
J. P. Gallagher and P. Rümmer (Eds.): 3rd Workshop
on Horn Clauses for Verification and Synthesis (HCVS)
EPTCS 219, 2016, pp. 56–68, doi:10.4204/EPTCS.219.6

c© G. Paganelli
This work is licensed under the
Creative Commons Attribution License.

Horn Binary Serialization Analysis

Gabriele Paganelli
https://gapag.noblogs.org/

gapag@distruzione.org

A bit layout is a sequence of fields of certain bit lengths that specifies how to interpret a serial stream,
e.g., the MP3 audio format. A layout with variable length fields needs to include meta-information
to help the parser interpret unambiguously the rest of the stream; e.g. a field providing the length of
a following variable length field. If no such information is available, then the layout is ambiguous. I
present a linear-time algorithm to determine whether a layout is ambiguous or not by modelling the
behaviour of a serial parser reading the stream as forward chaining reasoning on a collection of Horn
clauses.

1 Introduction

Programs can read data from files or network interfaces in serial form. Data might not be available at
once, or its consumption might be inherently sequential, such as in digital music. Programs decode the
data stream interpreting it through a structure that defines the layout, or binary format, of the bits within
the stream. Call this process deserialization, or parsing, or unmarshalling interchangeably. Among the
reasons to use ad-hoc binary formats there are: a) Conciseness over verboseness of ASCII-based ex-
change formats like XML or JSON; b) interfacing to legacy or closed-source software that uses custom
binary formats for which no parser is accessible; c) application specific constraints on the binary format.
The most painful drawback of an ad-hoc binary format is its mainteinance. Any change in the layout
means changing the marshalling/unmarshalling routines, which is error prone due to the fact that bitwise
logical and shifting operations are involved and off-by-one errors might fester. It is therefore appealing to
have such routines automatically derived from an high level layout specification. Consider the Portable
Network Graphic (PNG) format [13]. PNG image files are composed of a fixed 8 bytes header, followed
by an arbitrary number of chunks1. A chunk itself has a variable length; Tab. 1 shows its layout. The

Table 1: The PNG chunk layout.

Meaning Length Type Data CRC

Bytes 4 4 Variable 4

Length field’s value tells the length of the Data field. Without knowing the value of the Length field it is
impossible to unambiguously parse the rest of the chunk (and any following chunks). This means that
not only the presence, but also the position in the stream of the Length field is crucial for deserializa-
tion. Placing Length after Data would prevent deserialization since it is not possible to know at what
point of the stream Length would begin. The example shows how variable fields urge the presence of
meta-information in the stream. In practice these are pointer fields or terminator sequences of bits (or
syncwords). These two solutions are not equivalent. In the PNG case it is desirable to know in advance
how much memory to allocate, since the image data is buffered to be consumed e.g. for displaying on a

1Terminology taken from [13].

http://dx.doi.org/10.4204/EPTCS.219.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
https://gapag.noblogs.org/

G. Paganelli 57

screen. In contrast, syncwords are preferred when the length of the variable field is not known when the
data is sent. Consider the playback of audio-streams like MP3 [20]. Header packets give the information
about the the bitrate of the following data; this fixes the amount of buffering needed, since the data is
discarded as soon as it is played back. The arrival of a new packet header is signalled by a syncword.
Contributions. In this paper I show a method to formally check if a layout is successfully deserializable
or not, by defining a stream model and a parser model, that is, a first-order logic axiomatization that en-
codes in horn clauses the behaviour of a parser that reads and interprets a sequential stream with respect
to a layout. I use known reasoning techniques to infer the layout properties.
Paper structure. In Sect. 2 I summarize the needed background about reasoning on knowledge bases. In
Sect. 3 I elaborate a simplified model of the layout, and introduce the parser model and the deserialization
check. In Sect. 4 I make the model more expressive and analyze the consequences on deserialization. In
Sect. 5 I discuss related work. In Sect. 6 I conclude the paper and illustrate future work.
Disambiguation. In the following, the intended meaning of the word model is “mathematical descrip-
tion of a process” and not “interpretation that makes true a theory in first-order logic”.

2 Background: Knowledge Representation and First-Order Logic

Let KB be a finite conjunction of first-order formulae of the form α ⇒ β , called rules. A rule of the
form true⇒ β is called a fact. α is a conjunction of (possibly negated) predicates; β is a predicate2. KB
is called knowledge base and represents the known causal relations and facts about a modelled domain.
It is possible to infer new facts using a forward chaining algorithm [22], that is, repeatedly applying
modus ponens to the rules and facts present in KB until no new facts are inferred. A rule with no negated
premises is called Horn rule (or clause); a knowledge base made of Horn rules is a Horn knowledge
base. Such class of knowledge bases is relevant because inference can be efficient [15]. Using forward
chaining on a KB of a first-order language without functions is guaranteed to always terminate, because
the number of facts that can be generated is finite; without functions no other references to domain
elements than the ones explicitly mentioned in the knowledge base can be created. Forward chaining
might not terminate if the language has functions, as it might endlessly generate new facts; e.g., applying
forward chaining to the Peano axioms. When used in rule-based languages and systems [17, 19] such as
CLIPS or JESS, forward chaining models the reasoning process of an agent, where the knowledge base
represents what the agent knows at a particular point of the reasoning. In this case, forward chaining
uses negation as failure [14] besides modus ponens, which practically means that the lack of a fact in KB
implies its falsity. For instance, consider KB′ = {¬A(1)⇒ B(1),B(x)⇒ A(x)}. An expert system like
CLIPS would infer KB′′ = KB′∪{B(1),A(1)}; modus ponens alone would not apply.

