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In this paper we introduce a novel quantifier elimination method for conjunctions of linear real arith-
metic constraints. Our algorithm is based on the Fourier-Motzkin variable elimination procedure, but
by case splitting we are able to reduce the worst-case complexity from doubly to singly exponential.
The adaption of the procedure for SMT solving has strong correspondence to the simplex algorithm,
therefore we name it FMplex. Besides the theoretical foundations, we provide an experimental eval-
uation in the context of SMT solving.

1 Introduction

Linear real arithmetic (LRA) is a powerful first-order theory with strong practical relevance. We fo-
cus on checking the satisfiability of conjunctions of LRA constraints, which is needed e.g. for solving
quantifier-free LRA formulas using satisfiability modulo theories (SMT) solvers. The problem is known
to be solvable in polynomial worst-case complexity but, surprisingly, the ellipsoid method [13] pro-
posed in 1980 by Khachiyan is still the only available algorithm that implements this bound. However,
this method is seldomly used in practice due to its high average-case effort. Instead, most approaches
employ the simplex algorithm introduced by Dantzig in 1947, which has a singly exponential worst case
complexity, but which is quite efficient in practice. A third available solution is the Fourier-Motzkin vari-
able elimination (FM) method, proposed in 1827 by Fourier [9] and re-discovered in 1936 by Motzkin
[23]. In contrast to the other two approaches, FM admits quantifier elimination, but it has a doubly expo-
nential worst case complexity, even though there have been various efforts to improve its efficiency by
recognizing and avoiding redundant computations (e.g. [11, 12]).

In this paper, we propose a novel method, which is derived from the FM method, but which turns
out to have striking resemblance to the simplex algorithm. This yields interesting theoretical insights
into the relation of the two established methods and the nature of the problem itself. More precisely, our
contributions include:

• The presentation of FMplex, a new variable elimination method based on a divide-and-conquer
approach. We show that it does not contain certain redundancies Fourier-Motzkin might generate
and it lowers the overall complexity from doubly to singly exponential.

• An adaptation of FMplex for SMT solving, including methods to prune the search tree based on
structural observations.
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• A theorem formalizing connections between FMplex and the simplex algorithm.

• An implementation of the SMT adaptation and its experimental evaluation.
After recalling necessary preliminaries in Section 2, we introduce our novel FMplex method first for
quantifier elimination in Section 3 and then for SMT solving in Section 4. We present related work
and compare FMplex with other methods, first qualitatively in Section 5, and then experimentally in
Section 6. We discuss future work and conclude the paper in Section 7.

An extended version of this paper including more detailed proofs can be found on arXiv [25].

2 Preliminaries

Let R, Q and N denote the set of real, rational respectively natural (0 /∈N) numbers. For k ∈N we define
[k] := {1, . . . ,k}. Throughout this paper, we fix n ∈ N, a set X = {x1, . . . ,xn} and a corresponding vector
xxx = (x1, . . . ,xn)

T of R-valued variables.

Matrices For m ∈ N let E(m) ∈ Qm×m be the identity matrix, and 000(m) = (0 · · · 0)T ∈ Qm×1. The
ith component of fff ∈ Qm×1 ∪Q1×m is denoted by fi and the component-wise comparison to zero by
fff ≥ 0. For A ∈ Qm×n, aaai,- ∈ Q1×n and aaa-,i ∈ Qm×1 denote the ith row respectively column vector of
A. Furthermore, A[I] denotes the sub-matrix of A containing only the rows with indices from some
I ⊆ [m]. For fff ∈ Q1×m, fff A is a linear combination of the rows i ∈ [m] of A with fi ̸= 0. We call A
linearly independent if none of its rows is a linear combination of its other rows, and linearly dependent
otherwise. The rank of A rank(A) is the size of a maximal I ⊆ [m] with A[I] linearly independent.

Linear Constraints Let aaa = (a1, . . . ,an) ∈ Q1×n, b ∈ Q and ∼∈ {=,≤,<, ̸=} a relation symbol. We
call aaaxxx a linear term and aaaxxx ∼ b a linear constraint, which is weak if ∼∈ {=,≤} and strict otherwise.
A system of linear constraints, or short a system, is a non-empty finite set of linear constraints. For most
of this paper, we only consider constraints of the form aaaxxx ≤ b. We can write every system C = {aaai,- xxx ≤
bi | i ∈ [m]} of such constraints in matrix representation Axxx ≤ bbb with suitable A ∈ Qm×n and bbb ∈ Qm×1.
Conversely, every row aaai,- xxx ≤ bi, i ∈ [m] of Axxx ≤ bbb is a linear constraint. Thus, the representations are
mostly interchangeable; however, the matrix representation allows redundant rows in contrast to the set
notation. As the latter will play a role later on, we will stick to the matrix representation.

Variable Assignment An assignment is a function α : Y → R with domain dom(α) = Y ⊆ X . The
extension α[xi 7→ r] is the assignment with domain dom(α)∪{xi} such that α[xi 7→ r](x j) = α(x j) for all
x j ∈ dom(α)\{xi} and α[xi 7→ r](xi) = r. For Z ⊆ Y , the restriction α|Z is the assignment with domain
Z such that α|Z(xi) = α(xi) for all xi ∈ Z. We extend these notations to sets of assignments accordingly.

The standard evaluation of a linear term t under α is written α(t). We say that α satisfies (or is a
solution of) a constraint c = (aaaxxx ∼ b) if α(a1x1 + . . .anxn)∼ b holds, and denote this fact by α |= c. All
solutions of c build its solution set sol(c). Similarly, α |= (Axxx ≤ bbb) denotes that α is a common solution
of all linear constraints in the system Axxx ≤ bbb. A system is satisfiable if it has a common solution, and
unsatisfiable otherwise. Note that each satisfiable system has also a rational-valued solution.

We will also make use of the following two well-known results.
Theorem 1 (Farkas’ Lemma [8]). Let A ∈Qm×n and bbb ∈Qm×1. Then the system Axxx ≤ bbb is satisfiable if
and only if for all fff ∈Q1×m with fff ≥ 0 and fff A = (0, . . . ,0) ∈Q1×n it holds fff bbb ≥ 0.
Theorem 2 (Fundamental Theorem of Linear Programming, as in [21]). Let A ∈ Qm×n and bbb ∈ Qm×1.
Then Axxx ≤ bbb is satisfiable if and only if there exists a subset I ⊆ [m] such that A[I] is linearly independent,
|I|= rank(A), and there exists an assignment α : X → R with α |= (A[I]xxx = bbb[I]) and α |= (Axxx ≤ bbb).
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2.1 Fourier-Motzkin Variable Elimination

The Fourier-Motzkin variable elimination (FM) [9, 23] method allows to eliminate any x j ∈ X from a
system Axxx ≤ bbb by computing A′xxx ≤ bbb′′′ with aaa′′′-, j = 0 and such that an assignment α is a solution of
A′xxx ≤ bbb′′′ if and only if there is r ∈Q so that α[x j 7→ r] is a solution of Axxx ≤ bbb. Graphically, the solution
set of A′xxx ≤ bbb′′′ is the projection of the solutions of Axxx ≤ bbb onto X \{x j}.

