,pΓq ⊢ peiqK(β n)r′i

⊒ λ s.
(

F̂f r′′ z = s
)

†

Case e = xe1 . . .eℓ with x ∈VRS. For all n≥ 0, it holds that ⊥-free
Rel

+(ι)(θ(x
′)Sz) and:

A = λ s.∃r′.

MJ∆′′G ⊢ x′K(β n,z,s[r 7→ r′])T zs∧

∧

i∈[ℓ]

Pi

= λ s.∃r′.

β n,z,s[r 7→ r′](x′)T zs∧

∧

i∈[ℓ]

Pi

= λ s.∃r′.

θ(x′)T zs∧

∧

i∈[ℓ]

Pi

⊒ λ s.θ(x′)S zs †

= θ(x′)S z

Case e = F e1 . . .eℓ with F : σ ∈ N , and n = 0. Any ⊥-free tree (e.g. JGK) is a witness:

A = λ s.∃r′.

MJ∆′′G ⊢ RFK(β 0,z,s[r 7→ r′])T zs∧

∧

i∈[ℓ]

Pi

= λ s.∃r′.

β 0,z,s[r 7→ r′](RF)T zs∧

∧

i∈[ℓ]

Pi

= λ s.∃r′.

⊤MJRel+(τ)K T zs∧

∧

i∈[ℓ]

Pi

= λ s.∃r′.

1∧

∧

i∈[ℓ]

Pi

= λ s.1 IH1

56 Reducing HoRS Equivalence to Coinductive HoCHC

We have now established that S(0,e′′) holds for expressions all e′′. The following case is the last

remaining case to prove S(n+1,b) for all base case expressions b:

Case e = F : σ ∈ N , for n+1. Thanks to IH2, ⊥-free
Rel

+(ι)(MJ∆G,pΓq ⊢ pR(F)qK(β n)z) and:

A =MJ∆G,pΓq ⊢ pFqK(β n+1)z

=MJ∆G,pΓq ⊢ λyr.RF yrK(β n+1)z

= λ s.β n+1,z,s(RF)z s

= λ s.β n+1(RF)z s

= λ s.MJ∆G ,pΓq ⊢ pR(F)qK(β n)z s

=MJ∆G,pΓq ⊢ pR(F)qK(β n)z

Finally, we present the remaining case to prove that S(n′,e′′) for all n′ ≥ 0 and all expressions e′′.

Case e = F e1 . . .eℓ with F ∈ N and ℓ > 0, for n+1.

A = λ s.∃r′.

MJ∆′′G ⊢ RFK(β n+1,z,s[r 7→ r′])T zs∧

∧

i∈[ℓ]

Pi

= λ s.∃r′.

β n+1,z,s[r 7→ r′](RF)T zs∧

∧

i∈[ℓ]

Pi

= λ s.∃r′.

β n+1(RF)T zs∧

∧

i∈[ℓ]

Pi

= λ s.∃r′.

MJ∆G,pΓq ⊢ pR(F)qK(β n)T zs∧

∧

i∈[ℓ]

Pi

⊒ λ s.MJ∆G ,pΓq ⊢ pR(F)qK(β n)S zs IH3

=MJ∆G,pΓq ⊢ pR(F)qK(β n)S z

By IH2, ⊥-free
Rel

+(τ)(MJ∆G ,pΓq ⊢ pR(F)qK(β n)). All arguments S and z are also ⊥-free, so it follows

that ⊥-free
Rel

+(ι)(MJ∆G,pΓq ⊢ pR(F)qK(β n)S z), as required.

Corollary A.7. For all n ≥ 0 and HoRS G, ⊥-free
Rel

+(ι)(MJ∆G ⊢ pSqK(β n)). I.e. there exists a ⊥-free

tree t ∈MJιK such thatMJ∆G ⊢ pSqK(β n) t.

Lemma 3.4 (Nonemptiness). There exists a ⊥-free tree t ∈MJιK such thatMJ∆G ⊢ pSqK(dβ n) t.