3 Deserialization of Binary Layouts

A layout is the sequence of fields, left to right, expected in reading a stream. I first give a formal model
to describe layouts with sufficient detail. I then formulate a first-order formal system D = 〈R ,`,A〉
where R is a first-order language, ` is the modus ponens inference rule, A a set of axioms describing
the parser’s knowledge. I will write A `∗ α , where α is a formula in R , to mean that a proof exists
for α in D. Let the following be: B = {Lo 3 sM|o,s ∈ N}; I = B∪{f,v}; Φ = I×N. I represent a pair

2Propositions are considered here as nullary predicates.

58 Horn Binary Serialization Analysis

〈ι , i〉 ∈Φ as ιi instead of the usual tuple format. Let A be any set. Let � : An×Am 7−→ An+m be a family of
associative concatenation operations, which concatenate together two tuples: e.g. f1f2 � v5f2 = f1f2v5f2.
Define the family of size functions |x| : Ak 7−→ N as |x| = k, which tells the number of elements in the
tuple: e.g., |f1f2v5f2|= 4. The set of tuples of A of any size is denoted by A∗ =

⋃
k∈N Ak. Given an~a ∈ A∗

and α ∈ A I will write α ↪→ ~a meaning that a occurs in ~a at any position; α ↪→i ~a where ~a ∈ An and
i ∈ N,0≤ i < n, to mean that α occurs in~a at position i.

Define the function λ : I∗ 7−→Φ∗ as λ (ε) = ε , λ (ι) = ι0, λ (υ � ι) = λ (υ) � ιk where ι ∈ I,υ ∈ Ik−1,
and ε ∈ I0 is the identity element of the � operator. Let L′ = Image(λ). Given a ~̀ ∈L′ I will write ιω ↪→ ~̀

meaning that ιω occurs in ~̀; ι ↪→ ~̀ meaning that there is an ι occurring in ~̀ with any label. The set of
layouts L⊂L′ is defined as follows: L= {~̀∈L′|∀ι .

(
ι ↪→~̀

)
∧
(
ι = Lo3sMk

)
⇒
(
o< |~̀|

)
∧
(
s≤ |~̀|−o

)
}.

The above cryptic formal introduction is to set a framework for describing, later in the paper, extensions
to the layout model: the function λ (x) assigns unique labels that identify the items in a tuple x with their
position in x. I will sometimes drop the labeling subscripts for readability.

Each layout field has a length, that is, the number of contiguous bits that will represent the content
of the field in the stream. The concrete value of the length is not important in this work. The meaning
of each ι ∈ I is defined as follows: 1) f is a fixed length field; 2) v is a variable length field, or varfield;
3) any Lo 3 sM ∈ B indicates a fixed length pointer field, where o is the offset label of the pointer, offset
in short, and ω = o+ s is the label of the item the pointer is pointing to — thus I call s the span (and
not length!) of a pointer; I define a function range : B 7−→ N as range(Lo3 sM) = { j ∈ N|o≤ j < o+ s}
which tells the range of a pointer. Note that the definition of L rules out pointers pointing or spanning
beyond |~̀|. A layout ~̀ ∈ L defines the structure of a set of concrete bitstrings, denoted by S(~̀).
Example 3.1: The representation of the PNG chunk of Sect. 1 is L231M0f v2f; and range(L231M) = {2}.

3.1 Parser Model: Axioms and Knowledge Representation

A parser reads a stream sequentially and interprets the fields according to their layout ~̀ ∈ L. I as-
sume that it is not possible to know whether the stream is over or not, e.g. with an end-of-stream
signal, event, or symbol. Consider a first-order language Rn = 〈C,V,F,P〉 with a set of constants
C = {c0, . . . ,cn}, an infinite supply of variables V, a single binary function + ∈ F, the unary predi-
cate set Pu = {Beg(),Len(),Val()}, and the ternary predicate set Pt = {Ptr()}. Let P= Pu∪Pt . I define
the parser model as a theory A in Rn, in the following way3. Let the domain be N. I impose that the
interpretation JcK : C 7−→ N of any c ∈ C is fixed: Jc0K = 0, . . . ,JcnK = n. To force the interpretation of
the + function I add to A the axioms4 defining the addition over N. All p ∈ P have a corresponding
predicate, JpK, with integer arguments. My intention is to give the following meanings to the predi-
cates. Let ~̀ ∈ L, i ∈ V, ι ∈ I; let ιJiK ↪→ ~̀. Then a) Beg(i) means “the parser knows where ιJiK begins in
the stream”; b) Len(i) means “the parser knows ιJiK’s length”; c) Val(i) means “the parser knows ιJiK’s
content”; d) Ptr(o,s, i) tells that there is a pointer field with label JiK that contains a measure of how
many bits there are between the beginning of the fields labeled with JoK and Jo+ sK. Less verbosely, it
means ιJiK = LJoK3 JsKMJiK. I define the behaviour of a parser with the following axioms A~̀ (implicitly
universally quantified):

1. The parser knows where ιJ0K begins.

true⇒ Beg(0) (begin)

3It is understood that the theory is the conjunction of the formulae it contains.
4Not reported here.

G. Paganelli 59

2. If a parser knows where ιJiK begins and its length, then it knows its value and where ιJi+1K begins.

Beg(i)∧Len(i)⇒ Val(i)∧Beg(i+1) (forwardi)

3. If a parser knows where ιJi+1K begins and the length if its predecessor ιJiK, then it knows where ιJiK
begins and its value.

Beg(i+1)∧Len(i)⇒ Beg(i)∧Val(i) (backwardi)

4. If a parser knows where ιJiK and its successor ιJi+1K begin, then it knows ιJiK’s length.

Beg(i)∧Beg(i+1)⇒ Len(i) (joini)

5. If ιJiK = LJoK3 JbKM and the parser knows a) the value of ιJiK b) where ιJoK begins, then it knows
where ιJo+bK begins.

