
Bortolussi, Bujorianu, Pola (Eds.): HAS 2013
EPTCS 124, 2013, pp. 85–99, doi:10.4204/EPTCS.124.9

c© Ezio Bartocci
This work is licensed under the
Creative Commons Attribution License.

Sampling-based Decentralized Monitoring
for Networked Embedded Systems

Ezio Bartocci
Institute of Computer Engineering
Vienna University of Technology

Vienna, Austria
ezio.bartocci@tuwien.ac.at

Decentralized monitoring (DM) refers to a monitoring technique, where each component must infer,
based on a set of partial observations if the global property is satisfied. Our work is inspired by the
theoretical results presented by Baurer and Falcone at FM 2012 [7], where the authors introduced
an algorithm for distributing and monitoring LTL formulae, such that satisfaction or violation of
specifications can be detected by local monitors alone. However, their work is based on the main
assumption that neither the computation nor communication take time, hence it does not take into
account how to set a sampling time among the components such that their local traces are consistent.
In this work we provide a timed model in UPPAAL and we show a case study on a networked
embedded systems board.

1 Introduction

The majority of all computing devices produced nowadays, are embedded systems employed to monitor
and control physical processes: cars, airplanes, automotive highway systems, air traffic management,
etc.. In all these scenarios, computing and communicating devices, sensors monitoring the physical pro-
cesses and the actuators controlling the physical substratum are distributed and interconnected together
in dedicated networks. In order to verify the correct behavior of these systems at runtime, the user often
needs to monitor the emergent behavior of these autonomous systems perceiving them as monolithic
system, where the global behavior is the result of all the local behaviors. The property to be observed is
usually specified in terms of linear-time temporal logic [32] (LTL) formulae or as a finite state machine
accepting the language of all the traces satisfying the property of interest. The observation of the sys-
tem can follow two different approaches. The first is the centralized observation, where all the events
generated by the local components (i.e. sensors values) must be sent to a central dedicated component
that collects the local traces, orders them in a global trace and monitors the property of interest. In many
real-world applications, where both the communication and the number of components need to be kept
minimal, this approach is not feasible for practical and economical reason. An alternative method is the
decentralized monitoring, where each components must infer, based on a set of partial observations if the
global property is satisfied. Our work is inspired by the theoretical results presented by Baurer at al. at
FM 2012 [7], introducing an algorithm for distributing and monitoring LTL formulae, such that satisfac-
tion or violation of specifications can be detected by local monitors alone. In their paper the monitoring
is performed using a technique also known as formula progression [35, 7, 3], where the LTL formula is
rewritten into a new formula expressing what needs to be satisfied by the current observation and a new
formula which has to be satisfied by the trace in the future. In the decentralized setting, the progression
is performed by each component equipped with a rewriting engine. In this case the monitoring may
involve the exchange, with the other components, of messages containing the rewritten LTL formula

http://dx.doi.org/10.4204/EPTCS.124.9
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

86 Sampling-based Decentralized Monitoring for Networked Embedded Systems

with past obligations on the events not directly observable by the local component. Unfortunately, we
found that their very elegant theoretical results are hard to implement in real-time embedded systems
for their main assumption in which neither the computation nor communication take time. For example,
the sampling time with which the events are observed must be consistent among the components and
during the monitoring. This time depends both on the communication media, the size of the messages
exchanged, the worst-time execution of the formula progression. In this work we try to address these
problems by providing a timed model in UPPAAL and we show a case study on a networked embedded
systems board.

The paper is organized as follows: in Section 2 we discuss the related works and in Section 3 we
introduce the background material. In Section 4 we present a timed model in UPPAAL for sample-based
monitoring and in Section 5 we show a case study. The conclusion is in Section 6.

2 Related Work

Runtime verification (also called monitoring) [8, 24] is a lightweight yet powerful formal technique used
to check whether the current execution of a program satisfies or violates a property of interest. This
technique differs from the classical and more expensive model checking [16, 34] that aims instead to
verify the correctness of the property exhaustively for all the possible program behaviors. Monitoring
is generally used when the system model is too big to handle with model checking due to the state-
explosion problem, or when the system model is not available, or it is a black-box where only the ouputs
are observable. Furthermore, runtime verification can also be used to trigger some system recovery
actions when a safety property is violated. If the system under scrutiny is distributed, multiple and
decentralized monitoring processes [7, 22, 36, 39, 40, 41] can be employed to check if during the ex-
ecution a global property is satisfied or not. In [36, 37] the authors describe an efficient decentralized
monitoring algorithm, based on a variant of past time linear temporal logic, that monitors a distributed
program’s execution to check for violations of safety properties. However, their work does not deal with
time constraints and does not address real-time applications running on networked embedded systems.
Baur and Falcone propose in [7] an algorithm for decentralized LTL monitoring in synchronous systems
based on formula progression/rewriting, but also in that work, neither the overhead of monitoring and
the computation time are taken into account. In the last years, several techniques have been developed to
control the overhead [14, 38, 6, 25] of monitoring. The majority of these techniques involve the use of
event-triggered monitors, where the monitor is invoked whenever a new event is triggered by the system,
making the overhead unpredictable. Our approach is based on synchronous sampling and it is similar
to the one introduced in [12], but extended for the case of networked embedded systems, where the lo-
cal monitors take samples from the local program variables and the sensors to analyze if a property of
interest is satisfied or not.

3 Background

In the decentralized monitoring setting considered in this paper, we assume a set C = {C1,C2, · · · ,Cn}
of components communicating on a serial communication BUS as Fig. 1 shows. Each component Ci is
equipped with a monitor Mi that can observe the set of events Σi. Σ = Σ1 ∪Σ2 ∪ ·· · ∪Σn, is the set of
all events. If each event can be observed only by a single component, we assume that Σi ∩Σ j = /0 for
all i, j ≤ n with i 6= j. The property to be monitored is specified in a LTL [32] formula ϕ over a set
of propositions AP, such that Σ = 2AP. We denote with τi(m) the (m+1)-th event in the local trace τi

Ezio Bartocci 87

observed by the monitor Mi and with τ = (τ1,τ2, · · · ,τn) the global trace such that τ = τ1(0)∪ τ2(0)∪
·· ·τn(0) · · ·τ1(t)∪ τ2(t)∪ ·· ·τn(t). Each component is an embedded computing device that can access
the values of a set of external sensors (i.e. the external temperature or the button pressure) and can
control through a program a set of actuators (i. e. fan speed or the temperature of the heater). Each
monitor observes the change of the local sensors and the program values together with the events that
may receive from the other components through a serial communication BUS, enabling the exchange of
multicast messages.

