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Verification conditions (VCs) are logical formulas whos¢isfability guarantees program correct-
ness. We consider VCs in the form of constrained Horn clagSeiC) which are automatically
generated from the encoding of (an interpreter of) the dweral semantics of the programming
language. VCs are derived through program specializatsed on the unfold/fold transformation
rules and, as it often happens when specializing intenmdteey contaiunnecessaryariables, that
is, variables which are not required for the correctnessfrof the programs under verification. In
this paper we adapt to the CHC setting some of the technidna@sivere developed for removing
unnecessary variables from logic programs, and we showithstme cases, the application of these
techniques increases the effectiveness of Horn clausersalthen proving program correctness.

1 Introduction

Correctness of an imperative prografhrtan be verified by: first, (i) generatingrification conditions
(VCs, for short) for the prograr® and the considered property, and then, (ii) using SMT ssl¥er
checking the satisfiability of the VCs.

In this paper we consider VCs which are automatically dertweapplying program specialization to
a constrained Horn clause encoding of the operational sieaaf the programming language. (In this
paper we will use the notions @fonstrained Horn Clausg€HC) andconstraint logic program¢CLP)
interchangeably.) Program specialization is based ongplcation of semantics preserving unfold/fold
transformation rules, guided by a strategy, calledvl&s strategywhich has been specifically designed
for VCs generation (see |[4] for a detailed presentation)heDnotable applications of CLP program
specialization to the analysis of imperative or objeceoted programs can be foundlinf1] 11].

Given an imperative prograf and a safety property, we introduce a CLP progtamhich defines
the nullary predicatensafe such thatP is safe if and only if the atomnsafe is not derivable from
or, equivalentlyunsafe does not belong to theast modebf |, denoted.# (1).

The VCG strategy works by performing the so-caltethoval of the interpreterthat is, it removes
the level of interpretation which is present in the initidlZprograml, where commands are encoded
as CLP clauses and there are references to the operatiomahses of the imperative programming lan-
guage. The output of the VCG strategy is a progtggsuch thaiinsafe € .Z(1) iff unsafe € .#(lgp).
Moreover, due to the absence of the interpretative level,télst of whether or noinsafe belongs
to . (lsp) is often easier than the test of whether or megafe belongs ta(l).
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The specialization-based approach for generating VCsranpetric with respect to: (i) the imper-
ative programP, (ii) the operational semantics of the imperative languiagerhich the progranP is
written, (iii) the property to be proved, and (iv) the logisad for specifying the property of interest (in
this case, the reachability of an unsafe state).

One of the most significant advantages of this approachtig #maables the design of widely applica-
ble VC generators for programs written in different prognaimg languages, and for different operational
semantics of languages with the same syntax, by making snaalifications only[[4].

2 Removing Unnecessary Variables

It is well known that program specialization and transfatioratechniques often produce clauses with
more arguments than those that are actually needed [9,) 12TH])s, it is not surprising to observe
that such a side-effect also occurs when generating VCsroigram specialization. Indeed, it is often
the case that some of the variables occurring in the CLP anody,, which is generated by the VCG
strategy, are not actually needed to check whether oumeife € .# (lsp). Avoiding those unnecessary
variables, and thus deriving predicates with smaller acdy increase the effectiveness and the efficiency
of applying Horn clause solvers, and proving program caness.

Now we present two transformation techniques which allosousduce the number of arguments of
the predicates used in the VCs. These techniques extend tasle of CLP programs similar techniques
that have been developed for logic programs [9, 12]. The tigctinique is a transformation strategy,
called theNon-Linking variable Removal strate@yr theNLR strategyfor short) that removes variables
occurring as arguments of an atom in the body of a clausehbtilb not occur elsewhere in the clause.
The second technique, called tbenstrained FAR algorithnfor the cFAR algorithm for short), is a
generalization of a liveness analysis, and removes argisntiesit are not actually used during program
execution.

1. Non-Linking variable Removal Strategy. First, we consider the NLR strategy whose objective is
to remove thenon-linking variables They are defined as follows.

Definition 1 (Linking variables [12]) Let C be the clausd :-c, L, B, R, where: c is a constraintL
andR are (possibly empty) conjunctions of atoms, @id an atom. The set dinking variablesof B
in C, denoted byinkvars(B,C), isvars(B) Nvars({H, c,L,R}). The set ohon-linking variablef B in C
is vars(B) — linkvars(,C).

