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Decentralized monitoring (DM) refers to a monitoring technique, where each component must infer,
based on a set of partial observations if the global property is satisfied. Our work is inspired by the
theoretical results presented by Baurer and Falcone at FM 2012 [7], where the authors introduced
an algorithm for distributing and monitoring LTL formulae, such that satisfaction or violation of
specifications can be detected by local monitors alone. However, their work is based on the main
assumption that neither the computation nor communication take time, hence it does not take into
account how to set a sampling time among the components such that their local traces are consistent.
In this work we provide a timed model in UPPAAL and we show a case study on a networked
embedded systems board.

1 Introduction

The majority of all computing devices produced nowadays, are embedded systems employed to monitor
and control physical processes: cars, airplanes, automotive highway systems, air traffic management,
etc.. In all these scenarios, computing and communicating devices, sensors monitoring the physical pro-
cesses and the actuators controlling the physical substratum are distributed and interconnected together
in dedicated networks. In order to verify the correct behavior of these systems at runtime, the user often
needs to monitor the emergent behavior of these autonomous systems perceiving them as monolithic
system, where the global behavior is the result of all the local behaviors. The property to be observed is
usually specified in terms of linear-time temporal logic [32] (LTL) formulae or as a finite state machine
accepting the language of all the traces satisfying the property of interest. The observation of the sys-
tem can follow two different approaches. The first is the centralized observation, where all the events
generated by the local components (i.e. sensors values) must be sent to a central dedicated component
that collects the local traces, orders them in a global trace and monitors the property of interest. In many
real-world applications, where both the communication and the number of components need to be kept
minimal, this approach is not feasible for practical and economical reason. An alternative method is the
decentralized monitoring, where each components must infer, based on a set of partial observations if the
global property is satisfied. Our work is inspired by the theoretical results presented by Baurer at al. at
FM 2012 [[7], introducing an algorithm for distributing and monitoring LTL formulae, such that satisfac-
tion or violation of specifications can be detected by local monitors alone. In their paper the monitoring
is performed using a technique also known as formula progression [35, [7, 3], where the LTL formula is
rewritten into a new formula expressing what needs to be satisfied by the current observation and a new
formula which has to be satisfied by the trace in the future. In the decentralized setting, the progression
is performed by each component equipped with a rewriting engine. In this case the monitoring may
involve the exchange, with the other components, of messages containing the rewritten LTL formula
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with past obligations on the events not directly observable by the local component. Unfortunately, we
found that their very elegant theoretical results are hard to implement in real-time embedded systems
for their main assumption in which neither the computation nor communication take time. For example,
the sampling time with which the events are observed must be consistent among the components and
during the monitoring. This time depends both on the communication media, the size of the messages
exchanged, the worst-time execution of the formula progression. In this work we try to address these
problems by providing a timed model in UPPAAL and we show a case study on a networked embedded
systems board.

The paper is organized as follows: in Section [2] we discuss the related works and in Section [3] we
introduce the background material. In Section[d] we present a timed model in UPPAAL for sample-based
monitoring and in Section [5|we show a case study. The conclusion is in Section [6]

2 Related Work

Runtime verification (also called monitoring) [8| 24] is a lightweight yet powerful formal technique used
to check whether the current execution of a program satisfies or violates a property of interest. This
technique differs from the classical and more expensive model checking (16, 34] that aims instead to
verify the correctness of the property exhaustively for all the possible program behaviors. Monitoring
is generally used when the system model is too big to handle with model checking due to the state-
explosion problem, or when the system model is not available, or it is a black-box where only the ouputs
are observable. Furthermore, runtime verification can also be used to trigger some system recovery
actions when a safety property is violated. If the system under scrutiny is distributed, multiple and
decentralized monitoring processes [7}, 22, |36} 139, 140, 41]] can be employed to check if during the ex-
ecution a global property is satisfied or not. In [36} 37] the authors describe an efficient decentralized
monitoring algorithm, based on a variant of past time linear temporal logic, that monitors a distributed
program’s execution to check for violations of safety properties. However, their work does not deal with
time constraints and does not address real-time applications running on networked embedded systems.
Baur and Falcone propose in [[7] an algorithm for decentralized LTL monitoring in synchronous systems
based on formula progression/rewriting, but also in that work, neither the overhead of monitoring and
the computation time are taken into account. In the last years, several techniques have been developed to
control the overhead [14} 38 |6, 25]] of monitoring. The majority of these techniques involve the use of
event-triggered monitors, where the monitor is invoked whenever a new event is triggered by the system,
making the overhead unpredictable. Our approach is based on synchronous sampling and it is similar
to the one introduced in [[12]], but extended for the case of networked embedded systems, where the lo-
cal monitors take samples from the local program variables and the sensors to analyze if a property of
interest is satisfied or not.

