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joachim.niehren@inria.fr

Momar Sakho
Inria, France Université de Lille
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We propose an algorithm for schema-based determinization of finite automata on words and of step-
wise hedge automata on nested words. The idea is to integrate schema-based cleaning directly into
automata determinization. We prove the correctness of our new algorithm and show that it is always
more efficient than standard determinization followed by schema-based cleaning. Our implemen-
tation permits to obtain a small deterministic automaton for an example of an XPath query, where
standard determinization yields a huge stepwise hedge automaton for which schema-based cleaning
runs out of memory.

1 Introduction

Nested words are words enhanced with well-nested parenthesis. They generalize over trees, unranked
trees, and sequences of thereof that are also called hedges or forests. Nested words provide a formal way
to represent semi-structured textual documents of XML and JSON format.

Regular queries for nested words can be defined by finite state automata. We will use stepwise
hedge automata (SHAs) for this purpose [19], which combine finite state automata for words and trees
in a natural manner. SHAs refine previous notions of hedge automata from the sixties [24, 9] in order to
obtain a decent notion of left-to-right and bottom-up determinism. They extend on stepwise tree automata
[8], so that they can not only be applied to unranked trees but also to hedges. Any SHA defines a forest
algebra [5] based on its transition relation. Furthermore, SHAs can always be determinized and have the
same expressiveness as (deterministic) nested word automaton (NWA) [16, 6, 2, 21]. Note, however, that
SHAs do not provide any form of top-down determinism in contrast to NWAs.

Efficient compilers from regular XPATH queries to SHAs exist [19], possibly using NWAs as inter-
mediates [4, 17, 10]. Our main motivation is to determinize the SHAs of regular XPATH queries since
deterministic automata are crucial for various algorithmic querying tasks. In particular, determinism re-
duce the complexity of universality or inclusion checking from EXP-completeness to P-time, both for the
classes of deterministic SHAs or NWAs. In turn, universality checking is relevant for the earliest query
answering of XPath queries on XML streams [14]. Furthermore, determinism is needed for efficient
in-memory answer enumeration of regular queries [22].

Automata determinization may take exponential time in the worst case, so it may not always be
feasible in practice. For SHAs compiled from the XPATH queries of the XPathMark benchmark [12],
however, it was shown to be unproblematic. This changes for the XPATH benchmark collected by Lick
and Schmitz [15]: for 37% of its regular XPATH queries, SHA determinization does require more than
100 seconds, in which case it produces huge deterministic automata [1]. An example is:

(QN7) /a/b//(* | @* | comment() | text())

This XPath query selects all nodes of an XML document that are descendants of a b-element below an
a-element at the root. The nodes may have any XML type: element, attribute, comment, or text. The
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nondeterministic SHA for QN7 has 145 states and an overall size of 348. Its determinization however
leads to an automaton with 10.005 states and an overall size of 1.634.122.

A kick-off question is how to reduce the size of deterministic automata. One approach beside of
minimization is to apply schema-based cleaning [19], where the schema of a query defines to which
nested words the query can be applied. Schemas are always given by deterministic automata while the
automata for queries may be nondeterministic. The idea of schema-based automaton cleaning is to keep
only those states and transition rules of the automaton, that are needed to recognize some nested word
satisfying the schema. The needed states and rules can be found by building the product of automata
for the query and the schema. For XPATH queries selecting nodes, we have the schema onex that states
that a single node is selected for a fixed variable x by any answer of the query. The second schema
expresses which nested words satisfy the XML data model. With the intersection of these two schemas,
the schema-based cleaning of the deterministic SHA for QN7 indeed has only 74 states and 203 rules.
When applying SHA minimization afterwards, the size of the automaton goes down to 27 states and 71
transition rules. However, our implementation of schema-based cleaning, runs out of memory for larger
automata with say more than 1000 states. Therefore, we cannot compute the schema-based cleaning
from the deterministic SHA obtained from QN7. Neither can we minimize it with our implementation
of deterministic SHA minimization. The question of how to produce small deterministic automaton for
queries as simple as QN7 thus needs a different answer.

Given the relevance of schemas, one naive approach could be to determinize the product of the au-
tomata for the query and schema. This may look questionable at first sight, given that the schema-product
may be bigger than the original automaton, so why could it make determinization more efficient? But
in the case of QN7, the determinization of the schema-product yields a deterministic automata with only
92 states and 325 transition rules, and can be computed efficiently. This observation is very promising,
motivating three general questions:

1. Why are schemas so important for automata determinization?

2. Can this be established by some complexity result?

3. Is there a way to compute the schema-based cleaning of the determinization of an SHA more
efficiently than be schema-based cleaning followed by determinization?

Our main result is a novel algorithm for schema-based determinization of NFAs and SHAs, that integrates
schema-based cleaning directly into the usual determinization algorithm. This algorithm answers ques-
tion 3 positively. Its idea is to keep only those subsets of states of the automaton during the determiniza-
tion, that can be aligned to some state of the schema. In our Theorem 2, we prove that schema-based
determinization always produces the same deterministic automaton than schema-free determinization
followed by schema-based cleaning. By schema-based determinization we could compute the schema-
based cleaning of the determinization of QN7 in less than three seconds. In contrast, the schema-based
cleaning of the determinization does not terminate after a few hours. In the general case, the worst
case complexity of schema-based determinization is lower than schema-less determinization followed
by schema-based cleaning.

