
A. Achilleos and D. Della Monica (Eds.): Fourteenth

International Symposium on Games, Automata, Logics,

and Formal Verification (GandALF 2023).

EPTCS 390, 2023, pp. 236–252, doi:10.4204/EPTCS.390.15

© S. Forster, A. Skarlatos & T. de Vos

This work is licensed under the

Creative Commons Attribution License.

Fast Algorithms for Energy Games in Special Cases*

Sebastian Forster

Department of Computer Science
University of Salzburg, Austria

sebastian.forster@plus.ac.at

Antonis Skarlatos

Department of Computer Science
University of Salzburg, Austria

antonis.skarlatos@plus.ac.at

Tijn de Vos

Department of Computer Science
University of Salzburg, Austria

tijn.devos@plus.ac.at

In this paper, we study algorithms for special cases of energy games, a class of turn-based games on

graphs that show up in the quantitative analysis of reactive systems. In an energy game, the vertices

of a weighted directed graph belong either to Alice or to Bob. A token is moved to a next vertex by

the player controlling its current location, and its energy is changed by the weight of the edge. Given

a fixed starting vertex and initial energy, Alice wins the game if the energy of the token remains

nonnegative at every moment. If the energy goes below zero at some point, then Bob wins. The

problem of determining the winner in an energy game lies in NP∩ coNP. It is a long standing open

problem whether a polynomial time algorithm for this problem exists.

We devise new algorithms for three special cases of the problem. The first two results focus on

the single-player version, where either Alice or Bob controls the whole game graph. We develop

an Õ(nωW ω) time algorithm for a game graph controlled by Alice, by providing a reduction to the

All-Pairs Nonnegative Prefix Paths problem (APNP), where W is the maximum absolute value of

any edge weight and ω is the best exponent for matrix multiplication. Thus we study the APNP

problem separately, for which we develop an Õ(nωW ω) time algorithm. For both problems, we

improve over the state of the art of Õ(mn) for small W . For the APNP problem, we also provide a

conditional lower bound which states that there is no O(n3−ε) time algorithm for any ε > 0, unless the

APSP Hypothesis fails. For a game graph controlled by Bob, we obtain a near-linear time algorithm.

Regarding our third result, we present a variant of the value iteration algorithm, and we prove that it

gives an O(mn) time algorithm for game graphs without negative cycles, which improves a previous

upper bound. The all-Bob algorithm is randomized, all other algorithms are deterministic.

1 Introduction

Energy games belong to a class of turn-based games on graphs that show up in the quantitative analysis

of reactive systems. A game graph can possibly represent a scheduling problem, where vertices are the

configurations of the system and edges carry positive or negative values representing the evolution of

resources. Thus, in this model resources can be consumed or produced. The energy games problem has

been introduced in the early 2000s [13, 6], but also have been implicitly studied before due to its ties to

mean-payoff games [21]. Energy games have applications in, among others, computer aided verification

and automata theory [13, 5, 12], and in online and streaming problems [31]. From its computational

perspective, the problem of determining the winner in an energy game lies in NP∩ coNP. It is an

intriguing open problem whether a polynomial time algorithm for this problem exists.

An energy game is played by two players, say Alice and Bob, on a game graph, which is a weighted

directed graph such that each vertex is either controlled by Alice or Bob. The game starts by placing a

token with an initial energy on a starting vertex. The game is played in rounds, and every time the token

*This work is supported by the Austrian Science Fund (FWF): P 32863-N. This project has received funding from the

European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant

agreement No 947702). A full version is available at https://arxiv.org/abs/2307.08442.

http://dx.doi.org/10.4204/EPTCS.390.15
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2307.08442

S. Forster, A. Skarlatos & T. de Vos 237

is located at a vertex controlled by Alice, then Alice chooses the next location of the token among the

outgoing edges, otherwise Bob chooses the next move. The token has an energy level (in the beginning

this is equal to the initial energy) and every time it traverses an edge, the weight of the edge is added to

the energy level (a negative weight amounts to a reduction of the energy level). The objectives of the

players are as follows: Alice wants to minimize the initial energy that is necessary to keep the energy

level nonnegative at all times, whereas Bob wants to maximize this value (and possibly drive it to ∞).

The computational problem is to determine for each vertex the minimum initial energy such that Alice

can guarantee against all choices of Bob that the energy level always stays nonnegative.

Energy games are a generalization of parity games [24, 9], polynomial-time equivalent to mean-

payoff games [6, 9], and a special case of simple stochastic games [31]. Recent progress on parity

games yielded several quasipolynomial time algorithms [11], but the corresponding techniques seem to

not carry over to energy and mean-payoff games [20]. Consequently, the complexity of energy games

is still “stuck” at pseudopolynomial [9] or subexponential time [4]. Hence, in this paper we focus on

interesting special cases (which are non-trivial problems) that admit fast algorithms. Two of these cases

are game graphs where all vertices are controlled by one player, and the third case are game graphs with

no negative cycles.

All-Pairs Nonnegative Prefix Paths. We also study another reachability problem with energy con-

straints [22, 17], the All-Pairs Nonnegative Prefix Paths (APNP) problem. In this problem, the goal is

to find for every pair of vertices whether there exists a path π such that the weight of each prefix of π

is nonnegative. We use this problem to obtain the result for the special case where Alice controls the

whole game graph, since the two problems are closely related. Dorfman, Kaplan, Tarjan, and Zwick [17]

solve the more general problem, where for each pair of vertices the goal is to find the path π of maximum

weight among all options. This problem naturally generalizes APSP, and they solve it in O(mn+n2 logn)
time.

Energy Games. The state-of-the-art algorithms for the energy games are either deterministic with

running time O
(

min(mnW,mn2n/2 logW)
)

[9, 18] or randomized with subexponential running time

2O(
√

n log n) [4]. Special cases of the energy games have been studied by Chatterjee, Henzinger, Krin-

ninger, and Nanongkai [15]. They present a variant of the value iteration algorithm of [9] with running

time O(m|A|), where A is a sorted list containing all possible minimum energy values. This does not

improve the general case, as A in the worst case is the list {0,1, . . . ,nW,∞}. However, it does give a

faster running time if the weights adhere to certain restrictions. Moreover, they develop a scaling algo-

rithm with running time O(mn logW (log W
P
+1)+mnW

P
), where P ∈ {1

n
, . . . ,W} is a lower bound on the

penalty of the game.

For the special case where there are no negative cycles in the game graph, the penalty can be set

to W , and the scaling algorithms of [15] solves the problem in O(mn logW) time. For another special

case where the whole game graph is controlled by Alice, Brim and Chaloupka [8] provided an Õ(mn)1

running time algorithm as a subroutine for the two-players version.

Mean-Payoff Games. In a mean-payoff game, the objective of Alice is to maximize the average of the

weights of edges traversed so far, whereas Bob’s objective is to minimize this mean payoff. It is well

known that any energy games instance can be solved by solving O(n log(nW)) mean-payoff games [6],

1We write Õ(f) for O(f poly log f).

238 Fast Algorithms for Energy Games in Special Cases

and any mean-payoff game instance can be solved by solving O(log(nW)) energy games with maximal

weight nW [9]2. Thus, any of the aforementioned algorithms for solving energy games also yields an

algorithm for solving mean-payoff games at the expense of at most an additional factor of O(n log(nW))
in the running time. Zwick and Paterson [31] provided the first pseudopolynomial time algorithm that

computes all the mean-payoff values, with O(mn3W) running time. Later, the running time was improved

by Brim, Chaloupka, Doyen, Gentiline, and Raskin [9] to O(mn2W log(nW)), using their reduction to

energy games. The state-of-the-art algorithm for solving a mean-payoff game is due to Comin and

Rizzi [16] which runs in O(mn2W) time.

1.1 Our Results and Techniques

All-Pairs Nonnegative Prefix Paths. The version of All-Pairs Nonnegative Prefix Paths (APNP) prob-

lem where we want to find the path of maximum weight [17], naturally generalizes the All-Pairs Shortest

Paths (APSP) problem. The APSP Hypothesis states that there is no O(n3−ε) time algorithm for the

APSP, for any ε > 0. However, this version of APNP is more than what is necessary for the application

of energy games. We show that the weaker version which only computes reachability (as APNP has been

defined), also does not allow for a O(n3−ε) time algorithm for any ε > 0, under the APSP Hypothesis.

