
D. Della Monica and P. Ganty (Eds.): 13th International Symposium on
Games, Automata, Logics and Formal Verification (GandALF 22)
EPTCS 370, 2022, pp. 114–130, doi:10.4204/EPTCS.370.8

Realizable and Context-Free Hyperlanguages

Hadar Frenkel
CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

hadar.frenkel@cispa.de

Sarai Sheinvald
Department of Software Engineering, Braude College of Engineering, Karmiel, Israel

sarai@braude.ac.il

Hyperproperties lift conventional trace-based languages from a set of execution traces to a set of
sets of executions. From a formal-language perspective, these are sets of sets of words, namely
hyperlanguages. Hyperautomata are based on classical automata models that are lifted to handle
hyperlanguages. Finite hyperautomata (NFH) have been suggested to express regular hyperproper-
ties. We study the realizability problem for regular hyperlanguages: given a set of languages, can
it be precisely described by an NFH? We show that the problem is complex already for singleton
hyperlanguages. We then go beyond regular hyperlanguages, and study context-free hyperlanguages.
We show that the natural extension to context-free hypergrammars is highly undecidable. We then
suggest a refined model, namely synchronous hypergrammars, which enables describing interesting
non-regular hyperproperties, while retaining many decidable properties of context-free grammars.

1 Introduction

Hyperproperties [10] generalize traditional trace properties [1] to system properties, i.e., from sets of
traces to sets of sets of traces. A hyperproperty dictates how a system should behave in its entirety and
not just based on its individual executions. Hyperproperties have been shown to be a powerful tool for
expressing and reasoning about information-flow security policies [10] and important properties of cyber-
physical systems [23] such as sensitivity and robustness, as well as consistency conditions in distributed
computing such as linearizability [4]. Different types of logics, such as HyperLTL, HyperCTL∗ [9],
HyperQPTL [19] and HyperQCTL∗ [11] have been suggested for expressing hyperproperties.

In the automata-theoretic approach both the system and the specification are modeled as automata
whose language is the sets of execution traces of the system, and the set of executions that satisfy the
specification [21, 20]. Then, problems such as model-checking [8] (“Does the system satisfy the prop-
erty?”) and satisfiability (“Is there a system that satisfies the property?”) are reduced to decision prob-
lems for automata, such as containment (“Is the language of an automaton A contained in the language
of automaton B?”) and nonemptiness (“Is there a word that the automaton accepts?”). Finite-word and
ω-regular automata are used for modeling trace specifications [22]. Hyperautomata, introduced in [5],
generalize word automata to automata that run on sets of words. Just as hyperproperties describe a
system in its entirety, the hyperlanguages of hyperautomata describe the language in its entirety.

The work in [5] focuses on nondeterministic finite-word hyperautomata (NFH), that are able to model
regular hyperlanguages. An NFH A uses word variables that are assigned words from a language L,
as well as a quantification condition over the variables, which describes the existential (∃) and global
(∀) requirements from L. The underlying NFA of A runs on the set of words assigned to the word
variables, all at the same time. The hyperlanguage of A is then the set of all languages that satisfy the

http://dx.doi.org/10.4204/EPTCS.370.8

H. Frenkel & S. Sheinvald 115

Type of language Quantification Type Realizability

Finite
∃∗, ∀∗ unrealizable (T.5)
∀∃ polynomial (T.6)

Infinite ∃∗, ∀∗, ∃∗∀∗ unrealizable (T.5)
Ordered ∃∀∃ polynomial (T. 8)

partially Ordered ∃∗∀∃∗ exponential (T.10)
Prefix-Closed Regular ∃∀∃∗ polynomial (T.11)

Regular ∃∗∀∃∗ doubly exponential (T.12)1

Table 1: Summary of realizability results for singleton hyperlanguages.

quantification condition. The decidability of the different decision problems for NFH heavily depends
on the quantification condition. For example, nonemptiness of NFH is decidable for the conditions ∀∗
(a sequence of ∀-quantifiers), ∃∗ and ∃∗∀∗, but is undecidable for ∀∃. In [15] NFH are used to specify
multi-properties, which express the behaviour of several models that run in parallel.

A natural problem for a model M for languages is realizability: given a language L, can it be de-
scribed by M? For finite-word automata, for example, the answer relies on the number of equivalence
classes of the Myhill-Nerode relation for L. For hyperlanguages, we ask whether we can formulate a
hyperproperty that precisely describes a given set of languages. We study this problem for NFH: given
a set L of languages, can we construct an NFH whose hyperlanguage is L? We can ask the question
generally, or for specific quantification conditions. We focus on a simple case of this problem, where L
consists of a single language, (that is, L= {L} for some language L), which turns out to be non-trivial.
In [12], the authors present automata constructions for safety regular hyperproperties. As such, they are
strictly restricted only to ∀∗-conditions.

We show that for the simplest quantification conditions, ∃∗ and ∀∗, no singleton hyperlanguage is re-
alizable, and that single alternation does not suffice for a singleton hyperlanguage consisting of an infinite
language. We show that when L is finite, then {L} is realizable with a ∀∃ quantification condition.

We then define ordered languages. These are languages that can be enumerated by a function f that
can be described by an automaton that reads pairs of words: a word w, and f (w). We show that for an
ordered language L, the hyperlanguage {L} is realizable with a quantification condition of ∃∀∃. We then
generalize this notion to partially ordered languages, which are enumerated by a relation rather than a
function. We show that for this case, {L} is realizable with a quantification condition of ∃∗∀∃∗.

Finally, we use ordered languages to realize singleton hyperlanguages consisting of regular lan-
guages: we show that when L is a prefix-closed regular language, then it is partially ordered, and that
an NFH construction for {L} is polynomial in the size of a finite automaton for L. We then show that
every regular language is partially ordered. Therefore, when L is regular, then {L} is realizable with a
quantification condition of ∃∗∀∃∗. The summary of our results is listed in Table 1.

In the second part of the paper, we go beyond regular hyperlanguages, and study context-free hyper-
languages. To model this class, we generalize context-free grammars (CFG) to context-free hypergram-
mars (CFHG), similarly to the generalization of finite-word automata to NFH: we use an underlying CFG
that derives the sets of words that are assigned to the word variables in the CFHG G. The quantification
condition of G defines the existential and global requirements from these assignments.

The motivation for context-free hyperlanguages is clear: they allow expressing more interesting hy-
perproperties. As a simple example, consider a robot which we want to return to its charging area before
its battery is empty. This can be easily expressed with a CFHG with a ∀-condition, as we demonstrate in

1See remark 2.

116 Realizable and Context-Free Hyperlanguages

Problem syncCFHGs General CFHGs

Emptiness

∃∗ polynomial (T.15) polynomial (T.15)
∀∗, ∃∀∗ polynomial (T.23) undecidable (T.18)
∃∗∀∗ undecidable (T.25) undecidable (T.18)

Finite Membership ∗ exponential (R.4) exponential (T.17)

Regular Membership
∃∗ exponential (R.5) exponential (T.16)
∀∗ undecidable (T.24) undecidable (T.24)

Table 2: Summary of decidability results for synchronous and general CFHGs.

Section 4, Example 3. Note that since the underlying property – charging time is larger than action time
– is non-regular, NFH cannot capture this specification. Extending this example, using an ∃∀-condition
we can express the property that all such executions of the robot are bounded, so that the robot cannot
charge and act unboundedly.

Some aspects regarding context-free languages in the context of model-checking have been studied.
In [13, 18] the authors explore model-checking of HyperLTL properties with respect to context-free
models. There, the systems are context-free, but not the specifications. The work of [6] studies the
verification of non-regular temporal properties, and [14] studies the synthesis problem of context-free
specifications. These do not handle context-free hyperproperties.

While most natural decision problems are decidable for regular languages, this is not the case for
CFG. For example, the universality (“Does the CFG derive all possible words?”) and containment prob-
lems for context-free languages are undecidable. The same therefore holds also for CFHG. However, the
nonemptiness and membership (“Does the CFG derive the word w”?) problems are decidable for CFG.