…….#

BUS$

Component$ Component$ Component$

C1

Monitor$M1

Sensors$$
Drivers$ Program$

τ 1 Local&&
Trace&

Actuators$$
Drivers$

Inter9components$
communica:on$

Sensors$$ Actuators$$
…#…#

C2

Monitor$M2

Sensors$$
Drivers$ Program$

τ 2 Local&&
Trace&

Actuators$$
Drivers$

Inter9components$
communica:on$

Sensors$$ Actuators$$
…#…#

Cn

Monitor$Mn

Sensors$$
Drivers$ Program$

τ n Local&&
Trace&

Actuators$$
Drivers$

Inter9components$
communica:on$

Sensors$$ Actuators$$
…#…#

Figure 1: Decentralized monitoring setting for a distributed embedded systems.

Definition 3.1 (Linear Temporal Logic (LTL) Syntax [32]) The syntax for an LTL formula is described
by the following grammar:

ϕ ::=> |⊥ |p | ¬ϕ | ϕ ∧ϕ | Xϕ| ϕUϕ

where p ∈ AP. A LTL formula has atomic propositions p, logical connectives ¬ ∧, temporal operators
X (next), U (until). As usual, we introduce shorthands by defining the following derivative logical and
temporal operators:

ψ ∨ϕ

ψ → ϕ

ψ ↔ ϕ

�ψ

♦ψ

⇔
⇔
⇔
⇔
⇔

¬(¬ψ ∧¬ϕ)
¬ψ ∨ϕ

(ψ → ϕ)∧ (ϕ → ψ)
¬(⊥ U¬ψ)
> Uψ

or (∨)
implies (→)
equivalent (↔)
always (�)
eventually (♦)

Definition 3.2 (Linear Temporal Logic (LTL) Semantics [32]) Let be τ = τ1(0)∪τ2(0)∪·· ·τn(0) · · ·τ1(t)∪
τ2(t)∪ ·· ·τn(t) · · · ∈ Σω (global trace) an infinite word with i ∈ N being a position corresponding to a
particular time step. Then the semantics of an LTL formula is defined inductively as follows:

88 Sampling-based Decentralized Monitoring for Networked Embedded Systems

τ, i |=> holds
τ, i |=⊥
τ, i |= p
τ, i |= ¬ϕ

τ, i |= ϕ1∧ϕ2
τ, i |= Xϕ

τ, i |= ϕ1Uϕ2

(is true).
⇔
⇔
⇔
⇔
⇔
⇔

τ, i 6|=>
p ∈ τ1(i)∪ τ2(i)∪·· ·τn(i)
τ, i 6|= ϕ

τ, i |= ϕ1 and τ, i |= ϕ2
τ, i+1 |= ϕ

∃k ≥ i τ,k |= ϕ2 and ∀i≤ l < k τ, l |= ϕ1

Moreover, τ |= ϕ holds⇔ τ,0 |= ϕ .

We denote L (ϕ) = {w∈ Σω |w |= ϕ} as the language generated by an LTL-formula ϕ and corresponding
to a set of models of a LTL-formula ϕ . The languages generated by two formulae ϕ and ψ are the same
L (ψ) = L (ϕ) iff ϕ ≡ ψ . A common technique to verify the correctness of a property is to generate
a monitor from a LTL-formula. Such a monitor can be then executed in parallel with the application
to be verified at runtime (online synchronous monitoring) or can be used after the program execution
to check a finite set of recorded executions (offline monitoring). There are two main approaches to
generate synchronous monitors. The first method relies on the generation of automata-based monitors.
In particular, there are several papers [19, 20, 42] describing how to build a reduced nondeterministic
Büchi automaton [13] able to recognize infinite words of the language L (ϕ) of a LTL formula ϕ . A
Büchi automaton can be then turned to a monitor [17, 21] in the form of a deterministic finite state
machine (DFSM). Generally, the process of converting a LTL formula into a monitor is expensive and
the size of the Büchi automata generated can be 2O(|ϕ|) [20]. However, once the monitor is generated, its
execution can be very efficient. In particular, Rosu et. at. showed in [17] how to build particular DFSMs
called binary transition tree finite state machines (BTT-FSM) that perform a transition from a state to
another state of the monitor by evaluating an optimal number of atomic propositions.

GREEN% YELLOW% RED% GREEN% RED% RED%&%
YELLOW%

CORRECT% ERROR%

LTL%FORMULA%

 ϕ = green→ ¬red U yellow()

DFSM%

0%

2%

1%

s1, s8, s6, s4 , s3, s2{ }

s3{ }

s5{ }

s1, s2, s3, s4 , s5, s6, s7, s8{ }
s3, s7{ }

s1, s5{ }

s2, s4 , s7, s8{ }

TABLE%OF%SYMBOLS%
s1 = !yellow∧!red ∧!green
s2 = yellow∧!red ∧!green
s3 = !yellow∧ red ∧!green
s4 = yellow∧ red ∧!green
s5 = !yellow∧!red ∧ green
s6 = yellow∧!red ∧ green
s7 = !yellow∧ red ∧ green
s8 = yellow∧ red ∧ green

GREEN%

YELLOW%

RED%

RED%

YELLOW%

N%

Y%

FALSE%

FALSE%

N%

N%

Y%

Y%

1%

2%

N%

N%Y%

Y%

BTT7FSM%

GREEN% GREEN&%
RED%

RED%&%
YELLOW%

ERROR%

Figure 2: Automata-based monitors to check the property of a traffic light that always when it is green,
then it is not red until it is yellow.

Ezio Bartocci 89

An alternative monitoring approach is based on formula rewriting [35, 7] or formula progression [3]. The
monitor in this case is a rewriting engine, that rewrites the current formula into a new formula expressing
what needs to be satisfied by the current observed events and what are the future obligations to meet.
The overhead required for monitoring with this approach is higher than by using a DFSM. On the other
hand this method is more flexible, because does not require a process of translation from LTL formula to
monitor and allows to change at runtime the formula to be monitored. In the following, we provide some
basic definitions for the LTL rewriting function and the monitoring result.