We also provide a more precise complexity upper bound in Proposition 13. Given an nondeterministic
SHA A let det(A) be its determinization, and given a deterministic SHA S for the schema, let A× S
the accessible part of the schema-product, and sclS(A) the schema-based cleaning of S with respect to
schema S. We show that the upper bound for the maximal computation time of sclS(det(A)) depends
quadratically on the number of states of S× det(A), which is often way smaller than for det(A) since
S is deterministic. This complexity result shows why the schema is so relevant for determinization
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(questions 1 and 2), and why computing the schema-based determinization is often more efficient than
determinization followed by schema-based cleaning (question 3).

To see that S×det(A) is often way smaller than det(A) for deterministic S we first note that det(A×
S) = det(A)× S since S is deterministic.1 So for the many states Q = {q1 . . .qn} of det(A) there may
not exist any state s of S such that (Q,s) ∈ det(A)×S, because this requires all states qi can be aligned
to s, i.e. that (qi,s) in A× S for all 1 ≤ i ≤ n. Furthermore, det(A)× S is equal to detS(A)× S, so that
det(A×S) = detS(A)×S. Hence any size bound for the schema-based determinization detS(A) implies a
size bound for the determinization of the schema-product. Also, in our experiments detS(A)×S is almost
by a factor of 2 bigger than detS(A). So the size of the determinization of the schema-product is closely
tied to the size of the schema-based determinization.

We also present a experimental evaluation of our implementation of schema-based determinization
of SHAs. We consider a scalable family of SHAs obtained from a scalable family of XPATH queries. Our
experiments confirm the very large improvement implied by the usage of schemas for determinization.
For this, we implemented the algorithm for schema-based SHA determinization in Scala. Furthermore,
we applied the XSLT compiler from regular forward XPATH queries to SHAs from [19], as well as the
datalog implementations of SHA minimization and schema-based cleaning from there.

A large scale experiment on practical XPATH queries was provided in follow-up work [1] where
schema-based algorithms were applied to the regular XPATH queries collected by Lick and Schmitz [15]
from real word XQuery and XSLT programs. Small deterministic SHAs could be obtained by schema-
based determinization for all regular XPATH queries in this corpus. In contrast, standard determinization
in 37% of the cases fails with a timeout of 100 seconds. Without this timeout, determinization either runs
out of memory or produces very large automata.

Outline. We start with related work on automata for nested words, determinization for XPATH queries
(Section 2). In Section 3, we recall the definition NFAs and discuss how to use them as schemas and
queries on words. In Section 4, we recall schema-based cleaning for NFAs. In Section 5, we contribute
our schema-based determinization algorithm in the case of NFAs and show its correctness. In Section 6,
we recall the notion of SHAs for defining languages of nested words. In Section 7, we lift schema-based
determinization to SHAs. Full proofs can be found in the Appendix of the long version [20].

2 Related Work

We focus on automata for nested words, even though our results are new for NFAs too.
Nested word automata. As recalled in the survey of Okhotin and Salomaa [21], Alur’s et al. [2] NWAs
were first introduced in the eighties under the name of input driven automata by Mehlhorn [16], and
then reinvented several times under different names. In particular, they were called visibly pushdown
automata [3], pushdown forest automata [18], and streaming tree automata [13]. The determinization
algorithm for NWAs was first invented in the eighties by von Braunmühl and Verbeek in the journal
version of [6] and then rediscovered various times later on too.
Determinization algorithms. The usual determinization algorithms for NFAs relies on the well-known
subset construction. The determinization algorithms of bottom-up tree automata and SHAs are straight-
forward extensions thereof. The determinization algorithm for NWAs, in contrast, is more complicated,
since having to deal with pushdowns. Subsets of pairs of states are to be considered there and not

1If {(q1,s1) . . .(qn,sn)} ∈ det(A× S) then there exists a tree that can go into all states q1 . . .qn with A and into all states
s1, . . .sn with S. Since S is deterministic, we have s1 = . . .sn. So there exists a tree going into {q1, . . . ,qn} with det(A) and also
into all si. So ({q1, . . . ,qn},si) is a state of det(A)×S.



52 Schema-Based Determinization

IA 6= /0

IA ∈ Idet(A) IA ∈Qdet(A)

Q ∈Qdet(A) Q∩FA 6= /0

Q ∈ Fdet(A)

Q ∈Qdet(A) Q′ = {q′ ∈QA | q a−→ q′ ∈ ∆A, q ∈ Q} 6= /0

Q a−→ Q′ ∈ ∆det(A) Q′ ∈Qdet(A)

det(A) = (Σ,Qdet(A),∆det(A), Idet(A),Fdet(A))

Figure 1: The accessible determinization det(A) of NFA A.

only subsets of states as with the usual automata determinization algorithm. We also notice that general
pushdown automata with nonvisible stacks can even not always be determinized.
Application to XPATH. Debarbieux et al. [10] noticed that the determinization algorithm for NWAs
often behaves badly when applied to NWAs obtained from XPath queries as simple as //a/b. Niehren
and Sakho [19] observed more recently that the situation is different for the determinization of SHAs: It
works out nicely for the SHA of //a/b and also for all other SHAs obtained by compilation from forward
navigational XPath queries in the XPathMark benchmark [12]. Even more surprisingly, the same good
behavior could be observed for the determinization algorithm of NWA when restricted to NWAs with the
weak-single entry property.
Weak single-entry NWAs versus SHAs. The weak-single entry property implies that an NFA cannot
memoize anything in its state when moving top-down. So it can only pass information left-to-right and
and bottom-up, similarly to an SHA. This property failed for the NWAs considered by Debarbieux et
al. and the determinization of their NWAs thus required top-down determinization. This quickly led to
the size explosion described above. One the other hand side, the weak single-entry property can always
be established in quadratic time by compiling NWAs to SHAs forth and back. Or else, one can avoid
top-down determinization all over by directly working with SHAs as we do here.