Proof sketch. Note that the constructed HoCHC logic program ⊢ PG : ∆G is incremental in the sense

that each iteration of the one-step consequence operator (further) constrains a finite prefix of the trees

it generates. For sort ι → o, this means that either a contradiction occurs in finite time (e.g. ∃r1.ar1 =
r∧ br1 = r where a,b are distinct unary alphabet symbols) or no contradiction occurs and the program

is strictly incremental.

By Corollary A.7, no contradiction occurs after finite time. This means that no contradiction occurs

at all and ⊢ PG : ∆G is strictly incremental. It follows that there exists a ⊥-free tree t ∈MJιK such that

MJ∆G ⊢ pSqK(dβ n) t.

Jerome Jochems 57

A.3 Inclusion

We aim to show thatMJ∆G ⊢ pSqK(TMn
PG :∆G

(⊤∆G
)) is included in iι(HJN ⊢ SK((HJGKn

N (⊥N))), for every

n ≥ 0 (Corollary 3.5). To this end, we define a family of logical relations in Definition A.8 to capture

this notion at higher sorts and for larger sort environments, as proved in Lemma A.10.

The intuition is that the relation comprises pairs that preserve order on order-preserving arguments.

Definition A.8. We define a family of logical relations Inclσ ⊆MJσK×DJσK:

Inclι(t1, t2) := t1 = t2

Incl
Rel

+(ι)(p1, p2) := p1 ⊑ p2

Incl
Rel

+(σ1→σ2)
(p1, p2) :=∀w ∈MJRel−(σ1)K.∀z ∈HJσ1K.

Incl
Rel
−(σ1)

(w, i−σ1
(z))⇒ Incl

Rel
+(σ2)

(p1 w, p2 i−σ1
(z))

InclΓ(θβ ,θα) :=dom(pΓq) = dom(θβ)∧dom(Γ) = dom(θα) ∧
∧

x:σ∈Γ

Incl
Rel
−(σ)(θβ (x

′), i−σ (θα(x)))

Alternatively, Incl
Rel

+(σ1→···→σm→ι)(p1, p2) can be defined as

∀w.∀z.

 ∧

i∈[m]

Incl
Rel
−(σi)

(wi, i
−
σi
(zi))

⇒ Incl

Rel
+(ι)(pw1 . . .wm, p2 i−σ1

(z1) . . . i
−
σm
(zm))

for all w and z from the appropriate domains.

Note that in general MJσK differs from DJσK, and the arguments of Inclσ do not necessarily live

in the same set. However, for the sort we are interested in, namely Rel+(ι) = ι → o, the denotations

MJι → oK and DJι→ oK coincide (idem for ι), so that the relations are well-defined.

Lemma A.9. For F ∈HJσ1→ ···→ σk→ τ1→ ··· → τℓ→ ιK, ti ∈HJσiK for all i ∈ [k], and z j ∈HJτ jK
for all j ∈ [ℓ],

λ s.∃r.F r z = s∧

∧

i∈[k]

ti ⊑ ri

⊑

λ s.∃r.F r z⊑ s∧

∧

i∈[k]

ti ⊑ ri

⊑ (λ s.F t z⊑ s)

where r = r1 . . . rk, t = t1 . . . tk, and z = z1 . . .zℓ.

Lemma A.10. For all n≥ 0, all typing judgementsN ,Γ ⊢ e : σ of the HoRS G where Γ = {x1 : τ1, . . . ,xk :

τk}, and valuations θα ∈HJΓK and θβ ∈MJpΓqK,

N ,Γ ⊢ e : σ ∧ InclΓ(θβ ,θα) ⇒

Incl
Rel

+(σ) (MJ∆G,pΓq ⊢ peqK(β n), iσ (HJN ,Γ ⊢ eK(αn)))

where

pΓq := {x′1 : Rel−(τ1), . . . ,x
′
k : Rel−(τk)}

αn := (HJGKn
N (⊥N)) [x 7→ θα(x)] ∈HJN ,ΓK

β n :=
(

TMn
PG :∆G

(⊤∆G
)
)
[x′ 7→ θβ (x′)] ∈MJ∆G,pΓqK.