Definition 3.3 (LTL rewriting function[7]) Let SLT L be the set of all the possible LTL formulae and
φ ,φ1,φ2 ∈ SLT L, σ ∈ Σ an event, the LTL rewriting function R : SLT L×Σ→ SLT L is inductively defined
as follows:

R(>,σ) = >
R(⊥,σ) = ⊥

R(¬φ ,σ) = ¬R(φ ,σ)
R(Xφ ,σ) = φ

R(p ∈ AP,σ) = >, if p ∈ σ ,⊥ otherwise
R(φ1∨φ2,σ) = R(φ1,σ)∨R(φ2,σ)
R(φ1Uφ2,σ) = R(φ2,σ)∨R(φ1,σ)∧φ1Uφ2

R(�φ ,σ) = R(φ ,σ)∧�φ

R(�φ ,σ) = R(φ ,σ)∨�φ

Definition 3.4 (Monitoring[7]) Let u ∈ Σ∗ denote a finite word. The evaluation of the satisfaction rela-
tion, |=3: Σ∗×LT L→ B3, with B3 = {>,⊥,?} of a formula ϕ with respect to u is defined as:

u |=3 ϕ =

> if ∀σ ∈ Σw : uσ |= ϕ

⊥ if ∀σ ∈ Σw : uσ 6|= ϕ

? otherwise

4 A Timed Model for Decentralized Monitoring

In this section, we propose a timed model for the decentralized monitoring using networks of timed
automata [1]. This formal specification allows us to analyze, with tools like UPPAAL [11], the timing
behavior of the system and to check important properties such as the synchronization of the sampling, the
sampling time and granularity. A timed automaton is a finite-state machine enriched with clock variables
using a dense-time model. For the sake of completeness, in the following we provide all necessary
definitions.

Definition 4.1 (Timed Automaton (TA) [11]) A timed automaton is a tuple A =(L, l0,C,Σ,E, I) where:

• L is a finite set of locations,

• l0 ∈ L is the initial location,

• C is a finite set called the clocks of A ,

• Σ is a finite set called the alphabet or actions of A ,

• E ⊆ L×Σ×B(C)× 2C × L is a set of edges, called transitions of A , where B(C) is the set of
conjunctions over simple conditions of the form x ./ c or x− y ./ c, where x,y ∈ C, c ∈ N and
./∈ {<,≤,=,≥,>},
• I : L→ B(C) assigns invariants to locations.

Definition 4.2 (Semantics of TA[11]) Let A = (L, l0,C,Σ,E, I) be a timed automaton. The semantics
is defined as a labelled transition system 〈S,s0,→〉, where:

90 Sampling-based Decentralized Monitoring for Networked Embedded Systems

• S⊆ L×RC is the set of states,

• s0 = (l0,u0) is the initial state,

• →⊆ S× (R≥0∪Σ)×S is the transition relation such that:

– (l,u) d−→ (l,u+d) if ∀d′ : 0≤ d′ ≤ d =⇒ u+d′ ∈ I(l),
– (l,u) a−→ (l’,u’) if there exists e = (l,σ ,g,r, l′) ∈ E s.t. u ∈ g, u′ = [r 7−→ 0]u, and u′ ∈ I(l′),

where for d ∈ R≥0, u+d maps each clock x in C to the value u(x)+d, and [r 7−→ 0]u denotes the
clock valuation which maps each clock in r to 0 and agrees with u over C \ r.

A network of timed automata [11] is defined as a parallel composition of timed automata over a common
set of clocks and actions, consisting of n timed automata Ai = (Li, l0

i ,C,Σ,Ei.Ii),1 ≤ i ≤ n. A location
vector is a vector l = (l1, · · · , ln). The invariant functions are composed in a common function over
location vectors l = ∧iIi(li). Following the notation in [11], we denote with l[l′i/li] the vector where the
ith element li of l is replaced by l′i .

Definition 4.3 (Semantics of a network of Timed Automata [11]) Let Ai =(Li, l0
i ,C,Σ,Ei, Ii) be a net-

work of n timed automata. Let l0 = (l0
1 , · · · , l0

n) be the initial location vector. The semantics is defined as
a transition system 〈S,s0,〉, where S = (L1×·· ·×Ln)×RC is the set of states, s0 = (l0,u0) is the initial
state, and→⊆ S×S is the transition relation defined by:

• (l,u) d−→ (l,u+d) if ∀d′ : 0≤ d′ ≤ d =⇒ u+d′ ∈ I(l).

• (l,u) a−→ (l[l′i/li],u′) if there exists li
τgr−−→ l′i s.t. u ∈ g, u′ = [r 7−→ 0]u and u′ ∈ I(l[l′i/li]).

• (l,u) a−→(l[l′j/l j, l′i/li],u′) if there exist li
c?giri−−−→ l′i and

l j
c!g jr j−−−→ l′j s.t. u ∈ (gi∧g j), u′ = [ri∪ r j 7−→ 0]u and u′ ∈ I(l[l′j/l j, l′i/li]).

The UPPAAL standard semantics presented in Definitions 4.1, 4.2 and 4.3 includes neither the use
of bounded integer variables, nor the use of broadcast channels. Variables allow to keep low the number
of locations to handle, while the semantics of the broadcast channel does not require to have receivers
synchronized and so is never blocking. In our timed-model we employ both of these UPPAAL extensions
and we refer the reader to [11] for further details.

Fig. 3 shows the timed model1 chosen for each component Ci in Fig. 1. The model provides two
different possible behaviors depending on the value {0,1} of the parameter f aultt . This parameter en-
ables/disables a fault-tolerance mechanism called N modular redundancy (NMR) in which 2k+1 mod-
ules perform a process (in this case the monitoring) and the result is processed by a voting system to
produce a single output. For example, in triple modular redundancy (TMR) if any one of the three sys-
tems fails, the other two systems can correct and mask the fault. The other important parameters in the
model are the worst-case execution time (WCET) of the tasks involved in the process. WCET measures
the maximum time length a task could take to execute on a specific hardware platform. In our setting we
consider the following parameters:

• wcetl is the WCET to sample all the new local events to be monitored,

• wcete is the WCET to send a message with the changed events from one node to the others (note
that the communication is multicast),

