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Investigations of causality in operational systems aim at providing human-understandable explana-
tions of why a system behaves as it does. There is, in particular, a demand to explain what went wrong
on a given counterexample execution that shows that a system does not satisfy a given specification.
To this end, this paper investigates a notion of counterfactual causality in transition systems based
on Stalnaker’s and Lewis’ semantics of counterfactuals in terms of most similar possible worlds
and introduces a novel corresponding notion of counterfactual causality in two-player games. Using
distance functions between paths in transition systems to capture the similarity of executions, this
notion defines whether reaching a certain set of states is a cause for the fact that a given execution of
a system satisfies an undesirable reachability or safety property. Similarly, using distance functions
between memoryless strategies in reachability and safety games, it is defined whether reaching a set
of states is a cause for the fact that a given strategy for the player under investigation is losing.

The contribution of the paper is two-fold: In transition systems, it is shown that counterfactual
causality can be checked in polynomial time for three prominent distance functions between paths.
In two-player games, the introduced notion of counterfactual causality is shown to be checkable in
polynomial time for two natural distance functions between memoryless strategies. Further, a notion
of explanation that can be extracted from a counterfactual cause and that pinpoints changes to be
made to the given strategy in order to transform it into a winning strategy is defined. For the two
distance functions under consideration, the problem to decide whether such an explanation imposes
only minimal necessary changes to the given strategy with respect to the used distance function
turns out to be coNP-complete and not to be solvable in polynomial time if P is not equal to NP,
respectively.

1 Introduction

Modern software and hardware systems have reached a level of complexity that makes it impossible for
humans to assess whether a system behaves as intended without tools tailored for this task. To tackle this
problem, automated verification techniques have been developed. Model checking is one prominent such
technique: A model-checking algorithm takes a mathematical model of the system under investigation
and a formal specification of the intended behavior and determines whether all possible executions of the
model satisfy the specification. While the results of a model-checking algorithm provide guarantees on
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the correctness of a system or affirm the presence of an error, their usefulness is, nevertheless, limited as
they do not provide a human-understandable explanation of the behavior of the system.

To provide additional information on why the system behaves as it does, certificates witnessing the
result of the model-checking procedure, in particular counterexample traces in case of a negative result,
have been studied extensively (see, e.g., [10, 29, 9, 30]). Due to the potentially still enormous size of
counterexample traces and other certificates, a line of research has emerged that tries to distill compre-
hensible explications of what causes the system to behave as it does using formalizations of causality
(see, e.g., [32, 33, 2]).

Forward- and backward-looking causality There are two fundamentally different types of notions
of causality: forward-looking and backward-looking notions [34]. In the context of operational system
models, forward-looking causality describes general causal relations between events that might happen
along some possible executions. Backward-looking causality, on the other hand, addresses the causal
relation between events along a given execution of the system model. This distinction is captured in more
general contexts by the distinction between type-level causality addressing general causal dependencies
between events that might happen when looking forward in a world model, and token-level or actual
causality, corresponding to the backward view, that addresses causes for a particular event that actually
happened (see, e.g., [16]).

Notions of necessary causality are typically forward-looking: A necessary cause C for an effect E is
an event that occurs on every execution that exhibits the effect E (see, e.g., [3], and for a philosophical
analysis of necessity in causes [28]). The backward view naturally arises when the task is to explain what
went wrong after an undesired effect has been observed. In the verification context, the backward view is
natural for explaining counterexamples, see e.g. [42, 6, 15, 35, 38, 39]. Most of these techniques rely on
the counterfactuality principle, which has been originally studied in philosophy [20, 21, 37, 26, 27] and
formalized mathematically by Halpern and Pearl [17, 18, 19, 16]. Intuitively, counterfactual causality
requires that the effect would not have happened, if the cause had not occurred, in combination with
some minimality constraints for causes. The most prominent account for the semantics of the involved
counterfactual implication is provided by Stalnaker and Lewis [37, 26, 27] in terms of closest, i.e., most
similar, possible worlds. The statement “if the cause C had not occurred, then the effect E would not
have occurred” holds true if in the worlds that are most similar to the actual world and in which C did
not occur, E also did not occur. Interpreting executions of a system as possible worlds, the actual world
is an execution π where both the effect E and its counterfactual cause C occur, while the effect E does
not occur in alternative executions that are as similar as possible to π and that do not exhibit C.

For a more detailed discussion on the distinction between forward- and backward looking causality
and related concepts for responsibility, we refer the reader, e.g., to [34, 40, 41, 4, 2].

Defining counterfactual causality in transition systems and reachability games To define our back-
ward-looking notion of counterfactual causality in transition systems, we follow an approach similar
to the one by Groce et al [14] who presented a Stalnaker-Lewis-style formalization of counterfactual
dependence of events using distance functions. We consider the case where effects are reachability
or safety properties and causes are sets of states. To illustrate the idea, let T be a transition system
and let E and C be disjoint sets of states of T indicating a reachability effect and a potential cause,
respectively. Consider an execution π that reaches the effect set and the potential cause set. We employ
the counterfactual reading of causality by Stalnaker and Lewis by viewing executions as possible worlds
using a similarity metric d on paths: Reaching C was a cause for π to reach E if all paths ζ , that do not
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Figure 1: On the left: example transition system modelling a traffic grid (Ex. 1). On the right: Example
of a dHamm-counterfactual cause that is not a dpref -counterfactual cause (Ex. 3).

reach C and that are most similar to π according to d among all paths with this property, satisfy ζ ⊨2¬E,
i.e., they do not reach E. So, we first determine the minimal similarity-distance dmin = min{d(π,ζ ) | ζ ⊨
2¬C} from π to a path ζ that does not reach C. Then, we check whether all paths that do not reach C and
have similarity-distance dmin to π do not reach E: Do all ζ ∈ {ζ ′ | d(π,ζ ′) = dmin and ζ ′ ⊨2¬C} satisfy
2¬E? If the answer is yes, it is the case that “if C had not occurred, then E would not have occurred”
and so C is a counterfactual cause for E on π .

Example 1. Consider the following distance function on paths in a labeled transition system T with
states S and a labeling function L : S→A for a set of labels A : For paths π = s0,s1, . . . and π ′= t0, t1, . . . ,
we define dist(π,π ′) = |{n ∈N | L(sn) ̸= L(tn)}|. So, paths are more similar if their traces differ at fewer
positions. To determine whether C is a cause for E on π , we first determine what the least number nmin
of changes to the state labels of π is to obtain a path ζ that does not reach C. Then, we have to check
whether all paths differing from π in nmin labels and not reaching C do not reach E. If this is the case, C
is a counterfactual cause for E on π with respect to dist.

