
J. P. Gallagher and P. Rümmer (Eds.): 3rd Workshop
on Horn Clauses for Verification and Synthesis (HCVS)
EPTCS 219, 2016, pp. 49–55, doi:10.4204/EPTCS.219.5

c© E. De Angelis, F. Fioravanti, A. Pettorossi & M. Proietti

Removing Unnecessary Variables from
Horn Clause Verification Conditions

Emanuele De Angelis∗and Fabio Fioravanti∗

DEC, University “G. d’Annunzio” of Chieti-Pescara, Italy

{emanuele.deangelis, fabio.fioravanti}@unich.it

Alberto Pettorossi∗

DICII, University of Rome Tor Vergata, Italy

adp@iasi.cnr.it

Maurizio Proietti
CNR-IASI, Rome, Italy.

proietti@iasi.cnr.it

Verification conditions (VCs) are logical formulas whose satisfiability guarantees program correct-
ness. We consider VCs in the form of constrained Horn clauses(CHC) which are automatically
generated from the encoding of (an interpreter of) the operational semantics of the programming
language. VCs are derived through program specialization based on the unfold/fold transformation
rules and, as it often happens when specializing interpreters, they containunnecessaryvariables, that
is, variables which are not required for the correctness proofs of the programs under verification. In
this paper we adapt to the CHC setting some of the techniques that were developed for removing
unnecessary variables from logic programs, and we show that, in some cases, the application of these
techniques increases the effectiveness of Horn clause solvers when proving program correctness.

1 Introduction

Correctness of an imperative programP can be verified by: first, (i) generatingverification conditions
(VCs, for short) for the programP and the considered property, and then, (ii) using SMT solvers for
checking the satisfiability of the VCs.

In this paper we consider VCs which are automatically derived by applying program specialization to
a constrained Horn clause encoding of the operational semantics of the programming language. (In this
paper we will use the notions ofConstrained Horn Clauses(CHC) andconstraint logic programs(CLP)
interchangeably.) Program specialization is based on the application of semantics preserving unfold/fold
transformation rules, guided by a strategy, called theVCG strategy, which has been specifically designed
for VCs generation (see [4] for a detailed presentation). Other notable applications of CLP program
specialization to the analysis of imperative or object-oriented programs can be found in [1, 11].

Given an imperative programP and a safety property, we introduce a CLP programI , which defines
the nullary predicateunsafe such thatP is safe if and only if the atomunsafe is not derivable fromI
or, equivalently,unsafe does not belong to theleast modelof I , denotedM (I).

The VCG strategy works by performing the so-calledremoval of the interpreter, that is, it removes
the level of interpretation which is present in the initial CLP programI , where commands are encoded
as CLP clauses and there are references to the operational semantics of the imperative programming lan-
guage. The output of the VCG strategy is a programIsp such thatunsafe ∈M (I) iff unsafe ∈ M (Isp).
Moreover, due to the absence of the interpretative level, the test of whether or notunsafe belongs
to M (Isp) is often easier than the test of whether or notunsafe belongs toM (I).

∗Research associate at CNR-IASI, Rome, Italy.

http://dx.doi.org/10.4204/EPTCS.219.5

50 Removing Unnecessary Variables from Horn Verification Conditions

The specialization-based approach for generating VCs is parametric with respect to: (i) the imper-
ative programP, (ii) the operational semantics of the imperative languagein which the programP is
written, (iii) the property to be proved, and (iv) the logic used for specifying the property of interest (in
this case, the reachability of an unsafe state).

One of the most significant advantages of this approach is that it enables the design of widely applica-
ble VC generators for programs written in different programming languages, and for different operational
semantics of languages with the same syntax, by making smallmodifications only [4].

2 Removing Unnecessary Variables

It is well known that program specialization and transformation techniques often produce clauses with
more arguments than those that are actually needed [9, 12, 6]. Thus, it is not surprising to observe
that such a side-effect also occurs when generating VCs via program specialization. Indeed, it is often
the case that some of the variables occurring in the CLP program Isp, which is generated by the VCG
strategy, are not actually needed to check whether or notunsafe∈M (Isp). Avoiding those unnecessary
variables, and thus deriving predicates with smaller arity, can increase the effectiveness and the efficiency
of applying Horn clause solvers, and proving program correctness.