3 Finite Automata on Words, Schemas, and Queries

In this section, we discuss hwo to use NFAs for defining schemas and queries on words.
Let N be the set of natural numbers including 0. The set of words over a finite alphabet Σ is Σ∗ =

∞⋃
n∈N

Σn. A word (a1, . . . ,an) ∈ Σn is written as a1 . . .an. We denote by ε the empty word, i.e., the unique

element of Σ0 and by w1 ·w2 ∈ Σ∗ the concatenation of two words w1,w2 ∈ Σ∗. For example, if Σ = {a,b}
then aa ·bb = aabb = a ·a ·b ·b.

Definition 1. A NFA is a tuple A = (Σ,Q,∆, I,F) such that Q is a finite set of states, the alphabet Σ is a
finite set, I,F ⊆Q are subsets of initial and final states, and ∆⊆Q×Σ×Q is the set of transition rules.

The size of a NFA is |A| = |Q|+ |∆|. A transition rule (q,a,q′) ∈ ∆ is denoted by q a−→ q′ ∈ ∆. We
define transitions q w−→ q′ wrt ∆ for arbitrary words w ∈ Σ∗ by the following inference rules:

q ∈Q

q ε−→ q wrt ∆

q a−→ q′ ∈ ∆

q a−→ q′ wrt ∆

q0
w1−→ q1 wrt ∆ q1

w2−→ q2 wrt ∆

q0
w1·w2−−−→ q2 wrt ∆

The language of words recognized by a NFA then is L (A) = {w ∈ Σ∗ | q w−→ q′ wrt ∆, q ∈ I, q′ ∈ F}.
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1 fun d e t ( A ) =
2 l e t Store = hashset.new( /0) and Agenda = list.new() and Rules = hashset.new( /0)
3 i f initA 6= /0 then Agenda.add(initA)
4 whi le Agenda.notEmpty() do
5 l e t Q = Agenda.pop()
6 l e t h be an empty hash t a b l e wi th keys from Σ .
7 / / t h e v a l u e s w i l l be nonempty hash s u b s e t s o f QA

8 f o r q a−→ q′ ∈ ∆A such that q ∈ Q do
9 i f h.get(a) = unde f then h.add(a,hashset.new( /0))

10 (h.get(a)).add(q′)
11 f o r (a,Q′) i n h.tolist() do Rules.add(Q a−→ Q′)
12 i f not Store.member(Q′) then Store.add(Q′) Agenda.push(Q′)
13 l e t initdet(A) = {Q | Q ∈ Store,Q∩ initA 6= /0} and Fdet(A) = {Q | Q ∈ Store,Q∩FA 6= /0}
14 return (Σ,Store.toSet(),Rules.toSet(), initdet(A),Fdet(A))

Figure 2: A program computing the accessible determinization of an NFA A from Figure 1.

Figure 3: The NFA A0 for the regular expression
(x+ ε).(x.a)∗

Figure 4: The accessible determiniza-
tion det(A0) up to the renaming of states
[{2,4}/0,{2,3}/1,{2}/2,{3}/3].

A NFA A is called deterministic or equivalently a DFA, if it has at most one initial state, and for
every pair (q,a) ∈Q×Σ there is at most one state q′ ∈QA such that q a−→ q′ ∈ ∆A. Any NFA A can be
converted into a DFA that recognizes the same language by the usual subset construction. The accessible
determinization det(A) of A = (Σ,QA,∆A, IA,FA) is defined by the inference rules in Figure 1. It works
like the usual subset construction, except that only accessible subsets are created. It is well known
that L (A) = L (det(A)). Since only accessible subsets of states are added, we have Qdet(A) ⊆ 2QA

.
Therefore, the accessible determinization may even reduce the size of the automaton and often avoid the
exponential worst case where Qdet(A) = 2QA

.

Proposition 2 (Folklore). The accessible determinization det(A) of a NFA A can be computed in expected
amortized time O(|Qdet(A)| |∆A|+ |A|).

Proof sketch. The algorithm for accessible determinization with this complexity is somehow folklore.
We sketch it nevertheless, since we need to refined it for schema-based determinization later on. A set
of inference rules for accessible determinization is given in Figure 1, and an algorithm computing the
fixed point of these inference rules is presented in Figure 2. It uses dynamic perfect hashing [11] for
implementing hash sets, so that set inserting and membership can be done in randomized amortized time
O(1). The algorithm has a hash set Store to save all discovered states Qdet(A) and a hash set Rules to
collect all transition rules. Furthermore, it has a stack Agenda to process all new states Q ∈Qdet(A).

As a running example, we consider the NFA A0 for the regular expression (x+ε).(x.a)∗ that is drawn
as a labeled digraph in Figure 3: the nodes of the graph are the states and the labeled edges represent
the transitions rules. The initial states are indicated by an ingoing arrow and the final state are doubly
circled. The graph of the DFA det(A0) obtained by accessible determinization is shown in Figure 4. It is
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Figure 5: The schema-based cleaning of det(A0)
with schema words-onex

Σ
.

Figure 6: Schema words-onex
Σ

with alpha-
bet Σ]{x}.

given up to a renaming of the states that is given in the caption. Note that only 4 out of the 23 = 8 subsets
are accessible, so the size increases only by a single state and two transitions rules in this example.