Before presenting the NLR strategy, we see it in action inxamgple. Let us consider the C pro-
gramP in Figure[1. We want to verify the Hoare triplec > 0} P {y < 0}. By applying the VCG
strategy, we get the set of claudes in Figure[ 1, wheransafe holds iff the Hoare triple is not valid.
In P1 the non-linking variables have been underlined. Then,dplyang the NLR strategy, we get the
set of clause®2 without non-linking variables (see Figure B1 andP2 are equivalent with respect to
the queryunsafe, in the sense thainsafe € .# (P1) iff unsafec.#(P2).

In particular, NLR replaces the predicatessip1l andnewp2, which are called with the non-linking
variablesx2, Y1, andY2 (see clauses| 1 and 2 Bfl in Figure[1), with two new predicategwp3 and
newp4, respectively, whose arguments are linking variables.omipte that the removal of the two
argumentsy1 andX2 of newp1, which are the non-linking variables in claude 1, determiimeclausé 2
the removal of the two argumentd andX2, which arelinking variables olmewp2. Thus, fromnewp2
with six arguments in claugeé 2, by removing also the nonitigkariableY2, we get the predicateewp4
in clauses 3’ and 4’ of prograf2 with three arguments only (see Figlfe 2).
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int x,y; 1. unsafe:- X1>=0, Y2=<0, newpl(X1,Y1,X2,Y2).
void main() { 2. newpl1(X1,Y1,X2,722):- Z1=X1+1,
int z=x+1; newp2(X1,Y1,721,X2,Y2,Z2).
while(z<=9) 3. newp2(X1,Y1,721,X2,Y2,Z2) : - Z1=<9, Z3=Z1+1,
z=z+1; newp2(X1,Y1,73,X2,Y2,72).
y=z; 4. newp2(X1,Y1,Z1,X1,Y1,Z1) :- Z1>=10.
}
The C progranP ProgramP1: Verification Conditions obtained by VCG

Figure 1. Progranil is the set of Verification Conditions VCs obtained by apmlythe VCG strategy
starting from the C prograrB, the initial conditionx > 0 and the error property < 0.

The NLR strategy consists in a repeated application ofutlfelding definition introduction and
folding transformation rules [5].

We assume that the input of NLR is any CLP progrBmg. To keep the notation simple, we will
identify a tuple of variables with the set of variables ocityy in it. The union of two tuples is constructed
by erasing duplicate elements.

During the execution the NLR strategy maintains in aBefsall the definitions that have been
introduced so far. Every definition clause refsis unfolded with respect to the leftmost atom in its
body, thereby producing a se® of clauses. Then every clause $is folded (repeatedly, with respect
all atoms in its body) by using either definitions that algeadcur inDefsor new definitions that are
introduced inDefsfor performing those folding steps.

The peculiarity of the NLR strategy lies in the careful masragnt of the set of variables occurring
in the head of the definition clauses.

LetC be a clause il of the form: H: - c, L, B, R, where the predicate symbol Bfoccurs inProg.

If C cannot be folded with respect to the at@nusing any clause ibefs then we have to introduce a
new definition clause as we now explain.

First, we consider a definitioR whose head contains only the linking variables of the agamthe
clauseC. LetF benewp (V) : - B, wherenewp is a predicate symbol not occurring in the Bedgu Defs
andv is the setinkvars(B,C) of the linking variables o8B in C.

If the setDefscontains a clausP of the formnewq(Q) : - S such that, for some renaming substi-
tution 3, B9 = S, then we replace claud® in Defswith the clausenewp (L) : - B, whereL =V3 UQ.
Otherwise, we introduce the definition cladsend we add it tdefs

The introduction of the definitior might seem to be the best choice in the sense that it contains
exactly the head variables which are actually needed fdirfgiclauseC. However, (variants off may
occur also in some other clauses to be folded. Thus, if wettirentroduce definitions whose heads
contain linking variables only, we run the risk of genergtseveral definitions with the same atom in the
body and different sets of variables in the head (modulomamg).

In order to keep the number of definitions low (and this willeof improve the ability of proving
program correctness), instead of introducing multiplerdiégdins containing the same atom in the body,
by applying the NLR strategy, we merge them in a single dé&imiivhose set of head variables is the
union of the head variables occurring in the merged defimtigtnodulo renaming).

The NLR strategy terminates when all clauseB@&ishave been unfolded and no new definition need
to be introduced for folding.
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1'. unsafe:- X1>=0, Y2=<0, newp3(X1,Y2). 1”. unsafe:- X1>=0, Y2=<0, newp3(X1,Y2).
2. newp3(X1,Z2):- Z1=X1+1, newpd(X1,Z1,Z2). 2". newp3(X1,Z2):- Z1=X1+1, newp4(Z1,Z2).
3. newp4(X1,Z1,7Z2):- Z1=<9, Z3=Z1+1, 3". newpd(Z1,Z2):- Z1=<9, Z3=Z1+1,
newp4(X1,Z3,Z2) . newp4(Z3,Z2) .
4. newp4(X1,Z1,Z1):- Z1>=10. 4", newp4(Z1,Z1):- Z1>=10.
P2: Verification Conditions obtained by NLR P3: Verification Conditions obtained by cFAR

Figure 2: ProgranP2 and ProgranP3 are the Verification Conditions VCs obtained by applying th
NLR strategy and the cFAR algorithm, respectively.