Now we present two transformation techniques which allow usto reduce the number of arguments of
the predicates used in the VCs. These techniques extend to the case of CLP programs similar techniques
that have been developed for logic programs [9, 12]. The firsttechnique is a transformation strategy,
called theNon-Linking variable Removal strategy(or theNLR strategy, for short) that removes variables
occurring as arguments of an atom in the body of a clause, but that do not occur elsewhere in the clause.
The second technique, called theconstrained FAR algorithm(or the cFAR algorithm, for short), is a
generalization of a liveness analysis, and removes arguments that are not actually used during program
execution.

1. Non-Linking variable Removal Strategy. First, we consider the NLR strategy whose objective is
to remove thenon-linking variables. They are defined as follows.

Definition 1 (Linking variables [12]) Let C be the clauseH :- c, L, B, R, where:c is a constraint,L
andR are (possibly empty) conjunctions of atoms, andB is an atom. The set oflinking variablesof B
in C, denoted bylinkvars(B,C), is vars(B)∩vars({H,c,L,R}). The set ofnon-linking variablesof B in C
is vars(B)− linkvars(B,C).

Before presenting the NLR strategy, we see it in action in an example. Let us consider the C pro-
gram P in Figure 1. We want to verify the Hoare triple{x ≥ 0} P {y ≤ 0}. By applying the VCG
strategy, we get the set of clausesP1 in Figure 1, whereunsafe holds iff the Hoare triple is not valid.
In P1 the non-linking variables have been underlined. Then, by applying the NLR strategy, we get the
set of clausesP2 without non-linking variables (see Figure 2).P1 andP2 are equivalent with respect to
the queryunsafe, in the sense thatunsafe∈M (P1) iff unsafe∈M (P2).

In particular, NLR replaces the predicatesnewp1 andnewp2, which are called with the non-linking
variablesX2, Y1, andY2 (see clauses 1 and 2 ofP1 in Figure 1), with two new predicatesnewp3 and
newp4, respectively, whose arguments are linking variables only. Note that the removal of the two
argumentsY1 andX2 of newp1, which are the non-linking variables in clause 1, determines in clause 2
the removal of the two argumentsY1 andX2, which arelinking variables ofnewp2. Thus, fromnewp2

with six arguments in clause 2, by removing also the non-linking variableY2, we get the predicatenewp4
in clauses 3’ and 4’ of programP2 with three arguments only (see Figure 2).

E. De Angelis, F. Fioravanti, A. Pettorossi & M. Proietti 51

int x,y;

void main() {
int z=x+1;

while(z<=9)

z=z+1;

y=z;

}

The C programP

1. unsafe:- X1>=0, Y2=<0, newp1(X1,Y1,X2,Y2).

2. newp1(X1,Y1,X2,Z2):- Z1=X1+1,

newp2(X1,Y1,Z1,X2,Y2,Z2).

3. newp2(X1,Y1,Z1,X2,Y2,Z2):- Z1=<9, Z3=Z1+1,

newp2(X1,Y1,Z3,X2,Y2,Z2).

4. newp2(X1,Y1,Z1,X1,Y1,Z1):- Z1>=10.

ProgramP1: Verification Conditions obtained by VCG

Figure 1: ProgramP1 is the set of Verification Conditions VCs obtained by applying the VCG strategy
starting from the C programP, the initial conditionx≥ 0 and the error propertyy≤ 0.

The NLR strategy consists in a repeated application of theunfolding, definition introduction, and
folding transformation rules [5].

We assume that the input of NLR is any CLP programProg. To keep the notation simple, we will
identify a tuple of variables with the set of variables occurring in it. The union of two tuples is constructed
by erasing duplicate elements.

During the execution the NLR strategy maintains in a setDefs all the definitions that have been
introduced so far. Every definition clause inDefs is unfolded with respect to the leftmost atom in its
body, thereby producing a setS of clauses. Then every clause inS is folded (repeatedly, with respect
all atoms in its body) by using either definitions that already occur inDefsor new definitions that are
introduced inDefsfor performing those folding steps.