A regular schema over Σ is a DFA with the alphabet Σ. We next show how to use automata to define
regular queries on words. For this, any word is seen
as a labeled digraph. The labeled digraph of the
word aab, for instance, is drawn to the right. The
set of nodes of the graph is the set of positions of the word pos(w) = {0, . . . ,n} where n is the length of
w. Position 0 is labeled by start, while all other positions are labeled by a single letter in Σ. A monadic
query function on words with alphabet Σ is a total function Q that maps some words w ∈ Σ∗ to a subset
of position Q(w) ⊆ pos(w). We say that a position π ∈ pos(w) is selected by Q if w ∈ dom(Q) and
π ∈Q(w).

Let us fix a single variable x. Given a position π of a word w ∈ Σ∗ let w∗ [π/x] be the word obtained
from w by inserting x after position π . We note that all words of the form w ∗ [π/x] contain a single
occurrence of x. Such words are also called V -structures where V = {x} (see e.g [23]).

The set of all V -structures can be defined by the schema words-onex
Σ

over Σ]{x} in Figure 6. It is
natural to identify any total monadic query function Q with the language of V -structures LQ = {w∗ [π/x] |
w ∈ Σ∗,π ∈ Q(w)}. This view permits us to define a subclass of total monadic query functions by
automata. A (monadic) query automaton over Σ is a NFA A with alphabet Σ]{x}. It defines the unique
total monadic query function Q such that LQ = L (A)∩L (words-onex

Σ
). A position π of a word w ∈ Σ∗

is thus selected by the query Q on w if and only if the V -structure w∗ [π/x] is recognized by A, i.e.:

π ∈Q(w)⇔ w∗ [π/x] ∈L (A)

A query function is called regular if it can be defined by some NFA. It is well-known from the work
of Büchi in the sixties [7] that the same class of regular query functions can be defined equivalently by
monadic second-order logic.

We note that only the words satisfying the schema words-onex
Σ

(the V -structures) are relevant for the
query function Q of a query automaton A. The query automaton A0 in Figure 3 for instance, defines the
query function that selects the start position of the words ε and a and no other positions elsewhere. This
is since the subset of V -structures recognized by A0 is x+ x.a. Note that the words ε and xxa do also
belong to L (A0), but are not V -structures, and thus are irrelevant for the query function Q.

4 Schema-Based Cleaning

Schema-based cleaning was introduced only recently [19] in order to reduce the size of automata on
nested words. The idea is to remove all rules and states from an automaton that are not used to recognize
any word satisfying the schema. Schema-based cleaning can be based on the accessible states of the
product of the automaton with the schema. While this product may be larger than the automaton, the
schema-based cleaning will always be smaller.
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q ∈ IA s ∈ IS

(q,s) ∈ IA×S (q,s) ∈QA×S

q ∈ FA s ∈ FS (q,s) ∈QA×S

(q,s) ∈ FA×S

q1
a−→ q2 ∈ ∆A s1

a−→ s2 ∈ ∆S (q1,s1) ∈QA×S

(q1,s1)
a−→ (q2,s2) ∈ ∆A×S (q2,s2) ∈QA×S

Figure 7: Accessible product A×S = (Σ,QA×S, IA×S,FA×S,∆A×S).

For illustration, the schema-based cleaning of NFA det(A0) in Figure 4 with respect to schema
words-onex

Σ
is given in Figure 5. The only words recognized by both det(A0) and words-onex

Σ
are x

and xa. For recognizing these two words, the automaton det(A0) does not need states 2 and 3, so they
can be removed with all their transitions rules. Thereby, the word xxa violating the schema is no more
recognized after schema-based cleaning, while it was recognized by det(A0). Furthermore, note that the
state 0 needs no more to be final after schema-based cleaning. Therefore the word ε , which is recog-
nized by the automaton but not by the schema, is no more recognized after schema-based cleaning. So
schema-based cleaning may change the language of the automaton but only outside of the schema.

Interestingly, the NFA A0 in Figure 3 is schema-clean for schema words-onex
Σ

too, even though it is
not perfect, in that it recognizes the words ε and xxa which are rejected by the schema. The reason is
that for recognizing the words x and xa, which both satisfy the schema, all 3 states and all 4 transition
rules of A0 are needed. In contrast, we already noticed that the accessible determinization det(A0) in
Figure 4 is not schema-clean for schema words-onex

Σ
. This illustrates that accessible determinization does

not always preserve schema-cleanliness. In other words, schema-based cleaning may have a stronger
cleaning effect after determinization than before.

The schema-based cleaning of an automaton can be defined based on the accessible product of the
automaton with the schema. The accessible product A× S of two NFAs A and S with alphabet Σ is
defined in Figure 7. This is the usual product, except that only accessible states are admitted. Clearly,
L (A×S) = L (A)∩L (S). Let ΠA(A×S) be obtained from the accessible product by projecting away
the second component. The schema-based cleaning of A with respect to schema S is this projection.

Definition 3. sclS(A) = ΠA(A×S).

The fact that A× S is restricted to accessible states matches our intuition that all states of sclS(A)
can be used to read some word in L (A) that satisfies schema S. This can be proven formally under the
condition that all states of A×S are also co-accessible. Clearly, sclS(A) is obtained from A by removing
states, initial states, final states, and transitions rules. So it is smaller or equal in size |sclS(A)| ≤ |A| and
language L (sclS(A))⊆L (A). Still, schema-based cleaning preserves the language within the schema.

Proposition 4 ([19]). L (A)∩L (S) = L (sclS(A))∩L (S).