Now, consider the example transition system T modelling a road system with a highway going north
that has three exits into a small town which can be left again on a highway heading east depicted in Fig.
1. Each state is labeled with N, E, or S for north, east, and south as indicated in Fig. 1 depending on
the direction the cars move on the respective road. Say, an agent traverses the system via the path π with
trace NNEω , i.e., by taking exit B from the first highway and then going eastwards straight through the
town. Assume that there is a traffic jam on access B while the other access roads are free. The question
is now whether taking exit B was a cause for being stuck in slow traffic later on, i.e., for the effect
{access B}. First, note here that the set {exit B} is not a forward-looking necessary cause for reaching
{access B}. There are paths through the system that avoid {exit B}, but reach {access B}.

However, given the fact that the agent traversed the town by going straight eastwards, it is reasonable
to say that the agent would have reached a different access road if she had taken a different exit from the
first highway. This is reflected in the counterfactual definition using dist: There are two paths that do not
reach exit B and whose traces differ from π at only one position, namely the paths with trace NEω and
NNNEω . These paths do also not reach access B. So, {exit B} is a counterfactual cause for {access B}
on π; if the agent had taken exit A or C, she would not have hit the low traffic flow at access B. ⌟

In the context of two-player reachability games, causality has been used as a tool to solve games [1].
In our work, we focus on explaining why a certain strategy does not allow the player to win. More pre-
cisely, in reachability games between players with a safety and the complementing reachability objective,
respectively, we consider the situation where one of the players Π has a winning strategy, but loses the
game using a strategy σ . We introduce a notion of counterfactual causality that aims to provide insights
into what is wrong with strategy σ by transferring the counterfactual definition using distance functions



J. Parreaux, J. Piribauer, and C. Baier 135

distance d causality

prefix
in P

(Thm. 4)

Hamming
in P

(Thm. 5)

Levenshtein
in P

(Thm. 8)

distance d causality explanations
Hausdorff lifting dH

pref in P
of the prefix distance (Thm. 12)

Hamming strategy in P in acyclic games coNP-complete
distance ds

Hamm (Thm. 13) (Cor. 21)
Hausdorff-inspired not in P if P̸=NP

distance d∗ (Cor. 21)

Table 1: Overview of the complexity results. On the left, the complexities of checking d-counterfactual
causality in transition systems, and on the right, the complexities of checking d-counterfactual causality
and d-minimality of explanations in reachability games.

d on memoryless strategies. A set of states C is said to be a d-counterfactual cause for the fact that σ is
losing if all memoryless strategies τ , that make sure that C is not reached and have minimal d-distance
to σ among all such strategies, are winning. Furthermore, we introduce counterfactual explanations that
specify minimally invasive changes of σ ’s decisions required to turn σ into a winning strategy.

Contributions

• We show that d-counterfactual causal relationships in transition systems (defined as in [14]) can
be checked in polynomial time for the following three distance metrics d (Sec. 3.2):

1. the prefix distance: paths are more similar if their traces share a longer prefix.
2. the Hamming distance that counts the positions at which traces of paths differ.
3. the Levenshtein distance that counts how many insertions, deletions, and substitutions are

necessary to transform the trace of one path to the trace of another path.

Furthermore, we show that the notion of d-counterfactual causality for the Hamming distance is
consistent with Halpern and Pearl’s but-for causes [18, 19].

• In reachability games, we provide a generalization of this notion using similarity metrics on mem-
oryless deterministic strategies. We show that for the Hausdorff lifting of the prefix distance on
paths to a distance function on memoryless deterministic strategies, the resulting notion can be
checked in polynomial time (Sec. 4.1).

• We introduce a notion of counterfactual explanation that can be computed from a counterfactual
cause (Sec. 4.2). An explanation specifies where a non-winning strategy needs to be changed. Of
particular interest are D-minimal explanations that enforce only minimal necessary changes with
respect to a distance function D on strategies. For two distance functions related to the Hamming
distance, we show that checking whether an explanation is minimal is coNP-complete and not in
P if P ̸=NP, respectively.

An overview of the complexity results can be found in Table 1.

Related work Ways to pinpoint the problematic steps in a counterexample trace by localizing errors
have widely been studied [42, 6, 15, 35, 38, 39]. For counterfactuality in transition systems, we follow
the approach of [14] with distance metrics. In contrast to the causes in this paper, causes in [14] are
formulas in an expressive logic that can precisely talk about the valuation of variables after a certain
number of steps. Further [14] is not concerned with checking causality, but with finding causes, which,
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due to the expressive type of causes, algorithmically boils down to finding executions avoiding the effect
with a minimal distance to the given one.

Based on counterfactuality, Halpern and Pearl [18, 19, 16] provided an influential formalization of
causality using structural equation models, which has served as the basis for various notions of causality
in the verification context (see,e.g., [7, 24]). A key ingredient is the notion of intervention to provide
a semantics for the counterfactual implication in Hume’s definition of causality. An intervention in a
structural equation model sets a variable to a certain value by force, ignoring its dependencies on other
variables, and evaluates the effects of this enforced change. In a sense, a minimal set of interventions
to avoid a cause then leads to a most similar execution avoiding the cause. We will discuss the relations
between our definition and the Halpern-Pearl definition in more detail in Section 3.3. In [7], interventions
are employed to counterexample traces in transition systems by allowing to flip atomic propositions
along a trace. In contrast to our notion of counterfactual causes, this is tailored for complex linear time
properties, but does not provide insights for reachability and safety. Furthermore, the flipping of atomic
propositions can be seen as a change in the transition system while our definition considers alternative
executions without manipulating the system. In [11], the Halpern-Pearl approach is applied to provide
a counterfactual definition of causality in reactive systems. A distance partial order, namely the subset
relation on sets of positions at which traces differ, is used to describe which interventions are acceptable
as they constitute minimal changes necessary to avoid the cause. Checking causality is shown to be
decidable by a formulation as a hyperlogic model-checking problem. Furthermore, notions of necessary
and sufficient causes as sets of states in transition systems have been considered [3]. These do not rely
on the counterfactuality principle and are of forward-looking nature.

We are not aware of formalisations of causality in game structures. The related concept of responsi-
bility, has been investigated in multi-agent models [40, 41]. Notions of forward and backward responsi-
bility of players in multi-player game structures with acyclic tree-like arena have been studied [4].