3 Background

In the decentralized monitoring setting considered in this paper, we assume a set 4 = {C,Cs,---,C,}
of components communicating on a serial communication BUS as Fig. [1| shows. Each component C; is
equipped with a monitor M; that can observe the set of events X;. ¥ =X UX,U---UL,, is the set of
all events. If each event can be observed only by a single component, we assume that ¥; NX; = 0 for
all i, j < n with i # j. The property to be monitored is specified in a LTL [32] formula ¢ over a set
of propositions AP, such that ¥ = 24”. We denote with 7;(m) the (m+1)-th event in the local trace T;
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observed by the monitor M; and with T = (71,72, ,T,) the global trace such that T = 7,(0) U1,(0) U

~T,(0)--- 71 (1) UTa(t) U-- - 1,(¢). Each component is an embedded computing device that can access
the values of a set of external sensors (i.e. the external temperature or the button pressure) and can
control through a program a set of actuators (i. e. fan speed or the temperature of the heater). Each
monitor observes the change of the local sensors and the program values together with the events that
may receive from the other components through a serial communication BUS, enabling the exchange of
multicast messages.

:  Actuators

ey

A b ~— - S X7 )\ 4 b ~— - 2
Sensors Actuators Sensors Actuators Sensors Actuators
Drivers Program = Drivers Drivers Program —> Drivers Drivers Program > Drivers

T, Local T, Local T Local

Trace Trace n Trace
Monitor M, Monitor M, || = Monitor M,
C Inter-components C Inter-components C Inter-components
1 communication 2 communication n communication
Component | Component ] Componentl

BUS

Figure 1: Decentralized monitoring setting for a distributed embedded systems.

Definition 3.1 (Linear Temporal Logic (LTL) Syntax [32]] ) The syntax for an LTL formula is described
by the following grammar:

e:=TI[LIp|-¢[¢ore|Xe|pUp
where p € AP. A LTL formula has atomic propositions p, logical connectives — /\, temporal operators

X (next), U (until). As usual, we introduce shorthands by defining the following derivative logical and
temporal operators:

vWe & (Y A-e) or (V)

V=0 & ypVe implies (—)
vy & (Y= e)AN(Q— )  equivalent (<)
Oy < (L U~y) always (0)
oy < T Uy eventually (O)

Definition 3.2 (Linear Temporal Logic (LTL) Semantics [32] ) Letbe T=7;(0)Un(0)U---7,(0)---
T(t)U---1,(t) -+ € ? (global trace) an infinite word with i € N being a position corresponding to a
particular time step. Then the semantics of an LTL formula is defined inductively as follows:

T](I)U
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T,i =T holds (is true).

Tk L & TiET

T,iEp & peTI(HUn(i)U---1,(i)

T,il= - & TiEQ

TiE QAP & T,ifE= Q@ and T,if= @

7,i = Xo & T,i+1 =@

7,i = U, & Fk>itkE@andVi<l<ktlE= @

Moreover, T |= @ holds < 7,0 |= ¢.