The peculiarity of the NLR strategy lies in the careful management of the set of variables occurring
in the head of the definition clauses.

LetC be a clause inSof the form: H :- c, L, B, R, where the predicate symbol ofB occurs inProg.
If C cannot be folded with respect to the atomB using any clause inDefs, then we have to introduce a
new definition clause as we now explain.

First, we consider a definitionF whose head contains only the linking variables of the atomB in the
clauseC. Let F benewp(V):-B, wherenewp is a predicate symbol not occurring in the setProg∪Defs,
andV is the setlinkvars(B,C) of the linking variables ofB in C.

If the setDefscontains a clauseD of the formnewq(Q):- S such that, for some renaming substi-
tution ϑ , Bϑ = S, then we replace clauseD in Defswith the clausenewp(L):-B, whereL= Vϑ ∪ Q.
Otherwise, we introduce the definition clauseF and we add it toDefs.

The introduction of the definitionF might seem to be the best choice in the sense that it contains
exactly the head variables which are actually needed for folding clauseC. However, (variants of)B may
occur also in some other clauses to be folded. Thus, if we directly introduce definitions whose heads
contain linking variables only, we run the risk of generating several definitions with the same atom in the
body and different sets of variables in the head (modulo renaming).

In order to keep the number of definitions low (and this will often improve the ability of proving
program correctness), instead of introducing multiple definitions containing the same atom in the body,
by applying the NLR strategy, we merge them in a single definition whose set of head variables is the
union of the head variables occurring in the merged definitions (modulo renaming).

The NLR strategy terminates when all clauses inDefshave been unfolded and no new definition need
to be introduced for folding.

52 Removing Unnecessary Variables from Horn Verification Conditions

1’. unsafe:- X1>=0, Y2=<0, newp3(X1,Y2).

2’. newp3(X1,Z2):- Z1=X1+1, newp4(X1,Z1,Z2).

3’. newp4(X1,Z1,Z2):- Z1=<9, Z3=Z1+1,

newp4(X1,Z3,Z2).

4’. newp4(X1,Z1,Z1):- Z1>=10.

P2: Verification Conditions obtained by NLR

1”. unsafe:- X1>=0, Y2=<0, newp3(X1,Y2).

2”. newp3(X1,Z2):- Z1=X1+1, newp4(Z1,Z2).

3”. newp4(Z1,Z2):- Z1=<9, Z3=Z1+1,

newp4(Z3,Z2).

4”. newp4(Z1,Z1):- Z1>=10.

P3: Verification Conditions obtained by cFAR

Figure 2: ProgramP2 and ProgramP3 are the Verification Conditions VCs obtained by applying the
NLR strategy and the cFAR algorithm, respectively.

Theorem 1 (Termination and Correctness of the NLR Strategy)Given any CLP program Prog, the
NLR strategy terminates and produces a CLP program Prog′ such thatunsafe ∈ M (Prog) holds iff
unsafe ∈ M (Prog′) holds.

2. Constrained FAR Algorithm (cFAR). Now we present an extension to constraint logic programs
of the FAR algorithm presented in [9] for removing redundantarguments from logic programs. This
extension will be called constrained FAR algorithm, or cFAR, for short. The objective of the FAR
algorithm is to remove arguments that are not actually used during any computation of the program at
hand. Indeed, it has been shown in [8] that the FAR algorithm (and thus, also the cFAR algorithm) can
be seen as a generalization of the liveness analysis.

In Figure 2 we show the effect of applying the cFAR algorithm to the CLP programP2 obtained
by the NLR strategy. The output of the algorithm is the CLP programP3. Note that in programP3 the
predicate symbolnewp4 denotes a different relation with respect to the one in programP2, because inP3
it has arity 2 and not 3.

In order to define the constrained FAR algorithm we need to introduce some preliminary notions,
some of which have been adapted from [9].

Definition 2 (Erasure, Erased Atom, Erased Clause, Erased Program) (i) Anerasureis a set of pairs
each of which is of the form(p,k), wherep is a predicate symbol of arity n and1≤k≤n.
(ii) Given an erasure E and an atomA whose predicate symbol isp, theerased atomA|E is obtained by
dropping all the arguments that occur at position k, for some(p,k) ∈ E.
(iii) Given an erasure E and a clause C(respectively, a CLP program Prog), the erased clauseC|E
(respectively, theerased programProg|E) is obtained by replacing all atomsA in C (respectively, in
Prog) byA|E.