For a detailed overview of work on causality and related concepts in operational models, we refer the
reader to the survey articles [8, 2].

2 Preliminaries

We briefly present notions we use and our notation. For details, see [5, 13].
Transition systems. A transition system is a tuple T = (S,sinit,→,L) where S is a finite set of states,
sinit ∈ S is an initial state, →⊆ S×S is a transition relation and L : S → 2AP is a labeling function where
AP is a set of atomic propositions. A path in a transition system is a finite or infinite sequence of
states s0s1 . . . such that s0 = sinit and, for all suitable indices i, there is a transition from si to si+1, i.e.,
(si,si+1) ∈→. Given a path π = s0s1 . . . , we denote its trace L(s0)L(s1) . . . by L(π). If there are no
outgoing transitions from a state, we call the state terminal.
Computation tree logic (CTL). The branching-time logic CTL consists of state formulas that are evaluated
at states in a transition system formed by Φ ::=⊤ | a | Φ∧Φ | ¬Φ | ∃ϕ | ∀ϕ where a ∈ AP is an atomic
proposition and path formulas evaluated on paths formed by ϕ ::= ⃝Φ | ΦUΦ. The semantics of the
temporal operators in path formulas is as usual. We use the abbreviations ♢Φ for ⊤UΦ and 2Φ=¬♢¬Φ

and also allow sets of states T in the place of state formulas. The semantics of ∃ϕ are that there exists a
path starting in the state at which the formula is evaluated that satisfies ϕ; ∀ϕ is defined dually to that as
usual. Model checking of CTL-formulas can be done in polynomial time. For details, see [5].
Reachability games. A reachability game is a tuple G = (V,vi,∆) where V = VReach⊎VSafe⊎VEff is the
set of vertices shared between players Reach and Safe, and some target vertices VEff (Eff for effect).
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vi ∈ V \VEff is the initial vertex and ∆ ⊆ V ×V is the set of edges. We denote by ∆(v) the set of edges
from v. W.l.o.g., we assume that target vertices are terminal states, i.e. for all vertices v ∈VEff, ∆(v) = /0.
A finite play is a finite sequence of vertices π = v0v1 · · ·vk ∈V ∗ such that for all 0 ≤ i < k, (vi,vi+1) ∈ ∆.
A play is either a finite play ending in a target vertex, or an infinite sequence of vertices such that every
finite prefix is a finite play. Transition systems can be viewed as one-player games.

A strategy for Reach in a reachability game G is a mapping σ : V ∗VReach →V . A play or finite play
π = v0v1 · · · is a σ -play if for all k with vk ∈VReach, we have σ(v0 · · ·vk) = vk+1. A strategy σ is an MD-
strategy (for memoryless deterministic) if for all finite plays ξ and ξ ′ with the same last vertex, we have
that σ(ξ ) = σ(ξ ′). In this paper, we mainly use MD-strategies and write σ(vk) instead of σ(v0 · · ·vk)
for MD-strategies σ . Moreover, under a (partial) MD-strategy σ , we define the reachability game under
σ , denoted by G σ = (V,vi,∆

σ ), by removing edges not chosen by σ , i.e., ∆σ = ∆ \ {(v,v′) ∈ ∆ | v ∈
VReach and σ(v) is defined and σ(v) ̸= (v,v′)}. When σ is completely defined, G σ is a transition system.
Finally, a strategy is winning if all σ -plays starting in vi end in a target vertex. Analogous definitions
apply to Safe. In reachability games, either Reach or Safe wins with an MD-strategy. This winning
strategy can be computed in polynomial time (see, e.g., [13]).
Distance function. A distance function on a set A is a function d : A×A→R≥0∪{∞} such that d(x,x)= 0
for all x ∈ A and d(x,y) = d(y,x) for all x,y ∈ A. It is called a pseudo-metric if additionally d(x,y)+
d(y,z)≥ d(x,z) for all x,y,z ∈ A, and a metric if further d(x,y) = 0 holds iff x = y for all x,y ∈ A.

3 Counterfactual causes in transition systems

In this section, we introduce the backward-looking notion of counterfactual causes in transition systems
using distance functions (Section 3.1). Afterwards, we prove that the definition can be checked in poly-
nomial time for three well-known distance functions (Section 3.2). Finally, we illustrate similarities
between our notion of counterfactual causality to the definition of causality by Halpern and Pearl (Sec
3.3). Proofs omitted here can be found in the extended version [31].

3.1 Definition

The effects we consider are reachability or safety properties Φ = ♢E or Φ = 2¬E for a set of states E.
As the behavior of the system after E has been seen is not relevant for these properties, we assume that
E consists of terminal states.
Definition 2 (d-counterfactual cause in transition systems). Let T be a transition system and let d be a
distance function on the set of maximal paths of T . Let E be a set of terminal states and let C be a set of
states disjoint from E. Let Φ = ♢E or Φ = 2¬E. Given a maximal path π that visits C and satisfies Φ

in T , we say that C is a d-counterfactual cause for Φ on π if
1. there is a maximal path ρ in T that does not visit C, and

2. all maximal paths ρ with ρ ⊨ 2¬C with minimal distance to π do not satisfy Φ. In other words,
all maximal paths ρ with ρ ⊨ 2¬C such that d(π,ρ) ≤ d(π,ρ ′) for all ρ ′ with ρ ′ ⊨ 2¬C satisfy
ρ ⊨ ¬Φ.

The choice of the similarity distance d of course heavily influences the notion of d-counterfactual
cause. In this paper, we will instantiate the definition with three distance functions that are among the
most prominent distance functions between traces (or words). An experimental investigation to clarify
in which situations what kind of distance functions leads to a desirable notion of causality, however,
remains as future work.
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Prefix metrics dAP
pref and dpref : given two paths π and ρ , let n(π,ρ) be the length of the longest common

prefix of their traces L(π) and L(ρ). Then, dAP
pref (π,ρ)

def
= 2−n(π,ρ). We can also define the distance on

paths instead of traces, which will be used later on: dpref (π,ρ)
def
= 2−m(π,ρ) where m(π,ρ) is the length of

the longest common prefix of π and ρ as paths. This can be seen as a special case of dAP
pref if we assume

that all states have a unique label.

The prefix metric measures similarity in a temporal way saying that executions are more similar if
they initially agree for a longer period of time. If no further structure of the transition system or meaning
of the labels is known, this distance function might be a reasonable choice for counterfactual causality.