Theorem 1.1. Unless the APSP Hypothesis fails, there is no O(n3−ε) time algorithm that solves the

All-Pairs Nonnegative Prefix Paths problem, for any ε > 0.

We parameterize the maximum absolute value of any edge weight W , and we obtain an algorithm

with a faster running time for small values of W .

Theorem 1.2. There exists a deterministic algorithm that, given a graph G = (V,E,w) with edge weights

in the interval [−W,W], solves the All-Pairs Nonnegative Prefix Paths problem in Õ(nωW ω) time.

All-Alice. Our first contribution regarding the special cases of energy games, concerns the all-Alice

case in which all vertices are controlled by Alice. Note that if we fix a strategy for Bob in any game

graph, this can be seen as an all-Alice instance.

Theorem 1.3. There exists a deterministic algorithm that, given a game graph G = (V,E,w) in which

all vertices are controlled by Alice, computes the minimum sufficient energy of all vertices in Õ(nωW ω)
time.

Note that the aforementioned reduction from energy games to mean-payoff games always introduces

Bob vertices. Thus, algorithms for the all-Alice mean-payoff decision problem cannot be leveraged by

this reduction to compute the minimum energies in the all-Alice case.

Our approach for the all-Alice case consists of two steps. In the first step, we identify all vertices Z

such that minimum initial energy 0 suffices, by using Theorem 1.2. In the second step, we compute the

paths of least energy reaching any vertex in Z. For small values of W , this improves on the state-of-the-art

Õ(mn) algorithm [8].

All-Bob. Our second contribution regarding the special cases of energy games, is a faster algorithm for

the all-Bob case in which all vertices are controlled by Bob. Note that if we fix a strategy for Alice in

any game graph, this can be seen as an all-Bob instance.

2Unless stated otherwise, we always consider the versions of the games where we compute the mean-payoff value/minimum

initial energy for all vertices.

S. Forster, A. Skarlatos & T. de Vos 239

Theorem 1.4. There exists a randomized (Las Vegas) algorithm that, given a game graph G = (V,E,w)
in which all vertices are controlled by Bob, computes the minimum sufficient energy of all vertices, and

with high probability the algorithm takes O(m log2 n log nW log logn) time.

To the best of our knowledge, the fastest known algorithm for the all-Bob case is implied by the

reduction to the mean-payoff decision problem and has a running time of Õ(mn log2W). This comes

from Õ(n logW) calls to the state-of-the-art negative-cycle detection algorithm [3, 10].

Our approach for the all-Bob case consists of two steps. In the first step, we run a negative-cycle

detection algorithm to remove all vertices reaching a negative cycle. In the second step, we add an

artificial sink to the graph with an edge from every vertex to the sink, and we compute the shortest

path of every vertex to the sink using a single-source shortest paths (SSSP) algorithm. Note that this

construction is very close to Johnson’s method for computing suitable vertex potentials [23]. Further note

that, since energy games are not symmetric for Alice and Bob, our near-linear time all-Bob algorithm

has no implications for the all-Alice case.

No Negative Cycles. Finally, we give an improved algorithm for the special case where there are no

negative cycles.

Theorem 1.5. There exists a deterministic algorithm that, given a grame graph G = (V,E) without

negative cycles, computes the minimum sufficient energy of all vertices in O(mn) time.

To the best of our knowledge, the fastest known algorithm for this special case has a running time

of O(mn logW) by running the above mentioned algorithm of Chatterjee, Henzinger, Krinninger, and

Nanongkai [15] with penalty P = W . We use a new variant of the value iteration algorithm where the

energy function after i steps corresponds to the minimum energy function in an i-round game. A similar

variant has been used by Chatterjee, Doyen, Randour, and Raskin [14] for the Mean-Payoff games. We

adapt this algorithm and provide the necessary analysis to use it for energy games.

An i-round game is a finite version of the energy game, where a token is passed for only i rounds.

In this version, the goal is to find the initial energy that Alice needs, in order to keep the energy level

nonnegative for these i-rounds. Then we show that in graphs without negative cycle, the infinite game is

equivalent to the n-round game.

Structure of the paper. In the next section, we provide some preliminaries, including the formal def-

inition of an energy game. In Section 3, we study the All-Pairs Nonnegative Prefix Paths problem, and

we present an algorithm for the special case that the edge weights are in {−1,0,+1}, an algorithm for

general edge weights, and a lower bound. Next in Section 4, we consider the all-Alice case by reducing

this problem to the All-Pairs Nonnegative Prefix Paths problem. In Section 5, we consider the all-Bob

case, and finally in Section 6, we consider game graphs without negative cycles.

2 Preliminaries

Graphs. Given a directed graph G= (V,E,w), we denote by n= |V | the number of vertices, by m= |E|
the number of edges, and by W the maximum absolute value of any edge weight. Also, we denote N+(v)
for the out-neighborhood of v, i.e., N+(v) := {u ∈ V : (v,u) ∈ E}. Further, we denote deg+(v) for the

out-degree of v, i.e., deg+(v) := |N+(v)|. Similarly, N−(v) and deg−(v) denote the in-neighborhood and

in-degree respectively.

240 Fast Algorithms for Energy Games in Special Cases

A path P is a sequence of vertices u0u1 · · · such that (ui,ui+1) ∈ E for every i ≥ 0. We say a path is

finite if it contains a finite number of vertices (counted with multiplicity). We say a path is simple if each

vertex appears at most once. A lasso is a path of the form u0u1 · · ·u jui, where the vertices u0, . . . ,u j are

disjoint and i < j. In other words, it is a simple path leading to a cycle. A nonnegative prefix path is a

path P = u0u1 · · · such that ∑
i−1
j=0 w(u j,u j+1) ≥ 0 for all 1 ≤ i ≤ |P|. Further, we denote the weight of a

path P = u0u1 · · · by w(P) := ∑
|P|−1
j=0 w(u j,u j+1). For a fixed path P = u0u1 · · · , the energy level e(ui) of

a vertex ui in P is equal to ∑
i−1
j=0 w(u j,u j+1). That is, the sum of all the weights along P until ui.

Let G = (V,E,w) be a directed graph with edge weights −1 and +1, and let s, t ∈V be two vertices

of G. Then, a Dyck path from s to t is a nonnegative prefix path from s to t of total weight zero [7]. For a

graph H , we refer to the corresponding functions by using H as subscript (e.g., we use the notation wH(·)
for the weight function of H).

Energy Games. An energy game is an infinite duration game played by two players, Alice and Bob.

The game is played on a game graph which a weighted directed graph G = (V,E,w), where each vertex

has at least one outgoing edge. The weights are integers and lie in the range {−W,−W + 1, . . . ,W −
1,W}. The set of vertices is partitioned in two sets VA and VB, controlled by Alice and Bob respectively.

Furthermore, we are given a starting vertex s∈V , and initial energy e0 ≥ 0. We start with position v0 = s.

After the ith round, we are at a position vi ∈V and have energy ei. In the ith round, if vi−1 ∈VA (vi−1 ∈VB)

then Alice (Bob) chooses a next vertex vi ∈ N+(vi−1) and the energy changes to ei = ei−1 +w(vi−1,vi).
The game ends when ei < 0, in which case we say that Bob wins. If the game never ends, namely, ei ≥ 0

for all i ≥ 0, we say that Alice wins. The goal is to find out the minimum initial energy e0 ≥ 0 such

that Alice wins when both players play optimally. Note that allowing e0 = ∞ means that such an energy

always exist.

To make this goal more formal, we have to introduce strategies. A strategy for Alice (Bob) tells us

given the current point vi ∈ VA (vi ∈ VB) and the history of the game, v0, . . . ,vi, where to move next. It

turns out that we can restrict ourselves to positional strategies [19, 6], which are deterministic and do

not depend on the history of the game. We denote a positional strategy of Alice by σ : VA → V where

σ(v) ∈ N+(v) for v ∈VA, and a positional strategy of Bob by τ : VB→V where τ(v) ∈ N+(v) for v ∈VB.