• wcetm is the WCET to monitor the events,
1The UPPAAL model can be downloaded at www.eziobartocci.com/has/decentralized_monitoring.xml

www.eziobartocci.com/has/decentralized_monitoring.xml

Ezio Bartocci 91

!"#$"%

&'()*%

+%,-%./0"1&%

!0)21$0/03&01$0!45"%

+%,-%./0"1$%

0+0/15'/#51"#!6% 5'/#517')3"'$3)*%
+%,-%./0"17%8%./0"10%

+%,-%./0"1"% 9#45"1"--:%;;%+%<-%./0"17%8%./0"10%

+%-%:%

!#7=53)*15'/#510&0)"!%
+%,-%./0"15% !0)23)*1$0/03&3)*10&0)"!%

+%,-%./0"10%

32%--%!132%;;%

+%<-%./0"10%;;%

!132%>-%)?@%

!0)2%>%

+%-%:A%!132%-%!132%8%@%

32%--%!132%;;%

+%<-%./0"10%;;%

!132%>-%)?@%

B0)2%C%

+%-%:A%!132%-%!132%8%@%

32%--%:%

!D)/E%>%

+%-%:A%!1/5'/6%-%:%

F2%>-%:%

!D)/E%C%

+%-%:A%%!1/5'/6%-%:%

32%--%!132%;;%%%%%%%%%%%%%%%%+-:A%!132%-%!1328@A%%

+%<-%./0"15%%%%%%!0)2%>%%%!1/5'/6%-%:%

32%>-%!132%;;%%%%%%%%%%%%%%%%%+-:A%!132%-%!1328@A%%

+%<-%./0"15%%%%%%!0)2%C%%!1/5'/6%-%:%

F2%>-%:%

+%<-%./0"1"%%

!D)/E%C%

+%-%:A%%

/D/50%-%G/D/508@HIJ%

32%--%:%

+%<-%./0"1"%%

!D)/E%>%

+%-%:A%%

/D/50%-%G/D/508@HIJ%

F2%>-%!132%;;%

+%<-%./0"10%;;%

!132%--%)%K%@%

!0)2%%C%

+%-%:A%!132-:%

F2%>-%!132%;;%

+%<-%./0"10%;;%

!132%--%)%K%@%

!0)2%%>%

+%-%:A%!132-:%

+%<-%./0"1&%%

+%-%:%

32%--%!132%;;%!132%--%)?@%;;%

+%<-%./0"1$%%%%%%%%%%%!0)2%%>%%%+%-%:A%!132-:%

32%>-%!132%;;%9#45"1"%>-%:%;;%

+%<-%./0"17%8%./0"10%

!0)2%%C%

+%-%:A%!132-%!132%8%@%

32%>-%!132%;;%!132%--%)?@%;;%

+%<-%./0"1$%%%%!0)2%%C%%%+%-%:A%!132-:%

F2%--%!132%;;%9#45"1"%>-%:%;;%

+%<-%./0"17%8%./0"10%

!0)2%%>%

+%-%:A%!132-%!132%8%@%

F2%--%!132%;;%!132%>-%)?@%;;%

+%<-%./0"1$%

!0)2%%>%

+%-%:A%!132-%!132%8%@%

F2%>-%!132%;;%!132%>-%)?@%;;%

+%<-%./0"1$%

!0)2%%C%

+%-%:A%!132-%!132%8%@%

LMNMO%NPQPRS%

NMLTUFMR%

FRVTOFTRU%

QWTOS%

BXRLYOMRFZTUFMR%

W[STUP%

NMLTUFMR%

FRVTOFTRU%

QWTOS%

BXRLYOMRFZTUFMR%

W[STUP%

Figure 3: TA specification for each component involved in the decentralized monitoring.

• wcetr is the WCET of sending a message with the result from one node to the others,

• wcetvis the WCET to perform the voting,

• wcett is the WCET to execute a local task

Measuring the WCET is in the general case insoluble, because it is equivalent to the halting problem.
However, in many particular cases (i.e. when the software does not contains infinite loops) is still pos-
sible to provide an over-approximation of such measure. The most common techniques to calculate the
WCET are static analysis (by reasoning on the control graph, without executing the code) of the soft-
ware or by runtime measuring the performances through the generation of appropriate test cases. All the
WCET parameters are used to determine how much time each component Ci should stay in a particular
location described in the timed model of Fig. 3. A clock x is used to keep track of the elapsed time in a
location. This clock variable is reset when an enabled transition (representing an action) is taken and it
is constrained with one of the WCET parameters mentioned before to determine the max time allowed
in a particular location. Another clock variable sclock keeps track of the time length elapsed between one
sampling and the next one and it is used later to perform the analysis through model checking.
Two broadcast channels synch and send are used to realize the multicast communication. In a broadcast
synchronization one sender with the actions synch! or send! can synchronize with an arbitrary number
of receivers through the action synch? or send?. If a receiver in its current state has an enabled transition
in which it can synchronize, it must do so. However, the broadcast sending is never blocking, so the

92 Sampling-based Decentralized Monitoring for Networked Embedded Systems

Figure 4: Two possible sequence (on the left f aultt=0, while on the right f aultt=1) diagrams generated
using UPPAAL simulator for the model in Fig. 3.

Ezio Bartocci 93

sender can execute a synchronization action even if there are no receivers. A variable cycle is used
for analysis purposes to mark the current cycle from the next and the previous one. Fig. 4 shows
two possible execution traces of the system, one with the NMR enabled and one with NMR disabled.
The timed automaton starts (start location) with a synchronization action synch sent always by the first
component with id == 0 and received by the other components with id! = 0, respectively. Then in the
sampling local events location within wcetl milliseconds all the local events in each nodes are sampled.
The events that are changed in each node, are sent (in the location sending receiving events) to the others
with n multicast messages, where n is the number of nodes. The order with which the nodes exchange
their messages follows the order of their id (i.e. the node with lower id starts first). In the location
local monitoring, the local monitor processes the events and produces a result {⊥,>,?}. If the fault-
tolerant mechanism is enabled (f aultt==1), the result is sent from each node to all the other nodes (in
send receive result) and a voting mechanism will follow (voting location). A local task (i.e. displaying
results, increase the heater temperature, etc..) can also be executed in the location exec local task, before
the local sampling will start again the loop. In the following we shows some properties that are possible
to be verified in the proposed timed model using UPPAAL tool.

Property 4.4 (Liveness) When the timed automaton in Fig. 3 will enter the sampling local events loca-
tion at the cycle = i will then eventually enter the same location at cycle = (i+1) mod 2 with i ∈ {0,1}.