Ptr(o,s, i)∧Val(i)∧Beg(o)⇒ Beg(o+ s) (jumpRighto,s,i)

6. If ιJiK = LJoK3JbKM and the parser knows a) the value of ιJiK b) where ιJo+bK begins, then it knows
where ιJoK begins.

Ptr(o,s, i)∧Val(i)∧Beg(o+ s)⇒ Beg(o) (jumpLefto,s,i)

The above axioms are common to all layouts; the following are axioms that are added according to the
specific shape of the layout ~̀ under analysis5. For each ιJiK ↪→ ~̀: if ι = f or ι = LJoK 3 JsKM, then the
parser knows

true⇒ Len(i) (fieldi)

and additionally if ι = LJoK3JsKM the parser knows

true⇒ Ptr(o,s, i) (ptri)

I will drop the subscript to A~̀ whenever the ~̀ it refers to is clear from the context. I will call A the initial
knowledge base. In the following I will abuse the notation by using the same digit symbols to represent
both a) the value represented b) the syntactic entity representing it, therefore not explicitly representing
the interpretation function J·K when such distinction is not necessary. Wrapping up, for each ~̀ ∈ L there
is a formal system D~̀ = 〈R|~̀|,`,A〉 which is ~̀’s parser model; and in the following, whenever i write
about a parser, I implicitly refer to such a structure.

3.2 Ambiguity

The presence of a varfield creates ambiguity. For instance the layout fv is ambiguous, because there is no
way for a parser to know v1’s length; likewise in fvf there is no way, in a concrete stream, to tell v1 from
f2. A layout ~̀ is unambiguous, or deserializable, if and only if a parser can infer the lengths of all vi ↪→ ~̀.
Pointers are bounding items, in that their presence can bound varfields and therefore disambiguate the
layout.

5For completeness one can extend the layout model with a constant field c to signal the end of a variable field with a constant
pattern. Thus, for each ci ↪→ ~̀, add an axiom Beg(i). This is sound under the assumption that the bits in the stream before ci
are such that the interpretation is not ambiguous, e.g. the pattern in ci occurs in the bits of vi−1.

60 Horn Binary Serialization Analysis

Example 3.2: Consider layout L132Mv1L131ML231M3. Item v1 is bounded by L132M0 and L131M2; it
is not bounded by L231M3.

Theorem 3.1. Necessary condition for deserializability. If ~̀ ∈ L is deserializable then for all v j ↪→ ~̀

there exists a pointer x = Lb3 sMp ↪→ ~̀ such that j ∈ range(x).

Proof. Let v j ↪→ ~̀. Since ~̀ is deserializable, it is true that A `∗ Len(k),0 ≤ k ≤ |~̀|. I show that any
proof of Len(j) contains the application of jumpRighto,s,i or jumpLefto,s,i, with o ≤ j < o + s, by
applying the inference steps backwards. Observe that 1) Len(j) /∈ A , otherwise v j would not be a
varfield. 2) The join j axiom is the only axiom that allows to infer Len(j), so any proof necessarily
applies join j. 3) v0 6↪→ ~̀, otherwise ~̀ would not be deserializable. Assume that there are no proofs
involving jumpRighto,s,i or jumpLefto,s,i. Further, observe the premises of join j: Beg(j) cannot be
inferred through backward j, since Len(j) is in its premises leading to circularity; likewise Beg(j+ 1)
cannot be inferred through forward j. Thus, 1) Beg(j) must then be inferred through forward j, which
means that a proof is a chain of forwardk, with 0≤ k≤ j; 2) consequently Beg(j+1) is inferred through
backward j+1. Since the layout is finite, at most |~̀| − j backwardk inferences can be done. Note that
any inference of a new Beg(k) depends on some other Beg(l); the only axiom of such shape is Beg(0);
so applying only backwardk will not close the proof, which contradicts the hypothesis that A `∗ Len(k).
Hence, the proof of at least one of Beg(t) with t > j must include an application of jumpRightl,s,p
where l + s = t, because it allows to infer Beg(t) from Beg(l) where l < j < t; and as seen at point 1,
leads backwards to the axiom Beg(0). This requires that Ll 3 sMp ↪→ ~̀.

Note that this condition is not sufficient: layout L034Mv1L331Mv3 satisfies the necessary condition,
but it is not possible to know the length of v1 nor v3. The interesting fact about Theorem 3.1 is that there
is no constraint on the value p in the layout. This means that pointer and varfield can be in any relative
order.
Example 3.3: Consider ~̀ = f L2 3 3M f v3v4L3 3 1M and Fig. 1. A parser can read until f2 by apply-
ing forward0, storing the value of the pointer field at 1; from that point on it can buffer the stream
(jumpRight2,3,1) until L3 3 1M5, which once read with forward5 allows to determine the lengths of
v3 and v4 through jumpLeft3,1,5 and joini, where i ∈ {2,3} followed by, respectively, forward3 and
backward3.

f L233M f v3 v4 L331M
↗

forward0 ↗
forward1 ↗
forward2 ↗

jumpRight2,3,1 ↗
forward5 ↗

jumpLeft3,1,5 ↗
join2,backward2 ↗

forward2 ↗
join3,forward3 ↗

Figure 1: Parsing a stream, Ex. 3.3. Read top to bottom. Each row is a snapshot of the state of the
parsing before the application of the axiom on the left. The arrow indicates the position of the parser in
the stream; the greyed areas represent pictorially the amount of buffering. The thin line represents the
amount of stream consumed. The deserialization is successful when all the stream is consumed, and no
buffering is left.

