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In this paper we presentifERHORN, a solver for recursion-free Horn clauses. The main apiiica
domain of NTERHORN lies in solving interpolation problems arising in softwarification. We
show how a range of interpolation problems, including p&tmsition, nested, state/transition and
well-founded interpolation can be handled directly by ERHORN. By detailing these interpolation
problems and their Horn clause representations, we hopectiueage the emergence of a common
back-end interpolation interface useful for diverse veaifiion tools.

1 Introduction

Interpolation is a key ingredient of a wide range of softwaeefication tools that is used to compute
approximations of sets and relations over program staeese .[1,2,18,11,14,17.,119)20/22, 24]. These
approximations come in different forms, e.g., as path pakation [15], transition interpolation [18],
nested interpolatiori [14], state/transition interpalat{l], or well-founded interpolatiori [6]. As a re-
sult algorithms and tools for solving interpolation prabkhave become an important area of research
contributing to the advances in state-of-the-art of soféweerification.

In this paper we presenifERHORN, a solver for constraints in form of recursion-free Horrusles
that can be applied on various interpolation problems aowin software verification. NTERHORN
takes as input clauses whose literals are either asseitighe theory of linear arithmetic or unknown
relations. In addition,NTERHORN also accepts well-foundedness conditions on the unknolatioes.
The set of input clauses can represent either a DAG or a trdepgndencies between interpolants to
be discovered. The output oRTERHORN is either an interpretation of unknown relations in terms of
linear arithmetic assertions that turns the input clausts valid implications over rationals/reals and
satisfies well-foundedness conditions, or the statementrth such interpretation existsN1TERHORN
is sound and complete for clauses without well-foundedmesslitions. (NTERHORN is incomplete
when well-foundedness conditions are present, sinceiésrein synthesis of linear ranking functions.)
INTERHORN is a part of a general solver for recursive Horn clausés [8] s already demonstrated
its practicability in a software verification competitidd]] The main novelty offered byNTERHORN
wrt. existing interpolating procedures [355, 9] lies in #iwlity to declaratively specify the interpolation
problem as a set of recursion-free Horn clauses and the duppavell-foundedness conditions.

2 Interpolation by solving recursion-free Horn clauses

In this section we provide examples of how interpolatiomated problems arising in software verification
can be formulated as solving of recursion-free Horn claugkss collection of examples is not exhaustive
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and serves as an illustration of the approach. We omit angrigdsn of how interpolation is used by
verification methods, since it is out of scope of this paped, i@ther focus on the form of interpolation
problems and their representation as recursion-free Hauses. Further examples can be found in the
literature, e.g.[[8], as well as are likely to emerge in thieife.

Path interpolation Interpolation can be used for the approximation of sets atiestreachable by a
program along a given path, see elg.[15]. A flat program gitimm system) consists of program vari-
ablesv, an initiation conditioninit(v), a set of program transitionsext(v,V),...,nexi(vV)}, and a
description of safe stateafev). A path is a sequence of program transitions.

Given a pathnext(v,V),...,next(v,V), the path interpolation problem is to find assertions
lo(V),11(V),...,In(Vv) such that:

init(v) — lo(v),
lk—1(V) Anexk(v,V) — Ik(V), for eachk € 1..n
In(v) — safgv).

We observe that there are no recursive dependencies indyctdte above implications between the
interpolants to be discovered, i.¢(v) does not depend on any other interpolant, whil&) depends

on lp(v), andln(v) depends orig(V),...,Ih-1(v). INTERHORN leverages such absence of dependency
cycles in our solving algorithm, see Sectidn 3.

Transition interpolation Interpolation can be applied to compute over-approxinmadiogprogram tran-
sitions, see e.d.[18]. Given a patbxg (v,V),...,nexk(v, V), a transition interpolation problem is to find
Ti(v,V),..., Ta(v,V) such that:

nexk(v, V) — Tk(v,V), for eachk € 1..n
init(vo) A To(Vo, V1) A -+« A Ta(Vn—1,Vn) — safgvy).