We study the various decision problems for CFHG. Specifically, We explore the nonemptiness prob-
lem (“Is there a language that the CFHG derives?”); and the membership problem (“Does the CFHG
derive the language L”?). These problems correspond to the satisfiability and model-checking problems,
respecitively. We show that for general CFHG, most of these problems soon become undecidable (see
Table 2). Some of the undecidability results are inherent to CFG. Some, however, are due to the asyn-
chronous nature of CFHG: when the underlying CFG of a CFHG derives a set of words that are assigned
to the word variables, it does not necessarily do so synchronously. For example, in one derivation step
one word in the set may be added 2 letters, and another 1 letter. NFH read one letter at a time from every
word in the set, and are hence naturally synchronous. In [3], the authors study asynchronous hyperLTL,
which suffers from the same phenomenon.

We therefore define synchronous context-free hyperlanguages, which require synchronous reading
of the set of words assigned to the word variables. We also define synchronous CFHG (syncCFHG),
a fragment of CFHG in which the structure of the underlying CFG is limited in a way that ensures
synchronous behavior. We prove that syncCFHG precisely captures the class of synchronous context-
free hyperlanguages. Further, we show that some of the undecidable problems for CFHG, such as the
nonemptiness problem for the ∀∗- and ∃∀∗-fragments, become decidable for syncCFHG.

2 Preliminaries

Hyperautomata We assume that the reader is familiar with the definitions of deterministic finite au-
tomata (DFA) and non-deterministic finite automata (NFA).

Definition 1. Let Σ be an alphabet. A hyperlanguage L over Σ is a set of languages over Σ, that is,
L ∈ 22Σ∗

. A nondeterministic finite-word hyperautomaton (NFH) is a tuple A = 〈Σ,X ,Q,Q0,F,δ ,α〉,

H. Frenkel & S. Sheinvald 117

{𝑎𝑥, 𝑎𝑦}

{#𝑥, 𝑎𝑦}

{#𝑥, 𝑎𝑦}

∀𝑥∃𝑦 {𝑏𝑥 , 𝑎𝑦}

{#𝑥, 𝑎𝑦}

{𝑏𝑥, 𝑎𝑦}{𝑎𝑥, 𝑏𝑦}
{𝑎𝑥, 𝑏𝑦}

{#𝑥, 𝑎𝑦}

𝐴𝑓A

Figure 1: The NFH A (left), whose hyperlanguage is the set of infinite languages over {a}, and the NFA A f that
computes f (right).

where X is a finite set of word variables, and α = Q1x1 · · ·Qkxk is a quantification condition, where
Qi ∈ {∃,∀} for every i ∈ [1,k], and 〈Σ̂,Q,Q0,F,δ 〉 forms an underlying NFA over Σ̂ = (Σ∪{#})X .

Let L be a language. We represent an assignment v : X → L as a word assignment wv, which is a
word over the alphabet (Σ∪{#})X (that is, assignments from X to (Σ∪{#})∗), where the i’th letter of wv

represents the k i’th letters of the words v(x1), . . . ,v(xk) (in case that the words are not of equal length, we
“pad” the end of the shorter words with #-symbols). We represent these k i’th letters as an assignment
denoted {σ1x1 ,σ2x2 , . . . ,σkxk}, where x j is assigned σ j. For example, the assignment v(x1) = aa and
v(x2) = abb is represented by the word assignment wv = {ax1 ,ax2}{ax1 ,bx2}{#x1 ,bx2}.

The acceptance condition for NFH is defined with respect to a language L, the underlying NFA Â,
the quantification condition α , and an assignment v : X →L.

• For α = ε , define L `v (α,Â) if wv ∈ L(Â).

• For α = ∃x.α ′, define L `v (α,Â) if there exists w ∈ L s.t. L `v[x 7→w] (α
′,Â).

• For α = ∀x.α ′, define L `v (α,Â) if L `v[x 7→w] (α
′, Â) for every w ∈ L .2

When α includes all of X , then membership is independent of the assignment, and we say that A
accepts L, and denote L ∈ L(A).

Definition 2. Let A be an NFH. The hyperlanguage of A, denoted L(A), is the set of all languages that
A accepts. When the quantification condition α of an NFH A is Q1x1.Q2x2 · · ·Qkxk, we denote A as
being a Q1Q2 . . .Qk-NFH (or, sometimes, as an α-NFH).

Example 1. Consider the NFH A depicted in Figure 1, over the alphabet {a}. The quantification con-
dition ∀x.∃y requires that in a language L accepted by A, for every word u1 that is assigned to x, there
exists a word u2 that is assigned to y such that the joint run of u1,u2 is accepted by the underlying NFA
Â of A. The NFA Â requires that the word assigned to y is longer than the word assigned to x: once the
word assigned to x ends (and the padding # begins), the word assigned to y must still read at least one
more a. Therefore, A requests that for every word in L, there exists a longer word in L. This holds iff L
is infinite. Therefore, the hyperlanguage of A is the set of all infinite languages over {a}.

Context-Free Grammars

Definition 3. A context-free grammar (CFG) is a tuple G = 〈Σ,V,V0,P〉, where Σ is an alphabet, V is a
set of grammar variables, V0 ∈V is an initial variable, and P⊆V × (V ∪Σ)∗ is a set of grammar rules.

We say that w is a terminal word if w ∈ Σ∗. Let v ∈V and α,β ∈ (V ∪Σ)∗.

2In case that α begins with ∀, membership holds vacuously with the empty language. We restrict the discussion to satisfac-
tion by nonempty languages.

118 Realizable and Context-Free Hyperlanguages

• We say that v derives α if (v,α) ∈ P. We then denote v→ α .
• We denote α ⇒ β if there exist v ∈V and α1,α2,β

′ ∈ (V ∪Σ)∗ such that v→ β ′, α = α1vα2 and
β = α1β ′α2.

• We say that α derives β , or that β is derived by α , if there exists n ∈ N and α1, . . .αn ∈ (V ∪Σ)∗

such that α1 = α , αn = β and ∀1≤ i < n : αi⇒ αi+1. We then denote α ⇒∗ β .
The language of a CFG G is the set of all terminal words that are derived by the initial variable. That

is, L(G) = {w ∈ Σ∗ | V0⇒∗ w}.

3 Realizability of Regular Hyperlanguages

Every NFH A defines a set of languages L. In the realizability problem for NFH, we are given a hyper-
language L, and ask whether there exists an NFH A such that L(A) = L. The answer may depend on
the quantification condition that we allow using. In this section we study the realizability problem for
singleton hyperlanguages, which turns out to be non-trivial. We show that while for finite languages we
can construct a ∀∃-NFH, such a condition cannot suffice for infinite languages. Further, we show that a
general regular language requires a complex construction and quantification condition.
Definition 4. Let L be a hyperlanguage. For a sequence of quantifiers α = Q1 . . .Qk, we say that L is
α-realizable if there exists an NFH A with a quantification condition Q1x1 . . .Qkxk such that L(A) = L.

We first define some operations and notations on the underlying NFA of NFH we use in our proofs.
For a word w, the NFA Aw is an NFA for {w}.
Let A1,A2 be NFA, and let A1 ↑#= 〈Σ,Q,q0,δ1,F1〉 and A2 ↑#= 〈Σ,P, p0,δ2,F2〉, where Ai ↑# is an

NFA for the language L(Ai) · #∗. We define the composition A1⊗A2 of A1 and A2 to be an NFA over
Σ2 = (Σ∪{#}){x,y}, defined as A1⊗A2 = 〈Σ2,Q×P,(q0, p0),δ ,F1×F2〉, where for every (q,σ ,q′) ∈ δ1,
(p,τ, p′) ∈ δ2, we have ((q, p),{σx,τy},(q′, p′)) ∈ δ . That is, A1⊗A2 is the composition of A1 and A2,
which follows both automata simultaneously on two words (adding padding by # when necessary). A
word assignment {x 7→ w1,y 7→ w2} is accepted by A1⊗A2 iff w1 ∈ L(A1) and w2 ∈ L(A2) (excluding
the #-padding).

We also define A1⊕A2 of A1 and A2 in a similar way, but the transitions are restricted to equally
labeled letters. That is, for every (q,σ ,q′) ∈ δ1, (p,σ , p′) ∈ δ2, we have ((q, p),{σx,σy},(q′, p′)) ∈ δ . A
run of the restricted composition then describes the run of A1 and A2 on the same word.