G. Paganelli 61

3.3 Deserializability Check Algorithm

Alg. 1 shows in pseudocode how to check for deserializability. It is correct and complete because
forwardChainingInference is [22]6.
Observation 3.1: Alg. 1 terminates. Let ~̀ ∈ L be Alg. 1’s input. The forwardi and jumpRighto,s,i are
the only axioms that can introduce more complex terms using the + function. I show that such axioms
are applied at most |~̀| times to produce new facts. jumpRighto,s,i cannot introduce more facts than the
number of pointer fields π < |~̀| since no inference can introduce new Ptr(o,s, i); forwardi introduces
a new Beg(i+ 1) if there is a Len(i) fact in the knowledge base; there are two cases. 1) Len(i) was
already present in the initial knowledge base, so i < |~̀|, thus i+ 1 ≤ |~̀|. 2) Len(i) could have been
inferred through joini, but this breaks the assumption that Beg(i+1) is not in the knowledge base. The
conditional checks the results of the forward chaining algorithm by comparing two finite structures. This
proves termination.

The algorithm is O(|~̀|) because propositionalizing the axioms takes linear time due to the shape of
the axioms and the absence of uninterpreted function symbols; then, inference is linear on propositional
Horn knowledge bases [15, 22]. Note that the deserializability check is not sufficient to decide properties
of S(~̀), e.g. whether a layout ~̀ has S(~̀) = /0. Consider the following scenario: ~̀ = L0 3 3Mf1v2f3,
and suppose the lengths of the non-variable length fields are, respectively, 1 bit, 3 bits and 3 bits. If
the meaning of the value of the pointer is to measure the number of bits of the items with labels in
range(L0 3 3M), this value cannot encode that number with just one bit. This additional check is not
needed to decide deserializability, and can be performed after the deserializability check by analysing,
considering field lengths and encodings, the spans of all pointers.

4 The Repetition Field

A reasonable extension of the model is to have variable occurrences of portions of layout, like the Kleene
star in regular expressions: ~̀′ = L131M0[[[L1 �031M1�0v1�1]]]∗∗∗1 to indicate the infinite set of layouts begin-
ning with a pointer and a sequence of alternating pointer and variable fields. The layout is now a tree
structure with a new basic item [[[]]]∗∗∗ called repetition, and identifiers are tuples of integers in N∗. Let
B′ = {Lo3 sM|o ∈N∗,s ∈N}. Let the set R be defined recursively as follows: ε ∈R, ι ∈R where ι ∈ I′,
[[[W]]]∗∗∗ ∈R where W ∈R∗. Nothing else is in R. The empty layout ε is defined as the identity operator for
�, and I′ = I∪B′. To identify each item I define, following the same pattern of Sect. 3, the set P =R×N∗

6forwardChainingInference can be replaced with any existing implementation of forward chaining.

Algorithm 1: Deserializability check

Data: ~̀ ∈ L, V = {i|vi ↪→ ~̀}
Result: A modified knowledge base A′ and the inference graph G
Build A according to subsection 3.1;
〈A′,G〉 ← forwardChainingInference(A);
if ∃.i ∈V |Len(i) /∈A′ then

return 〈NonDeserializable,A′,G〉;
else

return 〈Deserializable,A′,G〉

62 Horn Binary Serialization Analysis

(cf. Φ) and the function µµµ : R∗ 7−→ P∗ (cf. λ) defined as follows:

µµµ(ε) = ε

µµµ(ι) = µµµ0(ι)

µµµ l(ε) = ε

µµµ l(ι) = ιl where ι 6= [[[υ]]]∗∗∗
µµµ l([[[ι]]]∗∗∗) = [[[µµµ l

0(ι)]]]∗∗∗l

µµµ l(υ � ι) = µµµ l(υ) �µµµ l+n(ι)

µµµ
k
l (ε) = ε

µµµ
k
l (ι) = ιk�l

µµµ
k
l (ι) = [[[µµµk�l

0 (ι)]]]∗∗∗k�l

µµµ
k
l (υ � ι) = µµµ

k
l (υ) �µµµ

k
l+n(ι)

In words: the function µµµ l labels the items left to right, starting from l ∈ N and introducing a context
l when it applied to a repetition; µµµk

l labels the items starting from l ∈ N, in the context k ∈ N∗.
Let M′ = Image(µµµ). The set of layouts M⊂M′ is defined as follows:

M={~̀ ∈M′|

∀ι .
(

ι = La3bMk ↪→ ~̀
)
⇒
((

ι = Ls � c3bMs�d ∨ ι = Ls3bMs�e

))
, (1)

∀y.
(
[[[y]]]∗∗∗m ↪→ ~̀

)
⇒
((

Lm � f 3gM ↪→ ~̀
)
⇒ g≤ |l|− f

)
, (2)

∀ι .
(

ι = L f ′3g′Mc′ ↪→ ~̀
)
⇒
(

g′ ≤ |~̀|− c′
)
, (3)

l ∈ R∗,y = µµµ
m
0 (l),{b,c,c′,d,e, f , f ′,g,g′} ⊂ N,{a,k,m} ⊂ N∗ \N0,s ∈ N∗

}.

In words, in all ~̀ ∈M: (1) tells that the offset of any pointer refers to a label of a parent scope, or
to an element at the same level. This is needed to prevent ambiguous references. For instance in ~̀ =
L1 � 0 3 1M0[[[f1�0]]]∗∗∗1 /∈M the pointer L1 � 0 3 1M0 points to f1�0 which in a concrete stream can appear an
unbounded number of times and therefore the pointer would be ambiguous. (2) and (3) tell that all
pointers have spans that do not exceed the number of fields of the context they are in. The list labels
give the context needed to state this property. The mapping ∇ : M 7−→ 2L maps, informally7, to a set
of ~̀ ∈M without repetitions corresponding to all the combinations of unwindings of the repetitions,
0,1,2 . . . times. For the above example: ∇(~̀) = {L030M,L032ML131Mv,L032ML131MvL331Mv . . .}.