We denote Z (@) = {w € Z°|w |= ¢} as the language generated by an LTL-formula ¢ and corresponding
to a set of models of a LTL-formula ¢. The languages generated by two formulae ¢ and y are the same
Z(y) =Z(o) iff ¢ = y. A common technique to verify the correctness of a property is to generate
a monitor from a LTL-formula. Such a monitor can be then executed in parallel with the application
to be verified at runtime (online synchronous monitoring) or can be used after the program execution
to check a finite set of recorded executions (offline monitoring). There are two main approaches to
generate synchronous monitors. The first method relies on the generation of automata-based monitors.
In particular, there are several papers [19, 20, 42] describing how to build a reduced nondeterministic
Biichi automaton [13] able to recognize infinite words of the language £ (@) of a LTL formula ¢. A
Biichi automaton can be then turned to a monitor [17, 21] in the form of a deterministic finite state
machine (DFSM). Generally, the process of converting a LTL formula into a monitor is expensive and
the size of the Biichi automata generated can be 209D [20). However, once the monitor is generated, its
execution can be very efficient. In particular, Rosu et. at. showed in [17]] how to build particular DFSMs
called binary transition tree finite state machines (BTT-FSM) that perform a transition from a state to
another state of the monitor by evaluating an optimal number of atomic propositions.

LTL FORMULA BTT-FSM
¢ =o(green — —red U yellow)

GREEN YELLOW RED GREEN GREEN& RED &

RED  YELLOW

CORRECT ERROR

TABLE OF SYMBOLS DFSM

s, =yellow Ared A\ green

s, = yellow Alred A!green

s, =yellow Ared A\green

= 1
s, = yellow Ared A\green

s =!yellow Alred A green

ss = yellow Alred A green

s, =lyellow A red A green

sg = yellow Ared A green
8= 8 s,,sz,s3,s4,s5,s6,s7,sg}

FALSE

Figure 2: Automata-based monitors to check the property of a traffic light that always when it is green,
then it is not red until it is yellow.
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An alternative monitoring approach is based on formula rewriting [35.[7]] or formula progression [3]]. The
monitor in this case is a rewriting engine, that rewrites the current formula into a new formula expressing
what needs to be satisfied by the current observed events and what are the future obligations to meet.
The overhead required for monitoring with this approach is higher than by using a DFSM. On the other
hand this method is more flexible, because does not require a process of translation from LTL formula to
monitor and allows to change at runtime the formula to be monitored. In the following, we provide some
basic definitions for the LTL rewriting function and the monitoring result.

Definition 3.3 (LTL rewriting function[7]) Let S;r; be the set of all the possible LTL formulae and
O,01,0, € Syrr, 0 € X an event, the LTL rewriting function R : Sprp X ¥ — Spry is inductively defined
as follows:

B R(p € AP,c) = T,ifp¢€ o,L otherwise
22}3 _ I R(91V ¢2,0) = R(¢1,0)VR($2,0)
R(—|¢7G) _ —|R((]) 6) ( ¢ U¢, ) = R(¢2a6)\/R(¢1’G)/\¢1U¢2
R(9,0) = R, R(O0.0) = R(9.0)ACIp
Xo.0) = ¢ R(0.0) = R(9.0)Vo0

Definition 3.4 (Monitoring[7]) Let u € X* denote a finite word. The evaluation of the satisfaction rela-
tion, =3: £* X LTL — B3, with B3 = {T,L,?} of a formula ¢ with respect to u is defined as:

T if VoeX:uc = ¢
uFE3 =< L if VoeXV uc o

?  otherwise

4 A Timed Model for Decentralized Monitoring

In this section, we propose a timed model for the decentralized monitoring using networks of timed
automata [1]]. This formal specification allows us to analyze, with tools like UPPAAL [11], the timing
behavior of the system and to check important properties such as the synchronization of the sampling, the
sampling time and granularity. A timed automaton is a finite-state machine enriched with clock variables
using a dense-time model. For the sake of completeness, in the following we provide all necessary
definitions.

Definition 4.1 (Timed Automaton (TA) [11]) A rimed automaton is a tuple of = (L,ly,C,X,E 1) where:

e L is a finite set of locations,

e [y € L is the initial location,

e C is a finite set called the clocks of <7,

e X is a finite set called the alphabet or actions of <7,

e ECLxXXxB(C)x2CxLis a set of edges, called transitions of </, where B(C) is the set of
conjunctions over simple conditions of the form x i c or x —y < c, where x,y € C, ¢ € N and
e {<, <, =,>,>},

e [: L — B(C) assigns invariants to locations.