In order to avoid the risk of collisions between predicate symbols after erasing some arguments, we
assume thatProgdoes not contain identical predicate symbols with different arity.

Obviously, we are interested in removing redundant arguments without altering the semantics of the
original program, in the sense captured by the following definition.

Definition 3 (Correctness of Erasure) An erasure E is correct for a program Prog if, for all atomsA,
we have that: A ∈ M (Prog) iff A|E ∈ M (Prog|E).

Since we are dealing with constraint logic programs, the notion of multiple occurrences of a variable
which is used in the original formulation of FAR [9], needs tobe generalized as follows. In this paper
we assume that a constraint is a conjunction ofh (≥ 0) atomic constraints in the theoryA of the linear
integer arithmetics with integer arrays.

E. De Angelis, F. Fioravanti, A. Pettorossi & M. Proietti 53

Definition 4 (Variable Constrained to Another Variable) Given two variablesX and Y and a con-
straint c of the formc1∧ . . .∧ch, we say thatX is constrained toY (in c) if there existscj, with 1≤ j≤ h,
such that either(i) {X,Y} ⊆ vars(cj), or (ii) there exists a variableZ such that(ii.1) {X,Z} ⊆ vars(cj)
and(ii.2) Z is constrained toY (in c).

Now we are ready to introduce the notion ofsafe erasurethat will be used during the application of
the constrained FAR algorithm.

Definition 5 (Safe Erasure) Given a program Prog, an erasure E is asafe erasureif, for all (p,k) ∈ E
and clausesH : −c,G in Prog, whereH is of the formp(X1, ...,Xn) andc is of the formc1∧ . . .∧ch, we
have that:(i) Xk is a variable andA |= ∀Xk.∃Y1, . . . ,Ym. c, with {Y1, . . . ,Ym}= vars(c)−{Xk}, (ii) Xk
is not constrained to any other variable occurring inH, and (iii) Xk is not constrained to any variable
occurring inG|E.

Similarly to what has been done in [9], it can be shown that if an erasureE is safe, then it is also
correct.

The cFAR algorithm takes as input a CLP programProg, computes a safe erasureE, and produces
as output the programProg|E. The algorithm starts off by initializing the current erasure E to the full
erasure, that is, the set of all pairs(p,k), wherep is a predicate of arityn occurring inProgand 1≤k≤n.
Then, whileE contains a pair(p,k) such that one of the conditions of Definition 5 is not satisfied, the
pair (p,k) is removed fromE. The algorithm terminates when it is no longer possible to remove a
pair (p,k) from E, and thusE is a safe erasure.

The cFAR algorithm terminates and preserves the least-model semantics, as stated by the following
theorem.

Theorem 2 (Termination and Correctness of the cFAR Algorithm) Given any CLP program Prog,
the cFAR algorithm terminates and produces a CLP program Prog|E such thatunsafe ∈ M (Prog)
iff unsafe ∈ M (Prog|E).

Finally, we would like to note that, even if the objectives ofthe NLR and cFAR transformations
are similar, they work in a different way. While cFAR is goal independent, NLR starts from the pred-
icateunsafe and proceeds by unfolding in a goal directed fashion, similarly to redundant argument
filtering [9]. It can be shown that, in general, the NLR and cFAR transformations have incomparable
effects.

3 Experimental evaluation

We have used the VeriMAP transformation and verification system [2, 3] for evaluating the techniques
presented in this paper. We have considered 320 verificationproblems for C programs (227 of which
were safe and the remaining 93 were unsafe). We have applied the VCG strategy for generating the
Verification Conditions VCs using a multi-step semantics [4]. The C programs and the VCs we have
generated are available at:http://map.uniroma2.it/vcgen. Then, we have checked the satisfiability
of the VCs by giving them as input to the Z3 Horn solver [10] using default options1 and the PDR engine.
Finally, we have applied the NLR and cFAR transformations presented in Section 2 to evaluate the effect
of these transformations in terms of efficiency and efficacy in the program verification tasks considered.