4.1 Parser Model

As in Sect. 3, I will define a formal system D~̀ = 〈S|~̀|,`,A〉, where ~̀ ∈ M, to analyze the dese-

rializability of ~̀. The system’s first-order language is Sn = 〈C,V,F′,P′〉 where F′ = F ∪ {�} and
P′ = P∪{Rep(),RepLen()} where Rep() is a binary predicate and RepLen() is a unary predicate. Let
the domain be N∗; predicate symbols in P′ map to predicates of the same arities and names. The inter-
pretation of constant symbols is fixed as explained in subsection 3.1, mutatis mutandis. The function
symbol + is interpreted as addition over integers; it is left undefined for arguments a /∈ N. The symbol �
corresponds to the tuple concatenation function introduced in Sect. 38. The axioms of subsection 3.1 are

7A formal definition is omitted. The mapping must take care of a) flattening the label structure b) change the pointer
elements’ spans and offsets. I rely on the intuitive meaning of ∇ to avoid a complicated formal definition.

8Axioms defining the behaviour of integers, lists of integers and the relevant operations are not reported here.

G. Paganelli 63

lifted to the list domain:

true⇒ Beg(0) (begin)

Beg(b �a)∧Len(b �a)⇒ Val(b �a)∧Beg(b �a+1) (forwardb�a)

Beg(b �a+1)∧Len(b �a)⇒ Beg(b �a)∧Val(b �a) (backwardb�a)

Beg(b �a)∧Beg(b �a+1)⇒ Len(b �a) (joinb�a)

Ptr(b �a,s, i)∧Val(i)∧Beg(b �a)⇒ Beg(b �a+ s) (jumpRightb�a,s,i)

Ptr(b �a,s, i)∧Val(i)∧Beg(b �a+ s)⇒ Beg(b �a) (jumpLeftb�a,s,i)

where a,s ∈N,b, i ∈N∗ and + has higher precedence than �. The intended meaning of Rep(a, l) is “there
is a repetition at position a which contains l fields”. Note that a repetition is a field, consistently with
how repetitions are labeled. RepLen(a) means “the parser knows the length of the repetition at position
a”.

Rep(b �a, l)∧Beg(b �a)∧Beg(b �a+1)⇒ RepLen(b �a) (replenb�a)

Rep(b �a, l)∧Beg(b �a)⇒ Beg(b �a �0) (repheadb�a)

Rep(b �a, l)∧Beg(b �a+1)⇒ Beg(b �a � l) (reptailb�a)

where a, l ∈ N and b ∈ N∗. Axiom replenb�a tells how a parser gets to know the length of a repeti-
tion; repheadb�a and reptailb�a tell how the parser accesses the fields inside a repetition. For each
[[[ιb�0 . . . ιb�l−1]]]∗∗∗b ↪→ ~̀, A contains the facts

true⇒ Rep(b, l) (repeatb)

As no axioms in A allow to deduce any Rep(), this is the only way they can be included in the knowledge
base. This prevents by construction to have l /∈ N, without the need of typing Sn or defining + for all
i, j ∈ N∗. Additional axioms fieldi and ptri are lifted to the list domain and added to the knowledge
base under the same circumstances described for their counterparts in subsection 3.1.

Caveat! Consider ~̀ = L1 3 1M0[[[v1�0]]]∗∗∗1 ∈M. Applying Alg. 1 with the modified knowledge base tells
that ~̀ is deserializable (Fig. 2(a)). This is unsound: knowing the length of the repetition field does not
allow to discriminate the occurrences of v in a concrete stream. The problem that the example exposes
is that the theory confuses in a single identifier 1 � 0 all the occurrences of the varfield in the repetition.
I illustrate how to fix this shortcoming after some preliminary definitions. Let ~̀′ = reverse(~̀) be the
permutation of ~̀ defined as follows:

(ι /∈B′) ∧ (ιi ↪→ ~̀) ⇔ ι|~̀|−i ↪→ ~̀′

La � k 3bMi ↪→ ~̀ ⇔ L|~̀|− (a+b) � k 3bM|~̀|−i ↪→ ~̀′

where a ∈ N,k ∈ N∗. Parsing reverse(~̀) is equivalent to parsing ~̀ backwards, that is, substituting the
axiom Beg(0) with Beg(|~̀|).
Example 4.1: Let ~̀= L132M0f1[[[L1 �032Mv]]]∗∗∗2. Then reverse(~̀) = [[[L1 �032Mv]]]∗∗∗0 f1L032M2.

Note that reverse(~̀) ∈M. Furthermore, let~r ∈ R∗. Then~rn is the structure such that

(ι /∈B′) ∧ (ι ↪→i~r) ⇔ ι ↪→|~r|−i~r
n

La � k 3bM ↪→i~r ⇔ La+n � k 3bM ↪→i~rn

64 Horn Binary Serialization Analysis

where a,n ∈ N,k ∈ N∗. The sequence ~rn is the same as ~r, where the head of all offset labels is
increased by n.
Example 4.2: Let~r ∈ R∗. Then

~r = L032M[[[L1 �032Mv[[[L1 �2 �032Mf]]]∗∗∗]]]∗∗∗
~r3 = L332M[[[L4 �032Mv[[[L4 �2 �032Mf]]]∗∗∗]]]∗∗∗

This transformation takes care of properly translating the pointer offsets when concatenating tuples
of fields, as will happen below.

As a last premise, Theorem 3.1 is lifted to include repetitions. Let range′ : B′ 7−→ N∗ be defined as
range′(Lb �a3 sM) = {b � k|a≤ k < a+ s} where a ∈ N.

Theorem 4.1. Necessary condition for deserializability with repetitions. If ~̀ ∈M is deserializable then
for all ι j ↪→ ~̀, where ι ∈ {[[[υ]]]∗∗∗,v}, then there exists a pointer x = Lb3 sMp ↪→ ~̀ such that j ∈ range′(x).