Schema-clean deterministic automata may still not be perfect, in that they may recognize some words
outside the schema. This happens for DFAs if some state of is reached, both, by a word satisfying the
schema and another word that does not satisfy the schema. An example for a DFA that is schema-clean
but not perfect for words-onex

Σ
is given in Figure 8. It is not perfect since it accepts the non V -structure

xaxa. The problem is that state 1 can be reached by the words a and xa, so one cannot infer from being
in state 1 whether some x was read or not. If one wants to avoid this, one can use the accessible product
of the DFA with the schema instead. In the example, this yields the DFA in Figure 9 that is schema-clean
and perfect for words-onex

Σ
.
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Figure 8: A DFA that is
schema-clean but not perfect
for words-onex

Σ
.

Figure 9: The accessible
product with words-onex

Σ
is

schema-clean and perfect for
words-onex

Σ
.

Figure 10: The dSHA onex
Σ

with alphabet Σ]{x,¬x}.

Proposition 5 (Folklore). For any two DFAs A and S with alphabet Σ the accessible product A×S can
be computed in expected amortized time O(|QA×S||Σ|+ |A|+ |S|).

Proof. An algorithm to compute the fixed points of the inference rules for the accessible product A×S in
Figure 7 can be organized such that only accessible states are considered (similarly to semi-naive datalog
evaluation). This algorithm is presented in Figure 11. It dynamically generates the set of rules Rules by
using perfect dynamic hashing [11]. Testing set membership is in time O(1) and the addition of elements
to the set is in expected amortized time O(1). The algorithm uses a stack, Agenda, to memoize all new
pairs (q1,s1)∈QA×S that need to be processed, and a hash set Store that saves all processed states QA×S.
We aim not to push the same pair more than once in the Agenda. For this, membership to the Store is
checked before an element is pushed to the Agenda. For each pair popped from the stack Agenda, the
algorithm does the following: for each letter a ∈ Σ it computes the sets Q = {q2 | q1

a−→ q2 ∈ ∆A} and
R = {s2 | s1

a−→ s2 ∈ ∆S} and then adds the subset of states of Q×R that were not stored in the hash
set Store to the agenda. Since A and S are deterministic, there is at most one such pair, so the time for
treating one pair on the agenda is in expected amortized time O(|Σ|). The overall number of elements in
the agenda will be |QA×S|. Note that Q and R can be computed in O(1) after preprocessing A and S in
time O(|A|+ |S|). Therefore, we will have a total time of the algorithm in O(|QA×S||Σ|+ |A|+ |S|).

Corollary 6. For any two DFAs A and S with alphabet Σ schema-based cleaning sclS(A) can be computed
in expected amortized time O(|QA×S||Σ|+ |A|+ |S|).

Proof. By Definition 3 it is sufficient to compute the projection of the accessible product A× S. By
Proposition 5 the product can be computed in time O(|QA×S||Σ|+ |A|+ |S|). Its size cannot be larger
than its computation time. The projection can be computed in linear time in the size of A× S, so the
overall time is in O(|QA×S||Σ|+ |A|+ |S|) too.

5 Schema-Based Determinization

Schema-based cleaning after determinization becomes impossible in practice if the automaton obtained
by determinization is too big. We therefore show next how to integrate schema-based cleaning into
automata determinization directly.

The schema-based determinization of A with respect to schema S extends on accessible determiniza-
tion det(A). The idea is to run the schema S in parallel with det(A), in order to keep only those state
Q ∈Qdet(A) that can be aligned to some state s ∈QS. In this case we write Q∼ s.
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1 fun A×S =
2 l e t Store = hashset.new( /0) and Agenda = list.new() and Rules = hashset.new( /0)
3 i f initA = {q0} and initS = {s0} then Agenda.add((q0,s0))
4 whi le Agenda.notEmpty() do
5 l e t (q1,s1) = Agenda.pop()
6 f o r a ∈ Σ do

7 l e t Q = {q2 | q1
a−→ q2 ∈ ∆A} R = {s2 | s1

a−→ s2 ∈ ∆S}
8 f o r q2 ∈ Q and s2 ∈ R do

9 Rules.add((q1,s1)
a−→ (q2,s2))

10 i f not Store.member((q2,s2))
11 then Store.add((q2,s2)) Agenda.push((q2,s2))

12 l e t initA×S = {(q0,s0) | (q0,s0) ∈ Store} and FA×S = {(q,s) | (q,s) ∈ Store,q ∈ FA,s ∈ FS}
13 return (Σ,Store.toSet(),Rules.toSet(), initA×S,FA×S)

Figure 11: An algorithm computing the accessible product of DFAs A and S.

Q ∈ Idet(A) IS = {s}
Q ∈ IdetS(A) Q∼ s

Q∼ s

Q ∈QdetS(A)

Q ∈ Fdet(A) s ∈ FS Q∼ s

Q ∈ FdetS(A)

Q a−→ Q′ ∈ ∆det(A) Q∼ s s a−→ s′ ∈ ∆S

Q a−→ Q′ ∈ ∆detS(A) Q′ ∼ s′

Figure 12: Schema-based determ. detS(A) = (Σ,QdetS(A),∆detS(A), IdetS(A),FdetS(A)).

The schema-determinization detS(A) is defined in Figure 12. The automaton detS(A) permits to go
from any subset Q ∈Qdet(A) and letter a ∈ Σ to the set of states Q′ = a∆det(A)

(Q), under the condition that
there exists schema states s,s′ ∈QS such that Q∼ s and s a−→ s′. In this case Q′ ∼ s′ is inferred.
Theorem 1 (Correctness). detS(A) = sclS(det(A)) for any NFA A and DFA S with the same alphabet.

The theorem states that schema-based determinization yields the same result as accessible deter-
minization followed by schema-based cleaning.