We generalize the definition of both types of compositions to a sequence of k NFA A1,A2, . . .Ak,
forming NFA

⊗k
i=1 Ai and

⊕k
=1 Ai over (Σ∪ #){x1,x2,...xk}, in the natural way. When all NFA are equal

to A, we denote this composition by A⊗k (or A⊕k). When we want to explicitly name the variables
x1,x2, . . .xk in the compositions, we denote

⊗k
i=1 Ai[x1, . . .xk] (or

⊕k
i=1 Ai[x1, . . .xk]).

We also generalize the notion of composition to NFA over (Σ∪{#})X in the natural way. That is, for
NFA A1 and A2 with sets of variables X and Y , respectively, the NFA A1⊗A2 is over X ∪Y , and follows
both NFA simultaneously on both assignments (if X ∩Y 6= /0, we rename the variables).

We study the realizability problem for the case of singleton hyperlanguages, that is, hyperlanguages
of the type {L}. We begin with a few observations on unrealizability of this problem, and show that
general singleton hyperlanguages cannot be realized using simple quantification conditions.

3.1 Unrealizability

For the homogeneous quantification conditions, we have that a ∀-NFH A accepts a language L iff A
accepts every L′ ⊆ L. Therefore, a hyperlanguage {L} is not ∀-realizable for every L that is not a

H. Frenkel & S. Sheinvald 119

singleton. The same holds for every ∀∗-NFH.
An ∃-NFH A accepts a language L iff L contains some word that is accepted by Â. Thus if A is

nonempty, its hyperlanguage is infinite, and clearly not a singleton. The same holds for every ∃∗-NFH.
Now, consider an ∃k∀m-NFHA. As shown in [5],A is nonempty iff it accepts a language whose size

is at most k. Therefore, {L} is not ∃k∀m-realizable for every L such that |L|> k.
As we show in Theorem 6, if L is finite then {L} is ∀∃-realizable. We now show that if L is infinite,

then {L} is not ∀∃-realizable. Assume otherwise by contradiction, and letA be a ∀x.∃y-NFH that accepts
{L}. Then for every w ∈ L there exists u ∈ L such that w[x 7→w][y7→u] ∈ L(Â). Let w1 be some word in L.
We construct an infinite sequence w1,w2, . . . of words in L, as follows. For every wi, let wi+1 be a word
in L such that w[x 7→wi][y7→wi+1] ∈ L(Â). If wi = w j for some i < j, then the language {wi,wi+1, . . . ,w j} is
accepted by A, and so L is not the only language that A accepts. Otherwise, all words in the sequence
are distinct. Then, the language Li = {wi,wi+1, . . .} is accepted by A for every i > 1, and Li ⊂ L. In
both cases, L is not the only language that A accepts, and so {L} is not ∀∃-realizable.

To conclude, we have the following.
Theorem 5. If L contains more than one word, then {L} is not ∀∗-realizable and not ∃∗-realizable. If
L contains more than k words then {L} is not ∃k∀∗-realizable. If L is infinite then {L} is not ∃∗∀∗-
realizable and not ∀∃-realizable.

For positive realizability results, we first consider a simple case of a hyperlanguage consisting of a
single finite language.
Theorem 6. Let L be a finite language. Then {L} is ∀∃-realizable.

Proof. Let L= {w1,w2, . . .wk}. We construct a ∀∃-NFHA for L, whose underlying NFA Â is the union
of all NFA Awi⊗Awi+1(mod k). Let L′ ∈ L(A). Since Â can only accept words in L, we have that L′ ⊆L.
Since A requires, for every wi ∈ L′, the existence of wi+1(mod k), and since L′ 6= /0, we have that by
induction, wi ∈ L′ implies wi+ j(mod k) ∈ L′ for every 1≤ j ≤ k. Therefore, L ⊆ L′.

3.2 Realizability of Ordered Languages

Since every language is countable, we can always order its words. We show that for an ordering of a
language L that is regular, that is, can be computed by an NFA, {L} can be realized by an ∃∀∃-NFH.
Definition 7. Let L be a language. We say that a function f : L→L is L-regular if there exists an NFA
A f over (Σ∪{#}){x,y} such that for every w ∈ L, it holds that f (w) = u iff w[x 7→w][y 7→u] ∈ L(A f). We then
say that A f computes f .

We say that a language L is ordered if the words in L can be arranged in a sequence w1,w2, . . . such
that there exists an L-regular function such that f (wi) = wi+1 for every i≥ 0.
Example 2. Consider the language {a2i,b2i|i ∈ N}, and a function ∀i ∈ N : f (a2i) = b2i, f (b2i) = a2i+2,
which matches the sequence ε,a2,b2,a4,b4, The function f can be computed by the NFA A f depicted
in Figure 1, which has two components: one that reads a2i on x and b2i on y, and one that reads b2i on x
and a2i+2 on y.
Theorem 8. Let L be an ordered language. Then {L} is ∃∀∃-realizable.

Proof. Let L = {w1,w2, . . .} be an ordered language via a regular function f , and let A f be an NFA
that computes f . We construct an ∃x1∀x2∃x3-NFH A for {L} by setting its underlying NFA to be
Â= Aw1 ⊗A f [x1,x2,x3]. Intuitively, A creates a “chain-reaction”: Aw1 requires the existence of w1, and
A f requires the existence of wi+1 for every wi. By the definition of f , only words in L may be assigned
to x2. Therefore, L(A) = {L}.

120 Realizable and Context-Free Hyperlanguages

We now generalize the definition of ordered languages, by allowing several minimal words instead
of one, and allowing each word to have several successors. The computation of such a language then
matches a relation over the words, rather than a function.

Definition 9. We say that a language L is m,k-ordered, if there exists a relation R⊆ L×L such that:

• There exist exactly m words w ∈ L such that (u,w) /∈ R for every u 6= w ∈ L (that is, there are m
minimal words).

• R⊆ S for a total order S of L with a minimal element.

• For every w ∈ L there exist 1≤ i≤ k successor words: words u such that (w,u) ∈ R.

• There exists an NFA AR over (Σ∪{#}){x,y} such that for every u,v ∈ L, it holds that R(u,v) iff
w[x 7→u][y 7→v] ∈ L(AR).

We then say that AR computesL. We callL partially ordered if there exist m,k such thatL is m,k-ordered.

Theorem 10. Let L be m,k-ordered. Then {L} is ∃m∀∃k-realizable.

Proof. Let AR = 〈(Σ∪{#}){x,y},Q,q0,δ ,F〉 be a DFA that computes L. We construct an ∃m∀∃k-NFH A
for L, as follows. The quantification condition of A is ∃x1 · · ·∃xm∀z∃y1 · · ·∃yk. The x-variables are to be
assigned u1, . . .um, the m minimal words of R. We set AU =

⊗m
i=1 Aui [x1, . . .xm].

The underlying NFA Â of A comprises of an NFA Ai for every 1≤ i≤ k. Let Li be the set of words
in L that have exactly i successors. Intuitively, Ai requires, for every word w ∈ Li that is assigned to z,
the existence of the i successors of w.

To do so, we construct an NFA Bi over z,y1, . . .yi that accepts w[z7→w][y1 7→w1]...[yi 7→wi], for every word
w and its successors w1, . . .wi. The construction of Bi requires that: (1) all assignment to y-variables are
successors of the assignment to z, by basing Bi on a composition of AR, and (2) y1, . . .yi are all assigned
different words. This is done by keeping track of the pairs of assignments to y-variables that at some
point read different letters. The run may accept only once all pairs are listed. We finally set Ai = AU⊗Bi,
and require yi+1 . . .yk to be equally assigned to z.

Since R⊆ S and R has minimal elements, for every word w ∈ L there exists a sequence w0,w1, . . .wt

such that wt = w, and w0 is minimal, and R(w j,w j+1) for every j ∈ [0, t−1]. The NFH A then requires
w0 (via Au), and for every w j, requires the existence of all of its successors, according to their number,
and in particular, the existence of w j+1 (via Ai). Therefore, A requires the existence of wt . On the other
hand, by construction, every word that is assigned to z is in L. Therefore, L(A) = {L}.

The size of AU is linear in |U |, and the size of Ai is exponential in k and in |A|.