Definition 4.2 (Semantics of TA[11]) Ler o7 = (L,ly,C,X,E,I) be a timed automaton. The semantics
is defined as a labelled transition system (S,so,—), where:
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e S CLxRE is the set of states,
o 5o = (lo,uo) is the initial state,
o —C Sx (R>0UX) X S is the transition relation such that:
—(w S (Lutd) ifvd :0<d <d=u+d €I(l),
— (Lu) S () if there exists e = (1,0,8,1,1') €E s.t. u€ g, u' = [r— Olu, and u’ € (),
where for d € R, u+d maps each clock x in C to the value u(x) +d, and [r — Olu denotes the
clock valuation which maps each clock in r to 0 and agrees with u over C \ r.

A network of timed automata [[11]] is defined as a parallel composition of timed automata over a common
set of clocks and actions, consisting of n timed automata .7 = (L,-,Z?,C L Ei 1), 1 <i<n. Alocation
vector is a vector [ = (l1,---,1l,). The invariant functions are composed in a common function over
location vectors [ = AiI;(1;). Following the notation in [I1]], we denote with [[l//];] the vector where the
ith element /; of / is replaced by /.

Definition 4.3 (Semantics of a network of Timed Automata [11]) Ler o/, = (L;, l?, C,X,E; I;) be anet-
work of n timed automata. Let Iy = (l?, .-+, 19) be the initial location vector. The semantics is defined as
a transition system (S,so,), where S = (Ly % --- x L,) x RC is the set of states, so = (Lo, uo) is the initial
state, and —C S x § is the transition relation defined by:

o L)% (Lu+d) ifvd :0<d <d=u+d €Il).

o (Iu) S (I[L/1;),u) if there exists I; = I'st.ucg u =[r— Oluandu’ € I(I[ll/1}]).
o (I, u)g(i[l}/lj,lf/l,‘],u’) if there exist I; LN Il and
lj S8t Vst uc (ging) w =[riUrj— Oluand u' € I(I[l’/1;,1;/L]).

The UPPAAL standard semantics presented in Definitions 4.1, 4.2 and 4.3 includes neither the use
of bounded integer variables, nor the use of broadcast channels. Variables allow to keep low the number
of locations to handle, while the semantics of the broadcast channel does not require to have receivers
synchronized and so is never blocking. In our timed-model we employ both of these UPPAAL extensions
and we refer the reader to [[11]] for further details.

Fig. 3| shows the timed modeﬂ chosen for each component C; in Fig.|l} The model provides two
different possible behaviors depending on the value {0, 1} of the parameter fault,. This parameter en-
ables/disables a fault-tolerance mechanism called N modular redundancy (NMR) in which 2k 4 1 mod-
ules perform a process (in this case the monitoring) and the result is processed by a voting system to
produce a single output. For example, in triple modular redundancy (TMR) if any one of the three sys-
tems fails, the other two systems can correct and mask the fault. The other important parameters in the
model are the worst-case execution time (WCET) of the tasks involved in the process. WCET measures
the maximum time length a task could take to execute on a specific hardware platform. In our setting we
consider the following parameters:

o wecet; is the WCET to sample all the new local events to be monitored,

e wcet, is the WCET to send a message with the changed events from one node to the others (note
that the communication is multicast),

e wecet,, is the WCET to monitor the events,

IThe UPPAAL model can be downloaded at www. eziobartocci.com/has/decentralized_monitoring.xml
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id==s_id && id==s_id &&
x >= wcet_e && x >= weet_e &&
. s_id !=n-1 s_id I=n-1
Id 1= o? start 'Sd = send ! Send ?
SV“;" [ ockeo XV_ 0% dock =0 x=0,s_id=s_id+1  x=0,s id=s_id+1
x =0, s_clock = =0,s_ =
id==s_id && x=0, s_id = s_id+1,
x>=wcet_| send! s_clock=0
idI=s_id && x=0, s_id = s_id+1,
x>=wcet_| send? s_clock=0 i L.
x <= wcet_| - sending_receiving_events
id == sampling_local_events Id!=s_id && X <= wcet_e
X >= weet_t Id!=0 x>= wcet_e && Id !=s_id &&
synch ! X >= wcet_t s_id==n-1 x>= wcet_e &&
x=0, synch? send ? s.id==n-1
cycle = (cycle+1)%2 x=0, x=0,s_id=0 send !
cycle = (cycle+1)%2 x=0,s_id=0