For the correctness proof we collapse the two systems of inference rules for accessible products and
projection into a single rule system. This yields the rule systems for schema-based cleaning in Figure 13.
The rules there define the automaton ŝclS(A), that we annotate with a hat, in order to distinguish it from

the previous automaton sclS(A). The rules also infer judgements (q,s) ∈QA×̂S that we distinguish by
a hat from the previous judgments (q,s) ∈QA×S of the accessible product. The next proposition shows
that the system of collapsed inference rules indeed redefines the schema-based cleaning.
Proposition 7. For any two NFAs A and S with the same alphabet:

sclS(A) = ŝclS(A) and QA×S = QA×̂S

Proof of Correctness Theorem 1. Instantiating the system of collapsed rules for schema-based cleaning
from Figure 13 with det(A) for A yields the rule system in Figure 15. We can identify the instantiated
collapsed system for ŝclS(det(A)) with that for detS(A) in Figure 12, by identifying the judgements
(Q,s) ∈ Qdet(A)×̂S with judgments Q ∼ s. After renaming the predicates, the inference rules for the
corresponding judgments are the same. Hence ŝclS(det(A)) = detS(A), so that Proposition 7 implies
sclS(det(A)) = detS(A).
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q ∈ IA s ∈ IS

q ∈ I ŝclS(A) (q,s) ∈QA×̂S

q ∈ FA s ∈ FS (q,s) ∈QA×̂S

q ∈ F ŝclS(A)

(q,s) ∈QA×̂S

q ∈QŝclS(A)

q1
a−→ q2 ∈ ∆A s1

a−→ s2 ∈ ∆S (q1,s1) ∈QA×̂S

q1
a−→ q2 ∈ ∆ŝclS(A) (q2,s2) ∈QA×̂S

ŝclS(A) = (Σ,QŝclS(A),∆ŝclS(A), I ŝclS(A),F ŝclS(A))

Figure 13: A collapsed rule systems for schema-based cleaning ŝclS(A).

1 fun de tS ( A ,S ) =
2 l e t Store = hashset.new( /0) and Agenda = list.new() and Rules = hashset.new( /0)
3 i f initA 6= /0 and initS = {s0} then Agenda.add(initA ∼ s0)
4 whi le Agenda.notEmpty() do
5 l e t (Q1 ∼ s1) = Agenda.pop()
6 f o r a ∈ Σ do

7 l e t P = {Q2 | Q1
a−→ Q2 ∈ ∆det(A)} and R = {s2 | s1

a−→ s2 ∈ ∆S}
8 f o r Q2 ∈ P and s2 ∈ R do Rules.add(Q1

a−→ Q2)
9 i f not Store.member(Q2 ∼ s2)

10 then Store.add(Q2 ∼ s2) Agenda.push(Q2 ∼ s2)

11 l e t initdetS(A) = {Q | Q∼ s ∈ Store,Q∩ initA 6= /0} and FdetS(A) = {Q | Q∼ s ∈ Store,Q∩FA 6= /0}
12 return (Σ,Store.toSet(),Rules.toSet(), initdetS(A),FdetS(A))

Figure 14: An algorithm for schema-based determinization detS(A) of an NFA A and a DFA schema S.

Proposition 8. The schema-based determinization detS(A) for a NFA A and a DFA S over Σ can be
computed in expected amortized time O(|Qdet(A)×S||Σ|+ |QdetS(A)||∆A|+ |A|+ |S|).

Proof. An algorithm computing the fixed points of the inference rules of schema-based determinization
from Figure 12 is given in Figure 14. It refines the algorithm computing the accessible product with
on-the-fly determinization and projection.

On the stack Agenda, the algorithm stores alignments Q∼ s such that (Q,s)∈Qdet(A)×S that were not
considered before. Transition rules of detS(A) are collected in hash set Rules, using the dynamic perfect
hashing aforementioned. The alignments Q1 ∼ s1 popped from the agenda are processed as follows: For
any letter a ∈ Σ, the sets R = {Q2 | Q1

a−→ Q2 ∈ ∆det(A)} and P = {s2 | s1
a−→ s2 ∈ ∆S} are computed. One

then pushes all new pairs Q2 ∼ s2 with Q2 ∈ P and s2 ∈ R into the agenda, and adds Q1
a−→ Q2 to the set

Rules. Since S and det(A) are deterministic there is at most one pair (Q,s) ∈ P×R for Q1 and s1. So
the time for treating one pair on the agenda is in O(|Σ|) plus the time for building the needed transition
rules of det(A) from ∆A on the fly. The time for the on the fly computation of transition rules of det(A) is
in time O(|QdetS(A)||∆A|). The overall number of pairs on the agenda is at most |Qdet(A)×S| so the main
while loop of the algorithm requires time in O(|Qdet(A)×S||Σ|) apart from on the fly determinization.

By Proposition 2, computing det(A) requires time O(|Qdet(A)| |∆A|+ |A|). Therefore, with Propo-
sition 5, the accessible product det(A)× S can be computed from A and S in time O(|Qdet(A)×S||Σ|+
|Qdet(A)| |∆A|+ |A|+ |S|). Since QdetS(A)⊆Qdet(A) the proposition shows that schema-based determiniza-
tion is at most as efficient in the worst case as accessible determinization followed by schema-based
cleaning. If |Qdet(A)×S||Σ| < |Qdet(A)||∆A| then it is more efficient, since schema-based determinization
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Q ∈ Idet(A) s ∈ IS

Q ∈ I ŝclS(det(A)) (Q,s) ∈Qdet(A)×̂S

Q ∈ Fdet(A) s ∈ FS (Q,s) ∈Qdet(A)×S

Q ∈ F ŝclS(det(A))

(Q,s) ∈Qdet(A)×̂S

Q ∈QŝclS(det(A))