1Note that Z3, by default, runs theslicetransformation for reducing the number of variables in the signature of a predicate.

54 Removing Unnecessary Variables from Horn Verification Conditions

VCG ; Z3 VCG ; NLR ; Z3 VCG ; NLR ; cFAR ; Z3
c Correct answers 196 7 9
s - safe problems 144 3 7
u - unsafe problems 52 4 2
to Timeouts 124 117 108
n Total problems 320 124 117

t VCG VCG time 40.65 20.48 4.57
t NLR NLR time – 58.39 9.53
t cFAR cFAR time – – 304.84
st Z3 solving time 2704.95 988.15 649.56

tt Total time 2745.60 1067.02 968.50
at Average time 14.01 152.43 107.61

Table 1: Verification results obtained by using Z3 on the output generated by applying VCG and the
auxiliary transformations NLR and cFAR. The timeout limit time is 300 seconds. Times are in seconds.

Improving effectiveness of solving. In Table 1 we show the experimental results obtained by using
VeriMAP and Z3. Column ‘VCG ; Z3’ reports the results obtained by applying the VCG strategy and
then the Z3 solver. Column ‘VCG ; NLR ; Z3’ reports the resultsobtained, for the problemsnot solved
by ‘VCG ; Z3’, by applying VCG, followed by the NLR transformation, and then Z3. Column ‘VCG ;
NLR ; cFAR ; Z3’ reports the results obtained, for the problems not solvedby ‘VCG ; NLR ; Z3’, by
applying VCG, followed by NLR, then cFAR, and finally Z3. Lines (t VCG), (tNLR), and (t cFAR) report
the time taken by the execution of the VCG, NLR, and cFAR transformations, respectively, to produce
the verification conditions for which Z3 was able to return the correct answers (that is, to show the
satisfiability or the unsatisfiability of the clauses). Line(st) reports the time taken by Z3 to produce the
correct answers.

The NLR transformation enables Z3 to prove 7 additional verification problems. In particular, it
allows Z3 to prove the programntdrvsimpl-cdaudio simpl1 unsafeil.c, which is the largest pro-
gram in the benchmark set (2.1 KLOC). Concerning the time required for executing the NLR transfor-
mation in this example, we want to point out that this programtakes 91% of the total NLR time (t NLR),
that is 53.04 seconds. Therefore, the remaining 6 programs only require 5.35 seconds to be transformed.
The cFAR transformation allows Z3 to prove 9 additional verification problems. In this case, about 89%
of the total cFAR time (t cFAR), that is, 271.62 seconds, is required for specializing twoprograms whose
size is about 1 KLOC each, namelyntdrvsimpl-diskperf simpl1 safeil.c (98.82 seconds) and
ntdrvsimpl-floppy simpl3 safeil.c (172.80 seconds).

4 Conclusions

In this paper we have shown that the effectiveness of Horn clause solvers for proving the satisfiability of
VCs can be improved by the use of program transformations that remove unnecessary variables.

As future work, we would like to investigate in more depth howthe structure of the VCs influences
the heuristics adopted by Horn solvers. Hopefully, this would allow us to tune the VCG strategy for
generating VCs that are easier to be proved. Also, it would beinteresting to study the effect of the NLR
and cFAR transformations on the VCs generated by other toolslike, for example, SeaHorn [7].

E. De Angelis, F. Fioravanti, A. Pettorossi & M. Proietti 55

Acknowledgements

The authors would like to thank the GNCS - INdAM for the Research Grant 2016 “Verifica Automatica
di Proprietà Relazionali di Programmi”.

References

[1] E. Albert, M. Gómez-Zamalloa, L. Hubert & G. Puebla (2007): Verification of Java Bytecode Using Analysis
and Transformation of Logic Programs. In M. Hanus, editor:Practical Aspects of Declarative Languages,
Lecture Notes in Computer Science 4354, Springer, pp. 124–139, doi:10.1007/978-3-540-69611-78.