In UPPAAL this property can be expressed using the leads to or response form, written ϕ ψ which
means whenever ϕ is satisfied, then ψ will be satisfied. It is possible to verify that the following
liveness property ((Ci.sampling local events ∧ cycle == 0) (Ci.sampling local events ∧ cycle ==
1))∧ ((Ci.sampling local events∧ cycle == 1) (Ci.sampling local events∧ cycle == 0)) holds for
each 1≤ i≤ n.

Property 4.5 (Synchronous sampling) Given a network of n timed automata, there is not a reachable
state, where one timed automaton is in the sampling local events location and the others in different
locations at the same time. This means that the local events will be sampled by each component always
synchronously.

This property can be expressed in UPPAAL as the negation of a path formula (exist eventually) ¬E♦ϕ:
¬E♦(

∨
1≤i≤n(Ci.sampling local events ∧ (

∨
j 6=i,1≤ j≤n¬C j.sampling local events)))

Proposition 4.6 (Sampling frequency) Given a network of n components with the timed model shown
in Fig. 3, the sampling frequency function fs : N→ R with which the local events are sampled is:

fs(n) =
1

wcetl +n ·wcete +wcetm + f aultt · (n ·wcetr +wcetv)+wcett

with wcetl time units is also the time granularity and within this interval of time it is not possible to
distinguish two different samples.

In UPPAAL we can check that the sampling period is always constant, by verifying the following for-
mula: (Ci.sclock == 0) (Ci.sampling local events∧Ci.sclock == wcetl + n ·wcete +wcetm + f aultt ·
(n ·wcetr +wcetv)+wcett)

We verified the previous properties in UPPAAL by varying the number of components n from two to
ten. However, we can generalize to an arbitrary number of nodes by making the following observations
on the timed-model of Fig. 4 (here we consider only the case f aultt = 0, but the observations are similar
for the case f aultt = 1):

94 Sampling-based Decentralized Monitoring for Networked Embedded Systems

1. Start→ sampling local events. All n components are initialized in the Start location. The first
transition is forced by the component C0 that synchronizes with a synch ! action all the other
components Ci with 0 < i < n to switch, with a synch ? action (the only one enabled), into the new
location sampling local events at the same time. There is no possibility that one component is in
location Start and another is in location sampling local events.

2. sampling local events→ sending receiving events. In this case all the components need to wait
the same amount of time wcetl even if one finishes to sample the local events before another. After
wcetl time there is only one action enabled for each component: send ! for C0 and send ? for Ci

with 0 < i < n. This step models C0 sending its local events update to all the other components.

3. sending receiving events→ sending receiving events. A sequence of n− 2 broadcast synchro-
nization actions send ! and send ? will be enabled after waiting wcete time each step. Incrementing
the variable sid from one to n−2 will distinguish the sender component Ci=sid performing the syn-
chronization action send ! from the receiver components Ci 6=sid performing the action send ?. This
sequence of synchronizations costs (n−2) ·wcete time.

4. sending receiving events→ local monitoring. This transition is enabled only when sid = n− 1
and corresponds to the last component Ci=n−1 sending its local events update to the other compo-
nents after all having waited wcete time.

5. local monitoring→ exec local tasks. This transition is performed by all the components without
synchronization. Each component should wait in the location local monitoring exactly wcetm +
wcete time and then switch to the location exec local tasks.

6. exec local tasks→ sampling local events. This case is similar to 1. The time spent in the location
exec local tasks for each component is wcett . This transition makes sure that the liveness Property
4.4 holds.

By summing up the times spent in each location for a complete cycle, it is easy to show that also the
Proposition 4.6 holds.

5 Case Study

The model presented in the previous section has been implemented on an hardware platform (designed
in our lab) hosts with four independent micro-controllers (ATMega128 produced by Amtel) nodes con-
nected to a real-time network. Each node is equipped with different peripheral devices as Fig. 5 shows.
A shared communication BUS is included for Real-Time data transfer between the four nodes.
We chose the Carrier Sense Multiple Access (CSMA) with collision detection as our low level commu-
nication protocol among the nodes. This avoids that simultaneous messages are sent from the nodes
and the messages do not require a fixed message length like in other protocols (like TTP [26]). It is
possible to determine the WCET of the communication by analyzing the max length of the exchanged
messages as Table 1 shows. The max length of the messages depends usually on the max number of
atomic propositions that can change at runtime in one component.
We have adopted both the automata-based and the formula progression monitoring approaches. In the
automata-based approach, we have used LTL3 tools2 to generate the DFSM from a LTL formula and
then coded the resulted state-machine in C, while to measure the monitoring overhead is possible to

2http://ltl3tools.sourceforge.net

http://ltl3tools.sourceforge.net

Ezio Bartocci 95
3 Specification and Design 3.9 Test Environment

Figure 5: Workflow

3.9 Test Environment

We will start implementing the LTL monitoring algorithm at a specified node
with its corresponding sensor interfaces. A very good idea for unit testing
is to take an AP with sensor “g”, which is a predefined data structure (a
generated sensor signal) stored in the node’s eeprom. The reason why this
simulated hardware-sensor interface is so helpful is because we know a pri-
ori at which instant of time the given LTL formula will be satisfied or not
(we know the values of the eeprom memory).

After unit-testing of one node was successful, the next step will be unit-
testing for all nodes (i.e. integration testing), again with these generic
eeprom-values. Finally a test of the whole system will be made with real
sensors.

21

1)	 Instrumen,ng	 Monitor	
2)	 Decentralized	 Monitoring	

Node	 0	

Node	 0	

3 Specification and Design 3.9 Test Environment

Figure 5: Workflow

3.9 Test Environment

We will start implementing the LTL monitoring algorithm at a specified node
with its corresponding sensor interfaces. A very good idea for unit testing
is to take an AP with sensor “g”, which is a predefined data structure (a
generated sensor signal) stored in the node’s eeprom. The reason why this
simulated hardware-sensor interface is so helpful is because we know a pri-
ori at which instant of time the given LTL formula will be satisfied or not
(we know the values of the eeprom memory).

After unit-testing of one node was successful, the next step will be unit-
testing for all nodes (i.e. integration testing), again with these generic
eeprom-values. Finally a test of the whole system will be made with real
sensors.