The proof is similar to that of Theorem 3.1 and is therefore omitted.
Observe that there are r ∈ R− ⊂ R∗ such that ~̀ = µµµ(r) is not deserializable, but if prepended with a

bounding pointer they are:
~̀′ = µµµ(L13 |r|M � r1) (ONCE)

This is the case of Fig. 2(c). This means that there is an item ιi ↪→ ~̀′ such that knowing Beg(1) and
Beg(|r|+1) entails Len(i). If one considers

~̀′′ = µµµ(L132|r|M � r1 � r|r|+1) (TWICE)

then the following can be proved true ∀r ∈ R−, thus when ~̀′ is deserializable and ~̀ is not:

Theorem 4.2. ~̀′′ is deserializable⇔ ~̀r = reverse(µµµ(r)) is deserializable.

Proof. (⇒, SKETCH.) Suppose ~̀r is not deserializable. This means that there exists an ιi ↪→ ~̀r whose
length is unknown, which corresponds in ~̀′′ to the two items ιi+1 and ιi+|r|+1. Observe that no pointers
can span from r1 to r|r|+1 by construction, which together with Theorem 4.1 means that there is no
chance that the deserializability of ~̀′′ comes from concatenating r1 and r|r|+1. Then the knowledge of
Len(i+ 1) depends on Beg(1) and Beg(|r|+ 1), and that of Len(i+ |r|+ 1) depends on Beg(|r|+ 1)
and Beg(2|r|+ 1), because ~̀′ is deserializable. Beg(1) and Beg(2|r|+ 1) can be reached from Beg(0),
respectively applying forward0 and jumpRight0,2|r|,0. Beg(|r|+1) can be inferred in two ways: 1) from
Beg(1) through r1, but this contradicts that ~̀ is not deserializable because if one could infer Beg(|r|+1)
from Beg(1) then ~̀ would be deserializable. Contradiction. 2) from Beg(2|r|+ 1), backwards through
r|r|+1, which would then mean that one could infer Beg(|r|+1) from Beg(2|l|+1), which means that ~̀r

is deserializable. Contradiction.
(⇐, SKETCH.) The pointer L132|r|M0 allows to buffer the whole layout until the end of r|r|+1. Since ~̀r

is deserializable, the parser can parse backwards the whole span of L132|r|M0.

Example 4.3: Let r = v0L0 3 1M1. Observe that ~̀r = reverse(µµµ(r)) = L1 3 1M0v1 is deserializable; the
layout ~̀′′ = µµµ(L134M0 � r1 � r3) becomes

L134M0v1L131M2v3L331M4

and is parsed by following the first pointer and reading backwards all that was buffered, since it is
possible to infer the length of the varfields.

G. Paganelli 65

L131M0 [[[v1�0]]]∗∗∗1
↗

forward0 ↗
jumpRight1,1,0 ↗

replen1 ↗
join1�0,backward1�0 ↗

join1 ↗
(a)

L132M0 v1 v2
↗

forward0 ↗
jumpRight1,2,0 ↗

(b)

L131M0 v1
↗

forward0 ↗
jumpRight1,1,0 ↗

join1 ↗
(c)

Figure 2: (a): Parsing ~̀ ∈M, according to the model. (b): Parsing a concrete instance of ~̀′ ∈ ∇(~̀):
in ~̀′ the parser cannot distinguish v1 and v2, as Beg(2) is never inferred to allow applying join2 or
backward2. This is not sound as ~̀ is deserializable, and so should be all the ~̀′ ∈∇(~̀) since S(~̀)⊃ S(~̀′).
(c): Successful parsing of a concrete instance of ~̀′′ ∈ ∇(~̀).

Observation 4.1: ~̀′′ is deserializable⇒ ~̀′ is deserializable. By Theorem 4.2 it means ~̀r = reverse(µµµ(r))
is deserializable⇒ ~̀′ is deserializable, which is true because jumpRight1,|r|,0 allows to infer Beg(|r|+1)
and then read backwards since ~̀r is deserializable;

Observation 4.2: If ~̀′′ is deserializable, all ~̀n = µµµ(L1 3 n|r|M � r1 � . . . � r(n−1)|r|+1) are, n > 2. Therefore
it does not matter how many repetitions of r are there, since once Beg(n|r|+1) is known, the stream is
reconstructed backwards.

Observation 4.3: Otherwise, no ~̀n can be deserializable. This corresponds to those cases where not
even the reversed layout is deserializable, such as v0 or L2 3 1Mv1v2. Since no pointers of any ri can
span beyond ri, a parser will not be able to proceed either forward to Beg(|r|+ 1) or backwards from
Beg(n|r|+1) to Beg((n−1)|r|+1).

One can therefore transform a layout under analysis ~̀0 into ~̀1 by substituting all [[[µµµk
0(r)]]]∗∗∗k ↪→ ~̀0 with

[[[µµµk
0(r) � µµµk

|r|(r
|r|)]]]∗∗∗k ↪→ ~̀1: that is, duplicating the content of each repetition. Observe that such device

creates the same environment described in (TWICE): when the body of a repetition [[[υ]]]∗∗∗k is entered
with replen j, one knows the extremes of a repetition unwinded twice. This is, as sketched, sufficient
to determine the deserializability of the repetition. This resumes the soundness of the model. The
duplicating transformation is polynomial9, terminates because of the finiteness of layouts, and preserves
deserializability: i.e., if ~̀1 is deserializable, so is ~̀0

10. The advantage of this solution is that it reuses the
formal system defined above and does not require side proofs in the formal system D. Alg. 1 is upgraded
to Alg. 2.

9A coarse estimate can be O(nk), where n is the number of all items appearing in the layout, and k is the maximum level of
nesting of repetitions; observe that k ≤ n since repetitions are items too.

10And the contrapositive: if ~̀0 is not deserializable, ~̀1 is not deserializable.

66 Horn Binary Serialization Analysis

Algorithm 2: Deserializability check for enhanced parser model.