[2] E. De Angelis, F. Fioravanti, A. Pettorossi & M. Proietti(2014):Program Verification via Iterated Special-
ization. Science of Computer Programming95, Part 2, pp. 149–175, doi:10.1016/j.scico.2014.05.017.

[3] E. De Angelis, F. Fioravanti, A. Pettorossi & M. Proietti(2014):VeriMAP: A Tool for Verifying Programs
through Transformations. In: Proceedings of the 20th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, TACAS ’14, Lecture Notes in Computer Science 8413, Springer,
pp. 568–574, doi:10.1007/978-3-642-54862-847. Available at: http://www.map.uniroma2.it/VeriMAP.

[4] E. De Angelis, F. Fioravanti, A. Pettorossi & M. Proietti(2015): Semantics-based generation of verifi-
cation conditions by program specialization. In: Proceedings of the 17th International Symposium on
Principles and Practice of Declarative Programming, Siena, Italy, July 14-16, 2015, ACM, pp. 91–102,
doi:10.1145/2790449.2790529.

[5] S. Etalle & M. Gabbrielli (1996):Transformations of CLP Modules. Theoretical Computer Science166, pp.
101–146, doi:10.1016/0304-3975(95)00148-4.

[6] J. P. Gallagher & B. Kafle (2014):Analysis and Transformation Tools for Constrained Horn Clause Verifi-
cation. Theory and Practice of Logic Programming14(4-5), pp. 90–101. Supplementary Materials.

[7] A. Gurfinkel, T. Kahsai, A. Komuravelli & J.A. Navas (2015): The SeaHorn Verification Framework. In:
Computer Aided Verification: 27th International Conference, CAV 2015, San Francisco, CA, USA, July
18-24, 2015, Springer, pp. 343–361, doi:10.1007/978-3-319-21690-420.

[8] K. S. Henriksen & J. P. Gallagher (2006):Abstract Interpretation of PIC Programs through Logic Program-
ming. In: Proceedings of the 6th IEEE International Workshop on Source Code Analysis and Manipulation,
SCAM ’06, pp. 103–179, doi:10.1109/SCAM.2006.1.

[9] M. Leuschel & M. H. Sørensen (1996):Redundant Argument Filtering of Logic Programs. In J. Gallagher,
editor: Logic Program Synthesis and Transformation, Proceedings LOPSTR ’96, Stockholm, Sweden, Lec-
ture Notes in Computer Science 1207, Springer-Verlag, pp. 83–103, doi:10.1007/3-540-62718-96.

[10] L. M. de Moura & N. Bjørner (2008):Z3: An Efficient SMT Solver. In: Proceedings of the 14th International
Conference on Tools and Algorithms for the Construction andAnalysis of Systems, TACAS ’08, Lecture
Notes in Computer Science 4963, Springer, pp. 337–340, doi:10.1007/978-3-540-78800-324.

[11] J. C. Peralta, J. P. Gallagher & H. Saglam (1998):Analysis of Imperative Programs through Analy-
sis of Constraint Logic Programs. In G. Levi, editor: Proceedings of the 5th International Sympo-
sium on Static Analysis, SAS ’98, Lecture Notes in Computer Science 1503, Springer, pp. 246–261,
doi:10.1007/3-540-49727-715.

[12] M. Proietti & A. Pettorossi (1995): Unfolding-Definition-Folding, in this Order, for Avoiding
Unnecessary Variables in Logic Programs. Theoretical Computer Science142(1), pp. 89–124,
doi:10.1016/0304-3975(94)00227-A.

http://dx.doi.org/10.1007/978-3-540-69611-7_8
http://dx.doi.org/10.1016/j.scico.2014.05.017
http://dx.doi.org/10.1007/978-3-642-54862-8_47
http://dx.doi.org/10.1145/2790449.2790529
http://dx.doi.org/10.1016/0304-3975(95)00148-4
http://dx.doi.org/10.1007/978-3-319-21690-4_20
http://dx.doi.org/10.1109/SCAM.2006.1
http://dx.doi.org/10.1007/3-540-62718-9_6
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/3-540-49727-7_15
http://dx.doi.org/10.1016/0304-3975(94)00227-A

	1 Introduction
	2 Removing Unnecessary Variables
	3 Experimental evaluation
	4 Conclusions