The idea of the FM method is as follows. For each i ∈ [m] with ai, j ̸= 0, the constraint aaai,- xxx ≤ bi can
be rewritten as either a lower bound or an upper bound on x j, denoted in both cases as bnd j(aaai,- xxx ≤ bi):(

∑
k∈[n]\{ j}

−
ai,k

ai, j
·xk

)
+

bi

ai, j
≤ x j, if ai, j < 0, resp. x j ≤

(
∑

k∈[n]\{ j}
−

ai,k

ai, j
·xk

)
+

bi

ai, j
, if ai, j > 0.

Definition 1. For A ∈Qm×n, we define the index sets

I−j (A) := {i ∈ [m] | ai, j < 0}, I+j (A) := {i ∈ [m] | ai, j > 0}, and I0
j (A) := {i ∈ [m] | ai, j = 0}.

I−j (A), I+j (A) andI0
j (A) indicate the rows of Axxx ≤ bbb which induce lower bounds, upper bounds and no

bounds on x j, respectively. Due to the density of the reals, there exists a value for x j that satisfies all
bounds if and only if each lower bound is less than or equal to each upper bound. However, since in
general the involved bounds are symbolic and thus their values depend on the values of other variables,
we cannot directly check this condition. To express this, we let A′xxx ≤ bbb′′′ be defined by the constraint set

{bnd j(aaaℓ,- xxx ≤ bℓ)≤ bnd j(aaau,- xxx ≤ bu) | (ℓ,u) ∈ I−j (A)× I+j (A)} ∪ {aaai,- xxx ≤ bi | i ∈ I0
j (A)}.

In matrix representation, the FM method applies the following transformation:
Definition 2 (Fourier-Motzkin Variable Elimination). Let A ∈Qm×n, bbb ∈Qm×1, and j ∈ [n]. Let further
m′ = |I−j (A)| · |I

+
j (A)|+ |I0

j (A)| and F ∈Qm′×m be a matrix consisting of exactly the following rows:1

− 1
aℓ, j

· eee(m)
ℓ,- +

1
au, j

· eee(m)
u,- for every pair (ℓ,u) ∈ I−j (A)× I+j (A) and eee(m)

i,- for every i ∈ I0
j (A).

Then the Fourier-Motzkin variable elimination FM j(Axxx ≤ bbb) of x j from the system Axxx ≤ bbb is defined as
the system FAxxx ≤ Fbbb.

The consistency of Axxx ≤ bbb can be checked by successively eliminating variables xn, . . . ,x1, obtaining
intermediate systems A(n−1)xxx ≤ bbb(n−1), . . . ,A(0)xxx ≤ bbb(0). All entries of the transformation matrix F in the
definition above are positive, and thus for any k ∈ {0, . . . ,n−1} and any row i′ in A(k)xxx≤ bbb(k), there exists
0 ≤ fff ∈ Qm×1 s.t. fff A = aaa(k)i′,- and fff bbb = b(k)i′ , or in short: ∑i∈[m] fi · (aaai,- xxx ≤ bi) = (aaa(k)i′,-xxx ≤ b(k)i′ ). We call

this kind of linear combinations conical combinations. By Farkas’ Lemma (Theorem 1), if A(0)xxx ≤ bbb(0)

is unsatisfiable, then so is Axxx ≤ bbb. If it is satisfiable, then it is satisfied by the empty assignment, which
can be extended successively to a model of A(1)xxx ≤ bbb(1), . . . ,A(n−1)xxx ≤ bbb(n−1) and Axxx ≤ bbb.

A major drawback of the Fourier-Motzkin variable elimination is its doubly exponential complexity
in time and space w.r.t. the number of eliminated variables. Moreover, many of the generated rows are
redundant because they are linear combinations of the other rows, i.e. they could be omitted without
changing the solution set of the system. Redundancies might already be contained in the input system,
or they arise during the projection operation. While removing all redundancies is expensive, there are
efficient methods for removing some redundancies of the latter type, for example Imbert’s acceleration
theorems [10, 11, 12].

1Remember that we use lower case letters for rows of matrices with the respective upper case letter as name. Thus, eee(m)
i,-

denotes the ith column vector of the identity matrix E(m).
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Lemma 1 (Redundancy by Construction). Let A ∈ Qm×n,bbb ∈ Qm×1 and F ∈ Qm′×m. Let furthermore
A′ = FA, bbb′′′ = Fbbb and i ∈ [m′]. If there exists rrr ∈Q1×m′

with rrr ≥ 0, ri = 0 and rrrF = fff i,- (i.e. the ith row of
A′xxx ≤ bbb′′′ is a conical combination rrrFAxxx ≤ rrrFbbb of the other rows), then that row is redundant in A′xxx ≤ bbb′′′,
i.e. the solution set does not change when omitting it: sol(A′xxx ≤ bbb′′′) = sol(A′[[m′]\{i}]xxx ≤ bbb′′′[[m′]\{i}]).

3 FMplex as Variable Elimination Procedure

The FM method encodes that none of the lower bounds on some variable x j in a system Axxx ≤ bbb is larger
than any of its upper bounds. In our FMplex method, instead of considering all lower-upper bound
combinations at once, we split the problem into a set of sub-problems by case distinction either on which
of the lower bounds is the largest or alternatively on which of the upper bounds is the smallest. For
splitting on lower bounds, for each lower bound on x j we consider solutions where this lower bound is
maximal under all lower bounds, and at the same time not larger than any of the upper bounds. The
upper bound case is analogous. Then Axxx ≤ bbb is satisfiable if and only if there exists a solution in one
of these sub-problems. Asymptotically, these sub-problems are significantly smaller than the systems
produced by FM, so that in total our approach produces at most exponentially many constraints after
iterated application, in contrast to the doubly exponential effort of the FM method.