X <= wcet_m + wcet_e

exec_local_task local_monitoring

X <= weet_t fault_t==0 && x >= wcet_m + wcet_e
x=0 id I=s_id && fault_t != 0 && Id ==s_id && fault_t != 0 &&
X >= weet_v X >= wcet_m + wcet_e X >= wcet_m + wcet_e
x=0 send ? send !
x=0,s_id=s_id+1 x=0,s_id=s_id+1

send_receive_result
X <= wcet_r

id==s_id && s_id == n-1 &&
voting x >= wceet_r send ! x=0,s_id=0
X <= wcet_v

id !I=s_id && s_id == n-1 &&
x>=wcet_r send ? x=0,s_id=0

COLOR LEGEND

LOCATION Id!=s_id &&s_id !I=n-1&& ld==s_id &&s_id I=n-1&&
INVARIANT X >= wceet_r X >=wcet_r

GUARD send ? send !
SYNCHRONIZATION x=0,s_id=s_id+1 x=0,s_id=s_id +1
UPDATE

Figure 3: TA specification for each component involved in the decentralized monitoring.

e wcet, is the WCET of sending a message with the result from one node to the others,
o wecet,is the WCET to perform the voting,
e wcet, is the WCET to execute a local task

Measuring the WCET is in the general case insoluble, because it is equivalent to the halting problem.
However, in many particular cases (i.e. when the software does not contains infinite loops) is still pos-
sible to provide an over-approximation of such measure. The most common techniques to calculate the
WCET are static analysis (by reasoning on the control graph, without executing the code) of the soft-
ware or by runtime measuring the performances through the generation of appropriate test cases. All the
WCET parameters are used to determine how much time each component C; should stay in a particular
location described in the timed model of Fig. 3] A clock x is used to keep track of the elapsed time in a
location. This clock variable is reset when an enabled transition (representing an action) is taken and it
is constrained with one of the WCET parameters mentioned before to determine the max time allowed
in a particular location. Another clock variable s, keeps track of the time length elapsed between one
sampling and the next one and it is used later to perform the analysis through model checking.

Two broadcast channels synch and send are used to realize the multicast communication. In a broadcast
synchronization one sender with the actions synch! or send! can synchronize with an arbitrary number
of receivers through the action synch? or send?. If a receiver in its current state has an enabled transition
in which it can synchronize, it must do so. However, the broadcast sending is never blocking, so the
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Node0 Nodel Node2 Node0 Nodel Node2

+ e S e—— —

send |send
send [send

send
send
send |send

[exec_local_task | [exec_local_task]]

I |

send [send
send

[local_monitoring | [local_monitoring |
| |

Figure 4: Two possible sequence (on the left fault,=0, while on the right fault;=1) diagrams generated
using UPPAAL simulator for the model in Fig. [3|
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sender can execute a synchronization action even if there are no receivers. A variable cycle is used
for analysis purposes to mark the current cycle from the next and the previous one. Fig. [ shows
two possible execution traces of the system, one with the NMR enabled and one with NMR disabled.
The timed automaton starts (stzart location) with a synchronization action synch sent always by the first
component with id == 0 and received by the other components with id! = 0, respectively. Then in the
sampling local_events location within wcet; milliseconds all the local events in each nodes are sampled.
The events that are changed in each node, are sent (in the location sending _receiving_events) to the others
with n multicast messages, where 7 is the number of nodes. The order with which the nodes exchange
their messages follows the order of their id (i.e. the node with lower id starts first). In the location
local_monitoring, the local monitor processes the events and produces a result { L, T,?}. If the fault-
tolerant mechanism is enabled (fault;==1), the result is sent from each node to all the other nodes (in
send_receive_result) and a voting mechanism will follow (voting location). A local task (i.e. displaying
results, increase the heater temperature, etc..) can also be executed in the location exec_local_task, before
the local sampling will start again the loop. In the following we shows some properties that are possible
to be verified in the proposed timed model using UPPAAL tool.

Property 4.4 (Liveness) When the timed automaton in Fig. [S|will enter the sampling_local_events loca-
tion at the cycle = i will then eventually enter the same location at cycle = (i+ 1) mod 2 with i € {0,1}.