Q1
a−→ Q2 ∈ ∆det(A) s1

a−→ s2 ∈ ∆S (Q1,s1) ∈Qdet(A)×S

Q1
a−→ Q2 ∈ ∆ŝclS(det(A)) (Q2,s2) ∈Qdet(A)×̂S

ŝclS(det(A)) = (Σ,QŝclS(det(A)),∆ŝclS(det(A)), I ŝclS(det(A)),F ŝclS(det(A)))

Figure 15: Instantiation of the collapsed rules for schema-based cleaning from Figure 13 with det(A).

avoids the computation of det(A) all over. Instead, it only computes the accessible product det(A)× S,
which may be way smaller, since exponentially many states of det(A) may not be aligned to any state of S.
Sometimes, however, the accessible product may be bigger. In this case, schema-based determinization
may be more costly than pure accessible determinization, not followed by schema-based cleaning.

6 Stepwise Hedge Automata for Nested Words

We next recall SHAs [19] for defining languages of nested words, regular schemas and queries. Nested
words generalize on words by adding parenthesis that must be well-nested. While containing words
natively, they also generalize on unranked trees, and hedges. We restrict ourselves to nested words with
a single pair of opening and closing parenthesis 〈 and 〉. Nested words over a finite alphabet Σ of internal
letters have the following abstract syntax.

w,w′ ∈NΣ ::= ε | a | 〈w〉 | w ·w′ where a ∈ Σ

We assume that concatenation · is associative and that the empty word ε is a neutral
element, that is w · (w′ ·w′′) = (w ·w′) ·w′′ and ε ·w = w = w · ε . Nested words can
be identified with hedges, i.e., words of unranked trees and letters from Σ. Seen as a
graph, the inner nodes are labeled by the tree constructor 〈〉 and the leafs by symbols
in Σ or the tree constructor. For instance 〈a · 〈b〉 ·ε〉 ·c · 〈d · 〈ε〉〉 corresponds to the hed-

〈〉

a 〈〉

b

c 〈〉

d 〈〉

ge on the right. A nested word of type tree has the form 〈h〉. Note that dangling parentheses are ruled
out and that labeled parentheses can be simulated by using internal letters. XML documents are labeled
unranked trees, for instance: 〈a name = “u f f ”〉〈b〉isgaga〈d/〉〈/b〉〈c/〉〈/a〉. Labeled unranked trees
satisfying the XML data model can be represented as nested words over an alphabet that contains the XML
node-types (elem,attr, text, . . .), the XML names of the document (a, . . . ,d,name), and the characters of
the data values, say UTF8. For the above example, we get the nested word 〈elem ·a · 〈attr ·name ·u · f ·
f 〉〈elem ·b · 〈text · i · s ·g ·a ·g ·a〉〈elem ·d〉〉〈elem · c〉〉
Definition 9. A SHA is a tuple A = (Σ,Q,∆, I,F) where ∆ = (∆′,@∆,〈〉∆) such that (Σ,Q,∆′, I,F) is a
NFA, 〈〉∆ ⊆Q is a set of tree initial states and @∆ ⊆Q3 a set of apply rules.

SHAs can be drawn as graphs while extending on the graphs of NFAs. A tree initial state q ∈ 〈〉∆ is

drawn as a node
〈〉−→ q with an incoming tree arrow. An applyrule (q1,q,q2) ∈@∆ is drawn as a blue

edge q1
q−→q2 that is labeled by a state q ∈Q rather than a letter a ∈ Σ. It states that a nested word in

state q1 can be extended by a tree in state q and become a nested word in state q2.
For instance, the SHA onex

Σ
is drawn graphically in Figure 10. It accepts all nested words over

Σ]{x,¬x} that contain exactly one occurrence of letter x. Compared to the NFA words-onex
Σ]{¬x} from
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〈〉∆
A
6= /0

〈〉∆
A
∈Qdet(A)

Q1 ∈Qdet(A) Q2 ∈Qdet(A)

Q′ = {q′ ∈QA | q1@q2→ q′ ∈ ∆A, q1 ∈ Q1,q2 ∈ Q2} 6= /0

Q1@Q2→ Q′ ∈ ∆det(A) Q′ ∈Qdet(A)

Figure 16: Accessible determinization det(A) lifted from NFAs to SHAs.

Figure 6, the SHA onex
Σ

contains three additional apply rules (0,0,0), (0,1,1), (1,0,1) ∈ @∆
onex

Σ for
reading the states assigned to subtrees. The state 0 is chosen as the single tree initial state.

Transitions for NFAs on words can be lifted to transitions for SHAs of the form q w−→ q′ wrt ∆ where
w ∈NΣ and q,q′ ∈Q. For this, we add the following inference rule to the previous rules for NFAs:

q′ ∈ 〈〉∆ q′ w−→ q wrt ∆ (q1,q,q2) ∈@∆

q1
〈w〉−−→ q2 wrt ∆

The rule says that a tree 〈w〉 can transit from a state q1 to a state q2 if there is an apply rule (q1,q,q2)∈@∆

so that w can transit from some tree initial state q′ ∈ 〈〉∆ to q. Otherwise, the language L (A) of nested
words accepted by a SHA A is defined as in the case of NFAs.

Definition 10. A SHA (Σ,Q,∆, I,F) is deterministic or equivalently a dSHA if it satisfies:

• I and 〈〉∆ both contain at most one element,

• a∆ is a partial function from Q to Q for all a ∈ Σ, and

• @∆ is a partial function from Q×Q to Q.