Formally, if there are no upper or no lower bounds on x j, then there is no need for case splitting and
we follow FM using ∃x j. Axxx ≤ bbb ≡ A[I0

j (A)]xxx ≤ bbb[I0
j (A)]. Otherwise, for the sub-problem when designating

i ∈ I−j (A) as largest lower bound, we encode that no other lower bound is larger than the bound induced
by row i, and no upper bound is below this bound. Using the set notation for systems, we obtain

{bnd j(aaai′,- xxx ≤ bi′)≤ bnd j(aaai,- xxx ≤ bi) | i′ ∈ I−j (A), i′ ̸= i}
∪{bnd j(aaai,- xxx ≤ bi)≤ bnd j(aaai′,- xxx ≤ bi′) | i′ ∈ I+j (A)}∪{aaai′,- xxx ≤ bi′ | i′ ∈ I0

j (A)}.

Example 1. We eliminate x2 from the system Axxx ≤ bbb consisting of the lower-bounding constraints c1
and c2, and the upper-bounding c3 and c4, specified below along with a graphical depiction. The lower
bounds I−2 (A) = {1,2} on x2 are blue, the upper bounds I+2 (A) = {3,4} are green. The solution set is the
gray area and the dashed line indicates the split into two sub-problems, namely the cases that c1 resp. c2
is a largest lower bound on x2 and not larger than any upper bound on x2.




c1 −1 −1
c2 0 −2
c3 −2 1
c4 0 1

·

[
x1
x2

]
≤


−4
−2
1
5


x1

x2

c1

c2

c3

c4

The encoding of the c1-case is given by (bnd2(c2)≤ bnd2(c1))∧(bnd2(c1)≤ bnd2(c3))∧(bnd2(c1)≤
bnd2(c4)), which evaluates to (x1 ≤ 3)∧ (−3x1 ≤−3)∧ (−x1 ≤ 1) satisfied by any x1 ∈ [1,3], on the left
of the dashed line. The case for c2 evaluates to (−x1 ≤−3)∧ (−2x1 ≤ 0)∧ (0 ≤ 4) and is satisfiable on
the right of the dashed line. The disjunction of the two formulas then defines exactly those values for x1
which allow a solution of the initial system.

The construction for the case i ∈ I+j (A) designating i as smallest upper bound is analogous. In matrix
representation, these projections are defined by the following transformation:
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Definition 3 (Restricted Projection). Let A ∈Qm×n, bbb ∈Qm×1 and j ∈ [n].

• If I−j (A) ̸= /0 and I+j (A) ̸= /0, then for any i ∈ I−j (A)∪ I+j (A) we fix F ∈ Q(m−1)×m arbitrarily but
deterministically to consist of exactly the following rows:

1
ai, j

· eee(m)
i,- − 1

ai′, j
· eee(m)

i′,- for every i′ ∈ I−j (A)\{i},

− 1
ai, j

· eee(m)
i,- +

1
ai′, j

· eee(m)
i′,- for every i′ ∈ I+j (A)\{i}, and eee(m)

i′,- for every i′ ∈ I0
j (A).

Then the restricted projection Pj,i(Axxx ≤ bbb) of x j w.r.t. the row i from the system Axxx ≤ bbb is defined
as the system FAxxx ≤ Fbbb. We call F the projection matrix corresponding to Pj,i(Axxx ≤ bbb).

• If I−j (A) = /0 or I+j (A) = /0, then we define the projection matrix F ∈Q|I0
j (A)|×m to have exactly one

row eee(m)
i′,- for each i′ ∈ I0

j (A), and define Pj,⊥(Axxx ≤ bbb) as FAxxx ≤ Fbbb.

The following lemma states a crucial result for our method: The solutions of the restricted projections
for all lower (or all upper) bounds of a variable exactly cover the projection of the entire solution set.

Lemma 2. Let A ∈Qm×n, bbb ∈Qm×1, j ∈ [n] and I ∈ {I−j (A), I
+
j (A)}. If I−j (A) ̸= /0 and I+j (A) ̸= /0, then

sol(Axxx ≤ bbb)|X\{x j} =
⋃
i∈I

sol(Pj,i(Axxx ≤ bbb)).

Otherwise (I−j (A) = /0 or I+j (A) = /0), it holds sol(Axxx ≤ bbb)|X\{x j} = sol(Pj,⊥(Axxx ≤ bbb)).

Proof. The case I−j (A) = /0 or I+j (A) = /0 follows from the correctness of FM. Assume I = I−j (A), the
case I = I+j (A) is analogous.

⊇: Let i ∈ I−j (A) and α |= Pj,i(Axxx ≤ bbb), then for all ℓ∈ I−j (A), u ∈ I+j (A) it holds α(bnd j(aaaℓ,- xxx ≤ bℓ))≤
α(bnd j(aaai,- xxx ≤ bi))≤ α(bnd j(aaau,- xxx ≤ bu)). Thus, α[x j 7→ α(bnd j(aaai,- xxx ≤ bi))] |= Axxx ≤ bbb.

⊆: Let α |= Axxx ≤ bbb and i = argmaxℓ∈I−j (A)
(α(bnd j(aaaℓ,- xxx ≤ bℓ))), then for all u ∈ I+j (A) it holds

α(bnd j(aaai,- xxx ≤ bi))≤ α(bnd j(aaau,- xxx ≤ bu)) and thus α |= Pj,i(Axxx ≤ bbb).

Definition 4 (FMplex Variable Elimination). For A∈Qm×n, bbb∈Qm×1, j ∈ [n] and ∗ ∈ {−,+}, we define

FMP∗j(Axxx ≤ bbb) =

{
{Pj,i(Axxx ≤ bbb) | i ∈ I∗j (A)} if I−j (A) ̸= /0 and I+j (A) ̸= /0
{Pj,⊥(Axxx ≤ bbb)} otherwise.

The FMplex elimination defines a set of restricted projections which can be composed to the full
projection according to Lemma 2. Lifting this from sets to logic naturally results in the following theorem
which demonstrates the usage of our method.

Theorem 3. Let A ∈Qm×n, bbb ∈Qm×1, and j ∈ [n]. Then

∃x j. Axxx ≤ bbb ≡
∨

S∈FMP+j (Axxx≤bbb)
S ≡

∨
S∈FMP−j (Axxx≤bbb)

S.