Notice that N ,Γ ⊢ e : σ implies ∆G ,pΓq ⊢ peq : Rel+(σ).

58 Reducing HoRS Equivalence to Coinductive HoCHC

Proof. We proceed by induction on n ≥ 0 within which (both in the base case and the induction step)

we use structural induction on HoRS term e. Some parts of the proof are presented out of order to

avoid duplication. In fact, the structure of this proof and order of presentation correspond to the proof of

Lemma A.6, the structure of which is outlined in Figure 3. We again assume WLOG e contains no λ s.

We use the following shorthands for e : σ = σ1→ ··· → σm→ ι , wi ∈MJRel−(σi)K, and zi ∈HJσiK
such that Incl

Rel
−(σi)

(wi, i
−
σi
(zi)), for all i ∈ [m]:

B =MJ∆G,pΓq ⊢ peqK(β n)w C = iσ (HJN ,Γ ⊢ eK(αn)) i−(z)

Thus, both B and C are both elements ofMJι → oK =DJι→ oK, and it suffices to show that B⊑C.

We present the following base cases w.r.t. the structure of e (also denoted b for base case expression).

Case e = x : ι ∈VRS. For all n≥ 0, InclΓ(θβ ,θα) implies β n(x′) = αn(x) and:

B =MJ∆G,pΓq ⊢ pxqK(β n)

=MJ∆G,pΓq ⊢ λ r.x′ = rK(β n)

= λ s ∈MJιK.
(
β n(x′) = s

)

= λ s ∈MJιK.(αn(x) = s)

⊑ iι(α
n(x))

= iι(HJN ,Γ ⊢ xK(αn))

=C

Case e = $: σ1→ ··· → σm→ ι ∈ Σ∪VRS. For all n≥ 0, we rely on Lemma A.3. If $ ∈ dom(VRS),
let m > 0. Then, Incl

Rel
−(σ)(β

n(x′), i−σ (α
n(x))) and Incl

Rel
−(σ j)

(w j, i
−
σ j
(z j)), for all j ∈ [m], such that:

B =MJ∆G ,pΓq ⊢ p fqK(β n)w

=MJ∆G ,pΓq ⊢ p fqK(β n)z

=MJ∆G ,pΓq ⊢ λyr. f y = rK(β n)z

= λ s ∈MJιK.
(

F̂f z = s
)

⊑ iι(F̂f z)

= iι(HJN ,Γ ⊢ f K(αn)z)

= iσ (HJN ,Γ ⊢ f K(αn)) i−(z)

=C

B =MJ∆G,pΓq ⊢ pxqK(β n)w

=MJ∆G,pΓq ⊢ λyr.x′ yrK(β n)w

= λ s ∈MJιK.β n(x′)ws

= β n(x′)w

⊑ i−σ (α
n(x)) i−(z)

= iσ (HJN ,Γ ⊢ xK(αn)) i−(z)

=C

This remaining base case expression is where we start needing induction on n≥ 0.

Case e = F : σ ∈ N , and n = 0. We rely on Lemma A.3 to prove B and C are the universal relation:

B =MJ∆G,pΓq ⊢ pFqK(β 0)w

=MJ∆G,pΓq ⊢ λyr.RF yrK(β 0)w

= λ s ∈MJιK.β 0(RF)ws

=⊤MJRel+(ι)K

=⊤DJRel+(σ)K i−(z)

= iσ (⊥HJσK) i−(z)

= iσ (HJN ,Γ ⊢ FK(α0)) i−(z)

=C

Jerome Jochems 59

This covers n = 0 for base case expressions. Recall our proof follows the structure of Lemma A.6,

which is outlined in Figure 3. We distinguish three induction hypotheses, where S(n,e) denotes that the

claim holds for n and expression e. Thus, we have now proved S(0,b) for all base case expressions b.