Data: ~̀0 ∈ L, V = {i|vi ↪→ ~̀}, R = {i|[[[]]]∗∗∗i ↪→ ~̀ }
Result: A modified knowledge base A′ and the inference graph G
Duplicate the content of each repetition in ~̀0 into ~̀1;
Build A according to subsection 4.1 from ~̀1;
〈A′,G〉 ← forwardChainingInference(A);
if ∃.i ∈V |Len(i) /∈A′∨∃.i ∈ R|RepLen(i) /∈A′ then

return 〈NonDeserializable,A′,G〉;
else

return 〈Deserializable,A′,G〉

5 Related Work

None of the following works uses explicitly, to my knowledge, any Horn clause representation of the
parsing task. The ERLANG language [10] has a pattern-matching construct whose patterns can be binary
comprehensions [18], similar to list comprehensions in functional programming languages. Given a
set of bit patterns, the matcher is synthesized by constructing a labeled automaton and expressing the
matching as a series of elementary actions: test the size of a field, read bits, test match. The specification
of a binary format is subject to the variable binding rules of ERLANG; this entails, in practice, that in
the case of Ex. 3.3 one must code the layout manually, make an explicit analysis of the layout, and
possibly spreading the definition through several functions or mixed with ERLANG statements, reducing
the effectiveness of a layout specification as such. PACKET TYPES [21] addresses the processing of
protocol packets, hence of bit-strings, through a protocol stack; DATASCRIPT [12] is even more concise,
describing the language and its features. Both languages have a syntax that is influenced by the C
language. They offer capabilites such as attaching constraints on fields and their content. The constraints
can only refer to elements occurring earlier in the stream, thus ruling out instances such as Ex. 3.3. PADS

[16] is a framework for analysing and defining bit-level formats; it can generate parsers and serialize
data. PADS can even infer, given a set of binary data supposedly following the same layout, the actual
layout and be tolerant with errors, by reporting them and continuing parsing. Moreover [16] introduces
a general framework to express the semantics of data description languages, focussing on the types of
fields, where a type represents details such as endianness and encoding of the concrete bitstrings of
the field. The framework gives the building blocks to create a type system for the data description
language. Type-correctness then entails parsability of a layout. This contrasts with my approach which
does not make explicit mention of types of fields, which are not needed for deciding deserializabilty.
Beyond the motivations described in Sect. 1, a huge effort in bit-level compilers targets space-efficient
exchange formats. Popular ASCII-based data exchange formats have the advantage of being human-
readable (JSON) and validable (XML); both do have a wealth of libraries for manipulation with standard
interfaces; the disadvantage is that ASCII wastes bandwidth – e.g. encoding a single boolean value in
several bytes, instead of a single bit. Programming languages have libraries that allow serialization of
their data, like in HASKELL [1, 2] or in C [3], but the definition of the data format is done within the
programming language. Data specification languages [4, 5, 6, 7, 8] allow the definition, processing and
evolution of protocol messages and output parser/serializers for several target programming language.
Such products hide the composition of the underlying stream to the user; unlike what presented here,
the definition language does not allow to decide e.g. where to put a pointer item (see Sect. 3), because

G. Paganelli 67

the packing algorithms that optimize aspects such as alignment and evolvability rely on a predetermined
physical layout.

6 Conclusion and Future Work

I presented a method to determine whether there is a parser that can parse a stream of bits given a
description of the bit layout. I introduced a language for describing layouts and I described the behaviour
of a parser as reasoning within an untyped first-order logic formal system having axioms in the form of
Horn clauses. The typical use case of this method is the implementation of a bit-stream data-definition
language, or of a serialization library. The benefit is that it enables to use existing Horn inference engines.
At [9] there is a PYTHON [11] implementation of the method using the CLIPS [17] rule-based language
to perform forward chaining. It defines a language to describe layouts and translate them to a CLIPS
program encoding the axioms, input to the CLIPS interpreter; the PYTHON script interprets back the
output. Using PROLOG gives no particular advantages over using other programming languages, since
PROLOG interpreters do backward chaining reasoning, thus one can either implement forward chaining
or delegate it to any existing library or external tool. The previous sections not discuss any preprocessing
of layouts. I report some I observed during the development of this work, which are not closely related
with this paper’s contribution: a) Save bits by reducing the value contained in the pointer fields by
substituting all Lo3 sM ↪→ ~̀ with Lq3 tM such that each pointer range is shrinked enough to begin and end
with a variable length field. This can be done in linear time with a check on the span of every pointer and
updating the labels or spans of the pointers left. Once a pointer p is shrinked, one might then redesign
manually the layout by reducing the length of p. For instance, consider ~̀= L035Mv1f v3f. Applying the
above optimization results in ~̀′ = L1 3 3Mv1f v3f. b) Allow only forward pointers. Backward pointers
are unusual in practice, because they can imply buffering that can be avoided. One could consider only
those layouts such that ∀ι .

(
ι ↪→ ~̀

)
∧
(
ι = Lb � a 3 rMb�x

)
⇒
(
x ≤ a

)
, a,x ∈ N. This only constraint does

not anyway guarantee that all such layouts are deserializable. For instance ~̀′ = f L2 3 4M f v3L5 3 1Mv5
is not deserializable. c) If a pointer’s purpose is exclusively to determine the lengths of variable fields,
then remove pointers that span over no variable length fields or repetitions. This can be done in linear
time with a check on the span of every pointer and updating the labels or spans of the pointers left.
More complicated analyses and extensions, which are part of future work, are the following: i) Permute
the fields so that minimal buffering is needed. Consider ~̀ = f L2 3 3M f v3v4L4 3 1M. The layout ~̀′ =
f f L3 3 1M v3L5 3 1Mv5 is a permutation of ~̀; but in ~̀ one must buffer both v3 and v4 before being
able to distinguish them. ii) Have a side-effect free constraint language (like DATASCRIPT or PADS