Again, we note there are no recursive dependencies betleassertions to be computed.

Well-founded interpolation We can also use interpolation in combination with additionall-
foundedness constraints when proving program terminatgee e.g.[[6]. We assume a path
stem(v,V),...,stemy(v,V) that contains transitions leading to a loop entry point, andpath
loop; (V,V),...,loop,(v,V') around the loop. A well-founded interpolation problem amtsuto finding
lo(V),11(V),...,Im(V), andT1(v,V),..., To(v, V') such that:

init(v) — lo(V),

lk—1(V) Astem(v, V) — I (V), for eachk € 1..m
Im(v) Aloop; (v,V') — Ta(v, V),

Tk-1(v, V) Aloop(V,V') — Tk(v, V'), for eachk € 2..n
Wi (Ta(v,V)).

Note that the last clause, which is a unit clause, requirasttte relationT,(v,V) is well-founded, i.e.,
does not admit any infinite chains.



A. Gupta, C. Popeea & A. Rybalchenko 33

Search tree interpolation Interpolation has been used for optimizing the search fautisms for a
constraint programming godl [17]. In that work, it is coregield the case when the search tree corre-
sponds to the state space exploration of an imperative @mogr order to prove some safety property. A
node from the tree is labeled with a form@a) that is a symbolic representation for reachable states at
a program point. The tree structure corresponds to programsitions, a hoda has as many children

as the transitions starting at the program point correspgrim n , i.e.,next (v,V),...,nexg(v,V) . To
optimize the search, symbolic states are generalized byweting interpolants in post-order tree traver-
sal. During the tree traversal, for a node initially labeledsy , and having children with labeks to

Sm , a generalized label of the nodes computed a$; (V) A --- Alm(v) and is subject to the following
implications:

(V) = 11 (V) A=+ Alm(V)
lk(V) — (nexi(v,V) — s(V)) for eachk € 1..m

These implications correspond to the following recurdi@® Horn clauses,

So(V) = Ik(v), for eachk € 1..m
(V) = (3V : nexk(v,V) — s(V)), for eachk € 1.m

where the quantifier elimination iV : nexk(v,V) — (V) can be automated farexi andsc back-
ground constraints in the theory of linear arithmetic.

Nested interpolation For programs with procedures, interpolation can compugg-approximations
of sets of program states that are expressed over varididésite in scope at respective program lo-
cations, see e.g. [14,115]. A procedural program consise s#t of procedureB including the main
proceduremain, global program variableg that include a dedicated variable for return value passing,
as well as procedure descriptions. For each procefdurd® we provide its local variablek,, a finite
set of intra-procedural program transitions of the fanst®(g,1,,d',1}), a finite set of call transitions of
the formcall®9(g,l,,1q) whereq € P is the name of the callee, a finite set of return transitionthef
formretP(g,1p,d'), as well as a description of safe stase$e’(g, | ).

A path in a procedural program is a sequence of program tiamsi(including intra-procedural, call
and return transitions) that respects the calling disoplivhich we do not formalize here.

Given a pathnext(v,V),...,next(v,V). Findlo(Vp),l1(v1),...,In(Vn), Wherevy,...,v, are deter-
mined through the following implications, such that:

init(g, Imain) = lo(9; Imain)
inst’(g,1p,9',15) — Ik(d',1p), if nexk(v,v) =inst’(g,1p,d’,11)
lk-1(9,1p) A callP9(g,lp,lq) — lk(g.lg), if nexk(v,v) = callPd(g,lp,lq)
retP(g,lp,d) — I(d,lg),  if nexk(v,V') =retP(g,lp,d') returns toq
foreachk e 1..n
In(g,1p) — safe’(g,lp), whennexk(v,V') occurs in procedure.