3.3 Realizability of Regular Languages

We now show that every regular language L is partially ordered. To present the idea more clearly,
we begin with a simpler case of prefix-closed regular languages, and then proceed to general regular
languages. A prefix-closed regular language L has a DFA A in which every accepting state is only
reachable by accepting states. We use the structure of A to define a relation that partially orders L.

Theorem 11. Let L be a non-empty prefix-closed regular language. Then L is partially ordered.

Proof. Let A = 〈Σ,Q,q0,δ ,F〉 be a DFA for L. Then for every p,q ∈Q, if q ∈ F and q is reachable from
p, then p∈ F . Let k be the maximal number of transitions from a state q∈ F to its neighboring accepting
states. We show that L is 1,k-ordered. We define a relation R as follows. Since L is prefix-closed, we
have that ε ∈ L. We set it to be the minimal element in R.

H. Frenkel & S. Sheinvald 121

Let q∈Q, and let {(q,σ1, p1), . . .(q,σm, pm)} be the set of transitions in δ from q to accepting states.
For every word w ∈ L that reaches q, we set (w,wσ1), . . .(w,wσm) ∈ R. For every word w ∈ L that
reaches a state q from which there are no transitions to accepting states, we set (w,w) ∈ R.

It holds that the number of successors for every w ∈ L is between 1 and k. Further, R ⊆ S for the
length-lexicographic order S of L.

We construct an NFA AR for R by replacing every transition labeled σ with {σx,σy} and adding a
state p′, which is the only accepting state. For every q ∈ F , we add a transition (q,{#x,σy}, p′) for every
(q,σ , p)∈ δ such that p∈ F . If q has no transitions to accepting states in A, then we add (q,{#x,#y}, p′).
AR then runs on word assignments w[x 7→w][y 7→u] such that u = wσ for some σ , such that w,u ∈ L, or
w[x 7→w][y 7→w] if w cannot be extended to a longer word in L. Therefore, AR computes L.

Remark 1. The construction in the proof of Theorem 10 is exponential, due to the composition of several
automata. In the case of prefix-closed languages, the successors of a word w ∈ L are all of the type wσ .
Therefore, it suffices to extend every transition in A to {σx1 ,σx2 , . . .σxk}, and to add a transition from
every q ∈ F to a new accepting state with all letters leading from q to an accepting state. Composed with
a single-state DFA for ε , we get an ∃∀∃k-NFH for {L}, whose size is polynomial in |A|.

We now turn to prove the realizability of {L} for every regular language L. The proof relies on a
similar technique to that of Theorem 11: a relation that computes {L} requires, for every word w ∈ L,
the existence of a longer word w′ ∈ L. Here, w′ is not simply the extension of w by a single letter, but a
pumping of w by a single cycle in a DFA for L.

Theorem 12. Let L be a regular language. Then {L} is partially ordered.

Proof. Let A = 〈Σ,Q,q0,δ ,F〉 be a DFA for L. We mark by P the set of words that reach accepting
states from q0 along a simple path. For a state q ∈ Q, we mark by Cq the set of words that reach q from
q along a simple cycle. Note that P and Cq are finite for every q ∈ Q. Let n = |P|, and let m = Σq∈Q|Cq|.
We show that L is n,m-ordered, by defining an appropriate relation R.

The set of minimal words in R is P. The successors of a word w ∈ L are w itself (that is, R is
reflexive), and every possible pumping of w by a single simple cycle that precedes all other cycles within
the run of A on w. That is, for a state q that is reached by a prefix u of w along a simple path, and for a
word c read along a simple cycle from q to itself, the word ucv is a successor of w in R, where w = uv.

To see that the only minimal words in R are P, let w = σ1σ2 · · ·σk ∈ L, and let r = (q0,q1, . . .qk) be
the accepting run of A on w. If all states in r are unique, then w ∈ P. Otherwise, we set wt = w, and
repeatedly remove simple cycles from r: let j be a minimal index for which there exists j′ > j such that
q j = q j′ and such that q j+1, . . .q j′ are unique. We define wi−1 = w1 · · ·w jw j′+1 · · ·wk. We repeat this
process until we reach a run in which all states are unique, which matches a word w0 ∈ P. The sequence
of words wt ,wt−1, . . .w0 we obtain is such that (wi,wi+1) ∈ R for every i ∈ [0, t−1].

It is easy to see that R⊆ S for the length-lexicographical order S of L. Additionally, every w ∈ L has
between 1 and m successors. We now construct an NFA AR for R.

AR is the union of several components, described next. Let Aq be the DFA obtained from A by setting
its only accepting state to be q. For every p ∈ Q and for every c ∈Cp, we construct an NFA Bc,q, which
pumps a word read along a run that reaches q and traverses p, by c. The NFA Bc,q comprises two copies
A1,A2 of A, where the copy q2 of q in A2 is the only accepting state. The word c is read between A1 to
A2, from p1 and p2.

We construct an NFA Ac,q by composing Bc,q and Aq, and making sure that Bc,q reads the same word
as Aq, pumped by c. That is, if Aq reads a word uv, where u reaches p, then Bc,q reads ucv. To this end,
while Bc,q is in A1, the DFA Aq and Bc,q both advance on the same letters. When Bc,q leaves A1 to read c

122 Realizable and Context-Free Hyperlanguages

followed by the suffix v in A2, the composition remembers, via states, the previous (up to) |c| letters read
by Aq, to make sure that once Bc,q finishes reading uc, it reads the same suffix v as Aq did. The NFA AR

is then the union of Ac,q for every q ∈ Q,c ∈
⋃

p∈QCp. To accept the reflexive pairs as well, we union all
the components with an additional component A⊕A.

The size of every Ac,q is exponential in c, due to the need to remember the previous c letters. There are
exponentially many simple paths and cycles in A. Therefore, we have that the size of AR is exponential
in |A|. Combined with the exponential blow-up involved in the proof of Theorem 10, we have that an
NFH for {L} is doubly-exponential in the |A|.

Remark 2. Using automatic structures [17] and relying on the length-lexicographical order S, one can
prove the existence of an ∃∀∃-NFH A for {L}, which is smaller and simpler than the one we present
in Theorem 12. Indeed, one can phrase the direct successor relation in L with respect to S using the
First Order Logic (FOL) formula ϕ(x,y) = L(x)∧L(y)∧S(x,y)∧∀(z).(z 6= y)→ (¬(S(x,z)∧S(z,y))).
Since S is NFA-realizable, and since every relation expressible by FOL over an automatic structure is
regular [17], we have that ϕ is NFA-realizable. We can then construct A, requiring the existence of a
minimal word in L with respect to S, together with the requirement of the existence of a successor for
every w ∈ L.

While this construction is polynomial, it does not directly rely on the structure of A. Since in this
paper we wish to lay the ground for richer realizable fragments, in which relying on the underlying graph
structures may be useful, we present it here.

4 Context-Free Hypergrammars

We now go beyond regular hyperlanguages, and define and study context-free hyperlanguages. We begin
with a natural definition for context-free hypergrammars (CFHG), based on the definition of NFH, and
then identify a more decidable fragment of CFHG, namely synchronized CFHG.

Definition 13. A context-free hypergrammar (CFHG) is a tuple 〈Σ,X ,V,V0,P,α〉, where X and α are as
in NFH, and where Ĝ = 〈Σ̂,V,V0,P〉 is a CFG over the alphabet Σ̂ = (Σ∪{#})X .

Definition 1 defines word assignments for NFH, where the #-symbol may only appear at the end of
a word. This is naturally enforced by the nature of the underlying NFA. For the most general case of
hypergrammars, we consider words in which # can appear anywhere in the word. In Section 4.1 we allow
to occur only at the end of the word. For a word w ∈ Σ∗ we define the set of words w ↑# to be the set of
all words that are obtained from w by adding #-symbols in arbitrary locations in w. For w ∈ (Σ∪{#})∗,
we define the word w ↓# to be the word obtained from w by removing all occurrences of #.

The acceptance condition for CFHG is defined with respect to a language L, the underlying CFG Ĝ,
the quantification condition α , and an assignment u : X →L.

1. For α = ε , define L `v (α, Ĝ) if wu ∈ L(Ĝ).

2. For α = ∃x.α ′, define L `u (α, Ĝ) if there exist w ∈ L and w# ∈ w ↑# s.t. L `u[x 7→w#] (α
′, Ĝ).

3. For α = ∀x.α ′, define L `u (α, Ĝ) if for every w ∈ L there exists w# ∈ w ↑# s.t. L `u[x 7→w#] (α
′, Ĝ).

When α includes all of X , we say that G derives L (or that G accepts L), and denote L ∈ L(G).