For eliminating multiple variables, we iteratively apply FMP− or FMP+ to each restricted projection
resulting from the previous elimination step. Note that we can choose the next variable to be eliminated
as well as the variant independently in every branch.
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Example 2. We continue Example 1, from which we eliminated x2 and now want to eliminate x1:

∃x1. ∃x2. Axxx ≤ bbb ≡ ∃x1.
∨

S∈FMP−2 (Axxx≤bbb)
S

≡ ∃x1. (x1 ≤ 3∧−3x1 ≤−3∧−x1 ≤ 1) ∨∃x1. (−x1 ≤−3∧−2x1 ≤ 0∧0 ≤ 4)

We eliminate the two quantifiers for x1 separately, using

FMP−1 (x1 ≤ 3∧−3x1 ≤−3∧−x1 ≤ 1) = {(0 ≤ 2∧0 ≤ 2),(0 ≤−2∧0 ≤ 4)} and

FMP−1 (−x1 ≤−3∧−2x1 ≤ 0∧0 ≤ 4) = {(0 ≤ 4)}

giving us the final result ∃x1. ∃x2. Axxx ≤ bbb ≡ ((0 ≤ 2∧0 ≤ 2)∨ (0 ≤ 4∧0 ≤−2))∨ (0 ≤ 4).

We analyze the complexity in terms of the number of new rows (or constraints) that are constructed
during the elimination of all variables:

Theorem 4 (Complexity of FMP). Let A ∈ Qm×n, and bbb ∈ Qm×1. When eliminating n variables from
Axxx ≤ bbb, the FMP− method constructs O(n ·mn+1) new rows.

Proof. The number N(m,n) of constructed rows is maximal if the system consists only of lower bounds
and one upper bound. Then, FMP− yields m− 1 new systems of size m− 1, from which n− 1 variables
need to be eliminated; thus N(m,n) ≤ (m− 1) · ((m− 1)+N(m− 1,n− 1)). With k = min(n,m), we

obtain N(m,n)≤
k
∑

i=1
(m− i) ·

i
∏
j=1

(m− j)≤ n ·mn+1.

While still exponential, this bound is considerably better than the theoretical doubly exponential
worst-case complexity of the FM method. Shortly speaking, FMplex trades one exponential step at the
cost of the result being a decomposition into multiple partial projections. However, there are systems for
which FMplex produces strictly more rows than the FM method: In the worst case from the above proof,
FM obtains a single system of the same size as each of the sub-problems computed by FMP−. Although
in this case, we could simply employ FMP+ instead, it is unclear whether there exists a rule for employing
FMP− or FMP+ that never produces more constraints than FM.

Like FM, FMplex keeps redundancies from the input throughout the algorithm, thus there might be
identical rows in the same or across different sub-problems. But in contrast to FM, FMplex does not
introduce any redundancies by construction in the sense of Lemma 1.

Theorem 5. Let A ∈Qm×n, bbb ∈Qm×1 and k ∈ [m]. Assume (A(0)xxx ≤ bbb(0)) = (Axxx ≤ bbb) and for all j ∈ [k],
let (A( j)xxx≤ bbb( j))∈ FMP−j (A

( j−1)xxx≤ bbb( j−1))∪FMP+j (A( j−1)xxx≤ bbb( j−1)). Let F(1), . . . ,F(k) be the respective
projection matrices, and F = F(k) · . . . ·F(1). Then F is linearly independent.

Proof. By definition, the projection matrices are linearly independent, and thus so is their product F .

4 FMplex as Satisfiability Checking Procedure

A formula is satisfiable if and only if eliminating all variables (using any quantifier elimination method
such as FM or FMplex) yields a tautology. However, FMplex computes smaller sub-problems whose
satisfiability implies the satisfiability of the original problem. Therefore, we do not compute the whole
projection at once, but explore the decomposition using a depth-first search. The resulting search tree has
the original system as root, and each node has as children the systems resulting from restricted projec-
tions. The original system is satisfiable if and only if a leaf without any trivially false constraints exists.
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Axxx ≤ bbb
P2,1(Axxx ≤ bbb)

(0 ≤ 2)∧ (0 ≤ 2) (0 ≤ 4)∧ (0 ≤−2)

P2,2(Axxx ≤ bbb)

(0 ≤ 4)

Figure 2: The search tree corresponding to Example 2. The very first leaf (bottom left) is already
satisfiable, meaning that the rest would not need to be computed.

An example is depicted in Figure 2. We start with a basic version of the algorithm and then examine how
the search tree can be pruned, resulting in two variants; all versions are given in Algorithm 1.

An important observation is that we can decide independently for each node of the search tree, which
variable to eliminate next and whether to branch on lower or on upper bounds.

Definition 5 (Branch Choices). The set of branch choices for a system Axxx ≤ bbb is

branch_choices(Axxx ≤ bbb) ={{(x j, i) | i ∈ I−j (A)} | j ∈ [n]∧ I−j (A) ̸= /0∧ I+j (A) ̸= /0}
∪{{(x j, i) | i ∈ I+j (A)} | j ∈ [n]∧ I−j (A) ̸= /0∧ I+j (A) ̸= /0}
∪{{(x j,⊥)} | j ∈ [n]∧ (I−j (A) = /0∨ I+j (A) = /0)}.

For an initial input Âxxx ≤ b̂bb with m̂ rows, we define the depth-first search using the recursive method
FMplex(Âxxx ≤ b̂bb;Axxx ≤ bbb,F) in Algorithm 1a where Axxx ≤ bbb is the currently processed sub-problem in
the recursion tree. We track the relation of Axxx ≤ bbb to Âxxx ≤ b̂bb in terms of linear combinations using the
parameter F . The initial call is defined as FMplex(Âxxx ≤ b̂bb) = FMplex(Âxxx ≤ b̂bb; Âxxx ≤ b̂bb,E(m̂)). We allow
that Axxx ≤ bbb contains identical rows when they are obtained in different ways (which is reflected by F).
We need to keep these duplicates for proving the results of this section.

Solutions If a trivially satisfiable node is found, the algorithm constructs an assignment starting with
the empty assignment and extends it in reverse order in which the variables were eliminated. For every
variable x j, a value is picked above all lower and below all upper bounds on x j evaluated at the underlying
assignment. By the semantics of the projection, the value of the designated (largest lower or smallest
upper) bound on x j is suitable.

Conflicts We distinguish inconsistencies in Axxx ≤ bbb by the following notions: We call a row i of Axxx ≤ bbb
a conflict if it is of the form aaai,- = 000(n) with bi < 0. We call the conflict global if fff i,- ≥ 0 and local
otherwise. In case of a global conflict, Farkas’ Lemma allows to deduce the unsatisfiability of Âxxx ≤ b̂bb,
thus stopping the search before the whole search tree is generated. Then a set of conflicting rows K of the
input system corresponding to fff i,- is returned. In particular, the set {âaa j,- xxx ≤ b̂ j | fi, j ̸= 0} is a minimal
unsatisfiable subset of the constraints in Âxxx ≤ b̂bb. In case of a local conflict, we simply continue to explore
the search tree. The algorithm returns PARTIAL-UNSAT to indicate that Axxx ≤ bbb is unsatisfiable, but the
unsatisfiability of Âxxx ≤ b̂bb cannot be derived. This approach, formalized in Algorithm 1a, guarantees that
the initial call will never return PARTIAL-UNSAT; we always find either a global conflict or a solution.