21

1)	 Instrumen,ng	 the	 Monitors	
2)	 Decentralized	 Monitoring	

Se
ria

l	 C
om

m
un

ic
a,

on
	 B
us
	

Node	 2	

Node	 0	 Node	 1	

2	 Push	 Bu?ons	

8-‐LED	 bargraph	

Resistor	 Hea,ng	

Fan	

3	 Temp.	 Sensors	

Real-‐Time	 Clock	

2	 Push	 Bu?ons	

8-‐LED	 bargraph	

Modular	 LCD	 Display	

2	 Push	 Bu?ons	

ESE	 luminosity	
measurement	 	

Node	 0	 Node	 3	

6	 digit	 LEDs	 matrix	

2	 Push	 Bu?ons	

2	 analog	 thumbwheel	 	
poten,ometers	 	

Figure 5: Networked Embedded Systems.

use a static analyzer for AMTEL micro-controller like Bound-T3 . Concerning the formula-progression
monitoring technique, even if we have imposed some limitations on the length of the formula (max 64
symbols) and on the number of next temporal operators allowed, the only way to measure the WCET is
by measuring the elapsed time directly on the components.

Example 5.1 We have implemented a simple heating control, where a resistor controlled by the node 1
heats up to 30 degrees and a fan is activated unless one of the two safety buttons controlled by node 0
are not pressed. We can specify the correct behavior using the following formula:

�((!b0∨!b1)∧ ((t > 30)→ (f anon)))

The size for the automata-based monitor is only of two states as Figure 6 shows. The monitor based on

¬b
0
∨¬b

1()∧ t > 30()→ fanon()()

!" #"

¬ ¬b
0
∨¬b

1()∧ t > 30()→ fanon()()()

T

$%&'()&'*+,)-./"('*0&'1""

#"# 23343"

Figure 6: Automata-based monitor.

formula progression R(�((!b0∨!b1)∧ ((t > 30)→ (f anon))),σ) will rewrite the formula as follows:

3http://www.bound-t.com

http://www.bound-t.com

96 Sampling-based Decentralized Monitoring for Networked Embedded Systems

Property Value Description
max length of the token msg 66 bytes 1 byte for CSMA + 1 byte for the message

length (4 bits) and token (4 bits) + 64 bytes
for the data.

max length of the result msg 4 bytes 1 CSMA byte + 1 byte for the message length
(4 bits) and token (4 bits) + 2 bytes for the
data.

max length of the synch msg 1 bytes 1 CSMA byte
max num. bytes sent in one round 281 bytes synch + 4 * token msg + 4 * result msg
max bits sent in one round 2810 bits a byte sent contains 8 data bits, 1 start bit and

1 bit stop
Baud rate 4800 bit/s
Worst Case Time for communication 0.585 sec

Table 1: The Worst Case execution depends on the number of micro-controllers used, the max length of
a token message exchanged, the max length of the result message and the baud rate of the BUS.

R((!b0∨!b1)∧ ((t > 30)→ (f anon)),σ)∧�((!b0∨!b1)∧ ((t > 30)→ (f anon)))

Hence, if the term (!b0∨!b1)∧ ((t > 30)→ (f anon)) is true, given the events in σ , then the resulting
formula is:

>∧�((!b0∨!b1)∧ ((t > 30)→ (f anon)) =�((!b0∨!b1)∧ ((t > 30)→ (f anon))

otherwise, then the resulting formula is:

⊥∧�((!b0∨!b1)∧ ((t > 30)→ (f anon)) =⊥

We have measured the wcetm time for the formula-progression monitoring of this example (that is
also an upper bound for the automata-based monitor) counting the max number of CPU cycles needed
with a prescaler (that divides the clock frequency) value set to 8. Considering that the clock speed of
the micro-controller is 16 MHz, we have obtained that the rewriting worst case execution time for the
formula is 65415 cycles× (1/(16MHz/8)) = 0.03237 sec.

6 Conclusion

The synchronous decentralized monitoring of a networked embedded system requires some important
assumptions about the synchronization mechanisms and the minimum sampling time to guarantee the
time consistency among the monitored local traces. In this work we provide a possible timed model in
UPPAAL for a sampling-based decentralized monitoring and we verify some important properties such
as the liveness, the synchronous sampling and the frequency. We then provide a case study where we
implement this timed model in our networked embedded systems testbed. Currently, we plan to extend
our work in two directions. First, we would like to monitor properties expressed in more sophisticated
temporal logics dealing with dense-time such as Metric Interval Temporal Logic (MITL) [2]. Secondly,

Ezio Bartocci 97

since the synchronous communication becomes very computational expensive when the number of com-
ponents increases, we plan to provide an asynchronous decentralized monitoring model, based on the
Lamport’s notion of global time [27].

7 Acknowledgement

We would like to thank the students Stephan Brugger, Dominik Macher and Daniel Schachinger that
contribute in the implementation of the case study.

References

[1] R. Alur & D. L. Dill (1994): A Theory of Timed Automata. Theor. Comput. Sci. 126(2), pp. 183–235,
doi:10.1016/0304-3975(94)90010-8.

[2] R. Alur, T. Feder & T. A. Henzinger (1996): The Benefits of Relaxing Punctuality. Journal of ACM 43(1),
pp. 116–146, doi:10.1145/227595.227602.

[3] F. Bacchus & F. Kabanza (1998): Planning for temporally extended goals. Annals of Mathematics and
Artificial Intelligence 22(1–2), pp. 5–27, doi:10.1023/A:1018985923441.

[4] H. Barringer, Y. Falcone, B. Finkbeiner, K. Havelund, I. Lee, G.J. Pace, G. Rosu, O. Sokolsky & N. Tillmann
(2010): Preface. In: Proc. of RV 2010, the First International Conference on Runtime Verification, St.
Julians, Malta, November 1-4, 2010, Lecture Notes in Computer Science 6418, Springer, doi:10.1007/978-
3-642-16612-9.

[5] H. Barringer, D. Rydeheard & K. Havelund (2010): Rule Systems for Run-Time monitoring: From Eagle to
RuleR. Journal of Logic and Computation 20(3), pp. 675–706, doi:10.1093/logcom/exn076.

[6] E. Bartocci, R. Grosu, A. Karmarkar, S. A. Smolka, S. D. Stoller, E. Zadok & J. Seyster (2012): Adap-
tive Runtime Verification. In: Proc. of RV 2012, the third International Conference on Runtime Verifica-
tion, September, 2012 Istanbul, Turkey, Lecture Notes in Computer Science 7687, Springer, pp. 168–182,
doi:10.1007/978-3-642-35632-2 18.