Hamming distance dHamm: Given two words w = w0 . . .wn and v = v0 . . .vn of the same length, we
define dHamm(w,v)

def
= |{0 ≤ i ≤ n | wi ̸= vi}|. For two maximal paths π and ρ of the same length in

a transition system T with labeling function L, we define dHamm(π,ρ)
def
= dHamm(L(π),L(ρ)). So, the

distance between two paths is the Hamming distance of their traces.

The Hamming distance seems to be a reasonable measure if a system naturally proceeds through
different layers, e.g., if a counter is increased in each step. Then, traces are viewed to be more similar if
they agree on more layers. The temporal order of these layers, however, does not play a role.

Levenshtein distance dLev [25]: Given two words w = w0 . . .wn and v = v0 . . .vm, the Levenshtein dis-
tance is defined as the minimal number of editing operations needed to produce v from w where the
allowed operations are insertion of a letter, deletion of a letter, and substitution of a letter by a different
letter. Formally, we define dLev in terms of edit sequences. Let Σ be an alphabet and v,w ∈ Σ∗ ∪Σω be
two words over Σ. The edit alphabet for Σ is defined as Γ

def
= (Σ∪{ε})2 \ {(ε,ε)} where ε is a fresh

symbol. An edit sequence for v and w is now a word γ ∈ Γ∗ ∪Γω such that the projection of γ onto
the first component results in v when all εs are removed and the projection of γ onto the second com-
ponent results in w when all εs are removed. E.g., let Σ = {a,b,c}, v = abbc and w = accbc. One edit
sequence is γ = (a,a)(b,c)(ε,c)(b,b)(c,c). The weight of an edit sequence γ = γ1γ2 . . . is defined as
wgt(γ) = |{i | γi ̸= (σ ,σ) for all σ ∈ Σ}|. Then, for all words v ∈ Σ∗ ∪Σω and w ∈ Σ∗ ∪Σω , we define
dLev(v,w) = min{wgt(γ) | γ is an edit sequence for v and w}. Again, we obtain a pseudo-metric on paths
via the Levenshtein metric on traces.

The Levenshtein distance might be particularly useful if labels model actions that are taken. Two
executions that are obtained by sequences of actions that only differ by inserting or leaving out some
actions, but otherwise using the same actions, are considered to be similar in this case.

Example 3. Let us illustrate counterfactual causality for the prefix metric dpref and the Hamming distance
dHamm. Consider the transition system depicted in Figure 1. A path π as indicated by the bold arrows on
the right via the potential cause to the effect has been taken: This is not a dpref -counterfactual cause on
π: The most similar paths to π that do not reach cause are both paths that move to the left initially. As
one of these paths reaches effect, the set cause is not a dpref -counterfactual cause for reaching effect.

Considering the distance function dHamm with the labels of the states as in Figure 1, we get a different
result: The trace of π is abcd. The paths that avoid the potential cause have traces abcd and abad, re-
spectively. So, the most similar path avoiding cause is the path on the left with trace abcd that also avoids
effect. So, cause is a dHamm-counterfactual cause on π for ♢effect. Intuitively, this can be understood as
saying if the system had avoided cause but otherwise behaved (as similar as possible to) as it did in terms
of the produced trace, the effect would not have occurred. In particular, if labels represent actions that
have been chosen, this is a reasonable reading of causality. ⌟
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3.2 Checking counterfactual causality in transition systems

In this section, we provide algorithms to check d-counterfactual causality for the three distance functions
dAP

pref , dHamm, and dLev. For these algorithms, a maximal execution π of the system has to be given. We
assume that π is a finite path ending in a terminal state. The problem to find causes that are small or
satisfy other desirable properties is not addressed in this paper and remains as future work. We will
briefly come back to this in the conclusions.

Prefix distance. First, we consider dAP
pref -counterfactual causality and hence dpref -counterfactual causal-

ity as a special case.

Theorem 4. Let T = (S,sinit,→,L) be a transition system, E a set of terminal states, C a set of states
disjoint from E, and Φ = ♢E or Φ = 2¬E. Let π = s0 . . .sn be an execution reaching C and satisfying
Φ. It is decidable in polynomial time whether C is a dAP

pref -counterfactual cause for Φ on π .

Proof sketch. The following algorithm solves the problem in polynomial time: First, we determine the
last index i s.t. C is not reached on any path with trace L(s0), . . . ,L(si) and s.t. C is avoidable from some
state that is reachable via a path with trace L(s0), . . . ,L(si). In order to that, we recursively construct sets
Tj+1 of states that are reachable via paths with trace L(s0), . . . ,L(s j+1) and check for all states t ∈ Tj+1
whether t ⊨ ∃2¬C. If no such state exists, we have found the first index j+1 such that C is not avoidable
anymore after trace L(s0), . . . ,L(s j+1); so we have found i = j. Now, we check whether t ⊨ ∀(Φ → ♢C)
for all t ∈ Ti. If this is the case, C is a dAP

pref -counterfactual cause for E on π; otherwise, it is not.

Hamming distance. The Hamming distance is only defined for words of the same length. We will
hence first consider only transition systems in which all maximal paths have the same length. We can
think of such transition systems as being structured in layers with indices 1 to k for some k. Transitions
can then only move from a state on layer i < k to a state on layer i+1. Afterwards, we consider a simple
generalization of the Hamming distance to words of different lengths.
Original Hamming distance. Let T = (S,sinit,→,L) be a transition system in which all maximal paths
have the same length k. We annotate all states with the layer they are on: For each state s ∈ S, there is
a unique length n ≤ k of all paths from sinit to s. We will say that state s lies on layer n in this case. By
our assumption that effect states are terminal, the states E are all located on the last layer k. We assume
furthermore that all effect states have the same labels.

Theorem 5. Let T = (S,sinit,→,L) be a transition system in which all maximal paths have the same
length k. Let E be a set of terminal states and let C ⊆ S be a set of states disjoint from E. Let Φ = ♢E or
Φ = 2¬E. Let π = s0 . . .sn be an execution reaching C and satisfying Φ. It is decidable in polynomial
time whether C is a dHamm-counterfactual cause for Φ on π .