The correctness and completeness of FMplex follows from Theorem 3 and Theorem 6.

Theorem 6. Let Â ∈ Qm̂×n, and b̂bb ∈ Qm̂ × 1. Then Âxxx ≤ b̂bb is unsatisfiable if and only if the call
FMplex(Âxxx ≤ b̂bb) to Algorithm 1a terminates with a global conflict.
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Algorithm 1: FMplex(Âxxx ≤ b̂bb;Axxx ≤ bbb,F, N , I , lvl,bt_lvl )

Algorithm 1a The base method consists of the plain (unframed and unfilled) parts.

Algorithm 1b Consists of the base method and the framed parts .

Algorithm 1c Consists of the base method, the framed parts and the filled boxes .

Data : Â ∈Qm̂×n, b̂bb ∈Qm̂

Input : A ∈Qm×n, bbb ∈Qm, F ∈Qm×m̂ s.t. FÂ = A and Fb̂bb = bbb, N ⊆ [m̂], I ⊆ [m̂] ,

lvl ∈ [n]∪{0}, and bt_lvl : [m]→ [n]∪{0}
Output: (SAT, α) with α |= Axxx ≤ bbb, or (UNSAT, K) where K ⊆ [m̂], or

(PARTIAL-UNSAT, l,K ) where l ∈ [n] and K ⊆ [m̂]

1 if A = 0∧bbb ≥ 0 then return (SAT, ())
2 if ∃i ∈ [m]. aaai,- = 0∧bi < 0∧ fff i,- ≥ 0 then return (UNSAT,{i′ | fi,i′ ̸= 0})
3 if ∃i ∈ [m]. aaai,- = 0∧bi < 0∧ fff i,- ≱ 0 then
4 i := argmini∈[m]{bt_lvl(i) | aaai,- = 0∧bi < 0}
5 return (PARTIAL-UNSAT,bt_lvl(i)−1,{i′ | fi,i′ ̸= 0})
6 K = /0

7 choose V ∈ branch_choices(Axxx ≤ bbb, {B−1
N ,F(i) | i ∈ I} )

8 foreach (x j, i) ∈V do
9 compute A′xxx ≤ bbb′′′ := Pj,i(Axxx ≤ bbb) with projection matrix F ′ and backtrack levels bt_lvl′

10 N ′ := N ∪{BN ,F(i)} if i ̸=⊥ else N

11 switch FMplex (Âxxx ≤ b̂bb;A′xxx ≤ bbb′′′,F ′F, N ′, I , lvl+1,bt_lvl′ ) do
12 case (UNSAT,K′) do return (UNSAT,K′)
13 case (SAT,α) do return (SAT,α[x j 7→ r]) for a suitable r ∈Q
14 case (PARTIAL-UNSAT, l,K′) do
15 if l < lvl then return (PARTIAL-UNSAT, l,K′)
16 else K = K ∪K′

17 I := I ∪{BN ,F(i)}

18 if lvl= 0 then return (UNSAT,K)

19 return (PARTIAL-UNSAT, lvl-1, K )
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Proof Idea for Theorem 6. If Âxxx≤ b̂bb is unsatisfiable, then there exists a minimal unsatisfiable subset K̂ of
the corresponding constraints. We construct a path in the search tree induced by Algorithm 1a yielding
a conflict that is a linear combination of K̂. As K̂ is minimal, the linear combination is positive, i.e.
the conflict is global. The other direction of the equivalence follows immediately with Farkas’ Lemma.
Consult the extended version for a detailed proof.

4.1 Avoiding Redundant Checks

We observe that each row i in a sub-problem Axxx ≤ bbb in the recursion tree of FMplex(Âxxx ≤ b̂bb) corresponds
to a row ı̂ in Âxxx ≤ b̂bb in the sense that it is a linear combination of the rows {ı̂}∪N of Âxxx ≤ b̂bb, where
N ⊆ [m̂] corresponds to the lower/upper bounds designated as largest/smallest one to compute Axxx ≤ bbb:

Theorem 7. Let Â ∈Qm̂×n and b̂bb ∈Qm̂×1. Let FMplex(Âxxx ≤ b̂bb;Axxx ≤ b,F) be a call in the recursion tree
of the call FMplex(Âxxx ≤ b̂bb) to Algorithm 1a , where A ∈Qm×n and bbb ∈Qm×1 (by construction m ≤ m̂).

Then there exists a set N ⊆ [m̂] such that

1. Axxx ≤ bbb is satisfiable if and only if (Âxxx ≤ b̂bb)∧ (Â[N ]xxx = b̂bb[N ]) is satisfiable,

2. there exists an injective mapping BN ,F : [m]→ [m̂], i 7→ ı̂ with {ı̂}= {i′ ∈ [m̂] | fi,i′ ̸= 0}\N .

Proof Idea. The statement follows with a straight forward induction over the elimination steps, where the
original row corresponding to the chosen bound is added to N , and BN ,F keeps track of which constraint
corresponds to which original row. Consult the extended version for a detailed proof.

We call the above defined set N the non-basis, inspired from the analogies to the simplex algorithm
(discussed in Section 5.1). By the above theorem, the order in which a non-basis is constructed has no
influence on the satisfiability of the induced sub-problem. In particular:

Theorem 8. Let A ∈Qm×n, bbb ∈Qm×1, j ∈ [n], and let i, i′ ∈ [m] be row indices with ai, j ̸= 0 and ai′, j ̸= 0.
If Pj,i(Axxx ≤ bbb) is unsatisfiable, then Pj,i′(Axxx ≤ bbb)∧ (aaai,- xxx = bi) is unsatisfiable.

Proof. By Theorem 7, if Pj,i(Axxx ≤ bbb) is unsatisfiable, then (Axxx ≤ bbb)∧ (aaai,- xxx = bbbiii) is unsatisfiable, and
trivially (A xxx ≤ bbb)∧ (aaai,- xxx = bbbiii)∧ (aaai′,- xxx = bbbi′) is unsatisfiable as well. Using Theorem 7 in the other
direction yields that Pj,i′(Axxx ≤ bbb)∧ (aaai,- xxx = bbbiii) is unsatisfiable.

This suggests that if FMplex(Âxxx ≤ b̂bb;Axxx ≤ bbb,F) with non-basis N has a child call for row i which
does not return SAT, then no other call in the recursion tree of FMplex(Âxxx ≤ b̂bb;Axxx ≤ bbb,F) where the
corresponding non-basis contains BN ,F(i) will return SAT either. Hence, we can ignore BN ,F(i) as
designated bound in the remaining recursion tree of FMplex(Âxxx ≤ b̂bb;Axxx ≤ bbb,F).