Definition 14. Let G be a CFHG. The hyperlanguage of G, denoted L(G), is the set of all languages that
G derives. We denote G as being a Q1Q2 . . .Qk-CFHG similarly as with NFH.

H. Frenkel & S. Sheinvald 123

Henceforth we assume that (1) the underlying grammar Ĝ does not contain variables and rules that
derive no terminal words (these can be removed); and (2) there are no rules of the form v→ ε except for
possibly V0→ ε . Every CFG can be converted to a CFG that satisfies these conditions [16].
Example 3. Consider the robot scenario described in Section 1, and the ∀x-CFHG G1 with the rules

P1 :=V0→{cx}V0{ax} | {cx}V1

V1→{cx}V1 | {cx}

The letters a and c correspond to action and charge, respectively. Then, L(G1) is the set of all languages
in which the robot has enough battery to act.

Consider now the CFHG G2 = 〈{a,c},{x1,x2},{V0,V1},V0,P2,∃x1∀x2〉 where

P2 :=V0→{cx1 ,cx2}V0{ax1 ,ax2} | {cx1 ,cx2}V1{ax1 ,#x2} | {cx1 ,cx2}V1{ax1 ,ax2}
V1→{cx1 ,#x2}V1{ax1 ,#x2} | {cx1 ,#x2} | {cx1 ,cx2}

We now require that the robot only has one additional unit of charging (unlike in G1). In addition, we
require an upper bound (assigned to x1) on the charging and action times. All other words in the language
(assigned to x2) correspond to shorter computations.

We now study the nonemptiness and membership problems for CFHGs. When regarding a CFHG as
a specification, these correspond to the model-checking and satisfiability problems.

Theorem 15. The nonemptiness problem for ∃∗-CFHG is in P.

Proof. According to the semantics of the ∃-requirement, an ∃∗-CFHG G derives a language L if Ĝ
accepts a word assignment that corresponds to words in L. Therefore, it is easy to see that G is nonempty
iff Ĝ is nonempty. Since the nonemptiness of CFG is in P [16], we are done.

Theorem 16. The membership problem for a regular language in an ∃∗-CFHG is in EXPTIME.

Proof. Let A = 〈Σ,Q,Q0,δ ,F〉 be an NFA and let G be a CFHG with α = ∃x1 · · ·∃xk. In order to check
whether L(A) ∈ L(G), we need to check whether there exists a subset of L(A) of size k or less, that can
be accepted as a word assignment by Ĝ. Since Ĝ derives words over Σ∪{#}, we first construct the NFA
A ↑ #, that accepts all #-paddings of words in L(A). We can do so easily by adding a self-loop labeled #
to every state in A. We then compute (A ↑ #)⊗k to allow different paddings for different words (an expo-
nential construction), intersect the resulting automaton with Ĝ and test the intersection for nonemptiness.
Context-free languages are closed under intersection with regular languages via a polynomial construc-
tion. In addition, if the grammar is given in Chomsky Normal Form [7], then checking the emptiness
of the intersection is polynomial in the sizes of the grammar and automaton. As the conversation to
Chomsky normal form is also polynomial, we get that the entire procedure is exponential, due to the size
of (A ↑ #)⊗k.

Theorem 17. The membership problem for a finite language in a CFHG is in EXPTIME.

Proof. Let L be a finite language and let G be a CFHG with variables {x1, . . .xk}. Since L is finite,
we can construct every assignment of words in L to the variables in G, and check if it is accepted by
Ĝ. Similarly to the proof of Theorem 16, to do so, we use an NFA Aw whose language is the set w ↑#,
for every w ∈ L. For an assignment v = [x1 7→ w1] . . . [xk 7→ wk], we construct

⊗k
i=1 Awi , and check the

nonemptiness of its intersection with Ĝ. As in Theorem 16, this procedure is exponential in the length

124 Realizable and Context-Free Hyperlanguages

of the words in L and in |G|. Since we can finitely enumerate all assignments, we can check whether
the quantification condition α of G is satisfied. Enumerating all assignments amounts to traversing the
decision tree dictated by α , which is exponential in |α|. Therefore, the entire procedure can be done in
exponential time in |G| and L.

Theorem 18. The emptiness problem for ∀∗-CFHG and ∃∀-CFHG is undecidable.

Proof. We show reductions from the Post correspondence problem (PCP).A PCP instance is a set of pairs
of the form [a1,b1], . . . , [an,bn] where ai,bi ∈ {a,b}∗. The problem is then to decide whether there exists
a sequence of indices i1 · · · im, i j ∈ [1,n], such that ai1ai2 · · ·aim = bi1bi2 · · ·bim . For example, consider
the instance {[a,baa]1, [ab,aa]2, [bba,bb]3}. Then, a solution to the PCP is the sequence 3,2,3,1 since
a3a2a3a1 = bba ·ab ·bba ·a and b3b2b3b1 = bb ·aa ·bb ·baa.

Let T = {[a1,b1], . . . , [an,bn]} be a PCP instance. Let G = 〈{a,b},{x1,x2},{V0},V0,P,∀x1∀x2〉 be a
∀∗-CFHG defined as follows. For every pair [ai,bi] ∈ T we define the words Ai,Bi ∈ (Σ∪{#})∗ obtained
from ai,bi by padding the shorter of ai,bi with #-symbols so that Ai,Bi are of equal length. We define P
as follows.

P :=V0→{A1x1 ,B1x2}V0 | · · · | {Anx1 ,Bnx2}V0 | {A1x1 ,B1x2} | · · · | {Anx1 ,Bnx2}

For a language L ∈ L(G), it must hold that w[x1 7→u][x2 7→v] ∈ L(Ĝ) for every u,v ∈ L, due to the ∀∀-
condition. Let u ∈ L. Then, in particular, w[x1 7→u][x2 7→u] ∈ L(Ĝ). Notice that in this case, u is a solution
to T . In the other direction, a solution to T induces a word u = ai1ai2 · · ·aim such that {u} ∈ L(G). The
same reduction holds also for the case of ∃∀, since according to the ∀ requirement, one of the word
assignments must assign the same word to both variables.

Note that the proof of Theorem 18 compares between two words in order to simulate PCP. For a
single ∀-quantifier, the nonemptiness problem is equivalent to that of CFG, and is therefore in P.

The underlying CFG we use in the proof of Theorem 18 is linear, and so the result follows also to
asynchronous NFH, that allow #-symbols arbitrarily. This is in line with the results in [3], which shows
that the model-checking problem for asynchronous hyperLTL is undecidable.

4.1 Synchronous Hypergrammars

As we show in Section 4, the asynchronicity of general CFHG leads to undecidability of most decision
problems for them, already for simple quantification conditions. We now introduce ranked CFHG, a
fragment of CFHG that ensures synchronous behavior. We then prove that ranked CFHG capture ex-
actly the set of synchronous hyperlanguages. Intuitively, synchronous hyperlanguages are derived from
grammars in which # only appears at the end of the word, similarly to NFH (we say that such a word
assignment is synchronous). Since CFHG may use non-linear rules, in order to characterize the grammar
rules that derive synchronous hyperlanguages, we need to reason about structural properties of the gram-
mar. To this end, we define a rank for each variable v, which, intuitively, corresponds to word variables
for which v derives #-symbols.
Remark 3. Before we turn to the definition of ranks of variables and ranked grammars we note on the
difference between a definition of grammars which their hyperlanguages are synchronous, as we do in
the rest of this section; and the problem of, given some hypergrammar G, finding the hyperlanguage
L(Gs) ⊆ L(G) that corresponds to the synchronous sub-hyperlanguage of G. Assume that G is over
Σ and has k quantifiers. Then, the latter can be done by constructing an NFA As over (Σ∪{#})k that

H. Frenkel & S. Sheinvald 125

Figure 2: The MSSC graph GR for the grammar and PCP instance of Example 4 and the Proof of Theorem 18.
Blue edges are bidirectional, and the rectangle represents an MSCC.

accepts all words in which # appears only at the end of words. The intersection of As and G results in the
grammar Gs, whose language is a subset of that of G. We approach a different problem, namely defining
a fragment of grammars that accept exactly the class of synchronous hyperlanguages.