For any pair of strategies (σ ,τ) we define G(σ ,τ) to be the subgraph (V,E ′) corresponding to these

strategies, where E ′ = {(v,σ(v)) : v ∈VA}∪{(v,τ(v)) : v ∈VB}. Note that in this graph each vertex has

exactly one out-neighbor. Let Pi be the unique path s= u0,u1, . . . ,ui in G(σ ,τ) of length i originating at s.

Then at vertex s with initial energy e0 and with these strategies, Alice wins if e0 +w(Pi)≥ 0 for all i≥ 0,

and Bob wins if e0 +w(Pi) < 0 for at least one i ≥ 0. The minimum sufficient energy at s with respect

to σ and τ is the minimum energy such that Alice wins, namely eG(σ ,τ)(s) := max{0,− infi≥0 w(Pi)}.
Finally, we define the minimum sufficient energy at s as follows:

e∗G(s) := min
σ

max
τ

eG(σ ,τ)(s),

where the minimization and the maximization are over all the positional strategies σ of Alice and τ

of Bob, respectively. We omit the subscript G, and use eσ ,τ (s) instead of eG(σ ,τ)(s), whenever this

is clear from the context. By Martin’s determinacy theorem [26], we have that minσ maxτ eσ ,τ (s) =
maxτ minσ eσ ,τ(s), thus the outcome is independent of the order in which the players pick their strategy.

Now we can define optimal strategies as follows. A strategy σ ∗ is an optimal strategy for Alice, if

eσ∗,τ(s)≤ e∗(s) for any strategy τ of Bob. Similarly, τ∗ is an optimal strategy for Bob, if eσ ,τ∗(s)≥ e∗(s)
for any strategy σ of Alice. An energy function is a function e : V → Z≥0∪{∞}. The function e∗G(·) (or

e∗(·)) as defined above, is the minimum sufficient energy function.

S. Forster, A. Skarlatos & T. de Vos 241

3 All-Pairs Nonnegative Prefix Paths Problem

In this section, we study the All-Pairs Nonnegative Prefix Paths (APNP) problem. The goal of this

problem is to find for every pair of vertices whether there exists a nonnegative prefix path between them.

A similar problem is the All-Pairs Dyck-Reachability problem, where the goal is to find for every pair of

vertices whether there exists a Dyck path between them (given that the edge weights are in {−1,+1}).
Furthermore, another standard problem is the transitive closure problem, which asks to find for every

pair of vertices whether there exists a path between them.

Bradford [7] provided an Õ(nω) time algorithm for the All-Pairs Dyck-Reachability problem. More-

over, the transitive closure problem admits an Õ(nω) algorithm [1].

Theorem 3.1. There exists a deterministic algorithm that, given a graph G = (V,E,w) with edge weights

in {−1,1}, solves the All-Pairs Dyck-Reachability problem in Õ(nω) time.

Our approach for the APNP problem consists of two stages. At first, we solve the APNP problem for

the special case where the edge weights are from the set {−1,0,+1}, by exploiting the algorithm of [7]

for the All-Pairs Dyck-Reachability problem. Afterwards, we extend our algorithm to work with general

weights, by showing that a reduction used in [2] preserves the properties we need.

In the end of the section, we also present a conditional lower bound for the APNP problem under the

APSP Hypothesis, which is one of the main hypotheses in fine-grained complexity.

3.1 All-Pairs Nonnegative Prefix Paths with edge weights in {−1,0,+1}
Consider a graph G = (V,E) with edge weights −1 and +1. By definition, we have that any Dyck path

is also a nonnegative prefix path. However, the opposite is not necessarily true. Recall that nonnegative

prefix paths allow the energy level of their last vertex to be a strictly positive value, while in Dyck paths

this value must be zero. This implies that an All-Pairs Dyck-Reachability algorithm does not trivially

gives us an All-Pairs Nonnegative Prefix Paths algorithm. Nevertheless, we show how to overcome this

issue and we use an All-Pairs Dyck-Reachability algorithm as a subroutine in order to solve the All-Pairs

Nonnegative Prefix Paths problem.

Algorithm for the {−1,0,+1} case. Consider a directed graph G = (V,E,w), with edge weights in

{−1,0,+1}. In the beginning of the algorithm, we construct a graph G2 as follows.

1. Initially, we create a new graph G1 = (V1,E1,w) by replacing every edge of zero weight with an

edge of weight +1 and an edge of weight −1. Specifically, for each vertex u with at least one

outgoing edge (u,v) ∈ E with w(u,v) = 0, we add a new vertex u′, and add an edge (u,u′) with

w(u,u′) = +1. Next, for each edge (u,v) ∈ E with w(u,v) = 0, we remove the edge (u,v), and add

the edge (u′,v) with weight −1.3

2. Next, we run on G1 the algorithm of Theorem 3.1, which solves the All-Pairs Dyck-Reachability

in time Õ(nω) for edge weights in {−1,+1}.
3. Finally, we create another new graph G2 = (V,E2) with the original vertex set and an edge set E2

defined as follows. The set E2 contains an edge (u,v) ∈V ×V if and only if there is a Dyck path

from u to v in G1 or w(u,v) = 1 in G, if (u,v) ∈ E .

3Note that by doing the naive thing which is to replace each edge of zero weight by two edges, one with weight +1 and one

with weight −1, potentially blows up the number of vertices to Ω(m). In turn, since the running time depends on the number

of vertices, this translates to a blow up of the running time.

242 Fast Algorithms for Energy Games in Special Cases

In the end, we run on G2 a transitive closure algorithm, and we return that there is a nonnegative

prefix path in G if and only if there is a path in G2. Notice that graphs G and G1 are weighted, while G2

is unweighted.

Analysis of the algorithm. The following observation shows that the replacement of zero weight edges

is valid, in the sense that nonnegative prefix paths of total weight zero4 in G correspond to Dyck paths in

G1 and vice versa. Moreover, we prove the claim that the transitive closure problem in G2 is equivalent

to the All-Pairs Nonnegative Prefix Paths problem in G.

Observation 3.2. For every pair of vertices u,v∈V , there exists a nonnegative prefix path of total weight

zero from u to v in G if and only if there exists a Dyck path from u to v in G1.

Lemma 3.3. For every pair of vertices u,v ∈V , there exists a nonnegative prefix path from u to v in G if

and only if there exists a path from u to v in G2.

Proof. Assume that there exists a nonnegative prefix path π from u to v in G. Let a be the first vertex

after u along π with a minimum energy level. Initially, we show that the edge (u,a) appears in G2. Since

π is a nonnegative prefix path, we have that e(u) ≤ e(a). If e(u) < e(a), then there must be an edge

(u,a) in G with weight +1. Also if e(u) = e(a), then the subpath of π from u to a is a nonnegative prefix

path of total weight zero. Then by Observation 3.2, the subpath of π from u to a is a Dyck path in G1.

Therefore, in both cases we have added the edge (u,a) in G2. As the vertex a has a minimum energy

level, we can apply the same argument iteratively starting from a, to conclude that there exists a path

from u to v in G2.

Assume now that there exists a path π from u to v in G2. By construction, the edges of π correspond

either to edges in G with weight +1 or to Dyck paths in G1. By Observation 3.2, these Dyck paths in

G1 correspond to nonnegative prefix paths of total weight zero in G. Since positive edges increase the

energy level and nonnegative prefix paths at least maintain the energy level, we conclude that there exists

a nonnegative prefix path from u to v in G.

Lemma 3.4. There exists a deterministic algorithm that, given a graph G = (V,E,w) with edge weights

in {−1,0,+1}, solves the All-Pairs Nonnegative Prefix Paths problem in Õ(nω) time.

Proof. The number of vertices of G1 is O(n) by construction, where n is the initial number of vertices in

G. Hence, the construction of G2 runs in Õ(nω). Moreover, the transitive closure problem in G2 can be

solved in Õ(nω) time as well [1]. Thus by Lemma 3.3, the claim follows.