Theorem 1 (Termination and Correctness of the NLR Strategy)Given any CLP program Prog, the
NLR strategy terminates and produces a CLP program Psogh thatunsafe € .#(Prog) holds iff
unsafe € . (Prog') holds.

2. Constrained FAR Algorithm (cFAR). Now we present an extension to constraint logic programs
of the FAR algorithm presented ihl[9] for removing redundarguments from logic programs. This
extension will be called constrained FAR algorithm, or cEA& short. The objective of the FAR
algorithm is to remove arguments that are not actually useihgl any computation of the program at
hand. Indeed, it has been shownlin [8] that the FAR algoritand thus, also the cFAR algorithm) can
be seen as a generalization of the liveness analysis.

In Figure[2 we show the effect of applying the cFAR algorithontiie CLP progranP2 obtained
by the NLR strategy. The output of the algorithm is the CLPgpaonP3. Note that in progran®3 the
predicate symbalewp4 denotes a different relation with respect to the one in @od?2, because i3
it has arity 2 and not 3.

In order to define the constrained FAR algorithm we need tmdhice some preliminary notions,
some of which have been adapted from [9].

Definition 2 (Erasure, Erased Atom, Erased Clause, Erased Pgram) (i) Anerasuras a set of pairs
each of which is of the forrtp, k), wherep is a predicate symbol of arity n ard<k<n.

(i) Given an erasure E and an atosnwhose predicate symbol js theerased atom |g is obtained by
dropping all the arguments that occur at position k, for sqpé) € E.

(i) Given an erasure E and a clause (@spectively, a CLP program Prdgthe erased claus€|g
(respectively, theerased progranfrog|g) is obtained by replacing all atoms in C (respectively, in
Prog) by Ag.

In order to avoid the risk of collisions between predicatenBgls after erasing some arguments, we
assume tha®rog does not contain identical predicate symbols with diffégetty.

Obviously, we are interested in removing redundant argasn@ithout altering the semantics of the
original program, in the sense captured by the followingratédin.

Definition 3 (Correctness of Erasure) An erasure E is correct for a program Prog if, for all atoms
we have that A € .# (Prog) iff Ale € .#(Proglg).

Since we are dealing with constraint logic programs, thénaif multiple occurrences of a variable
which is used in the original formulation of FARI[9], needsb® generalized as follows. In this paper
we assume that a constraint is a conjunctiom ¢ 0) atomic constraints in the theory of the linear
integer arithmetics with integer arrays.
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Definition 4 (Variable Constrained to Another Variable) Given two variablest and Y and a con-
straint c of the formc; A ... Acy,, we say thak is constrained ta (in c) if there exists;, with 1< j<h,

such that eithe(i) {X,Y} C vars(c;), or (ii) there exists a variabl& such that(ii.1) {X,z} C vars(c;)

and(ii.2) Z is constrained t& (in c).

Now we are ready to introduce the notionsaffe erasurahat will be used during the application of
the constrained FAR algorithm.

Definition 5 (Safe Erasure) Given a program Prog, an erasure E issafe erasuré, for all (p,k) € E
and clausesi: —c,G in Prog, whereH is of the formp(X1,...,Xn) and c is of the formc; A ... Acy, we
have that:(i) Xy is a variable and.« |= VX,.3Y1,...,Ym. ¢, with{Y1,...,Ym} = vars(c) — {Xx}, (i) Xx
is not constrained to any other variable occurringHnand (iii) Xy is not constrained to any variable
occurring inG|e.

Similarly to what has been done in/[9], it can be shown thahikeasureE is safe, then it is also
correct.

The cFAR algorithm takes as input a CLP progrBnog, computes a safe erasugg and produces
as output the programrog|e. The algorithm starts off by initializing the current eresé to thefull
erasure that is, the set of all pair®, k), wherep is a predicate of arity occurring inProgand 1<k<n.
Then, whileE contains a paifp, k) such that one of the conditions of Definitibh 5 is not satisfibeé
pair (p,k) is removed fromE. The algorithm terminates when it is no longer possible toaee a
pair (p,k) from E, and thu<E is a safe erasure.