In this inductive case, we consider expressions e = $e1 . . .eℓ : σ1→ ··· → σm → ι for some ℓ > 0.

For this, we introduce some more shorthands:

∆′G :=∆G ,pΓq,y,r ∆′′G :=∆G,pΓq,y,r,r β n,w,s :=β n[y 7→ w,r 7→ s]

Note that the sort τ of $ is of the form

τ = τ1→ ··· → τℓ→ σ1→ ··· → σm→ ι

where e1 : τ1, . . . ,eℓ : τℓ, for some ℓ > 0. Sometimes we abbreviate σ1→ ··· → σm→ ι to σ .

In the sequel, steps marked with † use IH1 for n = 0, and IH3 for n > 0.

Because B is A from Lemma A.6 with w substituted for (their) z, we simply rewrite B like A is

rewritten there; for all n≥ 0 and expressions e = $e, we can rewrite B to obtain:

B = λ s. max
{

min{

MJ∆′′G ⊢ $′K(β n,w,s[r 7→ r′])(MJ∆′′G ⊢ pp(e1,r1)qqK(β n,w,s[r 7→ r′]))

. . . (MJ∆′′G ⊢ pp(eℓ,rℓ)qqK(β n,w,s[r 7→ r′]))ws,

min{MJ∆′′G ⊢ Prop(ei,ri)K(β n,w,s[r 7→ r′]) | i ∈ [ℓ]}

}

| ∀i ∈ [ℓ].r′i ∈MJRel−(τi)K
}

We now distinguish two cases for each subexpression ei : τi, namely τi = ι and τi = τ ′1→ τ ′2.

If ei is of sort ι , then the following holds:

MJ∆′′G ⊢ Prop(ei : ι ,ri)K(β n,w,s[r 7→ r′]) =MJ∆G ,pΓq ⊢ peiqK(β n)r′i

MJ∆′′G ⊢ pp(ei : ι ,ri)qqK(β n,w,s[r 7→ r′]) = r′i

We know from † that Incl
Rel

+(ι)(MJ∆G ,pΓq ⊢ peiqK(β n), iι(HJN ,Γ ⊢ eiK(αn)).
Otherwise, in case ei : τi = τ ′1→ τ ′2, the following holds:

MJ∆′′G ⊢ Prop(ei : τi,ri)K(β n,w,s[r 7→ r′]) = 1

MJ∆′′G ⊢ pp(ei : τi,ri)qqK(β n,w,s[r 7→ r′]) =MJ∆G,pΓq ⊢ peiqK(β n)

We know from † that Incl
Rel

+(τi)
(MJ∆G ,pΓq ⊢ peiqK(β n), iτi

(HJN ,Γ ⊢ eiK(αn)).
As “semantic equivalents” of the above terms, let us write

Pi : o :=

{
MJ∆G,pΓq ⊢ peiqK(β n)r′i if τi = ι

1 if τi = τ ′1→ τ ′2

and

Ti : Rel−(τi) :=

{
r′i if τi = ι

MJ∆G,pΓq ⊢ peiqK(β n) if τi = τ ′1→ τ ′2

60 Reducing HoRS Equivalence to Coinductive HoCHC

for all i ∈ [ℓ]. Additionally, we define

P′i : o :=

{
iι(HJN ,Γ ⊢ eiK(αn))r′i if τi = ι

1 if τi = τ ′1→ τ ′2

and

T ′i : Rel−(τi) :=

{
r′i if τi = ι

iτi
(HJN ,Γ ⊢ eiK(αn)) if τi = τ ′1→ τ ′2

for all i ∈ [ℓ], to be used after applying the induction hypothesis †. And finally, for all i ∈ [ℓ],

Si : Rel−(τi) :=

{
r′i if τi = ι

HJN ,Γ ⊢ eiK(αn) if τi = τ ′1→ τ ′2

We derive by abuse of notation, using the above:

B = λ s.∃r′.