3.2 All-Pairs Nonnegative Prefix Paths with general edge weights

We extend now Lemma 3.4 for graphs with general edge weights, in the cost of an extra factor W ω in the

running time. The idea is to use the reduction by Alon, Galil, and Margalit [2], who reduce the All-Pairs

Shortest Paths (APSP) problem with general edge weights to the special case where the edge weights are

in {−1,0,+1}. We present the reduction for completeness, and we prove that the same reduction also

preserves the properties that we need for the All-Pairs Nonnegative Prefix Paths problem.

4Observe that a Dyck path is a nonnegative prefix path of total weight zero consisting only of edges −1 and +1. Thus, we

avoid to use the term Dyck path for G because it may contains edges of weight zero.

S. Forster, A. Skarlatos & T. de Vos 243

Reduction from general weights to {−1,0,+1} [2]. Given a graph G = (V,E,w) with weights in the

interval [−W,W], we create another graph G′ with weights only in {−1,0,+1}, as follows. For every

vertex v ∈ V in G, we create 2W + 1 vertices {vi}Wi=−W in G′. We say that vertex v0 of G′ is the origin

of vertex v. Then, we add in G′ an edge (vi+1,vi) of weight −1, for every −W ≤ i ≤ −1, and an edge

(vi−1,vi) of weight 1, for every 1 ≤ i ≤W . Moreover, for every edge (u,v) of weight k in G, we add an

edge (uk,v0) of zero weight in G′.

Theorem 1.2. There exists a deterministic algorithm that, given a graph G = (V,E,w) with edge weights

in the interval [−W,W], solves the All-Pairs Nonnegative Prefix Paths problem in Õ(nωW ω) time.

Proof. The idea is to apply the reduction mentioned above and use the algorithm of Lemma 3.4 in G′.
Then, we claim that there exists a nonnegative prefix path from u to v in G if and only if there exists a

nonnegative prefix path from u0 to v0 in G′.
Regarding the running time, since the number of vertices of the new graph G′ after the reduction be-

comes Θ(nW), the running time of the algorithm becomes Õ((nW)ω). It remains to prove the correctness

of the algorithm.

Let π be a nonnegative prefix path from u to v in G. We construct a path π ′ from u0 to v0 in G′ as

follows. For every edge (a,b) ∈ π of weight k, we add to π ′ the unique subpath from a0 to b0 of weight

k in G′, which exists by construction. Since π is a nonnegative prefix path in G, and every subpath we

add to π ′ consists either only of edges with weight in {−1,0} or only of edges with weight in {0,+1},
we can infer that π ′ is a nonnegative prefix path from u0 to v0 in G′.

For the other direction, let π ′ be a nonnegative prefix path from u0 to v0 in G′. We construct a path π

from u to v in G as follows. Let a0 be the first vertex after u0 along π ′ such that, a0 is the origin vertex

of a different vertex than u (i.e., a0 is the origin of a vertex a 6= u). By construction, there exists an edge

(u,a) of weight k in G, where k is the weight of the subpath from u0 to a0 in π ′. We add the edge (u,a)
in π , and continue with the construction of π by applying the same argument iteratively starting from a0

until we reach v0. Since π ′ is a nonnegative prefix path in G′, and each prefix of π corresponds to a prefix

in π ′, we can infer that π is a nonnegative prefix path from u to v in G.

Therefore, the pair of vertices {u0,v0} in G′ contains the information for the pair of vertices {u,v} in

G, and so the claim follows.

3.3 Lower bound for All-Pairs Nonnegative Prefix Paths

We prove a lower bound on the running time of All-Pairs Nonnegative Prefix Paths problem under the

APSP Hypothesis. The APSP Hypothesis is an assertions that the All-Pairs Shortest Paths (APSP) prob-

lem cannot be solved in truly subcubic O(n3−ε) time, for any ε > 0. Vassilevska Williams and Williams

[29] proved that APSP and Negative Triangle are equivalent under subcubic reductions. The Negative

Triangle problem is defined as follows. Given a graph G = (V,E,w), the goal is to find three vertices

a,b,c such that w(a,b)+w(b,c)+w(c,a) < 0, that is, the vertices a,b,c form a negative weight cycle.

Recently, a reduction from the Negative Triangle problem to the h-hop-bounded s-t path problem

was given by Polak and Kociumaka [25], in order to prove a hardness result for the latter. Motivated by

this reduction, we also reduce the Negative Triangle problem to the All-Pairs Nonnegative Prefix Paths

problem to obtain a hardness result for the All-Pairs Nonnegative Prefix Paths problem, as shown in

Theorem 1.1.

We first provide an auxiliary lemma, which we also use later in Lemma 4.1.

244 Fast Algorithms for Energy Games in Special Cases

Lemma 3.5. Given a graph G = (V,E,w), let C be a nonnegative weight cycle in G (i.e., w(C) ≥ 0).

Then, there is a vertex u ∈C in the cycle, such that there exists a nonnegative prefix path in G from u to

itself along C.

Proof. Let Q ⊆ C be a subpath of C with the most negative total weight, and Q′ be the rest of C (i.e.,

Q∪Q′ = C). Notice that the weight of all prefixes in Q′ must be nonnegative, otherwise this negative

weight prefix could be merged with Q, contradicting the fact that Q is the subpath of C with the most

negative total weight. Moreover, as w(C) ≥ 0 we have that w(Q′) ≥ −w(Q). Since by definition of Q,

there is no prefix of Q with more negative total weight, it holds that Q′∪Q is a nonnegative prefix path

from the first vertex of Q′ to itself along C.

Theorem 1.1. Unless the APSP Hypothesis fails, there is no O(n3−ε) time algorithm that solves the

All-Pairs Nonnegative Prefix Paths problem, for any ε > 0.

Proof. Consider a Negative Triangle instance G = (V,E). We create a directed graph G1 = (V1,E1)
as follows. The vertex set V1 of G1 consists of five copies of all vertices, i.e., V1 := {vi : v ∈ V, i ∈
{1,2,3,4,5}}. For every edge (u,v) ∈ E of weight w(u,v), we add an edge (ui,vi+1) to E1 with weight

−w(u,v), for 1≤ i < 4. Also for each vertex v ∈V , we add an edge (v4,v5) of weight wmin =−1.

We claim that there exists a negative weight triangle in G if and only if there is a vertex v ∈V such

that there exists a nonnegative prefix path from v1 to v5 in G1. In this case, since the reduction is subcubic

and the time to check all vertices in G1 is O(n), an O(n3−ε) time algorithm for the All-Pairs Nonnegative

Prefix Paths problem would imply an O(n3−ε) time algorithm for the Negative Triangle problem, for any

ε > 0, contradicting the APSP Hypothesis.

We proceed with the proof of the claim. Suppose that there are three vertices a,b,c that form a

negative weight cycle C in G, and let G2 be the graph G after flipping the sign of the weights. Then

we have that wG2
(C) > 0 in G2, and based on Lemma 3.5 there is a vertex v ∈C, such that there exists

a nonnegative prefix path in G2 from v to itself along C. Notice that v can be either a,b or c, and

by construction, the paths a1b2c3a4a5, b1c2a3b4b5, and c1a2b3c4c5 exist in G1. Thus without loss of

generality, we can assume that v is a and we use the path a1b2c3a4a5 in G1. By construction, it holds that

wG1
(a1,b2) = wG2

(a,b),wG1
(b2,c3) = wG2

(b,c), wG1
(c3,a4) = wG2

(c,a) and wG1
(a4,a5) = wmin. The

path abca is a nonnegative prefix path in G2, and so the path a1b2c3a4 is a nonnegative prefix path in G1

as well. Moreover since wG2
(C)> 0, we have that wG2

(C)≥−wmin, which implies that:

wG1
(a1,b2)+wG1

(b2,c3)+wG1
(c3,a4)≥−wmin.

Thus, we can conclude that the path a1b2c3a4a5 is a nonnegative prefix path in G1.

For the other direction, let a1b2c3a4a5 be a nonnegative prefix path in G1. By construction of G1 and

the fact that G does not contain self-loops, it must be the case that the corresponding vertices a,b,c must

be pairwise different in G. By definition of a nonnegative prefix path, it holds that:

wG1
(a1,b2)+wG1

(b2,c3)+wG1
(c3,a4)≥−wmin > 0.