The cFAR algorithm terminates and preserves the least-hsedeantics, as stated by the following
theorem.

Theorem 2 (Termination and Correctness of the cFAR Algoritirm) Given any CLP program Prog,
the cFAR algorithm terminates and produces a CLP programgRrasuch thatunsafe € .# (Prog)
iff unsafe € .#(Prog|g).

Finally, we would like to note that, even if the objectivestbé NLR and cFAR transformations
are similar, they work in a different way. While cFAR is goatlependent, NLR starts from the pred-
icate unsafe and proceeds by unfolding in a goal directed fashion, snigilep redundant argument
filtering [9]. It can be shown that, in general, the NLR and cFAR tramsfdions have incomparable
effects.

3 Experimental evaluation

We have used the VeriMAP transformation and verificatiortesys 2,/ 3] for evaluating the techniques
presented in this paper. We have considered 320 verificatiobblems for C programs (227 of which
were safe and the remaining 93 were unsafe). We have appke€G strategy for generating the
Verification Conditions VCs using a multi-step semantick [fhe C programs and the VCs we have
generated are available atttp://map.uniroma2.it/vcgen. Then, we have checked the satisfiability
of the VCs by giving them as input to the Z3 Horn solver [10hgsilefault optiorﬂand the PDR engine.
Finally, we have applied the NLR and cFAR transformatiorespnted in Sectidd 2 to evaluate the effect
of these transformations in terms of efficiency and efficadhe program verification tasks considered.

INote that Z3, by default, runs trelicetransformation for reducing the number of variables in iheature of a predicate.
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VCG;Z3 | VCG;NLR;Z3 | VCG;NLR;cFAR;Z3
Cc Correct answers 196 7 9
S - safe problems 144 3 7
u - unsafe problems 52 4 2
to Timeouts 124 117 108
n Total problems 320 124 117
tvee | VCG time 40.65 20.48 457
tNLR NLR time - 58.39 9.53
terar | CFAR time - - 304.84
st Z3 solving time 2704.95 988.15 649.56
tt Total time 2745.60 1067.02 968.50
at Average time 14.01 152.43 107.61

Table 1: Verification results obtained by using Z3 on the ougpenerated by applying VCG and the
auxiliary transformations NLR and cFAR. The timeout limihé is 300 seconds. Times are in seconds.

Improving effectiveness of solving In Table[l we show the experimental results obtained bygusin
VeriMAP and Z3. Column ‘VCG ; Z3' reports the results obtaingy applying the VCG strategy and
then the Z3 solver. Column ‘'VCG ; NLR ; Z3’ reports the reswtgained, for the problemsot solved
by ‘VCG ; Z3', by applying VCG, followed by the NLR transforrtian, and then Z3. Column ‘VCG ;
NLR ; cFAR ; Z3' reports the results obtained, for the probdemt solvedby ‘VCG ; NLR ; Z3', by
applying VCG, followed by NLR, then cFAR, and finally Z3. Leévcgs), (tnLr), and €crar) report
the time taken by the execution of the VCG, NLR, and cFAR ti@msations, respectively, to produce
the verification conditions for which Z3 was able to reture #orrect answers (that is, to show the
satisfiability or the unsatisfiability of the clauses). Li{s8 reports the time taken by Z3 to produce the
correct answers.

The NLR transformation enables Z3 to prove 7 additionalfigation problems. In particular, it
allows Z3 to prove the programtdrvsimpl-cdaudio simpll unsafeil.c, which is the largest pro-
gram in the benchmark set (2.1 KLOC). Concerning the timaired for executing the NLR transfor-
mation in this example, we want to point out that this progtakes 91% of the total NLR time (. r),
that is 53.04 seconds. Therefore, the remaining 6 progratggequire 5.35 seconds to be transformed.
The cFAR transformation allows Z3 to prove 9 additional fregition problems. In this case, about 89%
of the total cFAR timet(.gar), that is, 271.62 seconds, is required for specializing gwagrams whose
size is about 1 KLOC each, namelydrvsimpl-diskperf simpll safeil.c (98.82 seconds) and
ntdrvsimpl-floppy_simpl3 safeil.c (172.80 seconds).

4 Conclusions

In this paper we have shown that the effectiveness of Hourselgolvers for proving the satisfiability of
VCs can be improved by the use of program transformatiortséin@ove unnecessary variables.

As future work, we would like to investigate in more depth hitve structure of the VCs influences
the heuristics adopted by Horn solvers. Hopefully, this Mallow us to tune the VCG strategy for
generating VCs that are easier to be proved. Also, it woulohtezesting to study the effect of the NLR
and cFAR transformations on the VCs generated by other likelsfor example, SeaHorn[[7].
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