In UPPAAL this property can be expressed using the leads to or response form, written ¢ ~~ W which
means whenever ¢ is satisfied, then y will be satisfied. It is possible to verify that the following
liveness property ((%;.sampling_local_events A cycle == 0) ~ (%;.sampling_local_events A cycle ==
1)) A ((%;.sampling_local events A cycle == 1) ~ (%;.sampling_local_events A cycle == 0)) holds for
each1 <i<n.

Property 4.5 (Synchronous sampling) Given a network of n timed automata, there is not a reachable
state, where one timed automaton is in the sampling_local_events location and the others in different
locations at the same time. This means that the local events will be sampled by each component always
synchronously.

This property can be expressed in UPPAAL as the negation of a path formula (exist eventually) =E{@:
—EQ(Vi<i<y(%i-sampling local events A (V4 1< j<, 7%;j.sampling local events )))

Proposition 4.6 (Sampling frequency) Given a network of n components with the timed model shown
in Fig. [3| the sampling frequency function f; : N — R with which the local events are sampled is:

filn) = !

N wcet; +n - wcet, +wcet,, + fault, - (n -wceet, + chtv) + wecet;

with wcet; time units is also the time granularity and within this interval of time it is not possible to
distinguish two different samples.

In UPPAAL we can check that the sampling period is always constant, by verifying the following for-
mula: (;.Sciock == 0) ~~ (6;.sampling_local _events \ C;.S¢jock == wcet; +n - weet, + wcet,, + fault; -
(n-wcet, + wcet,) +wcet;)

We verified the previous properties in UPPAAL by varying the number of components n from two to
ten. However, we can generalize to an arbitrary number of nodes by making the following observations
on the timed-model of Fig. f] (here we consider only the case fault; = 0, but the observations are similar
for the case fault; =1):
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1. Start — sampling_local _events. All n components are initialized in the Start location. The first
transition is forced by the component %y that synchronizes with a synch ! action all the other
components 6; with 0 < i < n to switch, with a synch ? action (the only one enabled), into the new
location sampling local_events at the same time. There is no possibility that one component is in
location Start and another is in location sampling _local_events.

2. sampling_local_events— sending_receiving_events. In this case all the components need to wait
the same amount of time wcet; even if one finishes to sample the local events before another. After
wcet; time there is only one action enabled for each component: send ! for 6y and send ? for €;
with 0 < i < n. This step models %) sending its local events update to all the other components.

3. sending_receiving_events— sending_receiving_events. A sequence of n — 2 broadcast synchro-
nization actions send ! and send ? will be enabled after waiting wcet, time each step. Incrementing
the variable s;; from one to n — 2 will distinguish the sender component ¢;—;,, performing the syn-
chronization action send ! from the receiver components %, performing the action send ?. This
sequence of synchronizations costs (n —2) - wcet, time.

4. sending receiving_events— local_monitoring. This transition is enabled only when s;y = n — 1
and corresponds to the last component %;—,_1 sending its local events update to the other compo-
nents after all having waited wcet, time.

5. local_monitoring— exec_local _tasks. This transition is performed by all the components without
synchronization. Each component should wait in the location local_monitoring exactly wcet,, +
wcet, time and then switch to the location exec_local_tasks.

6. exec_local_tasks— sampling local_events. This case is similar to 1. The time spent in the location
exec_local_tasks for each component is wcet;. This transition makes sure that the /iveness Property
4.4 holds.

By summing up the times spent in each location for a complete cycle, it is easy to show that also the
Proposition 4.6 holds.

5 Case Study

The model presented in the previous section has been implemented on an hardware platform (designed
in our lab) hosts with four independent micro-controllers (ATMegal28 produced by Amtel) nodes con-
nected to a real-time network. Each node is equipped with different peripheral devices as Fig. [5] shows.
A shared communication BUS is included for Real-Time data transfer between the four nodes.

We chose the Carrier Sense Multiple Access (CSMA) with collision detection as our low level commu-
nication protocol among the nodes. This avoids that simultaneous messages are sent from the nodes
and the messages do not require a fixed message length like in other protocols (like TTP [26]). It is
possible to determine the WCET of the communication by analyzing the max length of the exchanged
messages as Table [I] shows. The max length of the messages depends usually on the max number of
atomic propositions that can change at runtime in one component.

