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In this paper we present INTERHORN, a solver for recursion-free Horn clauses. The main application
domain of INTERHORN lies in solving interpolation problems arising in softwareverification. We
show how a range of interpolation problems, including path,transition, nested, state/transition and
well-founded interpolation can be handled directly by INTERHORN. By detailing these interpolation
problems and their Horn clause representations, we hope to encourage the emergence of a common
back-end interpolation interface useful for diverse verification tools.

1 Introduction

Interpolation is a key ingredient of a wide range of softwareverification tools that is used to compute
approximations of sets and relations over program states, see e.g. [1,2,8,11,14,17,19,20,22,24]. These
approximations come in different forms, e.g., as path interpolation [15], transition interpolation [18],
nested interpolation [14], state/transition interpolation [1], or well-founded interpolation [6]. As a re-
sult algorithms and tools for solving interpolation problems have become an important area of research
contributing to the advances in state-of-the-art of software verification.

In this paper we present INTERHORN, a solver for constraints in form of recursion-free Horn clauses
that can be applied on various interpolation problems occurring in software verification. INTERHORN

takes as input clauses whose literals are either assertionsin the theory of linear arithmetic or unknown
relations. In addition, INTERHORN also accepts well-foundedness conditions on the unknown relations.
The set of input clauses can represent either a DAG or a tree ofdependencies between interpolants to
be discovered. The output of INTERHORN is either an interpretation of unknown relations in terms of
linear arithmetic assertions that turns the input clauses into valid implications over rationals/reals and
satisfies well-foundedness conditions, or the statement that no such interpretation exists. INTERHORN

is sound and complete for clauses without well-foundednessconditions. (INTERHORN is incomplete
when well-foundedness conditions are present, since it relies on synthesis of linear ranking functions.)
INTERHORN is a part of a general solver for recursive Horn clauses [8] and has already demonstrated
its practicability in a software verification competition [7]. The main novelty offered by INTERHORN

wrt. existing interpolating procedures [3–5,9] lies in theability to declaratively specify the interpolation
problem as a set of recursion-free Horn clauses and the support for well-foundedness conditions.

2 Interpolation by solving recursion-free Horn clauses

In this section we provide examples of how interpolation related problems arising in software verification
can be formulated as solving of recursion-free Horn clauses. This collection of examples is not exhaustive
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and serves as an illustration of the approach. We omit any description of how interpolation is used by
verification methods, since it is out of scope of this paper, and rather focus on the form of interpolation
problems and their representation as recursion-free Horn clauses. Further examples can be found in the
literature, e.g., [8], as well as are likely to emerge in the future.

Path interpolation Interpolation can be used for the approximation of sets of states reachable by a
program along a given path, see e.g. [15]. A flat program (transition system) consists of program vari-
ablesv, an initiation conditioninit(v), a set of program transitions{next1(v,v′), . . . ,nextN(v,v′)}, and a
description of safe statessafe(v). A path is a sequence of program transitions.

Given a pathnext1(v,v′), . . . ,nextn(v,v′), the path interpolation problem is to find assertions
I0(v), I1(v), . . . , In(v) such that:

init(v)→ I0(v),

Ik−1(v)∧nextk(v,v′)→ Ik(v′), for eachk∈ 1..n

In(v)→ safe(v).

We observe that there are no recursive dependencies inducedby the above implications between the
interpolants to be discovered, i.e.,I0(v) does not depend on any other interpolant, whileI1(v) depends
on I0(v), and In(v) depends onI0(v), . . . , In−1(v). INTERHORN leverages such absence of dependency
cycles in our solving algorithm, see Section 3.

Transition interpolation Interpolation can be applied to compute over-approximation of program tran-
sitions, see e.g. [18]. Given a pathnext1(v,v′), . . . ,nextn(v,v′), a transition interpolation problem is to find
T1(v,v′), . . . ,Tn(v,v′) such that:

nextk(v,v′)→ Tk(v,v′), for eachk∈ 1..n

init(v0)∧T1(v0,v1)∧ ·· ·∧Tn(vn−1,vn)→ safe(vn).

Again, we note there are no recursive dependencies between the assertions to be computed.