MJ∆G,pΓq ⊢ $′K(β n)T ws∧

∧

i∈[ℓ]

Pi

We continue by case analysis on $.

Case e = f e1 . . .eℓ with f ∈ Σ. For all n≥ 0:

B = λ s.∃r′.

MJ∆G,pΓq ⊢ D f K(β n)r′ ws∧

∧

i∈[ℓ]

MJ∆G,pΓq ⊢ peiqK(β n)r′i

= λ s.∃r′.

F̂f r′ w = s∧

∧

i∈[ℓ]

MJ∆G,pΓq ⊢ peiqK(β n)r′i

⊑ λ s.∃r′.

F̂f r′ w = s∧

∧

i∈[ℓ]

iι(HJN ,Γ ⊢ eiK(αn))r′i

 †

= λ s.∃r′.

F̂f r′ w = s∧

∧

i∈[ℓ]

(
HJN ,Γ ⊢ eiK(αn)⊑ r′i

)

= λ s.∃r′.

F̂f r′ z = s∧

∧

i∈[ℓ]

(
HJN ,Γ ⊢ eiK(αn)⊑ r′i

)

⊑ λ s.
(

F̂f HJN ,Γ ⊢ e1K(αn) . . .HJN ,Γ ⊢ eℓK(αn)z⊑ s
)

Lem A.9

= iι(F̂f HJN ,Γ ⊢ e1K(αn) . . .HJN ,Γ ⊢ eℓK(αn)z)

= iσ (HJN ,Γ ⊢ f K(αn)) i−ι (HJN ,Γ ⊢ e1K(αn)) . . . i−ι (HJN ,Γ ⊢ eℓK(αn))z

=C

Jerome Jochems 61

Case e = xe1 . . .eℓ with x ∈VRS of sort τ = τ1→ τ2. For all n≥ 0:

B = λ s.∃r′.

MJ∆G,pΓq ⊢ x′K(β n)T ws∧

∧

i∈[ℓ]

Pi

= λ s.∃r′.

β n(x′)T ws∧

∧

i∈[ℓ]

Pi

⊑ λ s.∃r′.

iτ(α

n(x))T ′ i−(z) s∧
∧

i∈[ℓ]

Pi

 †

⊑ λ s.∃r′.

iτ(α

n(x))T ′ i−(z) s∧
∧

i∈[ℓ]

P′i

 †

= λ s.∃r′.

iι(α

n(x)S z)s∧
∧

i∈[ℓ]

P′i

 Lem A.3

= λ s.∃r′.

HJN ,Γ ⊢ xK(αn)S z⊑ s∧

∧

i∈[ℓ]

P′i

⊑ λ s.(HJN ,Γ ⊢ xeK(αn)z⊑ s) Lem A.9

= iι(HJN ,Γ ⊢ xeK(αn)z)

= iτ(HJN ,Γ ⊢ xeK(αn)) i−(z) Lem A.3

=C

Recall that Incl
Rel
−(τ)(β

n(x′), i−τ (α
n(x))). The IH † gives us Incl

Rel
−(τi)

(Ti,T
′

i). Because we also have

Incl
Rel
−(σ j)

(w j, i
−
σ j
(z j)), we derive the first inclusion.

Case e = F e1 . . .eℓ with F : σ ∈ N , and n = 0.

B = λ s.∃r′.

MJ∆G,pΓq ⊢ RFK(β n)T ws∧

∧

i∈[ℓ]

Pi

⊑ λ s.1

= iι(⊥) Lem A.3

= iι(⊥HJσKHJN ,Γ ⊢ e1K(α0) . . .HJN ,Γ ⊢ eℓK(α0)z)

= iι(α
0(F)HJN ,Γ ⊢ e1K(α0) . . .HJN ,Γ ⊢ eℓK(α0)z)

= iι(HJN ,Γ ⊢ FK(α0)HJN ,Γ ⊢ e1K(α0) . . .HJN ,Γ ⊢ eℓK(α0)z)

= iσ (HJN ,Γ ⊢ FK(α0)) i−τ1
(HJN ,Γ ⊢ e1K(α0)) . . . i−τℓ(HJN ,Γ ⊢ eℓK(α0)) i−(z)

=C

We have now established that S(0,e′′) holds for expressions all e′′. The following case is the last

remaining case to prove that S(n+1,b) for all base case expressions b:

62 Reducing HoRS Equivalence to Coinductive HoCHC

Case e = F : σ ∈ N , for n+1.