Proof sketch. We sketch the proof for the case that Φ = ♢E. We equip the states in S with a weight
function wgt : S →{0,1} such that the dHamm-distance of a path to π is equal to the accumulated weight
of that path. A state t on layer i gets weight 1 if its label is different to L(si). Otherwise, it gets weight
0. Now, we can check whether C is a dHamm-counterfactual cause, as follows: We remove all states in
C and compute a shortest (i.e., weight-minimal) path ζ to E and a shortest path ξ to any terminal state.
If the weight of ξ is lower than the weight of ζ , the paths avoiding C that are dHamm-closest to π do not
reach E and C is a dHamm-counterfactual cause for ♢E on π; otherwise, it is not.
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Remark 6. The Hamming distance between paths could easily be extended to account for different
levels of similarities between labels: Given a similarity metric d on the set of labels, one could define the
distance between two paths π = s1 . . .sk and ρ = t1 . . . tk as d′

Hamm(π,ρ)
def
= ∑

k
i=1 d(si, ti). The algorithm

in the proof of Theorem 5 can now easily be adapted to this modified Hamming distance by defining the
weight function on the transition system in the obvious way.

Generalized Hamming distance. The assumption in the previous section that all paths in a transition
system have the same length is quite restrictive. Hence, we now consider the following generalized
version dgHamm of the Hamming distance: For words w = w1 . . .wn and v = v1 . . .vm, we define

dgHamm(w,v)
def
=

{
dHamm(w,v[1:n])+(m−n) if n ≤ m,
dHamm(w[1:m],v)+(n−m) otherwise.

So dgHamm takes a prefix of the longer word of the same length as the shorter word, computes the Ham-
ming distance of the prefix and the shorter word, and adds the difference in length of the two words.

Theorem 7. Let T = (S,sinit,→,L) be a transition system, E a set of terminal states, and C a set of
states disjoint from E. Let Φ = ♢E or Φ = 2¬E. Let π = s0 . . .sn be an execution reaching C and
satisfying Φ. It is decidable in polynomial time whether C is a dgHamm-counterfactual cause for Φ on π .

Proof sketch. We adapt the proof of Theorem 5: We take |π|-many copies of the state space S an let
transitions lead from one copy to the next. In the ith copy states with the same label as si get weight
0 and all other states get weight 1. Furthermore, we add transitions with weight |π| − i from terminal
states in a copy i < |π| to the same state in the last copy to account for path that are shorter than π .
The weight |π|− i corresponds to the value added in the generalized Hamming distance when paths of
different length are compared. To account for paths longer than π , we furthermore allow transitions with
weight 1 within the last copy. These transitions are then taken until a terminal state is reached. With
these adaptations, the proof can be carried out analogously to the proof of Theorem 5.

Levenshtein distance. The idea to check dLev-counterfactual causality is to construct a weighted tran-
sition system to check causality via the computation of shortest paths as for the Hamming distance. So,
let T = (S,→,sinit,L) be a transition system labeled by L with symbols from Σ = 2AP. Let E be a set
of terminal states and C a set of states disjoint from E. Let Φ = ♢E or Φ = 2¬E. Let π = s1 . . .sn be a
maximal path reaching C and satisfying Φ. The transition system we construct contains transitions cor-
responding directly to the edit operations insertion, deletion and substitution. A path in the constructed
transition system then corresponds to an edit sequence between the trace of π and the trace of another
path in T . This construction shares some similarities with the construction of Levenshtein automata [36]
that accept all words with a Levenshtein distance below a given constant c from a fixed word w.

Now, we formally construct the new weighted transition system T π
dLev

: The state space of this transi-
tion system is S×{1, . . . ,n} with the initial state (sinit,1). The labeling function is not used. In T π

dLev
, we

allow the following transitions labelled with letters from the edit alphabet Γ:

1. a transition from (s, i) to (t, i+1) labeled with (L(si+1),L(t)) for each (s, t) ∈→ and i < n,

2. a transition from (s, i) to (t, i) labeled with (ε,L(t)) for each (s, t) ∈→ and i ≤ n,

3. a transition from (s, i) to (s, i+1) labeled with (L(si+1),ε) for each s ∈ S and i < n.

Note that the terminal states in T π
dLev

are all contained in S×{n}. Any maximal path in T π
dLev

corresponds
to a maximal path ρ in T . This path ρ is obtained by moving from a state s to a state t in T whenever a
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corresponding transition of type 1 or 2 is taken in T π
dLev

. Transitions of type 3 do not correspond to a step
in T and stay in the same state.

Furthermore, given a finite path τ in T π
dLev

and the corresponding path ρ = t1 . . . tk in T , the labels
of the transitions of τ form an edit sequence for the words L(s2) . . .L(sn) and L(t2) . . .L(tk). To see this,
observe that, for each i > 1, whenever the copy S×{i} is entered in T π

dLev
, the label of the transition

contains L(si) in the first component; if a transition stays in a copy S×{i}, the label contains ε in the
first component. So, the projection onto the first component of the labels of the transitions of τ is indeed
L(s2) . . .L(sn), potentially with εs in between. In the second component, whenever a transition of type
1 or 2 is taken, the label is simply the label of the corresponding state in ρ . Transitions of type 3 have
ε in the second component of their label. Note here that ρ and π both start in sinit and that we could
hence add (L(sinit),L(sinit)) to the beginning of the edit sequence to obtain an edit sequence for the full
traces of τ and ρ . Note that also for infinite paths τ = t1t2 . . . in T π

dLev
the transition labels provide an edit

sequence for the words L(s2) . . .L(sn) and L(t2)L(t3) . . . . Vice versa, a finite maximal path ρ = t1 . . . tk
in T together with an edit sequence γ for L(s2) . . .L(sn) and L(t2) . . .L(tk) provides a maximal path τ in
T π

dLev
: The occurrences of ε in γ dictate which type of transition to take while the path ρ tells us which

state to move to. As γ projected to the first component contains L(s2) . . .L(sn) enriched with εs exactly
n− 1 transitions of type 1 or 3 are taken in τ obtained in this way and we indeed reach the last copy
T ×{n}. As ρ ends in a terminal state tk, we furthermore reach the terminal state (tk,n). Analogously,
an infinite path ρ in T together with an edit sequence γ for L(π) and L(ρ) yields an infinite path in T π

dLev
.

Based on these observations, we equip T π
dLev

with a weight function wgt on transitions: Transitions
labeled with (σ ,σ) for a σ ∈ Σ get weight 0, the remaining transitions get weight 1.

Theorem 8. Let T = (S,sinit,→,L) be a transition system, E a set of terminal states, and C a set of
states disjoint from E. Let Φ = ♢E or Φ = 2¬E. Let π = s0 . . .sn be an execution reaching C and
satisfying Φ. It is decidable in polynomial time whether C is a dLev-counterfactual cause for Φ on π .