Example 3. Consider the system from Example 1, with an additional constraint c5 : (−x2 ≤ 0). If c5 is
tried first as greatest lower bound on x2, then the combination with c2 : (−2x2 ≤ −2) yields the local
conflict 1

2 c2 − c5 = (0 ≤−1). Thus, this branch and, due to Theorem 8, any non-base containing row 5
yields an unsatisfiable system.

Next, we try c1 as greatest lower bound on x2 resulting in the combinations 1
2 c2 − c1 = (x1 ≤ 3),

c5 − c1 = (x1 ≤ 4), c1 + c3 = (−3x1 ≤−3) and c1 + c4 = (−x1 ≤ 1) and corresponding non-base {1}.
If we now choose (x1 ≤ 4) as smallest upper bound on x1, leading to the non-base {1,5}, another

local conflict occurs: (x1 ≤ 3)− (x1 ≤ 4) = (0 ≤−1). As 5 is contained in the non-base, we could know
beforehand that this would happen and thus avoid computing this branch.

We update the FMplex algorithm as shown in Algorithm 1b using the following definition:
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Definition 6. The set of branch choices for Axxx ≤ bbb with m rows w.r.t. I ⊆ [m] is

branch_choices(Axxx ≤ bbb, I) = {{(x j, i) | i ∈ I−j (A)\ I} | j ∈ [n]∧ I−j (A) ̸= /0∧ I+j (A) ̸= /0}
∪ {{(x j, i) | i ∈ I+j (A)\ I} | j ∈ [n]∧ I−j (A) ̸= /0∧ I+j (A) ̸= /0}
∪ {{(x j,⊥)} | j ∈ [n]∧ (I−j (A) = /0∨ I+j (A) = /0)}.

It is easy to see that this modification prevents visiting non-basis twice in the following sense:

Theorem 9. Let FMplex(Âxxx ≤ b̂bb;Axxx ≤ bbb,_,N ,_) and FMplex(Âxxx ≤ b̂bb;A′xxx ≤ bbb′′′,_,N ′,_) be two calls
in the recursion tree of a call to Algorithm 1b. Then either N ≠N ′ or one of the systems occurs in the
subtree below the other and only unbounded variables are eliminated between them (i.e. one results from
the other by deleting some rows).

Theorem 10 states that, still, Algorithm 1b always terminates with SAT or a global conflict. This
follows by a slight modification of the proof of Theorem 6, presented in the extended version of this
paper.

Theorem 10. Let Â ∈ Qm̂×n, and b̂bb ∈ Qm̂×1. Then Âxxx ≤ b̂bb is unsatisfiable if and only if the call
FMplex(Âxxx ≤ b̂bb) to Algorithm 1b terminates with a global conflict.

4.2 Backtracking of Local Conflicts

So far, we ignored local conflicts that witness the unsatisfiability of a given sub-problem. In this section,
we will cut off parts of the search tree based on local conflicts and examine the theoretical implications.

We applied Farkas’ Lemma on conflicting rows in some sub-problem that are positive linear combi-
nations of rows from the input system. We can also apply Farkas’ Lemma to conflicting rows which are
positive linear combinations of some intermediate system to conclude the unsatisfiability of the latter.
Whenever such a conflict occurs, we can backtrack to the parent system of that unsatisfiable system.
Instead of tracking the linear combinations of every row in terms of the rows of each preceding inter-
mediate system, we can do an incomplete check: If a conflicting row was computed only by addition
operations, then it is a positive linear combination of the involved rows. Thus, we assign to every inter-
mediate system a level, representing its depth in the search tree and store for every row the level where
the last subtraction was applied to the row (i.e. a lower (upper) bound was subtracted from another lower
(upper) bound). If a row is conflicting, we can conclude that the intermediate system at this level is
unsatisfiable, thus we can jump back to its parent.

Assume the current system is Axxx≤ bbb at level lvl with m rows whose backtracking levels are stored in
bt_lvl : [m]→ ([n]∪{0}). If lvl= 0, then bt_lvl maps all values to 0. When computing Pj,i(Axxx ≤ bbb)
for some x j and i with projection matrix F , the backtracking levels of the rows in the resulting system
FAxxx ≤ Fbbb are stored in bt_lvl′ where for each row i′′

bt_lvl′(i′′) :=

{
max{bt_lvl(i),bt_lvl(i′)} if fi′′,i, fi′′,i′ > 0 and fi′′,k = 0, k /∈ {i, i′}
lvl otherwise.

The backtracking scheme is given in Algorithm 1c , which returns additional information in the
PARTIAL-UNSAT case, that is the backtrack level l of the given conflict, and a (possibly non-minimal)
unsatisfiable subset K.

Theorem 11. Let FMplex(_;Axxx ≤ bbb,_,_,_,lvl,_) be a call to Algorithm 1c , and consider a second
call FMplex(_;A′xxx ≤ bbb′′′,_,_,_,_,bt_lvl′) in the recursion tree of the first call. If A′xxx ≤ bbb′′′ has a local
conflict in a row i with bt_lvl′(i) = lvl, then Axxx ≤ bbb is unsatisfiable.
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Proof. By construction of bt_lvl’, aaa′′′i,- xxx ≤ b′i is a positive sum of rows from Axxx ≤ bbb, i.e. there exists an
fff ∈Q1×m such that ( fff Axxx ≤ fff bbb) = (aaa′′′i,- xxx ≤ b′i). Then by Farkas’ Lemma, Axxx ≤ bbb is unsatisfiable.

While it is complete and correct, Algorithm 1c does not always terminate with a global conflict (i.e.
Theorem 6 does not hold any more), even if we do not ignore any rows (i.e. omit Line 17):

Example 4. We use Algorithm 1c to eliminate vari- 
0 0 −1
1 −1 −1
1 0 0
−1 1 0
0 −1 1

 ·

 x1
x2
x3

≤


0
0
−1
−1
0


ables with the static order x3,x2,x1 from the system
on the right, always branching on lower bounds. We
first choose row 1 as greatest lower bound on x3.
Rows 3 and 4 are retained as they do not contain x3
and the combination of row 1 with row 5 is positive,
so these constraints have backtrack level 0.
The combination with row 2 has backtrack level 1 because both rows are lower bounds. Using this
constraint as greatest lower bound on x2 and combining it with row 4 leads to a local conflict with
backtrack level 1. This means that the call at level 1 is unsatisfiable and thus we backjump to level 0.