By construction, we have that w(a,b)=−wG1
(a1,b2),w(b,c)=−wG1

(b2,c3) and w(c,a)=−wG1
(c3,a4).

Therefore, it is true that w(a,b)+w(b,c)+w(c,a) < 0, and the vertices a,b,c form a negative weight

cycle in G.

S. Forster, A. Skarlatos & T. de Vos 245

4 The All-Alice Case

In this section, we develop an algorithm that computes the minimum sufficient energies of all vertices

for game graphs controlled by Alice. In particular, we obtain the following result.

Theorem 1.3. There exists a deterministic algorithm that, given a game graph G = (V,E,w) in which

all vertices are controlled by Alice, computes the minimum sufficient energy of all vertices in Õ(nωW ω)
time.

The idea is to use the algorithm of Theorem 1.2 for the All-Pairs Nonnegative Prefix Paths problem.

Hélouët, Markey, and Raha [22] provide a relevant reduction from the problem of whether zero energy

suffices to the problem of whether there exists a nonnegative prefix path. Hence, one idea would be

to apply this reduction and run the algorithm of Theorem 1.2. Unfortunately this reduction affects the

weights, and the maximum weight of the new instance can be as big as mW , which in turn affects the

running time of the algorithm.

To that end, we present another way to use the All-Pairs Nonnegative Prefix Paths algorithm of

Theorem 1.2 without affecting the maximum weight of the graph. The algorithm consists of two phases.

In the first phase, we detect all the vertices such that initial zero energy suffices, and in the second phase

we compute the minimum sufficient energy for the rest of the vertices.

In the first phase of the algorithm, initially we run the All-Pairs Nonnegative Prefix Paths algorithm

of Theorem 1.2 on the game graph G = (V,E,w). Hence, we retrieve the information of whether there

exists a nonnegative prefix path from a vertex u to a vertex v, for any two vertices u,v ∈V ×V . Then for

each vertex v ∈V , we check whether there is a vertex u (including v) such that there exists a nonnegative

prefix path from v to u and from u to u. If this is the case, then we add this vertex to a set Z. The next

lemma shows that the set Z is actually the set of all vertices such that initial energy zero suffices.

Lemma 4.1. The set Z is the same as the set {v ∈V : e∗(v) = 0}, and is computed in Õ(nωW ω) time.

Proof. Suppose that the algorithm adds a vertex v to Z. Then, there must be a vertex u (possibly u = v)

such that there exists a nonnegative prefix path from v to u and from u to u. By merging then these two

paths, and by definition of minimum sufficient energy, we can conclude that e∗(v) = 0.

Suppose now that the minimum sufficient energy of a vertex v ∈ V is zero (i.e., e∗(v) = 0). By

definition of minimum sufficient energy, there must exist a nonnegative prefix lasso P which contains a

nonnegative cycle C. Also by Lemma 3.5, there is a vertex u ∈ C in the cycle, such that there exists a

nonnegative prefix path from u to itself. As a result, the algorithm finds these vertices v and u and adds v

to Z.

The running time of this process is dominated by the running time of the All-Pairs Nonnegative Prefix

Paths algorithm, which is Õ(nωW ω) based on Theorem 1.2.

The set Z can be seen as the set of possible vertices to ‘end’ in. Any optimal strategy would still have

to define how to move from such a vertex v ∈ Z, but since we know that e∗(v) = 0, there has to be a path

such that from this vertex no initial energy is necessary. So the goal of the second phase, is to find for

each vertex v ∈V \Z the best way to hit a vertex in Z. The following lemma shows that this comes down

to a shortest path computation. Brim and Chaloupka [8] use a similar idea inside their subroutine for the

Mean-Payoff games.

Lemma 4.2. Given a game graph G = (V,E,w) where all vertices belong to Alice and the set Z := {v ∈
V : e∗(v) = 0} is known, we can compute the remaining minimum sufficient energies through a single

SSSP computation in G.

246 Fast Algorithms for Energy Games in Special Cases

For the proof we refer to the full version of the paper. Together, Lemma 4.1 and Lemma 4.2 prove

Theorem 1.3, by using also the fact that we can compute SSSP deterministically in Õ(nωW) time [27,

30].

5 The All-Bob Case

In this section, we restrict ourselves to the case where all vertices belong to Bob. We show that this special

case admits a near-linear time algorithm, by essentially reducing the problem to detecting negative cycles

and computing shortest paths. We obtain the following result.

Theorem 1.4. There exists a randomized (Las Vegas) algorithm that, given a game graph G = (V,E,w)
in which all vertices are controlled by Bob, computes the minimum sufficient energy of all vertices, and

with high probability the algorithm takes O(m log2 n log nW log logn) time.

Proof. We split the algorithm and proof in two parts, depending on who wins the game in a particular

vertex. The first part of the algorithm consists of identifying the vertices with infinite energy (namely, the

vertices where Bob wins), and the second part consists of calculating the finite energies of the remaining

vertices (namely, the vertices where Bob loses).

Vertices where Bob wins. First, we identify the vertices where Bob wins, i.e., the vertices v with

e∗(v) = ∞. Hereto, we decompose G in to strongly connected components C1, . . . ,Cr, for some r≥ 1. On

each Ci, we run a negative cycle detection algorithm. If there is a negative cycle, we set e(v) = ∞ for all

v ∈Ci. Next we find the vertices that can reach these cycles. Let A := {v ∈V : e(v) = ∞} be the union

of the strongly connected components with a negative cycle. Then from A we run an inward reachability

algorithm (e.g., DFS, BFS) towards each vertex v and if there is a path from v to A, we set e(v) = ∞. In

the correctness proof, we show that e(v) = ∞ if and only if Bob wins at v.

Correctness. For any vertex v ∈V , Bob wins if and only if there is a path from v to a negative cycle.

Let v be a vertex where Bob wins, and let C(v) be the negative cycle reachable from v. If v belongs to the

strongly connected component of C(v), then our algorithm outputs e(v) = ∞. If v belongs to a different

connected component, then the path to the negative cycle is detected in the inward reachability algorithm

and we also output e(v) = ∞.

Suppose we output e(v) = ∞. If we do this because v belongs to a strongly connected in which we

detected a negative cycle, then clearly there is path from v to the negative cycle, and hence Bob wins at

v. If we set e(v) = ∞ because there is a path from v to A, then there is a path from v towards a strongly

connected component containing a negative cycle, and hence to a negative cycle itself. So again Bob

wins at v.

Running time. We can decompose G in to strongly connected components in O(m) time [28].

On each connected component Ci, we can detect whether there is a negative cycle in the graph in

O(|E(Ci)| log2 n log nW log log n) time w.h.p. [10], thus the total time is O(m log2 n log nW log logn) w.h.p.

The inward reachability algorithm can be implemented by a simple DFS or BFS in O(m) time. Hence in

total we obtain w.h.p a running time of O(m log2 n log nW log logn) for this part.

Vertices where Bob loses. Second, we compute the correct value for the vertices where Bob loses,

i.e., the vertices v with e(v) < ∞. Note that for this part we can restrict ourselves to the subgraph where

we omit all vertices with e(v) = ∞. We also add a new sink vertex t to the graph, and for every v ∈V we

insert an edge (v, t) with w(v, t) = 0. Now for each vertex v, we compute the minimum distance d(v, t)
from v to t, and we set e(v) = max{−d(v, t),0}. In the correctness proof, we show that e∗(v) = e(v) for

each v ∈V with e(v) < ∞.

S. Forster, A. Skarlatos & T. de Vos 247

Correctness. Consider now a vertex v such that e(v)<∞. First we show that e∗(v)≥ e(v). Let u be the

last vertex (excluding t itself) on the shortest path from v to t, and Pv,u be the corresponding prefix from

v to u. Then Bob can choose to move along the path Pv,u forcing Alice to use at least max{−w(Pv,u),0}
initial energy. As d(v, t) = w(Pv,u)+w(u, t) = w(Pv,u)+0= w(Pv,u), we conclude that Alice needs at least

max{−d(v, t),0} = e(v) initial energy.