Well-founded interpolation We can also use interpolation in combination with additional well-
foundedness constraints when proving program termination, see e.g. [6]. We assume a path
stem1(v,v′), . . . ,stemm(v,v′) that contains transitions leading to a loop entry point, anda path
loop1(v,v

′), . . . , loopn(v,v
′) around the loop. A well-founded interpolation problem amounts to finding

I0(v), I1(v), . . . , Im(v), andT1(v,v′), . . . ,Tn(v,v′) such that:

init(v)→ I0(v),

Ik−1(v)∧stemk(v,v′)→ Ik(v′), for eachk∈ 1..m

Im(v)∧ loop1(v,v
′)→ T1(v,v′),

Tk−1(v,v′)∧ loopk(v
′
,v′′)→ Tk(v,v′′), for eachk∈ 2..n

wf(Tn(v,v′)).

Note that the last clause, which is a unit clause, requires that the relationTn(v,v′) is well-founded, i.e.,
does not admit any infinite chains.
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Search tree interpolation Interpolation has been used for optimizing the search for solutions for a
constraint programming goal [17]. In that work, it is considered the case when the search tree corre-
sponds to the state space exploration of an imperative program in order to prove some safety property. A
node from the tree is labeled with a formulas(v) that is a symbolic representation for reachable states at
a program point. The tree structure corresponds to program transitions, a noden has as many children
as the transitions starting at the program point corresponding to n , i.e.,next1(v,v′), . . . ,nextm(v,v′) . To
optimize the search, symbolic states are generalized by computing interpolants in post-order tree traver-
sal. During the tree traversal, for a noden , initially labeleds0 , and having children with labelss1 to
sm , a generalized label of the noden is computed asI1(v)∧ ·· · ∧ Im(v) and is subject to the following
implications:

s0(v)→ I1(v)∧ ·· ·∧ Im(v)

Ik(v)→ (nextk(v,v′)→ sk(v′)) for eachk∈ 1..m

These implications correspond to the following recursion-free Horn clauses,

s0(v)→ Ik(v), for eachk∈ 1..m

Ik(v)→ (∃v′ : nextk(v,v′)→ sk(v′)), for eachk∈ 1..m

where the quantifier elimination in∃v′ : nextk(v,v′) → sk(v′) can be automated fornextk andsk back-
ground constraints in the theory of linear arithmetic.

Nested interpolation For programs with procedures, interpolation can compute over-approximations
of sets of program states that are expressed over variables that are in scope at respective program lo-
cations, see e.g. [14, 15]. A procedural program consists ofa set of proceduresP including the main
proceduremain, global program variablesg that include a dedicated variable for return value passing,
as well as procedure descriptions. For each procedurep ∈ P we provide its local variableslp, a finite
set of intra-procedural program transitions of the forminstp(g, lp,g′, l ′p), a finite set of call transitions of
the formcallp,q(g, lp, lq) whereq ∈ P is the name of the callee, a finite set of return transitions ofthe
form retp(g, lp,g′), as well as a description of safe statessafep(g, lp).

A path in a procedural program is a sequence of program transitions (including intra-procedural, call
and return transitions) that respects the calling discipline, which we do not formalize here.

Given a pathnext1(v,v′), . . . ,nextn(v,v′). Find I0(v0), I1(v1), . . . , In(vn), wherev0, . . . ,vn are deter-
mined through the following implications, such that:

init(g, lmain)→ I0(g, lmain),

Ik−1(g, lp) ∧



















instp(g, lp,g′, l ′p)→ Ik(g′, l ′p), if nextk(v,v′) = instp(g, lp,g′, l ′p)

callp,q(g, lp, lq)→ Ik(g, lq), if nextk(v,v′) = callp,q(g, lp, lq)

retp(g, lp,g′)→ Ik(g′, lq), if nextk(v,v′) = retp(g, lp,g′) returns toq

for eachk∈ 1..n

In(g, lp)→ safep(g, lp), whennextn(v,v′) occurs in procedurep.