Proof sketch. With the construction of the weighted transition system T π
dLev

above, the check can be done
via the computation of shortest paths as for the Hamming distance above.

3.3 Relation to Halpern-Pearl causality

In the sequel, we want to demonstrate how our definition of counterfactual causality relates to Halpern-
Pearl-style definitions of causality in structural equation models [18, 19, 16]. A structural equation model
consists of variables X1, . . . ,Xn with finite domains that are governed by equations Xi = fi(X1, . . . ,Xi−1,C)
for all i ≤ n. Here, fi is an arbitrary function for each i and C is an input parameter for the context. For
our consideration, the context C does not play a role and we will hence omit it in the sequel. So, the
value of variable Xi depends on the value of (some of) the variables with lower index and the dependency
is captured by the function fi. Halpern and Pearl use interventions to define causality for an effect E,
which is a set of valuations of X1, . . . ,Xn. An intervention puts the value of a variable Xi to some α that
is different from fi(X1, . . . ,Xi−1), i.e., disregarding the equation fi. Afterwards, the subsequent variables
are evaluated as usual or by further interventions. Halpern and Pearl define:

Definition 9. Let f1, . . . , fn over variables X1, . . . ,Xn be a structural equation model as above and let E
be an effect set of valuations such that the valuation of X1, . . . ,Xn obtained by the structural equation
model belongs to E. A but-for-cause is a minimal subset X ⊆ {X1, . . . ,Xn} with the following property:
There are values αx for x ∈ X such that putting variables x ∈ X to αx by intervention leads to a valuation
of X1, . . . ,Xn not exhibiting the effect E. More precisely, letting ti be the valuation [X1 = w1, . . . ,Xi−1 =
wi−1], where wi = fi(w1, . . . ,wi−1) if Xi ̸∈ X , and wi = αXi if Xi ∈ X , we get that tn+1 ̸∈ E.
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In order to compare this to our notion of counterfactual causes, we view structural equation models
as tree-like transition system T : The nodes at level i are valuations for the variables X1, . . . ,Xi−1. At
each node s at level i, two actions are available: The action default moves to the state on level i+1 where
the valuation in s is extended by setting Xi to the value fi(X1, . . . ,Xi−1) where the values for X1, . . . ,Xi−1
are taken from the valuation in s. The action intervention extends the valuation of s by setting Xi to any
other value than the action default. The labelling in T assigns the label {intervention} to all states that
are reached by the action intervention. The remaining states and the initial state with the empty valuation
get the label /0. Given an effect E as a set of valuations, we interpret this as the corresponding set of leaf
states in T . The default path π that always chooses the action default corresponds to evaluating the
equations in the structural equation model without interventions. We can now capture but-for-causality
with dHamm-counterfactual causality along the default path π if all variables are Boolean:

Proposition 10. Let f1, . . . , fn over Boolean variables X1, . . . ,Xn be a structural equation model and
let E be an effect set of valuations. Let X be a but-for-cause for E. Let CX be the set of all nodes in
the transition system T which are reached by a default-transition for a variable x ∈ X. Then, CX is a
dHamm-counterfactual cause for E in T on the default path π .

For non-Boolean variables, the definitions of but-for-causes and of dHamm-counterfactual causes have
one significant difference: A but-for-cause X merely requires the existence of values to assign to the
variables in X by intervention such that the effect is avoided. A dHamm-counterfactual cause C in T
requires that for all possible interventions on the variables in X , the effect is avoided. This universal
quantification originates from the universal quantification over most similar worlds in the Stalnaker-
Lewis semantics of counterfactual causality.

The minimality requirement of but-for-causes does not have a counterpart in the definition of d-
counterfactual causes. This allows us to assert that a candidate set of states C is a d-counterfactual cause
for an effect even if it contains redundancies. When trying to find d-counterfactual causes for a given
effect, on the other hand, of course trying to find (cardinality-)minimal causes is a reasonable option.

Besides but-for causality, we can also capture actual causality as in [16] in our framework in the case
of Boolean structural equation models. This is demonstrated in the extended version [31].

4 Counterfactual causality in reachability games

The counterfactual notion of causality introduced and investigated in the previous section can be applied
to reachability games G : We take the perspective of a player Π. Given a strategy σ for the opponent
and a play in which Π lost, we apply the definition to the transition system obtained from σ and G
and the given play. This allows us to analyze whether avoiding a certain set of states while playing
against strategy σ as similarly as possible to the given play would have allowed Π to win. Depending
on whether we take the perspective of Reach or Safe, the effect that the player loses the game is a safety
or reachability property, which we considered as effects in transition systems. The need to be given a
strategy for the opponent, however, constitutes a major restriction to the usefulness of this approach. All
proofs omitted in this section can be found in the extended version [31].

4.1 D-counterfactual causality

We provide a definition of counterfactual causality in reachability games in the sequel in which we only
need the strategy σ with which the player Π played and are interested in why the strategy σ allows the
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opponent to win the game. Since both players have optimal MD-strategies in a reachability game, we
restrict ourselves to MD-strategies in the definition.
Definition 11. Let G be a reachability game with target set VEff. Let Π be one of the two players and
let σ be a MD-strategy for player Π. Let C be a set of locations disjoint from VEff. Let D be a distance
function on MD-strategies. We say that C is a D-counterfactual cause for the fact that Π loses using σ if

1. there are σ -plays that reach C on which Π loses,

2. there is an MD-strategy τ for player Π that avoids C (i.e., there is no τ-play reaching C),

3. all MD-strategies τ for player Π, that avoid C and that have minimal D-distance to σ among the
strategies avoiding C, are winning for Π.

If we take the perspective of player Π in game G where the opponent Π̄ does not control any loca-
tions, MD-strategies for Π satisfying condition 1 of the definition are essentially simple paths satisfying
a safety or reachability effect property (with additional information on the states that are not visited by
the path). To some extent, the definition can now be seen as a generalization of the definition for tran-
sition systems for suitable distance functions D: We say a strategy distance function D generalizes a
path distance function d if in games where Π̄ does not control any location, for all strategies σ ,τ for
Π, we have D(σ ,τ) = d(πσ ,πτ) where πσ and πτ are the unique σ - and τ-plays. The definition that C
is a D-counterfactual cause for σ losing the game agrees with the definition that C is a d-counterfactual
cause on πσ for ♢VEff or 2¬VEff in acyclic games in this case. In cyclic games, there is one caveat:
The definition for games quantifies only over MD-strategies which induce a play that is a simple path or
simple lasso. The definition for transition systems quantifies over more complicated paths as well.