Similarly to the previously described interpolation prerls, there are no recursive dependencies in the
above clauses.
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State/transition interpolation As illustrated by the example of well-founded interpolatioin-
terpolants can represent over-approximations of sets aiestas well as binary relations. The
Whale algorithm provides a further example of such usage [@iven a sequence of assertions
next(v,V),...,next(v,V) that represent an under-approximation of a path throughoeegure with
a guardg(v) and a summarg(v,V). Find guardsG;(v),...,Gn(v) and summarie§;(v,V),...,S(v,V)
such that:

nexk(v,V) — S(v,V), for eachk € 1..n

g(v) = Ga(v),
Gk(V) A& (W, V) — Gyra(V), foreachke 1.n—1
Gn(V) AS(V,V) = s(v, V).

There are no recursive dependencies among the unknownsgaraddsummaries.

Solving unfoldings of recursive Horn clauses A variety of reachability and termination verification
problems for programs with procedures, multi-threadedynms, and functional programs can be for-
mulated as the satisfiability of a set of recursive Horn @aus.g.,[8,11,13]. These clauses are obtained
from the program during a so-called constraint generattep.sThe satisfiability checking performed
during the constraint solving step amounts to the inferefaeductive invariants, procedure summaries,
function types and other required auxiliary assertiondstifig solvers, e.g., HSIE|[8] andZ [16], rely
on solving recursion-free unfoldings when iteratively stacting a solution for recursive Horn clauses.
We illustrate the generation of recursion-free unfoldirsing an invariance proof rule for flat pro-

grams. This rule can be formalised by as follows. For a givaggm find an invarianinv(v) such
that

init(v) — Inv(v),

Inv(v) Anext{v,V) — Inv(V'), for each program transitiomex{v,Vv’)

Inv(v) — safgv).

An unfolding of these recursive clauses introduces auyilielations that refer ttnv(v) at each interme-
diate step. For example we consider an unfolding that stattsthe first clause above and then applies
a clause from the second line for a transitioext (v,V) and then for a transitiomexg(v,V') before
traversing the last clause. This unfolding is represenyeté following recursion-free clauses:

init(v) — Invp(Vv), Invp(v) Anext(v,V') — Invy(V),
Inv (V) A nexk(v, V) — Inva(V), Inva(v) — safgv).

A solution for these clauses contributes to solving thensee clauses.

3 Algorithm overview

In this section we briefly describe hontERHORN solves recursion-free Horn clauses. We refer to [11,
Section 7] for a solving algorithm for clauses over lineaiorsal arithmetic, to[[12] for a treatment of
a combined theory of linear rational arithmetic and unimteted functions, and to [22] for a support of
well-foundedness conditions.

INTERHORN critically relies on the following two observations. Firapplying resolution on clauses
that describe the interpolation problem terminates anttlyian assertion that does not contain any
unknown relations. For example, resolution of clauses tti&@2 that describe path, transition, nested
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and state/transition interpolation results in the implaaof the forminit (vo) A (Ar_, Nexk(Vk_1,Vk)) —
safgv,). Second, the obtained assertion is valid if and only if theo§elauses is satisfiable. From the
proof of validity (or alternatively, from the proof of unssfiability of the negated assertion) we construct
the solutions.

Clauses without well-foundedness conditions INTERHORN goes through three main steps when
given a set of recursion-free clauses that does not comgiwaell-foundedness condition. For example,
we consider the following recursion-free clauses as input:

x>10— p(x), puyAwW=u+Vv—q(\,w), qy,2Ay<0—z>y.

During the first step we apply resolution on the set of clauS#sce the clauses are recursion-free,
the resolution application terminates. The result is aeréiss that only contains constraints from the
background theory. After applying resolution we obtaindar example (note that we use fresh variables
here to stress the fact that clauses are implicitly uniVigrsmantified): a> 10Ac=a+bAb<0—
c>h.

The second step amounts to checking the validity of the péthassertiot. If the assertion is not
valid then we report that the original set of clauses impaosestraints that cannot be satisfied. Otherwise
we produce a proof of validity. In our example the proof ofidi#y can be represented as a weighted
sum of the inequalities in the antecedent of the implicatwith the weights 1;-1, and 0, respectively.