In order to define the ranks of variables, we use the rule graph G, defined as follows. The set of
vertices of G is V ∪W , where W = {γ ∈ (Σ̂∪V)∗ | ∃v ∈V.v→ γ ∈ P} is the set of sequences appearing
on the right side of one of the grammar rules. The set of edges E of G is E = EL∪ER where

EL = {〈v,w〉 | v→ w ∈ P}∪{〈w,v〉 | w = vγ}
ER = {〈v,w〉 | v→ w ∈ P}∪{〈w,v〉 | w = γv}

We partition G into maximal strongly connected components (MSCCs) with respect to each type of edges
(EL and ER), resulting in two directed a-cyclic graphs GL and GR. The vertices of Gd for d ∈ {L,R} are
the MSCCs according to Ed , and there is an edge Cd

1 → Cd
2 iff there exist u,u′ ∈ (V ∪W) such that

u ∈Cd
1 ,u
′ ∈Cd

2 and 〈u,u′〉 ∈ Ed . Note that every terminal word is a singleton MSCC in both graphs.

Example 4. Figure 2 presents GR for G of the proof of Theorem 18, and the PCP instance {[a,baa]1, [ab,aa]2,
[bba,bb]3}, with the concrete derivation rules:

V0→{a##x1 ,baax2}V0 | {abx1 ,aax2}V0 | {baax1 ,bb#x2}V0 |
{a##x1 ,baax2} | {abx1 ,aax2} | {baax1 ,bb#x2}

We now define the left ranks and right ranks of synchronous words, variables and sequences.

1. Ranks of terminal synchronous words. The rank of a letter σ̂ = {σ1x1
, . . .σnxn

} ∈ Σ̂ is t(σ̂) =
{xi | σixi

= #}. The left rank of ŵ is L(ŵ) = t(σ̂1), and its right rank is R(ŵ) = t(σ̂n), where σ̂1
and σ̂n are the first and last letters of ŵ, respectively.

2. Inductive definition for variables and sequences. Let d ∈ {L,R}, and let Cd
1 → Cd

2 in Gd such
that d(u′) is defined for every u′ ∈Cd

2 and d ∈ {L,R}. Let γ ∈ (Σ̂∪V)∗, σ ∈ Σ̂, and v ∈V .

• For u ∈Cd
1 ∈ Gd such that u = σγ we define L(u) = l(u) = L(σ).

• For u ∈Cd
1 ∈ Gd such that u = γσ we define R(u) = r(u) = R(σ).

• For u ∈CL
1 ∈ GL such that u = vγ we define l(u) =

⋃
CL

1→CL
2

⋂
u′∈CL

2
L(u′).

• For u ∈CR
1 ∈ GR such that u = γv we define r(u) =

⋃
CR

1→CR
2

⋃
u′∈CR

2
R(u′).

Now, for each u = vγ ∈ CL
1 we define L(u) =

⋂
u′∈CL

1
l(u′), and for each u = γv ∈ CR

1 we define
R(u) =

⋃
u′∈CR

1
r(u′).

126 Realizable and Context-Free Hyperlanguages

Note that this process is guaranteed to terminate, since we traverse both graphs in reverse topological
order. Therefore, at the end of the process, L(u) and R(u) are defined for every u ∈V ∪W .

We define ranked CFGs to be CFGs in which for every rule v→ γ1 · · ·γn for γi ∈ (Σ̂∪V), it holds that
R(γi)⊆ L(γi+1). Intuitively, this means that γi may not produce # to its right, if γi+1 can produce σ 6= #
to its left, leading to unsynchronous derivation. A CFHG G is ranked if Ĝ is ranked.
Example 5. Consider G of Example 4 and GR of Figure 2. The graph GL is similar to GR, with no edges
back to V0, (and thus without the rectangle MSCC). We compute some of the ranks for G:

L({a##x1 ,baax2}) = L({baax1 ,bb#x2}) = L({abx1 ,aax2}) = /0 L(V0) = /0

R({a##x1 ,baax2}) = {x1} R({baax1 ,bb#x2}) = {x2} R({abx1 ,aax2}) = /0 R(V0) = {x1,x2}

G is not ranked, since for the rule V0→{a##x1 ,baax2}V0, it holds that R({a##x1 ,baax2}) 6⊆ L(V0).
Example 6. The following CFHG Gr = 〈{a,b},{x1,x2},{V0,V1},V0,P,∀x1∃x2〉 is ranked, where P is:

P :=V0→V1V2

V1→{ax1 ,ax2}V1{bx1 ,bx2} | {abx1 ,abx2}
V2→V2{#x1 ,bx2} | {#x1 ,bx2}

Gr accepts all languages in which for every word of the type anbn there exits a word with more b’s, that
is, there exists anbm for m > n.

The ranks of Gr, as shown below, demonstrate that Gr is indeed ranked.

L({#x1 ,bx2}) = R({#x1 ,bx2}) = {x1} L({abx1 ,abx2}) = R({abx1 ,abx2}) = /0

L({ax1 ,ax2}V1{bx1 ,bx2}) = R({ax1 ,ax2}V1{bx1 ,bx2}) = R(V1) = L(V1) = /0

R(V2{#x1 ,bx2}) = L(V2{#x1 ,bx2}) = R(V2) = L(V2) = {x1}
R(V0) = /0 L(V0) = {x1}

Definition 19. L is a synchronous context-free hyperlanguage if there exists a CFHG G for L in which
Ĝ only derives synchronous word assignments.

Theorem 20. A hyperlanguage L is derived by a ranked CFHG iff L is synchronous context-free.

In order to prove Theorem 20, we use the following claims.

Claim 21. Let G = 〈Σ,X ,V,V0,P,α〉 be a ranked CFHG. Then, for every word γ = γ1 · · ·γn ∈ (Σ̂∪V)∗,
if there exists v ∈V such that v⇒∗ γ , then R(γi)⊆ L(γi+1) for all i ∈ [1,n−1].

Claim 22. Let G = 〈Σ,X ,V,V0,P,α〉 be a (possibly not ranked) CFHG with |X |= k, and let v ∈V .

1. For every j ∈ [1,k]\L(v) there exists w ∈ Σ̂∗ such that v⇒∗ w and j /∈ L(w).

2. For every j ∈ R(v) there exists w ∈ Σ̂∗ such that v⇒∗ w and j ∈ R(w).

Proof of Theorem 20. Let L be a context-free language that is accepted by a ranked grammar G. Accord-
ing to Claim 21, for every word w = w1 · · ·wn ∈ Σ̂∗ such that V0⇒∗ w, it holds that R(wi)⊆ L(wi+1)) for
i ∈ [1,n−1]. That is, # is allowed to only appear at the end of words, and so Ĝ only derives synchronous
word assignments.

For the other direction, let L be a synchronous context-free hyperlanguage, and let G be a CFHG for L
that only derives synchronous word assignments. Assume by way of contradiction that G is not ranked.
Then, there exists some rule v→ γ1 · · ·γn ∈ P where γi ∈ (Σ̂∪V) such that R(γi) 6⊆ L(γi+1) for some

H. Frenkel & S. Sheinvald 127

i ∈ [1,n]. Recall that we assume that all rules are reachable and that every variable can derive a terminal
word. Consider a derivation sequence V0⇒∗ βvβ ′⇒ βγ1 · · ·γnβ ′. Then, there exist w,wi,wi+1,w′ ∈ Σ̂∗

such that γi⇒∗ wi, γi+1⇒∗ wi+1 and V0⇒∗ wwiwi+1w′; and due to claim 22, for some j ∈R(γi)\L(γi+1),
it holds that j ∈ R(wi)\L(wi+1). Hence, wi ends with # in some location which is followed by a letter
in wi+1, and so the word assignment wwiwi+1w′ is not synchronous, a contradiction.

We therefore term ranked grammars syncCFHG. Given a CFHG G, deciding whether it is ranked
amounts to constructing the graph G and traversing the topological sorting of its MSCC graph in reverse
order in order to compute all ranks, and finally checking that all grammar rules of G comply to the
rank rules. All these steps can be computed in polynomial time. We now show that syncCFHG is more
decidabile than CFHG.