It remains to show e∗(v) ≤ e(v). Since there are no negative cycles, by definition we have that

e∗(v) = max{−minu∈V w(Pu),0}, where the minimization is over all the simple paths from v to u. Also

for all u ∈V , it holds that d(v,u) ≤ w(Pu) and d(v, t) ≤ d(v,u)+w(u, t) = d(v,u)+0 = d(v,u). Thus we

get that e∗(v) = max{−minu∈V w(Pu),0} ≤max{−minu∈V d(v, t),0} = max{−d(v, t),0} = e(v).
Running time. To compute the shortest paths from v to t, we flip the direction of all the edges and we

compute the minimum distances from t to v in the new graph. This clearly corresponds to the minimum

distances from v to t in the original graph. Since this computation is the negative weight single source

shortest path problem, it can be done in O(m log2 n log nW log log n) time w.h.p. [10].

6 Game Graphs Without Negative Cycles

In this section, we provide an O(mn) time algorithm for the special case where the game graph has no

negative cycles. We do this in three steps: first, we introduce a finite duration energy game, where a

token is passed for i rounds. The goal is to compute for each vertex, the minimum initial energy that

Alice needs in order to keep the energy nonnegative for those i rounds. Second, we provide an algorithm

that computes this value in O(mi) time. Finally, we show that for graphs with no negative cycles, it

suffices to find this minimum initial energy for a game of n rounds.

6.1 Finite Duration Games

We introduce a version of the energy game that lasts i rounds. We define strategies and energy functions

analogous to the infinite duration game, as in Section 2. A strategy for Alice is a function σi : V ∗VA→V ,

such that for all finite paths u0u1 · · ·u j with j < i and u j ∈VA, we have that σi(u0u1 · · ·u j) = v for some

edge (u j,v) ∈ E . Similarly we define a strategy τi for Bob by replacing VA with VB. A path u0u1 · · ·u j

of length j is consistent with respect to strategies σi and τi, if σi(u0u1 · · ·uk) = uk+1 for all uk ∈ VA

and τi(u0u1 · · ·uk) = uk+1 for all uk ∈ VB, where 0 ≤ k < j ≤ i. The minimum sufficient energy at a

vertex u corresponding to strategies σi and τi is defined as eσi,τi
(u) := max{−minw(P),0}, where the

minimization is over all the consistent paths P with respect to σi and τi of length at most i originating at

u. The minimum sufficient energy at a vertex u is defined as follows:

e∗i (u) := min
σi

max
τi

eσi,τi
(u),

where we minimize over all strategies σi for Alice and maximize over all strategies τi for Bob. As for

the infinite duration game, we know by Martin’s determinacy theorem [26] that minσi
maxτi

eσi,τi
(u) =

maxτi
minσi

eσi,τi
(u). Now we define optimal strategies as follows. A strategy σ ∗i is an optimal strategy

for Alice at a vertex u, if for any strategy τi for Bob it holds that eσ∗i ,τi
(u)≤ e∗i (u). Likewise a strategy τ∗i

is an optimal strategy for Bob at a vertex u, if for any strategy σi for Alice it holds that eσi,τ∗i (u)≥ e∗i (u).
A value e(u) is a sufficient energy at a vertex u, if there exists a strategy σi such that for any strategy τi,

it holds that eσi,τi
(u) ≤ e(u). In this case, observe that the following is true:

e∗i (u) = max
τi

eσ∗i ,τi
(u)≤max

τi

eσi,τi
(u) ≤ e(u).

248 Fast Algorithms for Energy Games in Special Cases

Next, we show the following lemma about the minimum energy function, a similar version has also

been used for the infinite duration game in [9] and [15]. For the proof, see the full version of the paper.

Lemma 6.1. Given a game of i rounds and a vertex u ∈ V , the energy e∗i (u) satisfies the following

properties:

if u ∈VA then ∃v ∈ N+(u) : e∗i (u)+w(u,v)≥ e∗i−1(v) (1)

if u ∈VB then ∀v ∈ N+(u) : e∗i (u)+w(u,v)≥ e∗i−1(v) (2)

6.2 A Value Iteration Algorithm for Finite Duration Games

In this section, we present Algorithm 1, a value iteration algorithm for a game lasting i rounds that

computes for each vertex u ∈ V the value e∗i (u). We note that Algorithm 1 consists of i steps, where at

every step each edge is scanned at most once. Clearly this means the algorithm takes O(mi) time.

Algorithm 1 Value iteration algorithm for an i-round game

Input: A game graph G = (V,E,w,〈VA,VB〉), a number of iterations i

Output: The minimum sufficient energy ei(u) of each u ∈V , in order to play the game for i rounds

1 ∀u ∈V : e0(u)← 0

2 for j = 1 to i do

3 foreach u ∈V do

4 if u ∈VA then

5 e j(u)←max{min(u,v)∈E{e j−1(v)−w(u,v)},0}
6 end

7 if u ∈VB then

8 e j(u)←max{max(u,v)∈E{e j−1(v)−w(u,v)},0}
9 end

10 end

11 end

12 return ei

Lemma 6.2. Let ei(·) be the function returned by Algorithm 1, then ei(u) = e∗i (u) for all u ∈V .

Proof. We prove the claim by induction on i, which is both the number of steps of the algorithm and the

duration of the game.

Base case: For i = 0 steps, the algorithm sets for each u ∈V : e0(u) = 0 = e∗0(u).
Inductive Step: We assume that after i− 1 steps ei−1(u) = e∗i−1(u), and we prove that after i steps

ei(u) = e∗i (u) as well. We first show that ei(u)≥ e∗i (u).
Consider the case that u ∈ VA. Let v′ be the neighbor that minimizes the relation in the ith step in

Line 5. Then it holds that ei(u)+w(u,v′) ≥ ei−1(v
′). Using the edge (u,v′) with initial energy ei(u),

Alice can move to v′ with remaining energy at least ei−1(v
′). By the inductive hypothesis it holds that

ei−1(v
′) = e∗i−1(v

′), so there exists an optimal strategy σ ∗i−1 such that for any strategy τi−1, we have that

eσ∗i−1,τi−1
(v′) ≤ ei−1(v

′). Define the strategy σi in the following way: ∀x ∈ V ∗VA : σi(ux) = σ ∗i−1(x) and

σi(u) = v′. Then we get a strategy σi such that for any strategy τi, it holds that eσi,τi
(u) ≤ ei(u). This

implies that ei(u) is a sufficient energy at vertex u, and so ei(u)≥ e∗i (u).
Consider the case that u ∈VB. Due to the ith step in Line 8, it holds that ei(u)+w(u,v)≥ ei−1(v), for

all v∈N+(u). Hence for any choice of a neighboring edge (u,v) with initial energy ei(u), Bob moves to a

S. Forster, A. Skarlatos & T. de Vos 249

neighbor v with remaining energy at least ei−1(v). By the inductive hypothesis, for all v ∈ N+(u) it holds

that ei−1(v) = e∗i−1(v), so there exists an optimal strategy σ ∗i−1 such that for any strategy τi−1, we have

that eσ∗i−1,τi−1
(v) ≤ ei−1(v). Define the strategy σi in the following way: ∀x ∈ V ∗VA : σi(ux) = σ ∗i−1(x).

Then we get a strategy σi such that for any strategy τi, it holds that eσi,τi
(u) ≤ ei(u). This implies that

ei(u) is a sufficient energy at vertex u, and so ei(u)≥ e∗i (u).
It remains to show that ei(u)≤ e∗i (u). Consider the case that u ∈VA. If ei(u) = 0 then the claim holds

trivially. If ei(u)> 0, then based on Line 5, we have that ei(u)+w(u,v)≤ ei−1(v) for all v ∈ N+(u). By

Lemma 6.1, there exists v′ ∈ N+(u) such that e∗i (u)+w(u,v′)≥ e∗i−1(v
′), which means that:

ei(u)+w(u,v′)≤ ei−1(v
′) = e∗i−1(v

′)≤ e∗i (u)+w(u,v′) ⇒ ei(u)≤ e∗i (u),

where the equality holds by the inductive hypothesis.