The third step traverses the input clauses and computesliiieoa assignment by taking the proof
into account. For the clause> 10— p(x) we determine that > 10 contributes tg(x) with a weight
1, since during the resolution> 10 gave rise t@ > 10 whose weight is 1. Thus we obtaptx) =
(x> 10). For the clausg(u) AW = u+ Vv — g(v,w) we combinep(u) andw = u+ v with the weight of
the latter set to-1, sincew = u+ v yielded a contribution to the proof with weightl. This leads to
gv,w) = (u>10)+ (—1)*x (W=u+V) = (w>10+V).

Finally, INTERHORN outputs the solution:

p(x) = (x> 10), g(v,w) = (w>10+V).

We observe that the substitution of the solutions into thmutirclauses produces valid implications:
X>10—-x>10,u>10Aw=u+Vv—w>10+Vv,andz> 10+ yAy<0—z>y.

Clauses with a well-foundedness condition In case of a well-foundedness condition occurring in the
input, INTERHORN introduces additional steps to take this condition intocaot. For example, we
consider the following recursion-free clauses with a vielindedness condition as input:

Xx>10— p(x), puyAw=u+v—q(v,w), qy,2)Ay<0-—r(y,2z),
wif(r(s,t)).

The first step is again the resolution of the given clausespittaluces a clause providing an under-
approximation for the relation that is subject to the wellkidedness condition. For our example, we
obtain:a>10Ac=a+bAb<0—r(b,c).

The second step attempts to find a well-founded relation dhat-approximates the projection of
the antecedent of the clause obtained by resolution on thi@bl@s in its head. For our example this

Linstead of validity checking we can check satisfiabilitylé negated assertion.
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projection amounts to performing an existential quantdéienination onda:a > 10Ac=a+bAb <0,
which givesc > 10+ bAb < 0. This relation is well-founded, which is witnessed by akiag relation
overb andc with a bound componert < 0 and the decrease component b+ 1.

The third step uses the well-founded over-approximatioldiostruct a clause that introduces an
upper bound on the relation under well-foundedness camdifi his clause replaces the well-formedness
condition by an approximation condition wrt. an assertiéior our example, the clausef(r(s,t)) is
replaced by the clausgs,t) — (s<O0At >s+1).

Lastly, we apply the solving method for clauses without viellndedness conditions described pre-
viously. In our example, the set of clauses to be solved besom

x=10—=p(x), PpU)AW=U+V—=q(vW), q¥,2)Ay<0—=T(y,2),
r(st) - (s<OAt>s+1).

Finally, INTERHORN outputs the solution:

p(x) = (x> 10), q(v,w) = (w>10+V), r(st) =(s<O0At>s+10).

4 I mplementation

INTERHORN is implemented in SICStus Prolog [25]. For computing praaffwalidity (resp. unsatis-
fiability) over linear rational arithmetic theoryNFERHORN relies on a proof producing version of a
simplex algorithm [[10]. For computing well-founded approations (also over linear rational arith-
metic theory), NTERHORN uses a linear ranking functions synthesis algorithm [2&fERHORN can
be downloaded frorattp://www7.in.tum.de/tools/interhorn/, accepts input in form of Prolog
terms and outputs an appropriately formatted result.

5 Conclusion

We presentedNTERHORN, a solver for recursion-free Horn clauses that can be usddabwith vari-
ous interpolation problems. The main directions for theifeitdevelopment include adding support for
uninterpreted functions, along the lines [of[[12], and ietegrithmetic. After developing our work, we
became aware of a related work highlighting the relatiomvbeh interpolation and recursion-free Horn
clauses|[2B3]. The authors df [23] show that some interpmiagiroblems correspond to various frag-
ments of recursion-free Horn clauses and establish corntyplesults for these fragments assuming the
background theory of linear integer arithmetic. Our worless concerned with the different fragments
of recursion-free Horn clauses and more with how interpaaproblems arise in software verification.
The well-founded interpolation problem is beyond the soof23].
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