Theorem 23. The nonemptiness problem for ∀∗-syncCFHG and ∃∀∗-syncCFHG is in P.

Proof. Let G be a syncCFHG. Since universal quantification is closed under subsets, it holds that if L ∈
L(G), then L′ ∈L(G) for every L′ ⊆L. Therefore, it suffices to check whether there exists a singleton L
such that L ∈ L(G). Therefore, we consider only word assignments of the form w = w[x1 7→w]···[xk 7→w] for
some w ∈ (Σ∪{#})∗. Notice that w has a single representation, since # may not appear arbitrarily. We
construct a syncCFHG G′ by restricting Ĝ to the alphabet

⋃
σ∈Σ{σ}X , that is, all variables are assigned

the same letter. All rules over other alphabet letters are eliminated. Since elimination of rules cannot
induce asynchronization, G′ is synchronous.

Now, for a singleton language {w}, we have {w} ∈ L(G) iff {w} ∈ L(G′). Therefore, it suffices to
check the nonemptiness of L(G′), which amounts to checking the nonemptiness of Ĝ′.

The proof holds also for the case of ∃∀∗-syncCFHG. Indeed, an ∃∀∗-syncCFHG G is nonempty iff
it derives a singleton hyperlanguage. This, since in a language derived by G, a word w that is assigned
to the variable under ∃ must also be assigned to all variables under ∀ in one of the word assignments
derived by Ĝ, which in turn fulfills the requirements for deriving {w}. Since G is synchronous, it suffices
to restrict the alphabet to homogeneous letters and check for nonemptiness, as with ∀∗.

In the regular membership problem, we ask whether a regular language L can be derived by a
synchCFHG G. This problem is decidable for NFH [5]. For L = Σ∗ and a ∀-CFHG G, the question
amounts to checking the universality of Ĝ, which is undecidable [2]. Therefore, we have the following.

Theorem 24. The regular membership problem for ∀∗-syncCFHG grammars is undecidable.

Remark 4. Membership of a finite language L in a CFHG with any quantification condition is decidable
already for general CFHG (Theorem 17), with exponential complexity. For syncCFHG, we can reduce
the complexity by checking membership of word assignments instead. This, since we only need to con-
sider synchronous words, which have a single representation. Since checking membership is polynomial
in the size of the word (for a grammar of fixed size) [16], every such test is then polynomial. Since we
may still need to traverse all possible word assignment, the complexity is exponential in the length of the
quantification condition, but is polynomial in |G| and the size of the words in L.

Remark 5. For regular languages and ∃∗-CFHG, synchronization does not avoid the composition of
automata, and we use a construction similar to the one of Theorem 16.

We now show that synchronicity does not suffice for deciding nonemptiness of ∃∗∀∗-syncCFHG.

Theorem 25. The nonemptiness problem for ∃∗∀∗-syncCFHG is undecidable.

128 Realizable and Context-Free Hyperlanguages

Proof. We reduce from PCP. Let T = {[a1,b1], . . . , [an,bn]} be a PCP instance over {a,b}, and let

G = 〈{a,b,c}∪ [1,n],{x1,x2,x3},{V0,V1,V2},V0,P,∃x1∃x2∀x3〉

be a CFHG where P is defined as follows.

P :=V0→V1 | V2

V1→{aix1 ,c
|ai|

x2 ,aix3}V1{ix1 ,cx2 , ix3} | {aix1 ,c
|ai|

x2 ,aix3}{ix1 ,cx2 , ix3} ∀i ∈ [1,n]

V2→{bix1 ,c
|bi|

x2 ,c
|bi|

x3}V2{ix1 ,cx2 ,cx3} | {bix1 ,c
|bi|

x2 ,c
|bi|

x3}{ix1 ,cx2 ,cx3} ∀i ∈ [1,n]

Since none of the rules include the #-symbol, G is indeed a syncCFHG. Now, if there exists L ∈ L(G),
then there exist w ∈ {a,b}∗ · [1,n]∗ and wc ∈ {c}∗ both in L, such that for every w′ ∈ L, we have
V0 ⇒∗ w[x1 7→w][x1 7→wc][x3 7→w′]. In particular, for w′ = w, we have V0 ⇒∗ w[x1 7→w][x1 7→wc][x3 7→w]. Since V2

only derives words of the form ck in x3, the derivation of w[x1 7→w][x2 7→wc][x3 7→w] is of the form V0⇒V1⇒∗
w[x1 7→w][x2 7→wc][x3 7→w]. In addition, all words in {c}∗ can only be assigned to x3 if derived from V2, thus we
have V0⇒ V2⇒∗ w[x1 7→w][x2 7→wc][x3 7→wc]. Denote w = w1w2 where w1 ∈ {a,b}∗,w2 ∈ [1,n]. Then, w en-
codes a solution to T , where w1 is the string obtained from ai (and bi), and w2 is the sequence of indices.

For the other direction, a solution to T encoded by a string w1 and sequence of indices w2 corresponds
to the language {w1w2,c|w1w2|} that is accepted by G.

The nonemptiness problem for ∀∗∃∗-NFH is undecidable [5]. Therefore, this is also the case for
syncCFHG, and for general CFHG.

5 Discussion and Future Work

We have studied the realizability problem for regular hyperlanguages, focusing on the case of singleton
hyperlanguages. We have shown that simple quantification conditions cannot realize this case. We
have defined ordered and partially-ordered languages, for which we can construct hyperautomata that
enumerate the language by order. We have shown that all regular languages are partially ordered. Since
regular hyperlanguages are closed under union [5], the result extends to a finite hyperlanguage containing
regular languages. Naturally, there are richer cases one can consider. For an infinite hyperlanguage L,
some characterization on the elements of L would need to be defined in order to explore its realizability.
We plan on pursuing this direction as future work. Another related direction is finding techniques for
proving unrealizability for certain quantification conditions, for various types of hyperlanguages.

In the second part of the paper we have studied the natural extension of context-free grammars to
handle context-free hyperlanguages. Here, we have shown that beyond the inherent undecidability of
some decision problems for hypergrammars, some undecidability properties stem from the asynchronous
nature of these hypergrammars. We have then defined a synchronous fragment of context-free hyperlan-
guages, and defined a fragment of context-free grammars which exactly captures this fragment. The
result retains some of the decidability properties of context-free grammars. As a future direction, we
plan to study the realizability problem for CFHG and syncCFHG. Due to the limited closure proper-
ties of CFG, this is expected to be more challenging than for NFH. Another possible future direction is
studying the entire Chomsky hierarchy for hyperlanguages, and finding fragments of the extensions to
hyperlanguages that conserve the properties of these models for standard languages.

Acknowledgements. We thank the anonymous reviewer for suggesting the elegant construction men-
tioned in Remark 2.

H. Frenkel & S. Sheinvald 129

References

[1] B. Alpern & F.B. Schneider (1985): Defining Liveness. Information Processing Letters, pp. 181–185,
doi:10.1016/0020-0190(85)90056-0.

[2] Brenda S. Baker & Ronald V. Book (1974): Reversal-Bounded Multipushdown Machines. J. Comput. Syst.
Sci. 8(3), pp. 315–332, doi:10.1016/S0022-0000(74)80027-9.

[3] Jan Baumeister, Norine Coenen, Borzoo Bonakdarpour, Bernd Finkbeiner & César Sánchez (2021): A Tem-
poral Logic for Asynchronous Hyperproperties. In Alexandra Silva & K. Rustan M. Leino, editors: Computer
Aided Verification - 33rd International Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings,
Part I, Lecture Notes in Computer Science 12759, Springer, pp. 694–717, doi:10.1007/978-3-030-81685-
8 33.

[4] Borzoo Bonakdarpour, César Sánchez & Gerardo Schneider (2018): Monitoring Hyperproperties by Combin-
ing Static Analysis and Runtime Verification. In Tiziana Margaria & Bernhard Steffen, editors: Leveraging
Applications of Formal Methods, Verification and Validation. Verification - 8th International Symposium,
ISoLA 2018, Limassol, Cyprus, November 5-9, 2018, Proceedings, Part II, Lecture Notes in Computer Sci-
ence 11245, Springer, pp. 8–27, doi:10.1007/978-3-030-03421-4 2.