We have adopted both the automata-based and the formula progression monitoring approaches. In the
automata-based approach, we have used LTL3 tool to generate the DFSM from a LTL formula and
then coded the resulted state-machine in C, while to measure the monitoring overhead is possible to

Znttp://1t13tools.sourceforge.net
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1) Instrumenting the Monitors Real-Time Clock
2) Decentralized Monitoring -—
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I

Figure 5: Networked Embedded Systems.

use a static analyzer for AMTEL micro-controller like Bound—"[El . Concerning the formula-progression
monitoring technique, even if we have imposed some limitations on the length of the formula (max 64
symbols) and on the number of next temporal operators allowed, the only way to measure the WCET is
by measuring the elapsed time directly on the components.

Example 5.1 We have implemented a simple heating control, where a resistor controlled by the node 1
heats up to 30 degrees and a fan is activated unless one of the two safety buttons controlled by node 0
are not pressed. We can specify the correct behavior using the following formula:

O(("boV!by) A((t > 30) — (fane)))

The size for the automata-based monitor is only of two states as Figure [6| shows. The monitor based on

(=B, v=b,) A((£>30) > ( fan,,)) T

0 ! ERROR

—((=by v =b, ) A (1> 30) = (fan,, )))
Figure 6: Automata-based monitor.

formula progression R(CI((1bgV!b1) A ((t > 30) — (fan,y,))),o) will rewrite the formula as follows:

3http://www.bound-t . com
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Property Value | Description
max length of the token msg 66 bytes | 1 byte for CSMA + 1 byte for the message
length (4 bits) and token (4 bits) + 64 bytes
for the data.

max length of the result msg 4 bytes | 1 CSMA byte + 1 byte for the message length
(4 bits) and token (4 bits) + 2 bytes for the
data.

max length of the synch msg 1 bytes | 1 CSMA byte

max num. bytes sent in one round 281 bytes | synch + 4 * token msg + 4 * result msg

max bits sent in one round 2810 bits | a byte sent contains 8 data bits, 1 start bit and
1 bit stop

Baud rate 4800 bit/s

Worst Case Time for communication | 0.585 sec

Table 1: The Worst Case execution depends on the number of micro-controllers used, the max length of
a token message exchanged, the max length of the result message and the baud rate of the BUS.

R((1boV1h1) A ((t > 30) — (fang)), o) AD((1boV1b1) A ((z > 30) = (fane)))

Hence, if the term (1bgV!b1) A ((t > 30) — (fan,,)) is true, given the events in o, then the resulting
formula is:

TAD((1boV1h1) A (7 > 30) = (fanwm)) = O((1boV1b1) A ((z > 30) — (fane))

otherwise, then the resulting formula is:

LAD((1heV1by) A ((t > 30) = (fane,)) = L

We have measured the wcet,, time for the formula-progression monitoring of this example (that is
also an upper bound for the automata-based monitor) counting the max number of CPU cycles needed
with a prescaler (that divides the clock frequency) value set to 8. Considering that the clock speed of
the micro-controller is 16 MHz, we have obtained that the rewriting worst case execution time for the
formula is 65415 cycles x (1/(16MHz/8)) = 0.03237 sec.

6 Conclusion

The synchronous decentralized monitoring of a networked embedded system requires some important
assumptions about the synchronization mechanisms and the minimum sampling time to guarantee the
time consistency among the monitored local traces. In this work we provide a possible timed model in
UPPAAL for a sampling-based decentralized monitoring and we verify some important properties such
as the liveness, the synchronous sampling and the frequency. We then provide a case study where we
implement this timed model in our networked embedded systems testbed. Currently, we plan to extend
our work in two directions. First, we would like to monitor properties expressed in more sophisticated
temporal logics dealing with dense-time such as Metric Interval Temporal Logic (MITL) [2]. Secondly,
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since the synchronous communication becomes very computational expensive when the number of com-
ponents increases, we plan to provide an asynchronous decentralized monitoring model, based on the
Lamport’s notion of global time [27].
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