B =MJ∆G ,pΓq ⊢ pFqK(β n+1)w

=MJ∆G ,pΓq ⊢ λyr.RF yrK(β n+1)w

= λ s.β n+1(RF)ws

= λ s.MJ∆G ,pΓq ⊢ pR(F)qK(β n)ws

⊑ λ s. iσ (HJN ,Γ ⊢ R(F)K(αn)) i−(z) s IH2

= λ s. iσ (α
n+1(F)) i−(z) s

= iσ (HJN ,Γ ⊢ FK(αn+1)) i−(z)

=C

Finally, we present the remaining case to prove that S(n′,e′′) for all n′ ≥ 0 and all expressions e′′.

Case e = F e1 . . .eℓ with F ∈ N and ℓ > 0, for n+1.

B = λ s.∃r′.

MJ∆G,pΓq ⊢ RFK(β n+1)T ws∧

∧

i∈[ℓ]

Pi

= λ s.∃r′.

β n+1(RF)T ws∧

∧

i∈[ℓ]

Pi

= λ s.∃r′.

MJ∆G,pΓq ⊢ pR(F)qK(β n)T ws∧

∧

i∈[ℓ]

Pi

⊑ λ s.∃r′.

iτ(HJN ,Γ ⊢R(F)K(αn))T ′ i−(z) s∧

∧

i∈[ℓ]

Pi

 IH2, †

⊑ λ s.∃r′.

iτ(HJN ,Γ ⊢R(F)K(αn))T ′ i−(z) s∧

∧

i∈[ℓ]

P′i

 †

= λ s.∃r′.

iι(HJN ,Γ ⊢ R(F)K(αn)S z)s∧

∧

i∈[ℓ]

P′i

 Lem A.3

= λ s.∃r′.

αn+1(F)S z⊑ s∧

∧

i∈[ℓ]

P′i

= λ s.∃r′.

HJN ,Γ ⊢ FK(αn+1)S z⊑ s∧

∧

i∈[ℓ]

P′i

⊑ iι(HJN ,Γ ⊢ F eK(αn+1)z) Lem A.9

= iτ(HJN ,Γ ⊢ F eK(αn+1)) i−(z) Lem A.3

=C

Jerome Jochems 63

Corollary 3.5 (Inclusion). For all n≥ 0,MJ∆G ⊢ pSqK(β n)⊑ iι(HJN ⊢ SK(αn)).

A.4 Main result: equality

Lemma 3.3. For all typing judgementsN ⊢ e : σ of the HoRS G, and non-increasing chains of valuations

I ⊆MJ∆GK,

MJ∆G ⊢ pe : σqK
(l
I
)
=

l

I∈I

MJ∆G ⊢ pe : σqK(I).

Proof. Recall thatMJ∆GK andMJρK are complete lattices for each relational sort environment ∆G and

relational sort ρ . Thus, we know that the greatest lower bounds exist.

To perform induction on the structure of e : σ , we strengthen the claim to the following.

For all typing judgements N ,Γ ⊢ e : σ of the HoRS G where Γ = {x1 : τ1, . . . ,xk : τk}, for all de-

scending chains of valuations I ⊆MJ∆GK, and valuations θ ∈MJpΓqK,

MJ∆G ,pΓq ⊢ pe : σqK
((l

I
)
[x′ 7→ θ(x′)]

)

=
l

I∈I

MJ∆G,pΓq ⊢ pe : σqK(I[x′ 7→ θ(x′)]).

where pΓq= {x′1 : Rel−(τ1), . . . ,x
′
k : Rel−(τk)}. We abbreviate I[x′ 7→ θ(x′)] to I′. Note that

(l
I
)
[x′ 7→ θ(x′)] =

l

I∈I

I[x′ 7→ θ(x′)] =
l

I∈I

I′,

so that we shorten the above equation to

MJ∆G,pΓq ⊢ pe : σqK
(

l

I∈I

I′

)
=

l

I∈I

MJ∆G,pΓq ⊢ pe : σqK(I′).