[7] A. Bauer & Y. Falcone (2012): Decentralised LTL monitoring. In: FM 2012: Formal Methods, 7436,
Springer Berlin Heidelberg, pp. 85–100, doi:10.1007/978-3-642-32759-9 10.

[8] A. Bauer, M. Leucker & C. Schallhart (2006): Monitoring of real-time properties. In: Proc. of FSTTCS, the
26th Conference on Foundations of Software Technology and Theoretical Computer Science, Lecture Notes
in Computer Science 4337, Springer-Verlag, Berlin, Heidelberg, doi:10.1007/11813040 37.

[9] A. Bauer, M. Leucker & C. Schallhart (2010): Comparing LTL semantics for runtime verification. Journal of
Logic and Computation 20(3), pp. 651–674, doi:10.1093/logcom/exn075.

[10] A. Bauer, M. Leucker & C. Schallhart (2011): Runtime verification for LTL and TLTL. ACM Transactions
on Software Engineering and Methodology 20(4), doi:10.1145/2000799.2000800.

[11] G. Behrmann, A. David, K. G. Larsen, J. Håkansson, P. Pettersson, W. Yi & M. Hendriks (2006): UPPAAL
4.0. In: Proc. of QEST 2006, the Third International Conference on the Quantitative Evaluation of Systems,
Riverside, California, USA, IEEE Computer Society, pp. 125–126, doi:10.1109/QEST.2006.59.

[12] B. Bonakdarpour, S. Navabpour & S. Fischmeister (2011): Sampling-Based Runtime Verification. In: Proc.
FM 2011: Formal Methods, the 17th International Symposium on Formal Methods, Limerick, Ireland, June
20-24, 2011, Lecture Notes in Computer Science 6664, Springer, pp. 88–102, doi:10.1007/978-3-642-21437-
0 9.

[13] J. R. Büchi (1990): On a decision method in restricted second order arithmetic. In: The Collected Works of
J. Richard Büchi, Springer New York, pp. 425–435, doi:10.1007/978-1-4613-8928-6 23.

http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1145/227595.227602
http://dx.doi.org/10.1023/A:1018985923441
http://dx.doi.org/10.1007/978-3-642-16612-9
http://dx.doi.org/10.1007/978-3-642-16612-9
http://dx.doi.org/10.1093/logcom/exn076
http://dx.doi.org/10.1007/978-3-642-35632-2_18
http://dx.doi.org/10.1007/978-3-642-32759-9_10
http://dx.doi.org/10.1007/11813040_37
http://dx.doi.org/10.1093/logcom/exn075
http://dx.doi.org/10.1145/2000799.2000800
http://dx.doi.org/10.1109/QEST.2006.59
http://dx.doi.org/10.1007/978-3-642-21437-0_9
http://dx.doi.org/10.1007/978-3-642-21437-0_9
http://dx.doi.org/10.1007/978-1-4613-8928-6_23

98 Sampling-based Decentralized Monitoring for Networked Embedded Systems

[14] S. Callanan, D. J. Dean, M. Gorbovitski, R. Grosu, J. Seyster, S. A. Smolka, S. D. Stoller & E. Zadok
(2008): Software monitoring with bounded overhead. In: Proc. of IPDPS 2008, the 22nd IEEE International
Symposium on Parallel and Distributed Processing, Miami, Florida USA, April 14-18, 2008, IEEE, pp. 1–8,
doi:10.1109/IPDPS.2008.4536433.

[15] F. Cassez (2012): The Complexity of Codiagnosability for Discrete Event and Timed Systems. IEEE Trans-
actions on Automatic Control 57(7), pp. 1752–1764, doi:10.1109/TAC.2012.2183169.

[16] E. M. Clarke & E. Emerson (1982): Design and Synthesis of Synchronization Skeletons Using Branching
Time Temporal Logic. In Dexter Kozen, editor: Logics of Programs, Lecture Notes in Computer Science
131, Springer Berlin / Heidelberg, pp. 52–71, doi:10.1007/BFb0025774.

[17] M. d’Amorim & G. Rosu (2005): Efficient Monitoring of ω-Languages. In: Proc. of CAV 2005, the 17th In-
ternational Conference on Computer Aided Verification, Edinburgh, Scotland, UK, July 6-10, 2005, Lecture
Notes in Computer Science 3576, Springer, pp. 364–378, doi:10.1007/11513988 36.

[18] M. B. Dwyer, G. S. Avrunin & J. C. Corbett (1999): Patterns in property specifications for finite-state ver-
ification. In: Proc. of ICSE ’99, the 21st international conference on Software engineering, Los Angeles,
California, USA, ACM, pp. 411–420, doi:10.1145/302405.302672.

[19] K. Etessami & G. J. Holzmann (2000): Optimizing Büchi Automata. In: Proc. of CONCUR 2000 - Con-
currency Theory, the 11th International Conference University Park, PA, USA, August 2225, 2000, Lecture
Notes in Computer Science 1877, Springer, pp. 153–168, doi:10.1007/3-540-44618-4 13.

[20] P Gastin & D. Oddoux (2003): LTL with Past and Two-Way Very-Weak Alternating Automata. In:
Proc. of MFCS 2003, the 28th International Symposium in Mathematical Foundations of Computer Sci-
ence,Bratislava, Slovakia, August 25-29, 2003, Lecture Notes in Computer Science 2747, Springer, pp. 439–
448, doi:10.1007/978-3-540-45138-9 38.

[21] M. Geilen (2001): On the Construction of Monitors for Temporal Logic Properties. Electr. Notes Theor.
Comput. Sci. 55(2), pp. 181–199, doi:10.1016/S1571-0661(04)00252-X.

[22] A. Genon, T. Massart & C. Meuter (2006): Monitoring Distributed Controllers: When an efficient LTL
algorithm on Sequences Is Needed to Model-Check Traces. In: Proc. of FM 2006: Formal Methods, the
14th International Symposium on Formal Methods, Hamilton, Canada, August 21-27, 2006, Lecture Notes
in Computer Science 4085, pp. 557–572, doi:10.1007/11813040 37.

[23] M. Gunzert & A. Naegele (1999): Component-based development and verification of safety critical
software for a brake-by-wire system with synchronous software components. PDSE ’99, pp. 134–145,
doi:10.1109/PDSE.1999.779745.