Hausdorff distance dH
pref based on the prefix metric dpref . A way to obtain a strategy distance function

generalizing a given path distance function is the use of the Hausdorff distance on the set of plays of the
strategies [12, Section 6.2.2]: Let τ and σ be two MD-strategies, and d be a distance function over plays.
The Hausdorff distance dH based on d is defined by

dH(σ ,τ) = max

{
sup

σ -plays π

inf
τ-plays ρ

d(π,ρ), sup
τ-plays ρ

inf
σ -plays π

d(π,ρ)

}
.

Let us consider the Hausdorff distance dH
pref based on the prefix metric dpref assuming that all states have

a unique label. For two strategies σ and τ for Safe, the distance dH
pref (σ ,τ) is 2−n where n is the least

natural number such that there is a prefix of length n of a τ-play that is not a prefix of a σ -play, or vice
versa. In order to find strategies that are as similar as possible to a given strategy σ , we hence have to
consider strategies that follow σ for as many steps as possible. This leads to an algorithm for checking
dH

pref -counterfactual causality in reachability games that shares some similarities with the algorithm for
checking dAP

pref -counterfactual causality in transition systems.
Theorem 12. Let G = (V,vi,∆) where V = VReach ⊎VSafe ⊎VEff be a reachability game with target set
VEff and σ a MD-strategy for player Π. Let C be a set of locations disjoint from VEff. We can check in
polynomial time whether C is a dH

pref -counterfactual cause for the fact that Π is losing using σ in G .
For the Hausdorff lifting of dHamm or dLev, the resulting notion of counterfactual causes in games is

more complicated. If we try to adapt the approach used in transition systems, we need a way to capture
the minimum distance of a given strategy to the closest winning strategies. However, shortest path
games (as extension of the weighted transition systems used for dHamm- and dLev-counterfactual causes
in transition systems) cannot be employed in an obvious way. In this paper, we now instead consider two
further distance functions related to the Hamming distance for which we can provide algorithmic results.
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Hamming strategy distance. Let σ and τ be two MD-strategies for Π in G , we define the Hamming
strategy distance by ds

Hamm(σ ,τ) = |{v ∈ V | σ(v) ̸= τ(v)}|. As the Hamming distance on paths counts
positions at which traces differ, the Hamming strategy distance counts positions at which two MD-
strategies differ. Using a similar proof using shortest-path games [23] as for Theorem 5, we obtain the
following polynomial-time result in the case of aperiodic games.

Theorem 13. Let G = (V,vi,∆) be an acyclic reachability game with target set VEff and σ a MD-strategy
for player Π. Let C be a set of locations disjoint from VEff. We can check in polynomial time whether C
is a ds

Hamm-counterfactual cause for the fact that Π is losing using σ in G .

Hausdorff-inspired distance d∗. The distance function d∗ computes the number of vertices where
two MD-strategies make distinct choices along each play of both MD-strategies. It hence has some
similarity to a Hausdorff-lifting of the Hamming distance on paths. This Hausdorff-lifting, however,
counts the number of occurrences of vertices at which two paths differ (in their label). Instead, for a play
ρ = v0v1 . . . and a strategy σ for Π, we define the distance between σ and ρ dist(ρ,σ) as the number
of vertices v ∈VΠ (i.e., not the number of occurrences) such that there exists i ∈ N with v = vi in ρ , and
σ(vi) ̸= (vi,vi+1).We define d∗ for two strategies τ,σ by

d∗(τ,σ) = max
(

sup
ρ|τ-play

dist(ρ,σ), sup
π|σ -play

dist(π,τ)
)
.

To simplify the notation, we define dτ(σ) = supρ|τ-play dist(ρ,σ). We prove that the threshold problem
for d∗ is NP-complete via a reduction from the longest simple path problem:

Proposition 14. Let G be a reachability game, σ , τ be two MD-strategies for Π, and k ∈ N be a thresh-
old. Then deciding if d∗(τ,σ)≥ k is NP-complete.

The proposition explains why understanding d∗-counterfactual causes is complex. We leave a further
investigation of such notions for future work. As a first step toward a better understanding, we turn our
attention to a conceptually simpler notion, the explanation induced by a counterfactual cause.

Example 15. Let us illustrate counterfactual causes according to distances on strategies. We consider
the reachability game depicted in the left of Figure 2 and the non-winning strategy σ for Reach depicted
in green. Under dH

pref or d∗, the counterfactual cause for Reach is {v2,v3}. Indeed, there exists one play
that reaches v3 and loses for Reach, and there exists a unique strategy that avoids {v2,v3} by changing
the choice of σ in v1. Moreover, this counterfactual cause is minimal since {v3} is not a cause. Indeed,
the (losing) strategy that differs from σ in v0 and v1 avoids {v3} with a minimal distance to σ , i.e. 2−2

for dH
pref and 1 for d∗. Under ds

Hamm, the counterfactual cause for Reach is {v3}. Indeed, two strategies
exist with a distance of 1 to σ according to the vertex where Reach changes its decision. In these two
strategies, only one avoids {v3}: the strategy where Reach change its decision in v1. ⌟

4.2 D-counterfactual explanation

Given a D-counterfactual cause, we want to explain what is wrong in the losing strategy for Π. In
particular, we are interested in sets of locations C such that Π could have won the game if she had not
made the decisions of σ in the locations in C.

Definition 16. Let G be a reachability game and σ be a non-winning MD-strategy for Π. Let E ⊆ VΠ.
We call E an explanation in G under σ if there exists a winning MD-strategy τ such that for all vertices
v ∈VΠ, τ(v) = σ(v) iff v /∈ E. We call such a τ an E-distinct σ -strategy.
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vEff σ ′

σ ′

σ ′

σ ′

Figure 2: On the left and in the middle, two reachability games with initial vertex v0 and strategy σ for
Reach (depicted in green). On the right, the reachability game obtained by reduction of Corollary 21
from the game depicted in the middle with initial vertex w0 and σ ′ be a non winning strategy for Reach.

We note that the definition of an explanation does not refer to a distance function. However, given a
D-counterfactual cause, we can compute an explanation no matter which distance D is used.

Proposition 17. Let G = (V,vi,∆) be a reachability game, D a distance function on strategies and σ

be a non-winning MD-strategy for Π. Let C ⊆ V be a D-counterfactual cause. We can compute an
explanation E (from C) in polynomial time.