Case e = f : ιk→ ι ∈ Σ. The meaning of p fq is independent of the valuation, as demonstrated by:

p fq= λy1 . . .yk r.(f y1 . . .yk = r)

Case x : σ ∈VRS. The meaning of pxq relies only on the θ part of the valuation, as evident from:

px : σq=

{
λ r.(x′ = r) if σ = ι

λy1 . . .yk r.x′ y1 . . .yk r if σ = σ1→ ··· → σk→ ι for k > 0

64 Reducing HoRS Equivalence to Coinductive HoCHC

Case Fσ1→ ··· → σk→ ι ∈ N .

MJ∆G,pΓq ⊢ pFqK
(

l

I∈I

I′

)
=MJ∆G,pΓq ⊢ λy1 . . .yk r.RF y1 . . .yk rK

(
l

I∈I

I′

)

= λy1 . . .yk r.

(
l

I∈I

I′

)
(RF)y1 . . .yk r

= λy1 . . .yk r.

(
l

I∈I

I

)
(RF)y1 . . .yk r

= λy1 . . .yk r.

(
l

I∈I

I(RF)

)
y1 . . .yk r

=
l

I∈I

I(RF)

=
l

I∈I

I′(RF)

=
l

I∈I

MJ∆G ,pΓq ⊢ RFK(I′)

=
l

I∈I

MJ∆G ,pΓq ⊢ λy1 . . .yk r.RF y1 . . .yk rK(I′)

=
l

I∈I

MJ∆G ,pΓq ⊢ pFqK(I′)

For the fourth equality, we rely on the codomain of I being a complete lattice (namely, a finite product

of complete latticesMJρK).

Case e = $e with e = e1 . . .eℓ for ℓ > 0. This case follows from applying the induction hypothesis in

a straightforward though laborious unfolding of the relational lift and the semantics. Recall that:

MJ∆G,pΓq ⊢ p$eqK
(

l

I∈I

I′

)

=MJ∆G,pΓq ⊢ λyr.∃r.$′ pp(e1,r1)qq . . .pp(eℓ,rℓ)qqyr∧
∧

i∈[ℓ]

Prop(ei,ri)K
(

l

I∈I

I′

)

The previous cases show that the greatest lower bound is preserved byMJ$′K. Observe that pp(ei,ri)qq is

ri or peiq. Either way, the greatest lower bound is preserved byMJpp(ei,ri)qqK. Similarly, Prop(ei,ri) is

either peiqri or true, and the greatest lower bound is thus preserved byMJProp(ei,ri)K. This concludes

the proof.

Theorem 3.6 (Correctness). MJ∆G ⊢ RSK(gfp(TM
PG :∆G

)) t = 1 if and only if t = JGK.

	1 Introduction
	2 Preliminaries
	2.1 Higher-order constrained Horn clauses
	2.1.1 Syntax
	2.1.2 Semantics
	2.1.3 Coinductive decision problem

	2.2 Higher-order recursion schemes
	2.2.1 Denotational semantics
	2.2.2 Computability of bottom-free transform of HoRS

	3 Encoding HoRS-to-HoCHC logic program
	3.1 Correctness

	4 HoRS equivalence problem
	4.1 Maher's theory of trees
	4.2 Decision procedure

	5 Conclusion and related work
	A Correctness proofs from Section 3
	A.1 Mappings between HoRS and HoCHC semantics
	A.2 Nonemptiness
	A.3 Inclusion
	A.4 Main result: equality