Consider the case that u ∈VB. If ei(u) = 0 then the claim holds trivially. Otherwise based on Line 8,

there exists v′ ∈ N+(u) such that ei(u) + w(u,v′) = ei−1(v
′). By Lemma 6.1, we have that e∗i (u) +

w(u,v) ≥ e∗i−1(v) for all v ∈ N+(u), which means that:

ei(u)+w(u,v′) = ei−1(v
′) = e∗i−1(v

′)≤ e∗i (u)+w(u,v′) ⇒ ei(u)≤ e∗i (u),

where the equality holds by the inductive hypothesis.

6.3 No Negative Cycles

The goal of this section is to show that for graphs with no negative cycles, it holds that e∗n(u) = e∗(u), for

all u∈V . Hereto, we show in Lemma 6.4 that as in the infinite duration game, positional strategies suffice

when no negative cycles are present. In the proof, we use the following alternative characterization of

eσi,τi
(u).

Let σi and τi be strategies for Alice and Bob respectively, and let u ∈ V be a vertex. Moreover, let

u0u1 · · ·u j be the consistent path of length j with respect to σi and τi, where u0 = u. Then given an initial

energy einit, the energy level at vertex u j is equal to the value einit +∑
j−1
k=0 w(uk,uk+1). We denote e∗init(u)

for the minimum nonnegative initial energy such that the energy level at each vertex of the corresponding

consistent path of length i, is nonnegative. The following lemma shows that eσi,τi
(u) = e∗init(u) (for the

proof, see the full version of the paper).

Lemma 6.3. For a vertex u and two fixed strategies σi and τi, let P be the consistent path with respect

to σi and τi of length i originating at u. Then it holds that eσi,τi
(u) = e∗init(u).

Now we are ready to show that positional strategies suffice in graphs without negative cycles. For

the proof see the full version of the paper.

Lemma 6.4. Consider a graph with no negative cycles and a game of i rounds. Then for the minimum

sufficient energy e∗i (u) at a vertex u ∈V , it suffices for both players to play positional strategies.

We use this fact to show that a game of n rounds is equivalent to a game of infinite duration for a

game graph without negative cycles.

Lemma 6.5. Consider a graph with no negative cycles. Then for each vertex u ∈ V , the minimum

sufficient energy needed at u for a game of n rounds, is equal to the minimum sufficient energy needed at

u for a game of infinite rounds. In other words, e∗n(u) = e∗∞(u) = e∗(u) for all u ∈V .

250 Fast Algorithms for Energy Games in Special Cases

Proof. Let σ and τ be two arbitrary positional strategies for the infinite duration game. By definition,

we have that eσ ,τ (u) = max{−minw(P),0}, where the minimization is over all the consistent paths with

respect to σ and τ originating at u. Since the graph contains only nonnegative cycles and the strategies

are positional, the path that minimizes the relation is a simple path, and so, its length is at most n. Hence

it follows that eσ ,τ (u) =max{−min|P|≤n w(P),0}. In turn, this is equivalent to using positional strategies

for a game of n rounds. Hence it holds that eσ ,τ (u) = eσn,τn
(u), where σn and τn are the strategies σ and

τ respectively, restricted to the first n rounds. This implies that e∗(u) = minσn
maxτn

eσn,τn
(u), where σn

and τn are positional strategies for a game of n rounds. By Lemma 6.4, this equals e∗n(u) and the claim

follows.

Together, Lemma 6.2 and Lemma 6.5 prove Theorem 1.5.

References

[1] Alfred V. Aho, John E. Hopcroft & Jeffrey D. Ullman (1974): The Design and Analysis of Computer Algo-

rithms. Addison-Wesley.

[2] Noga Alon, Zvi Galil & Oded Margalit (1997): On the Exponent of the All Pairs Shortest Path Problem. J.

Comput. Syst. Sci. 54(2), pp. 255–262, doi:10.1006/jcss.1997.1388.

[3] Aaron Bernstein, Danupon Nanongkai & Christian Wulff-Nilsen (2022): Negative-Weight Single-Source

Shortest Paths in Near-linear Time. In: 63rd IEEE Annual Symposium on Foundations of Computer Sci-

ence, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, IEEE, pp. 600–611, doi:10.1109/

FOCS54457.2022.00063.

[4] Henrik Björklund & Sergei G. Vorobyov (2007): A combinatorial strongly subexponential strategy improve-

ment algorithm for mean payoff games. Discrete Applied Mathematics 155(2), pp. 210–229, doi:10.1016/

j.dam.2006.04.029. Announced at MFCS 2004.

[5] Roderick Bloem, Krishnendu Chatterjee, Thomas A. Henzinger & Barbara Jobstmann (2009): Better Quality

in Synthesis through Quantitative Objectives. In: Proc. of the 21st International Conference on Computer

Aided Verification (CAV 2009), Lecture Notes in Computer Science 5643, Springer, pp. 140–156, doi:10.

1007/978-3-642-02658-4_14. arXiv:0904.2638.

[6] Patricia Bouyer, Ulrich Fahrenberg, Kim Guldstrand Larsen, Nicolas Markey & Jirı́ Srba (2008): Infinite

Runs in Weighted Timed Automata with Energy Constraints. In Franck Cassez & Claude Jard, editors: Proc.

of the 6th International Conference on Formal Modeling and Analysis of Timed Systems (FORMATS 2008),

Lecture Notes in Computer Science 5215, Springer, pp. 33–47, doi:10.1007/978-3-540-85778-5_4.

[7] Phillip G. Bradford (2017): Efficient exact paths for dyck and semi-dyck labeled path reachability (extended

abstract). In: Proc. of the 8th IEEE Annual Conference on Ubiquitous Computing, Electronics and Mobile

Communication (UEMCON 2017), IEEE, pp. 247–253, doi:10.1109/UEMCON.2017.8249039.

[8] Luboš Brim & Jakub Chaloupka (2012): Using strategy improvement to stay alive. International Journal of

Foundations of Computer Science 23(03), pp. 585–608, doi:10.1142/S0129054112400291.

[9] Lubos Brim, Jakub Chaloupka, Laurent Doyen, Raffaella Gentilini & Jean-François Raskin (2011): Faster

algorithms for mean-payoff games. Formal Methods in System Design 38(2), pp. 97–118, doi:10.1007/

s10703-010-0105-x. Announced at MEMICS 2009 and GAMES 2009.

[10] Karl Bringmann, Alejandro Cassis & Nick Fischer (2023): Negative-Weight Single-Source Shortest Paths in

Near-Linear Time: Now Faster! arXiv preprint arXiv:2304.05279, doi:10.48550/arXiv.2304.05279.

[11] Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li & Frank Stephan (2022): Deciding Par-

ity Games in Quasi-polynomial Time. SIAM Journal on Computing 51(2), pp. 17–152, doi:10.1137/

17m1145288. Announced at STOC 2017.

https://doi.org/10.1006/jcss.1997.1388
https://doi.org/10.1109/FOCS54457.2022.00063
https://doi.org/10.1109/FOCS54457.2022.00063
https://doi.org/10.1016/j.dam.2006.04.029
https://doi.org/10.1016/j.dam.2006.04.029
https://doi.org/10.1007/978-3-642-02658-4_14
https://doi.org/10.1007/978-3-642-02658-4_14
https://arxiv.org/abs/0904.2638
https://doi.org/10.1007/978-3-540-85778-5_4
https://doi.org/10.1109/UEMCON.2017.8249039
https://doi.org/10.1142/S0129054112400291
https://doi.org/10.1007/s10703-010-0105-x
https://doi.org/10.1007/s10703-010-0105-x
https://doi.org/10.48550/arXiv.2304.05279
https://doi.org/10.1137/17m1145288
https://doi.org/10.1137/17m1145288

S. Forster, A. Skarlatos & T. de Vos 251

[12] Pavol Cerný, Krishnendu Chatterjee, Thomas A. Henzinger, Arjun Radhakrishna & Rohit Singh (2011):

Quantitative Synthesis for Concurrent Programs. In: Proc. of the 23rd International Conference on Computer

Aided Verification (CAV 2011), Lecture Notes in Computer Science 6806, Springer, pp. 243–259, doi:10.