Proof. Let G ′ = (V \C,vi,∆) be the reachability game. Since D is a D-counterfactual cause, we know
that there exists a winning strategy τ in G ′. We can compute this strategy in time polynomial in the size
of G ′ with the attractor method and we define E = {v | σ(v) ̸= τ(v)}.

A winning strategy differing from σ in E might not have much in common with σ . For this reason,
explanations that point out changes in the decisions of σ in E that enforce only the minimal necessary
change to obtain a winning strategy τ from σ are of particular interest. We can use a distance function
D to quantify how much a strategy needs to be changed.

Definition 18. Let G be a reachability game and σ be a non-winning MD-strategy for Π. For a distance
function D for MD-strategies, we call a explanation E a D-minimal explanation, if there exists a winning
E-distinct σ -strategy τ with d(τ,σ) = min{d(µ,σ) | µ is a winning MD-strategy for Π}.

For a strategy σ and an explanation E, the distance ds
Hamm(σ ,τ) for an E-distinct σ -strategy τ is

precisely |E|. So, ds
Hamm-minimal explanations are cardinality-minimal explanations.

Example 19. Let us illustrate explanations and D-minimal explanations. We consider the reachability
game G where Reach wins depicted in the left of Figure 2 with σ , a non-winning MD-strategy for Reach,
depicted in green. We note that E = {v1,v2} is an explanation in G under σ . A winning E-distinct σ -
strategy τ for Reach is given by τ(v1) = δ1 and τ(v2) = δ4. However, E is not a d∗-minimal explanation
or ds

Hamm-minimal explanation. Clearly, ds
Hamm(τ,σ) = 2. Further, also d∗(τ,σ) = 2 as the σ -play v0v2vω

1
visits two states, namely v2 and v1 at which σ and τ make different decisions. The set E ′ = {v1}, however
is a d∗-minimal explanation and ds

Hamm-minimal explanation: the E ′-distinct σ -strategy τ ′ choosing δ1
in v1 and behaving like σ in v2 wins and has ds

Hamm- and d∗-distance 1 to σ . As any winning strategy has
at least distance 1 to σ , E ′ is hence a D-minimal explanation for both distance functions. ⌟

For D-minimal explanations, it is central to find a winning MD-strategy that minimises the distance
D to the given losing strategy σ . We take a look at this problem from the point of view of Reach and
prove that for ds

Hamm and d∗ the associated threshold problems are not in P if P̸=NP.

Theorem 20. Given a game G , a losing strategy σ for Reach, and k ∈ N, deciding if there exists a
winning MD-strategy τ for Reach such that ds

Hamm(τ,σ) ≤ k is NP-complete. Further, the problem
whether there is a winning MD-strategy τ with d∗(τ,σ)≤ k is not in P if P̸=NP.
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Proof sketch. To establish the NP upper bound for ds
Hamm, we can guess a MD-strategy τ for Reach and

check in polynomial time whether it is winning and whether ds
Hamm(τ,σ) ≤ k. For the NP-hardness for

ds
Hamm, we provide a polynomial-time many-one reduction from the NP-complete decision version of the

feedback vertex set [22]. Given a cyclic (directed) graph G, this problem asks whether there is a set S of
size at most k such that if we remove this set, G\S becomes acyclic. For the problem for d∗, we provide
a polynomial-time Turing reduction from the same problem. A detailed proof is given in [31].

We deduce that checking D-minimality of an explanation cannot be done in polynomial time if P ̸=NP.
Corollary 21. Let G be a reachability game, σ be a non-winning MD-strategy for Reach, and E ⊆ V .
The problem to check if E is a ds

Hamm-minimal explanation in G for σ is coNP-complete. The problem to
check if E is a d∗-minimal explanation in G for σ is not in P if P̸=NP.

Despite the hardness in the general case, if G σ is acyclic, we prove that we can compute the winning
MD-strategy that minimises the d∗-distance to σ in polynomial time. From this strategy, a d∗-minimal
explanation can then be computed as in Proposition 17. The proof of Theorem 22 (in the extended
version [31]) constructs a shortest-path game [23] without negative weights in which an optimal strategy,
that leads to the desired winning strategy in the original game, can be computed in polynomial time.
Theorem 22. Let G be reachability game where Reach wins, and σ be a non-winning MD-strategy
for Reach such that G σ is acyclic. Then, we can compute a winning MD-strategy τ that minimizes the
distance d∗ to σ in polynomial time.

5 Conclusion and Outlook

The notion of d-counterfactual cause for a distance function d in transition systems turned out to be
checkable in polynomial time for the distance functions dpref , dHamm, and dLev and so it has the potential
to be employed in efficient tools to provide understandable explanations of the behavior of a system. In
our algorithmic results for safety effects Φ, one caveat remains: we only considered finite executions
reaching a cause candidate C and satisfying Φ. Allowing also finitely representable, e.g., ultimately
periodic paths, constitutes a natural extension, which requires adjustments in the provided algorithms.

The problem of finding good causes remains as future work: Whenever causality can be checked in
polynomial time, there is an obvious non-deterministic polynomial-time upper bound on the problem to
decide whether there are causes below a given size, but the precise complexities are unclear. A further
idea is to use the distance function to assess how good a cause is by considering the distance from the
actual execution to the closest executions avoiding a cause. For reachability effects and the prefix and
Hamming distance, the set of direct predecessors optimizes this distance. For other distance functions or
safety causes, this measure could, nevertheless, be more useful. The search for similar measures for the
quality of causes constitutes an interesting direction for future work.

In reachability games, we saw that the analogous definition of D-counterfactual causes can be checked
in polynomial time for the Hausdorff-lifting dH

pref of the prefix metric, as well. For other distance func-
tions, the definition seems to lead to complicated notions due to the involved quantification over all
MD-strategies avoiding the cause and having a minimal distance to a given strategy. A closer investiga-
tion of these notions might, nevertheless, be a fruitful subject for future research. However, our analysis
of the conceptually simpler D-minimal explanations provides insights into the complications one might
encounter here. For the Hausdorff-inspired distance function d∗, we showed that already the threshold
problem for the distance between two given MD-strategies is NP-hard. Furthermore, for the relatively
simple distance function ds

Hamm, checking the ds
Hamm-minimality of an explanation is in coNP-complete.

For the Hausdorff-inspired distance function d∗, checking d∗-minimality is not in P unless P=NP.
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