[5] Borzoo Bonakdarpour & Sarai Sheinvald (2021): Finite-Word Hyperlanguages. In Alberto Leporati, Carlos
Martı́n-Vide, Dana Shapira & Claudio Zandron, editors: Language and Automata Theory and Applications
- 15th International Conference, LATA 2021, Milan, Italy, March 1-5, 2021, Proceedings, Lecture Notes in
Computer Science 12638, Springer, pp. 173–186, doi:10.1007/978-3-030-68195-1 17.

[6] Ahmed Bouajjani, Rachid Echahed & Riadh Robbana (1994): Verification of Nonregular Temporal Proper-
ties for Context-Free Processes. In Bengt Jonsson & Joachim Parrow, editors: CONCUR ’94, Concurrency
Theory, 5th International Conference, Uppsala, Sweden, August 22-25, 1994, Proceedings, Lecture Notes in
Computer Science 836, Springer, pp. 81–97, doi:10.1007/978-3-540-48654-1 8.

[7] Noam Chomsky (1959): On Certain Formal Properties of Grammars. Inf. Control. 2(2), pp. 137–167,
doi:10.1016/S0019-9958(59)90362-6.

[8] Edmund M. Clarke, Orna Grumberg, Daniel Kroening, Doron A. Peled & Helmut Veith (2018):
Model checking, 2nd Edition. MIT Press. Available at https://mitpress.mit.edu/books/
model-checking-second-edition.

[9] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe & César
Sánchez (2014): Temporal Logics for Hyperproperties. In Martı́n Abadi & Steve Kremer, editors: Principles
of Security and Trust - Third International Conference, POST 2014, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings,
Lecture Notes in Computer Science 8414, Springer, pp. 265–284, doi:10.1007/978-3-642-54792-8 15.

[10] Michael R. Clarkson & Fred B. Schneider (2010): Hyperproperties. J. Comput. Secur. 18(6), pp. 1157–1210,
doi:10.3233/JCS-2009-0393.

[11] Norine Coenen, Bernd Finkbeiner, Christopher Hahn & Jana Hofmann (2019): The Hierarchy of Hyperlogics.
In: 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada,
June 24-27, 2019, IEEE, pp. 1–13, doi:10.1109/LICS.2019.8785713.

[12] Bernd Finkbeiner, Lennart Haas & Hazem Torfah (2019): Canonical Representations of k-Safety Hyperprop-
erties. In: 32nd IEEE Computer Security Foundations Symposium, CSF 2019, Hoboken, NJ, USA, June
25-28, 2019, IEEE, pp. 17–31, doi:10.1109/CSF.2019.00009.

[13] Bernd Finkbeiner & Martin Zimmermann (2017): The First-Order Logic of Hyperproperties. In Heribert
Vollmer & Brigitte Vallée, editors: 34th Symposium on Theoretical Aspects of Computer Science, STACS
2017, March 8-11, 2017, Hannover, Germany, LIPIcs 66, Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
pp. 30:1–30:14, doi:10.4230/LIPIcs.STACS.2017.30.

[14] Wladimir Fridman & Bernd Puchala (2014): Distributed Synthesis for Regular and Contextfree Specifica-
tions. Acta Informatica 51(3-4), pp. 221–260, doi:10.1007/s00236-014-0194-x.

http://dx.doi.org/10.1016/0020-0190(85)90056-0
http://dx.doi.org/10.1016/S0022-0000(74)80027-9
http://dx.doi.org/10.1007/978-3-030-81685-8_33
http://dx.doi.org/10.1007/978-3-030-81685-8_33
http://dx.doi.org/10.1007/978-3-030-03421-4_2
http://dx.doi.org/10.1007/978-3-030-68195-1_17
http://dx.doi.org/10.1007/978-3-540-48654-1_8
http://dx.doi.org/10.1016/S0019-9958(59)90362-6
https://mitpress.mit.edu/books/model-checking-second-edition
https://mitpress.mit.edu/books/model-checking-second-edition
http://dx.doi.org/10.1007/978-3-642-54792-8_15
http://dx.doi.org/10.3233/JCS-2009-0393
http://dx.doi.org/10.1109/LICS.2019.8785713
http://dx.doi.org/10.1109/CSF.2019.00009
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.30
http://dx.doi.org/10.1007/s00236-014-0194-x

130 Realizable and Context-Free Hyperlanguages

[15] Ohad Goudsmid, Orna Grumberg & Sarai Sheinvald (2021): Compositional Model Checking for Multi-
properties. In Fritz Henglein, Sharon Shoham & Yakir Vizel, editors: Verification, Model Checking, and
Abstract Interpretation - 22nd International Conference, VMCAI 2021, Copenhagen, Denmark, January 17-
19, 2021, Proceedings, Lecture Notes in Computer Science 12597, Springer, pp. 55–80, doi:10.1007/978-3-
030-67067-2 4.

[16] John E. Hopcroft, Rajeev Motwani & Jeffrey D. Ullman (2001): Introduction to Automata Theory, Lan-
guages, and Computation, 2nd Edition. Addison-Wesley series in computer science, Addison-Wesley-
Longman.

[17] Bakhadyr Khoussainov & Anil Nerode (1994): Automatic Presentations of Structures. In Daniel Leivant,
editor: Logical and Computational Complexity. Selected Papers. Logic and Computational Complexity, In-
ternational Workshop LCC ’94, Indianapolis, Indiana, USA, 13-16 October 1994, Lecture Notes in Computer
Science 960, Springer, pp. 367–392, doi:10.1007/3-540-60178-3 93.

[18] Adrien Pommellet & Tayssir Touili (2018): Model-Checking HyperLTL for Pushdown Systems. In Marı́a-
del-Mar Gallardo & Pedro Merino, editors: Model Checking Software - 25th International Symposium, SPIN
2018, Malaga, Spain, June 20-22, 2018, Proceedings, Lecture Notes in Computer Science 10869, Springer,
pp. 133–152, doi:10.1007/978-3-319-94111-0 8.

[19] Markus N. Rabe (2016): A Temporal Logic Approach to Information-flow Control. Ph.D. thesis, Saarland
University. Available at http://scidok.sulb.uni-saarland.de/volltexte/2016/6387/.

[20] Moshe Y. Vardi (1995): An Automata-Theoretic Approach to Linear Temporal Logic. In Faron Moller &
Graham M. Birtwistle, editors: Logics for Concurrency - Structure versus Automata (8th Banff Higher Order
Workshop, Banff, Canada, August 27 - September 3, 1995, Proceedings), Lecture Notes in Computer Science
1043, Springer, pp. 238–266, doi:10.1007/3-540-60915-6 6.

[21] Moshe Y. Vardi & Pierre Wolper (1986): An Automata-Theoretic Approach to Automatic Program Verifica-
tion (Preliminary Report). In: Proceedings of the Symposium on Logic in Computer Science (LICS ’86),
Cambridge, Massachusetts, USA, June 16-18, 1986, IEEE Computer Society, pp. 332–344.

[22] Moshe Y. Vardi & Pierre Wolper (1994): Reasoning About Infinite Computations. Inf. Comput. 115(1), pp.
1–37, doi:10.1006/inco.1994.1092.

[23] Yu Wang, Mojtaba Zarei, Borzoo Bonakdarpour & Miroslav Pajic (2019): Statistical Verification of Hy-
perproperties for Cyber-Physical Systems. ACM Trans. Embed. Comput. Syst. 18(5s), pp. 92:1–92:23,
doi:10.1145/3358232.

http://dx.doi.org/10.1007/978-3-030-67067-2_4
http://dx.doi.org/10.1007/978-3-030-67067-2_4
http://dx.doi.org/10.1007/3-540-60178-3_93
http://dx.doi.org/10.1007/978-3-319-94111-0_8
http://scidok.sulb.uni-saarland.de/volltexte/2016/6387/
http://dx.doi.org/10.1007/3-540-60915-6_6
http://dx.doi.org/10.1006/inco.1994.1092
http://dx.doi.org/10.1145/3358232

	1 Introduction
	2 Preliminaries
	3 Realizability of Regular Hyperlanguages
	3.1 Unrealizability
	3.2 Realizability of Ordered Languages
	3.3 Realizability of Regular Languages

	4 Context-Free Hypergrammars
	4.1 Synchronous Hypergrammars

	5 Discussion and Future Work