in Sect. 5 do) to express constraints between values and lengths of fields; the constraints contribute in
building the axiom set. Consider layout ~̀ = f0f1v2. If v2 is a sequence of samples, f0 tells the number
of samples in v2 and f1 tells the number of bits each sample has, then this corresponds to the axiom
Val(0)∧Val(1)⇒ Len(2).This constraint feature enables for instance to use variable fields as pointers.
iii) The inference graph can be used to generate a parser for streams S(~̀). The axioms applied during the
reasoning can be translated into actions, similarly to [18]: jumpRighto,s,i corresponds to buffering new
data from the stream, and jumpLefto,s,i or again jumpRighto,s,i to addressing within the buffer in case
of already buffered data. joini, forwardi and backwardi correspond to consuming data and associating
it to a field. Note that it is an optimization problem: since the inference graph is a DAG, there are several
topological orderings each of which would map to a parser with specific performances in e.g. memory
consumption. Describing details of this optimization and related research is future work.

68 Horn Binary Serialization Analysis

References
[1] CEREAL. https://github.com/GaloisInc/cereal.
[2] BINARY. https://github.com/kolmodin/binary.
[3] TPL. http://troydhanson.github.io/tpl/.
[4] APACHE AVROTM. http://avro.apache.org/docs/1.7.5/spec.html.
[5] PROTOCOL BUFFERS. https://developers.google.com/protocol-buffers/.
[6] BSON. http://bsonspec.org/.
[7] MESSAGE PACK. http://msgpack.org/.
[8] CAP’N’PROTO. https://capnproto.org/.
[9] GitHub user gapag. https://github.com/gapag/horn-binary-deserialization/.

[10] ERLANG Programming Language. http://www.erlang.org/.
[11] The PYTHON programming language. https://www.python.org/.
[12] Godmar Back (2002): DataScript - A Specification and Scripting Language for Binary Data. In: Generative

Programming and Component Engineering, ACM SIGPLAN/SIGSOFT Conference, GPCE 2002, Pittsburgh,
PA, USA, October 6-8, 2002, Proceedings, pp. 66–77, doi:10.1007/3-540-45821-2 4.

[13] T. Boutell (1997): PNG (Portable Network Graphics) Specification Version 1.0. RFC Editor. Available at
http://tools.ietf.org/html/rfc2083.

[14] KeithL. Clark (1978): Negation as Failure. In Herv Gallaire & Jack Minker, editors: Logic and Data Bases,
Springer US, pp. 293–322, doi:10.1007/978-1-4684-3384-5 11.

[15] William F Dowling & Jean H Gallier (1984): Linear-time algorithms for testing the satisfiability of
propositional Horn formulae. The Journal of Logic Programming 1(3), pp. 267–284, doi:10.1016/0743-
1066(84)90014-1.

[16] Kathleen Fisher & David Walker (2011): The PADS project: an overview. In: Database Theory - ICDT
2011, 14th International Conference, Uppsala, Sweden, March 21-24, 2011, Proceedings, pp. 11–17,
doi:10.1145/1938551.1938556.

[17] Joseph C. Giarratano & Gary D. Riley (2005): Expert Systems: Principles and Programming. Brooks/Cole
Publishing Co., Pacific Grove, CA, USA, doi:10.1016/0005-1098(91)90121-H.

[18] Per Gustafsson & Konstantinos Sagonas (2005): Bit-level binaries and generalized comprehensions
in Erlang. In: Proceedings of the 2005 ACM SIGPLAN workshop on Erlang, ACM, pp. 1–8,
doi:10.1145/1088361.1088363.

[19] Ernest Friedman Hill (2003): Jess in Action: Java Rule-Based Systems. Manning Publications Co., Green-
wich, CT, USA.

[20] ISO/IEC (1993): ISO/IEC 11172-3:1993 - Information technology – Coding of moving pictures and associ-
ated audio for digital storage media at up to about 1,5 Mbit/s – Part 3: Audio. Padrão, doi:10.1.1.128.8675.

[21] Peter J McCann & Satish Chandra (2000): Packet types: abstract specification of network protocol messages.
ACM SIGCOMM Computer Communication Review 30(4), pp. 321–333, doi:10.1145/347057.347563.

[22] Stuart J. Russell & Peter Norvig (2003): Artificial Intelligence: A Modern Approach, 2 edition. Pearson
Education.

https://github.com/GaloisInc/cereal
https://github.com/kolmodin/binary
http://troydhanson.github.io/tpl/
http://avro.apache.org/docs/1.7.5/spec.html
https://developers.google.com/protocol-buffers/
http://bsonspec.org/
http://msgpack.org/
https://capnproto.org/
https://github.com/gapag/horn-binary-deserialization/
http://www.erlang.org/
https://www.python.org/
http://dx.doi.org/10.1007/3-540-45821-2_4
http://tools.ietf.org/html/rfc2083
http://dx.doi.org/10.1007/978-1-4684-3384-5_11
http://dx.doi.org/10.1016/0743-1066(84)90014-1
http://dx.doi.org/10.1016/0743-1066(84)90014-1
http://dx.doi.org/10.1145/1938551.1938556
http://dx.doi.org/10.1016/0005-1098(91)90121-H
http://dx.doi.org/10.1145/1088361.1088363
http://dx.doi.org/10.1.1.128.8675
http://dx.doi.org/10.1145/347057.347563

	1 Introduction
	2 Background: Knowledge Representation and First-Order Logic
	3 Deserialization of Binary Layouts
	3.1 Parser Model: Axioms and Knowledge Representation
	3.2 Ambiguity
	3.3 Deserializability Check Algorithm

	4 The Repetition Field
	4.1 Parser Model

	5 Related Work
	6 Conclusion and Future Work