The second branch is visited, leading to the non-basis N = {2,5,1} after three steps, where a local
conflict lets us backjump to level 0 again. As there are no more lower bounds on x3, the algorithm returns
UNSAT without finding a global conflict.

5 Relation to Other Methods

5.1 Simplex Algorithm

The simplex method [6, 18] is an algorithm for linear optimization over the reals and is able to solve
linear programs. The general simplex [7] is an adaption for checking the satisfiability of systems of
linear constraints. We illustrate its idea for the weak case.

Remind that given a system Axxx ≤ bbb with m rows, by the fundamental theorem of linear programming
(Theorem 2), Axxx ≤ bbb is satisfiable if and only if there exists some maximal subset N ⊆ [m] such that A[N ]

is linearly independent and Axxx≤ bbb∪A[N ]xxx= bbb[N ] is satisfiable - the latter can be checked algorithmically
using Gaussian elimination, resulting in a system where each variable is replaced by bounds induced by
the rows N . This system along with the information which element in N was used to eliminate which
variable is called a tableau. The idea of the simplex method is to do a local search on the set N (called
non-basis), that is, we replace some i ∈ N (leaving variable) by some i′ ∈ [m] \N (entering variable)
obtaining N ′ :=N ∪{i′} \ {i} such that A[N ′] is still linearly independent. The clou is that the tableau
representing (Axxx ≤ bbb)∧ (A[N ]xxx = bbb[N ]) can be efficiently transformed into (Axxx ≤ bbb)∧ (A[N ′]xxx = bbb[N ′])
(called pivot operation), and progress of the local search can be achieved by the choice of i and i′.
These local search steps are performed until a satisfying solution is found, or a conflict is found. These
conflicts are detected using Farkas’ Lemma (Theorem 1), i.e. a row in the tableau induces a trivially false
constraint and is a positive linear combination of some input rows.

As suggested by Theorem 7, there is a strong correspondence between a tableau of the simplex
algorithm and the intermediate systems constructed in FMplex. More precisely, if a non-basis of a
simplex tableau is equal to the non-basis of a leaf system of Algorithm 1a, then the tableau is satisfiable
if and only if the FMplex system is satisfiable. In fact, we could use the same data structure to represent
the algorithmic states. Comparing the two algorithms structurally, FMplex explores the search space in
a tree-like structure using backtracking, while simplex can jump between neighbouring leaves directly.
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The idea for Algorithm 1b that excludes visiting the same non-basis in fact arose from the analogies
between the two methods. Further, we observe a potential advantage of FMplex: Simplex has more
non-bases reachable from a given initial state than the leaves of the search tree of FMplex, as FMplex
needs only to explore all lower or all upper bounds of a variable while simplex does local improvements
blindly. Heuristically, simplex cuts off large parts of its search space and we expect it often visits fewer
non-bases than FMplex - however, as the pruning done by FMplex is by construction of the algorithm,
we believe that there might be combinatorially hard instances on which it is more efficient than simplex.

5.2 Virtual Substitution Method

Virtual substitution [20, 27] admits quantifier elimination for real arithmetic formulas. Here, we consider
its application on existentially quantified conjunctions of linear constraints.

The underlying observation is that the satisfaction of a formula changes at the zeros of its constraints
and is invariant between the zeros. Thus, the idea is to collect all symbolic zeros zeros(ϕ) of all con-
straints in some input formula ϕ . If all these constraints are weak, then a variable x j is eliminated by
plugging every zero and an arbitrarily small value −∞ into the formula, i.e. ∃x j. ϕ is equivalent to
ϕ[−∞//x j]∨

∨
ξ∈zeros(ϕ) ϕ[ξ//x j]. The formula ϕ[t//x j] encodes the semantics of substituting the term t

for x j into the formula ϕ (which is a disjunction of conjunctions). As we can pull existential quantifiers
into disjunctions, we can iteratively eliminate multiple variables by handling each case separately.

The resulting algorithm for quantifier elimination is singly exponential; further optimizations ([26]
even proposes to consider only lower or upper bounds for the test candidates) lead to a very similar proce-
dure as the FMplex quantifier elimination: Substituting a test candidate into the formula is equivalent to
computing the restricted projection w.r.t. a variable bound. However, our presentation allows to exploit
the correspondence with the FM method.

Virtual substitution can also be adapted for SMT solving [3] to a depth-first search similar to FMplex.
A conflict-driven search for virtual substitution on conjunctions of weak linear constraints has been
introduced in [15], which tracks intermediate constraints as linear combinations of the input constraints
similarly to FMplex. Their conflict analysis is a direct generalization of the global conflicts in FMplex
and is thus slightly stronger than our notion of local conflicts. However, their method requires storing
and maintaining a lemma database, while FMplex stores all the information for pruning the search tree
locally. The approaches have strong similarities, although they originate from quite different methods.
Further, our presentation shows the similarities to simplex, is easily adaptable for strict constraints, and
naturally extensible to work incrementally.

5.3 Sample-Based Methods

There exist several depth-first search approaches, including McMillan et al. [22], Cotton [5] and Ko-
rovin et al. [16, 17], which maintain and adapt a concrete (partial) variable assignment. They share the
advantage that combinations of constraints are only computed to guide the assignment away from an
encountered conflict, thus avoiding many unnecessary combinations which FM would compute.

Similar to FMplex, these methods perform a search with branching, backtracking and learning from
conflicting choices. However, they branch on variable assignments, with infinitely many possible choices
in each step. Interestingly, the bounds learned from encountered conflicts implicitly partition the search
space into a finite number of regions to be tried, similar to what FMplex does explicitly. In fact, we deem
it possible that [16] or [17] try and exclude assignments from exactly the same regions that FMplex would
visit (even in the same order). However, the sample-based perspective offers different possibilities for
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heuristic improvements than FMplex: choosing the next assigned value vs. choosing the next lower
bound; deriving constant variable bounds vs. structural exploits using Farkas’ Lemma; possibility of
very quick solutions vs. more control and knowledge about the possible choices.

Moreover, these methods offer no straight-forward adaption for quantifier elimination, while FMplex
does. However, [22] and [5] can handle not only conjunctions, but any quantifier-free LRA formula in
conjunctive normal form.

6 Experimental Evaluation

We implemented several heuristic variants of the FMplex algorithm, as well as the generalized simplex
and the FM methods as non-incremental DPLL(T) theory backends in our SMT-RAT solver [4] and
compared their performance in the context of satisfiability checking. Using the transformation given in
[24] and case splitting as in [2], we extended the method to also handle strict and not-equal-constraints.