[24] K. Havelund & G. Rosu (2002): Runtime Verification, RV 2002: Preface. Electr. Notes Theor. Comput. Sci.
70(4), pp. 201–202, doi:10.1016/S1571-0661(05)80585-7.

[25] K. Kalajdzic, E. Bartocci, S. A. Smolka, Scott Stoller & G. Grosu (2013): Runtime Verification with Particle
Filtering. In: Proc. of RV 2013, the fourth International Conference on Runtime Verification, INRIA Rennes,
France, 24-27 September, 2013, Lecture Notes in Computer Science, Springer, p. To Appear.

[26] H. Kopetz, M. Holzmann & W. Elmenreich (2001): A universal smart transducer interface: TTP/A. Comput.
Syst. Sci. Eng. 16(2), pp. 71–77, doi:10.1109/ISORC.2000.839507.

[27] L. Lamport (1978): Time, Clocks and the Ordering of Events in a Distributed System. Communications of
the ACM 21(7), pp. 558–565, doi:10.1145/359545.359563.

[28] O. Lichtenstein, A. Pnueli & L. Zuck (1985): The glory of the past. Lecture Notes in Computer Science 193,
pp. 196–218, doi:10.1007/3-540-15648-8 16.

[29] M. Lukasiewycz, M. Glaß, J. Teich & P. Milbredt (2009): FlexRay schedule optimization of the static seg-
ment. In: Proc. of the CODES+ISSS ’09, the 7th IEEE/ACM international conference on Hardware/software
codesign and system synthesis, Grenoble, France, ACM, pp. 363–372, doi:10.1145/1629435.1629485.

[30] N. Markey (2003): Temporal logic with past is exponentially more succinct. EATCS Bulletin 79, pp. 122–
128.

http://dx.doi.org/10.1109/IPDPS.2008.4536433
http://dx.doi.org/10.1109/TAC.2012.2183169
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/11513988_36
http://dx.doi.org/10.1145/302405.302672
http://dx.doi.org/10.1007/3-540-44618-4_13
http://dx.doi.org/10.1007/978-3-540-45138-9_38
http://dx.doi.org/10.1016/S1571-0661(04)00252-X
http://dx.doi.org/10.1007/11813040_37
http://dx.doi.org/10.1109/PDSE.1999.779745
http://dx.doi.org/10.1016/S1571-0661(05)80585-7
http://dx.doi.org/10.1109/ISORC.2000.839507
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1007/3-540-15648-8_16
http://dx.doi.org/10.1145/1629435.1629485

Ezio Bartocci 99

[31] S.P. Miller, M.W. Whalen & D.D. Cofer (2010): Software model checking takes off. Communications of the
ACM 53(2), pp. 58–64, doi:10.1145/1646353.1646372.

[32] A. Pnueli (1977): The temporal logic of programs. Proc. 18th IEEE Symposium on Foundations of Computer
Science, pp. 46–57, doi:10.1109/SFCS.1977.32.

[33] T. Pop, P. Pop, P. Eles, Z. Peng & A. Andrei (2008): Timing analysis of the FlexRay communication protocol.
Real-Time Systems 39(1–3), pp. 205–235, doi:10.1109/ECRTS.2006.31.

[34] J.P. Queille & J. Sifakis (1982): Specification and verification of concurrent systems in CESAR. In:
Proc. of the 5th Colloquium on International Symposium on Programming, Springer-Verlag, pp. 337–351,
doi:10.1007/3-540-11494-7 22.

[35] G. Rosu & K. Havelund (2005): Rewriting-Based Techniques for Runtime Verification. Automated Software
Engineering 12(2), pp. 151–197, doi:10.1007/s10515-005-6205-y.

[36] K. Sen, A. Vardhan, G. Agha & G. Rosu (2006): Decentralized runtime analysis of multithreaded applica-
tions. doi:10.1109/IPDPS.2006.1639591.

[37] K. Sen, A. Vardhan, G. Agha & G. Rou (2004): Efficient decentralized monitoring of safety in distributed
systems. 26, pp. 418–427, doi:10.1109/ICSE.2004.1317464.

[38] S. D. Stoller, E. Bartocci, J. Seyster, R. Grosu, K. Havelund, S. A. Smolka & E. Zadok (2011): Runtime
Verification with State Estimation. In: Proc. of RV 2011, the Second international conference on Runtime
verification, San Francisco, CA, USA, Lecture Notes in Computer Science 7186, Springer-Verlag, pp. 193–
207, doi:10.1007/978-3-642-29860-8 15.

[39] S. Tripakis (2005): Decentralized observation problems. pp. 6–11, doi:10.1109/CDC.2005.1582122.
[40] Y. Wang, T. Yoo & S. Lafortune (2007): Diagnosis of Discrete Event Systems Using Decentralized Architec-

tures. Discrete Event Dynamic Systems 17(2), pp. 233–263, doi:10.1007/s10626-006-0006-8.
[41] Y. Wang, T.-S. Yoo & S. Lafortune (2007): Diagnosis of Discrete Event Systems Using Decentral-

ized Architectures. Discrete Event Dynamic Systems: Theory and Applications 17(2), pp. 233–263,
doi:10.1007/s10626-006-0006-8.

[42] P. Wolper (2001): Constructing Automata from Temporal Logic Formulas: A Tutorial. In: Lectures on
formal methods and performance analysis, Lecture Notes in Computer Science 2090, Springer-Verlag New
York, Inc., pp. 261–277, doi:10.1007/3-540-44667-2 7.

http://dx.doi.org/10.1145/1646353.1646372
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/ECRTS.2006.31
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1007/s10515-005-6205-y
http://dx.doi.org/10.1109/IPDPS.2006.1639591
http://dx.doi.org/10.1109/ICSE.2004.1317464
http://dx.doi.org/10.1007/978-3-642-29860-8_15
http://dx.doi.org/10.1109/CDC.2005.1582122
http://dx.doi.org/10.1007/s10626-006-0006-8
http://dx.doi.org/10.1007/s10626-006-0006-8
http://dx.doi.org/10.1007/3-540-44667-2_7

	1 Introduction
	2 Related Work
	3 Background
	4 A Timed Model for Decentralized Monitoring
	5 Case Study
	6 Conclusion
	7 Acknowledgement