1007/978-3-642-22110-1_20. arXiv:1104.4306.

[13] Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger & Mariëlle Stoelinga (2003): Resource In-

terfaces. In Rajeev Alur & Insup Lee, editors: Proc. of the Third International Conference on Embedded

Software (EMSOFT 2003), Lecture Notes in Computer Science 2855, Springer, pp. 117–133, doi:10.1007/

978-3-540-45212-6_9.

[14] Krishnendu Chatterjee, Laurent Doyen, Mickael Randour & Jean-François Raskin (2015): Looking at mean-

payoff and total-payoff through windows. Inf. Comput. 242, pp. 25–52, doi:10.1016/j.ic.2015.03.010.

[15] Krishnendu Chatterjee, Monika Henzinger, Sebastian Krinninger & Danupon Nanongkai (2014):

Polynomial-Time Algorithms for Energy Games with Special Weight Structures. Algorithmica 70(3), pp.

457–492, doi:10.1007/s00453-013-9843-7. arXiv:1604.08234. Announced at ESA 2012.

[16] Carlo Comin & Romeo Rizzi (2017): Improved Pseudo-polynomial Bound for the Value Problem and

Optimal Strategy Synthesis in Mean Payoff Games. Algorithmica 77(4), pp. 995–1021, doi:10.1007/

s00453-016-0123-1.

[17] Dani Dorfman, Haim Kaplan, Robert E. Tarjan & Uri Zwick (2023): Optimal Energetic Paths for Electric

Cars. In Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi & Grzegorz Herman, editors: 31st Annual

European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands, LIPIcs

274, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 42:1–42:17, doi:10.4230/LIPIcs.ESA.2023.

42.

[18] Dani Dorfman, Haim Kaplan & Uri Zwick (2019): A Faster Deterministic Exponential Time Algorithm

for Energy Games and Mean Payoff Games. In: Proc. of the 46th International Colloquium on Automata,

Languages, and Programming (ICALP 2019), 132, pp. 114:1–114:14, doi:10.4230/LIPIcs.ICALP.2019.

114.

[19] Andrzej Ehrenfeucht & Jan Mycielski (1979): Positional strategies for mean payoff games. International

Journal of Game Theory 8(2), pp. 109–113, doi:10.1007/BF01768705.

[20] Nathanaël Fijalkow, Paweł Gawrychowski & Pierre Ohlmann (2020): Value Iteration Using Universal

Graphs and the Complexity of Mean Payoff Games. In: Proc. of the 45th International Symposium on Mathe-

matical Foundations of Computer Science (MFCS 2020), 170, pp. 34:1–34:15, doi:10.4230/LIPIcs.MFCS.

2020.34.

[21] Vladimir A. Gurvich, Alexander V. Karzanov & L. G. Khachivan (1988): Cyclic games and an algorithm to

find minimax cycle means in directed graphs. USSR Computational Mathematics and Mathematical Physics

28(5), pp. 85–91, doi:10.1016/0041-5553(88)90012-2.

[22] Loı̈c Hélouët, Nicolas Markey & Ritam Raha (2019): Reachability Games with Relaxed Energy Constraints.

In: Proceedings Tenth International Symposium on Games, Automata, Logics, and Formal Verification, Gan-

dALF 2019, Bordeaux, France, 2-3rd September 2019, EPTCS 305, pp. 17–33, doi:10.4204/EPTCS.305.

2.

[23] Donald B. Johnson (1977): Efficient Algorithms for Shortest Paths in Sparse Networks. J. ACM 24(1), pp.

1–13, doi:10.1145/321992.321993.

[24] Marcin Jurdziński (1998): Deciding the winner in parity games is in UP∩ co-UP. Information Processing

Letters 68(3), pp. 119–124, doi:10.1016/S0020-0190(98)00150-1.

[25] Tomasz Kociumaka & Adam Polak (2023): Bellman-Ford Is Optimal for Shortest Hop-Bounded Paths. In

Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi & Grzegorz Herman, editors: 31st Annual European

Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands, LIPIcs 274,

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 72:1–72:10, doi:10.4230/LIPIcs.ESA.2023.72.

arXiv:2211.07325.

https://doi.org/10.1007/978-3-642-22110-1_20
https://doi.org/10.1007/978-3-642-22110-1_20
https://arxiv.org/abs/1104.4306
https://doi.org/10.1007/978-3-540-45212-6_9
https://doi.org/10.1007/978-3-540-45212-6_9
https://doi.org/10.1016/j.ic.2015.03.010
https://doi.org/10.1007/s00453-013-9843-7
https://arxiv.org/abs/1604.08234
https://doi.org/10.1007/s00453-016-0123-1
https://doi.org/10.1007/s00453-016-0123-1
https://doi.org/10.4230/LIPIcs.ESA.2023.42
https://doi.org/10.4230/LIPIcs.ESA.2023.42
https://doi.org/10.4230/LIPIcs.ICALP.2019.114
https://doi.org/10.4230/LIPIcs.ICALP.2019.114
https://doi.org/10.1007/BF01768705
https://doi.org/10.4230/LIPIcs.MFCS.2020.34
https://doi.org/10.4230/LIPIcs.MFCS.2020.34
https://doi.org/10.1016/0041-5553(88)90012-2
https://doi.org/10.4204/EPTCS.305.2
https://doi.org/10.4204/EPTCS.305.2
https://doi.org/10.1145/321992.321993
https://doi.org/10.1016/S0020-0190(98)00150-1
https://doi.org/10.4230/LIPIcs.ESA.2023.72
https://arxiv.org/abs/2211.07325

252 Fast Algorithms for Energy Games in Special Cases

[26] Donald A. Martin (1975): Borel determinacy. Annals of Mathematics 102(2), pp. 363–371, doi:10.2307/

1971035.

[27] Piotr Sankowski (2005): Shortest Paths in Matrix Multiplication Time. In Gerth Stølting Brodal & Stefano

Leonardi, editors: Algorithms - ESA 2005, 13th Annual European Symposium, Palma de Mallorca, Spain,

October 3-6, 2005, Proceedings, Lecture Notes in Computer Science 3669, Springer, pp. 770–778, doi:10.

1007/11561071_68.

[28] Robert E. Tarjan (1972): Depth-First Search and Linear Graph Algorithms. SIAM J. Comput. 1(2), pp.

146–160, doi:10.1137/0201010.

[29] Virginia Vassilevska Williams & R. Ryan Williams (2018): Subcubic Equivalences Between Path, Matrix,

and Triangle Problems. J. ACM 65(5), pp. 27:1–27:38, doi:10.1145/3186893. Announced at FOCS 2010.

[30] Raphael Yuster & Uri Zwick (2005): Answering distance queries in directed graphs using fast matrix mul-

tiplication. In: 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), 23-25

October 2005, Pittsburgh, PA, USA, Proceedings, IEEE Computer Society, pp. 389–396, doi:10.1109/

SFCS.2005.20.

[31] Uri Zwick & Mike Paterson (1996): The complexity of mean payoff games on graphs. Theoretical Computer

Science 158(1-2), pp. 343–359, doi:10.1016/0304-3975(95)00188-3.

https://doi.org/10.2307/1971035
https://doi.org/10.2307/1971035
https://doi.org/10.1007/11561071_68
https://doi.org/10.1007/11561071_68
https://doi.org/10.1137/0201010
https://doi.org/10.1145/3186893
https://doi.org/10.1109/SFCS.2005.20
https://doi.org/10.1109/SFCS.2005.20
https://doi.org/10.1016/0304-3975(95)00188-3

	Introduction
	Our Results and Techniques

	Preliminaries
	All-Pairs Nonnegative Prefix Paths Problem
	All-Pairs Nonnegative Prefix Paths with edge weights in -1,0,+1
	All-Pairs Nonnegative Prefix Paths with general edge weights
	Lower bound for All-Pairs Nonnegative Prefix Paths

	The All-Alice Case
	The All-Bob Case
	Game Graphs Without Negative Cycles
	Finite Duration Games
	A Value Iteration Algorithm for Finite Duration Games
	No Negative Cycles