Similarly to the previously described interpolation problems, there are no recursive dependencies in the
above clauses.
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State/transition interpolation As illustrated by the example of well-founded interpolation, in-
terpolants can represent over-approximations of sets of states as well as binary relations. The
Whale algorithm provides a further example of such usage [1]. Given a sequence of assertions
next1(v,v′), . . . ,nextn(v,v′) that represent an under-approximation of a path through a procedure with
a guardg(v) and a summarys(v,v′). Find guardsG1(v), . . . ,Gn(v) and summariesS1(v,v′), . . . ,Sn(v,v′)
such that:

nextk(v,v′)→ Sk(v,v′), for eachk∈ 1..n

g(v)→ G1(v),

Gk(v)∧Sk(v,v′)→ Gk+1(v′), for eachk∈ 1..n−1

Gn(v)∧Sn(v,v′)→ s(v,v′).

There are no recursive dependencies among the unknown guards and summaries.

Solving unfoldings of recursive Horn clauses A variety of reachability and termination verification
problems for programs with procedures, multi-threaded programs, and functional programs can be for-
mulated as the satisfiability of a set of recursive Horn clauses, e.g., [8,11,13]. These clauses are obtained
from the program during a so-called constraint generation step. The satisfiability checking performed
during the constraint solving step amounts to the inferenceof inductive invariants, procedure summaries,
function types and other required auxiliary assertions. Existing solvers, e.g., HSF [8] andµZ [16], rely
on solving recursion-free unfoldings when iteratively constructing a solution for recursive Horn clauses.

We illustrate the generation of recursion-free unfolding using an invariance proof rule for flat pro-
grams. This rule can be formalised by as follows. For a given program find an invariantInv(v) such
that

init(v)→ Inv(v),

Inv(v)∧next(v,v′)→ Inv(v′), for each program transitionnext(v,v′)

Inv(v)→ safe(v).

An unfolding of these recursive clauses introduces auxiliary relations that refer toInv(v) at each interme-
diate step. For example we consider an unfolding that startswith the first clause above and then applies
a clause from the second line for a transitionnext1(v,v′) and then for a transitionnext2(v,v′) before
traversing the last clause. This unfolding is represented by the following recursion-free clauses:

init(v)→ Inv0(v), Inv0(v)∧next1(v,v′)→ Inv1(v′),

Inv1(v)∧next2(v,v′)→ Inv2(v′), Inv2(v)→ safe(v).

A solution for these clauses contributes to solving the recursive clauses.

3 Algorithm overview

In this section we briefly describe how INTERHORN solves recursion-free Horn clauses. We refer to [11,
Section 7] for a solving algorithm for clauses over linear rational arithmetic, to [12] for a treatment of
a combined theory of linear rational arithmetic and uninterpreted functions, and to [22] for a support of
well-foundedness conditions.

INTERHORN critically relies on the following two observations. First, applying resolution on clauses
that describe the interpolation problem terminates and yields an assertion that does not contain any
unknown relations. For example, resolution of clauses in Section 2 that describe path, transition, nested
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and state/transition interpolation results in the implication of the forminit(v0)∧(
∧n

k=1nextk(vk−1,vk))→
safe(vn). Second, the obtained assertion is valid if and only if the set of clauses is satisfiable. From the
proof of validity (or alternatively, from the proof of unsatisfiability of the negated assertion) we construct
the solutions.

Clauses without well-foundedness conditions INTERHORN goes through three main steps when
given a set of recursion-free clauses that does not contain any well-foundedness condition. For example,
we consider the following recursion-free clauses as input:

x≥ 10→ p(x), p(u)∧w= u+v→ q(v,w), q(y,z)∧y≤ 0→ z≥ y.

During the first step we apply resolution on the set of clauses. Since the clauses are recursion-free,
the resolution application terminates. The result is an assertion that only contains constraints from the
background theory. After applying resolution we obtain forour example (note that we use fresh variables
here to stress the fact that clauses are implicitly universally quantified): a ≥ 10∧ c= a+ b∧ b≤ 0 →
c≥ b.

The second step amounts to checking the validity of the obtained assertion.1 If the assertion is not
valid then we report that the original set of clauses imposesconstraints that cannot be satisfied. Otherwise
we produce a proof of validity. In our example the proof of validity can be represented as a weighted
sum of the inequalities in the antecedent of the implication, with the weights 1,−1, and 0, respectively.