The base version of FMplex (Algorithm 1a) was tested with two different heuristics for the choice of
the eliminated variable and for the order in which the branches are checked. These choices may strongly
influence the size of the explored search tree; in the best case, the very first path leads to a satisfiable leaf
or to a global conflict.

Min-Fanout We greedily minimize the number of children: for any Axxx ≤ bbb and I, we choose V ∈
branch_choices(Axxx ≤ bbb, I) such that |V | is minimal; in case that this minimum is 1, we prefer choices
V = {(x j,⊥)} for a j ∈ [n] over the other choices.

We prefer rows with a lower (earlier) backtrack level, motivated by finding a global conflict through
trying positive linear combinations first. Moreover, if backtracking is used then we expect this heuristic
to allow for backtracking further back on average.

Min-Column-Length A state-of-the-art heuristic for simplex in the context of SMT solving is the
minimum column length [14]: we choose the variables for leaving and entering the non-basis such that
the number of necessary row operations is minimized. We resemble this heuristic in FMplex as follows:
we prefer choices {(x j,⊥)} and if there is no such j, we take the j ∈ [n] with minimal |I−j (A)|+ |I+j (A)|
and take the smallest choice between I−j (A) and I+j (A).

We first choose the rows which have the least non-zero coefficients (i.e. contain the least variables)
to prefer sparse sub-problems. This can be understood as Min-Row-Length.

We consider the following solver variants: FMplex-a-MFO and FMplex-a-MCL implement Algorithm 1a
with the Min-Fanout and the Min-Column-Length heuristic, respectively. FMplex-a-Rand-1/2 de-
notes two variants of Algorithm 1a where all choices are taken pseudo-randomly with different seeds.
FMplex-b-MFO implements Algorithm 1b and FMplex-c-MFO implements Algorithm 1c , both using
the Min-Fanout heuristic. Our approach is also compared to non-incremental implementations FM and
Simplex. The FMplex variants and FM always first employ Gaussian elimination to handle equalities.

All solvers were tested on the SMT-LIB [1] benchmark set for QF_LRA containing 1753 formulas.
As all evaluated solvers are non-incremental, we also generated conjunctions of constraints by solving
each of these QF_LRA problems using a DPLL(T) SMT solver with an FMplex-c-MFO theory solver
backend, and extracting all conjunctions passed to it. If the solver terminated within the time and memory
limits, we sampled 10 satisfiable and 10 unsatisfiable conjunctions (or gathered all produced conjunctions
if there were fewer than 10). This amounted to 3084 (777 sat, 2307 unsat) additional benchmarks. The
experiments were conducted on identical machines with two Intel Xeon Platinum 8160 CPUs (2.1 GHz,
24 cores). For each formula, the time and memory were limited to 10 minutes and 5 GB.
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SMT-LIB Conjunctions
solved sat unsat TO MO solved sat unsat TO MO

Simplex 958 527 431 714 81 3084 777 2307 0 0
FM 860 461 399 577 316 2934 747 2187 107 43
FMplex-a-MFO 814 432 382 840 99 2962 743 2219 122 0
FMplex-a-MCL 820 435 385 830 103 2965 742 2223 119 0
FMplex-a-Rand-1 742 383 359 906 105 2806 668 2138 278 0
FMplex-a-Rand-2 743 383 360 905 105 2823 671 2152 261 0
FMplex-b-MFO 822 434 388 830 101 2988 744 2244 96 0
FMplex-c-MFO 920 499 421 733 100 3084 777 2307 0 0
Virtual-Best 982 532 450 651 120 3084 777 2307 0 0

Table 1: Number of solved instances, timeouts (TO) and memory-outs (MO).
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Figure 3: Scatter plots: Each dot represents a single instance. In (a) and (b), instances at the very top or
right exceeded the resource limit. Such instances are not considered in (c) and (d).
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The results in Table 1 show that Simplex solved the most SMT-LIB instances, followed by our
FMplex-c-MFO and then FM. Interestingly, FM solves fewer conjunctive instances than the base version of
FMplex due to higher memory consumption (43 memory-outs for FM, while the others have none). We see
that a reasonable variable heuristic makes a difference as FMplex-a-Rand-* perform much worse than
FMplex-a-MFO and FMplex-a-MCL. However, between the latter two, there is no significant difference.
While our first optimization used in FMplex-b-MFO has no big impact, the backtracking implemented in
FMplex-c-MFO allows for solving more instances within the given resource limits.

The running times for each individual SMT-LIB instance depicted in Figures 3a and 3b reveal that
FM and FMplex-c-MFO often behave similar, but FM fails on a number of larger instances. We suspect
that the smaller intermediate systems of FMplex are a main factor here. While Simplex is often faster
than FMplex-c-MFO and solves 61 SMT-LIB instances not solved by FMplex-c-MFO, it fails to solve 23
instances on which FMplex-c-MFO succeeds (Of these instances, FM solves 3 respectively 14 instances).
Accordingly, the Virtual-Best of the tested solvers performs significantly better than just Simplex,
indicating potential for a combination of Simplex and FMplex-c-MFO.

Figure 3c compares the number of constraints generated by FM and FMplex-c-MFO on the conjunctive
inputs. Especially on larger instances, FMplex seems to be in the advantage. Motivated by Section 4.1,
Figure 3d compares the number of Simplex pivots to the number of systems in FMplex-c-MFO. We see
that neither is consistently lower than the other, though Simplex seems to be slightly superior. Due
to the log-log scale, not shown are 1305 instances in which either measurement is 0 (920 instances for
Simplex, 981 for FMplex-c-MFO).

The implementation and collected data are available at https://doi.org/10.5281/zenodo.7755862.

7 Conclusion

We introduced a novel method FMplex for quantifier elimination and satisfiability checking for con-
junctions of linear real arithmetic constraints. Structural observations based on Farkas’ Lemma and the
Fundamental Theorem of Linear Programming allowed us to prune the elimination or the search tree.
Although the new method is rooted in the FM method, it has strong similarities with both the virtual
substitution method and the simplex method.

The experimental results in the context of SMT solving show that FMplex is faster than Fourier-
Motzkin and, although simplex is able to solve more instances than FMplex, there is a good amount of
instances which can be solved by FMplex but cannot be solved by simplex.

In future work, we aim to combine the structural savings of FMplex with the efficient heuristic of
simplex, i.e. we transfer ideas from FMplex to simplex and vice-versa. Furthermore, we will investigate
in tweaks and heuristics. For instance, we plan to adapt the perfect elimination ordering from [19] and
work on an incremental adaption for SMT solving. Last but not least, we plan to increase the applicability
of FMplex as a quantifier elimination procedure, including a different handling of strict inequalities,
which is more similar to FM.
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