The third step traverses the input clauses and computes the solution assignment by taking the proof
into account. For the clausex≥ 10→ p(x) we determine thatx≥ 10 contributes top(x) with a weight
1, since during the resolutionx ≥ 10 gave rise toa ≥ 10 whose weight is 1. Thus we obtainp(x) =
(x≥ 10). For the clausep(u)∧w= u+v→ q(v,w) we combinep(u) andw= u+v with the weight of
the latter set to−1, sincew = u+ v yielded a contribution to the proof with weight−1. This leads to
q(v,w) = (u≥ 10)+ (−1)∗ (w= u+v) = (w≥ 10+v).

Finally, INTERHORN outputs the solution:

p(x) = (x≥ 10), q(v,w) = (w≥ 10+v).

We observe that the substitution of the solutions into the input clauses produces valid implications:
x≥ 10→ x≥ 10, u≥ 10∧w= u+v→ w≥ 10+v, andz≥ 10+y∧y≤ 0→ z≥ y.

Clauses with a well-foundedness condition In case of a well-foundedness condition occurring in the
input, INTERHORN introduces additional steps to take this condition into account. For example, we
consider the following recursion-free clauses with a well-foundedness condition as input:

x≥ 10→ p(x), p(u)∧w= u+v→ q(v,w), q(y,z)∧y≤ 0→ r(y,z),

wf(r(s, t)).

The first step is again the resolution of the given clauses that produces a clause providing an under-
approximation for the relation that is subject to the well-foundedness condition. For our example, we
obtain:a≥ 10∧c= a+b∧b≤ 0→ r(b,c).

The second step attempts to find a well-founded relation thatover-approximates the projection of
the antecedent of the clause obtained by resolution on the variables in its head. For our example this

1Instead of validity checking we can check satisfiability of the negated assertion.
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projection amounts to performing an existential quantifierelimination on∃a : a≥ 10∧c= a+b∧b≤ 0,
which givesc≥ 10+b∧b ≤ 0. This relation is well-founded, which is witnessed by a ranking relation
overb andc with a bound componentb≤ 0 and the decrease componentc≥ b+1.

The third step uses the well-founded over-approximation toconstruct a clause that introduces an
upper bound on the relation under well-foundedness condition. This clause replaces the well-formedness
condition by an approximation condition wrt. an assertion.For our example, the clausewf(r(s, t)) is
replaced by the clauser(s, t)→ (s≤ 0∧ t ≥ s+1).

Lastly, we apply the solving method for clauses without well-foundedness conditions described pre-
viously. In our example, the set of clauses to be solved becomes:

x≥ 10→ p(x), p(u)∧w= u+v→ q(v,w), q(y,z)∧y≤ 0→ r(y,z),

r(s, t)→ (s≤ 0∧ t ≥ s+1).

Finally, INTERHORN outputs the solution:

p(x) = (x≥ 10), q(v,w) = (w≥ 10+v), r(s, t) = (s≤ 0∧ t ≥ s+10).

4 Implementation

INTERHORN is implemented in SICStus Prolog [25]. For computing proofsof validity (resp. unsatis-
fiability) over linear rational arithmetic theory, INTERHORN relies on a proof producing version of a
simplex algorithm [10]. For computing well-founded approximations (also over linear rational arith-
metic theory), INTERHORN uses a linear ranking functions synthesis algorithm [21]. INTERHORN can
be downloaded fromhttp://www7.in.tum.de/tools/interhorn/, accepts input in form of Prolog
terms and outputs an appropriately formatted result.

5 Conclusion

We presented INTERHORN, a solver for recursion-free Horn clauses that can be used todeal with vari-
ous interpolation problems. The main directions for the future development include adding support for
uninterpreted functions, along the lines of [12], and integer arithmetic. After developing our work, we
became aware of a related work highlighting the relation between interpolation and recursion-free Horn
clauses [23]. The authors of [23] show that some interpolation problems correspond to various frag-
ments of recursion-free Horn clauses and establish complexity results for these fragments assuming the
background theory of linear integer arithmetic. Our work isless concerned with the different fragments
of recursion-free Horn clauses and more with how interpolation problems arise in software verification.
The well-founded interpolation problem is beyond the scopeof [23].
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