Note that if A is a dSHA and ∆ = (∆′,@∆,〈〉∆) then A′ = (Σ,Q,∆′, I,F) is a DFA. Conversely any
DFA A′ defines a dSHA with @∆ = /0 and I = /0. For instance, the SHA onex

Σ
in Figure 10 contains the

DFA words-onex
Σ]{¬x} from Figure 6 with Σ instantiated by Σ]{x}.

A schema for nested words over Σ is a dSHA over Σ. Note that schemas for nested words generalize
over schemas of words, since dSHAs generalize on DFAs. The rules for the accessible determinization
det(A) of a SHA A in Figure 16 extend on those for NFAs in Figure 1. As for words, det(A) is always
determinstic, recognizes the same language as A, and contains only accessible states. The complexity of
accessible determinization in case of SHA go similarly to DFA, however, the apply rules will introduce
quadratic factor in the number of states.

Proposition 11. The accessible determinization of a SHA can be computed in expected amortized time
O(|Qdet(A)|2 |∆A|+ |A|).

The notions of monadic query functions Q can be lifted from words to nested words, so that it selects
nodes of the graph of a nested word. For this, we have to fix one of manner possible manners to define
identifiers for these nodes. The set of nodes of a nested word w is denoted by nod(w)⊆ N.

For indicating the selection of node π ∈ nod(w), we insert the variable x into the sequence of letters
following the opening parenthesis of π . If we don’t want to select π , we insert the letter ¬x instead. For
any nested word w with alphabet Σ, the nested word w[π/x] obtained by insertion of x or ¬x at a node
π ∈ nod(w) has alphabet Σ]{x,¬x}. As before, we define LQ = {w∗ [π/x] | w ∈NΣ,π ∈Q(w)}.

The notion of a query automata can now be lifted from words to nested words straightforwardly: a
query automaton for nested words over Σ is a SHA A with alphabet Σ∪{x,¬x}. It defines the unique
total query Q such that LQ = L (A)∩L (onex

Σ
).
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q ∈ 〈〉∆
A

s ∈ 〈〉∆
S

(q,s) ∈ 〈〉∆
A×S

(q,s) ∈QA×S

(q1,s1) ∈QA×S

(q,s) ∈QA×S
q1@q→ q2 ∈ ∆A

s1@s→ s2 ∈ ∆S

(q1,s1)@(q,s)→ (q2,s2) ∈ ∆A×S (q2,s2) ∈QA×S

Figure 17: Lifting accessible products to SHAs.

〈〉∆
S
= {s}

〈〉∆
A
∈ 〈〉∆

detS(A) 〈〉∆
A
∼ s

s1@s2→ s′ ∈ ∆S Q1 ∼ s1 Q2 ∼ s2

Q1@Q2→ Q′ ∈ ∆det(A)

Q1@Q2→ Q′ ∈ ∆detS(A) Q′ ∼ s′

Figure 18: Extension of schema-based determinization to SHAs.

7 Schema-Based Determinization for SHAs

We can lift all previous algorithms from NFAs to SHAs while extending the system of inference rules.
The additional rules concern tree initial states, that work in analogy to initial states, and also apply rules
that works similarly as internal rules. The new inference rules for accessible products A× S are given
in Figure 17 . As before we define sclS(A) = ΠA(A× S). The rules for schema-based determinization
detS(A) are extended in Figure 18. The complexity upper bound, however, now becomes quadratic even
with fixed alphabet:

Proposition 12. If A and S are dSHAs then the accessible product A×S and the schema-based cleaning
sclS(A) can be computed in expected amortized time O(|QA×S|2 + |QA×S||Σ|+ |A|+ |S|).

Theorem 2 (Correctness). detS(A) = sclS(det(A)) for any SHA A and dSHA S with the same alphabet.

Proposition 13. The schema-based determinization detS(A) of a SHA A with respect to a dSHA S can
be computed in expected amortized time O(|Qdet(A)×S|2 + |Qdet(A)×S| |Σ|+ |QdetS(A)|2 |∆A|+ |A|+ |S|).

The proof of Theorem 2 extends on that for NFAs (Theorem 1) in a direct manner. Proposition
13 follows the result in Proposition 8 with an additional quadratic factor in the size of states of the
product det(A)×S and the states of the schema-based determinized automaton. This is always due to the
apply rules of type Q3. By Propositions 11 and 12, computing sclS(det(A)) by schema-based cleaning
after accessible determinization needs time in O(|Qdet(A)×S|2 + |Qdet(A)×S| |Σ|+ |Qdet(A)|2 |∆A|+ |A|+
|S|). This complexity bound is similar to that of schema-based determinization from Proposition 13.
Since QdetS(A) ⊆ Qdet(A), Proposition 13 shows that the worst case time complexity of schema-based
determinization is never worse than for schema-based cleaning after determinization.

8 Experiments

In this section, we present an experimental evaluation of the sizes of the automata produced by the
different determinization methods. For this, we consider a scalable family of SHAs that is compiled from
the following scalable family of XPATH queries where n and m are natural numbers.

(Qn.m) //*[self::a0 or ... or self::an]

[descendant::*[self::b0 or ... or self::bm]]
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Figure 19: A schema for the intersection of XML data model with onex.

Query Qn.m selects all elements of an XML document, that are named by either of a0, . . ., an and have
some descendant element named by either of b1, . . ., bm. We compile those XPATH queries to SHAs
based on the compiler from [19]. As schema S, we chose the product of the dSHA onex with a dSHA for
the XML data model given in Figure 19. Beside the concepts presented above, this SHA also has typed
else rules. Actually, we use a richer class of SHAs in the experiments, which is converted back into the
class of the paper when showing the results (except for else rules and typed else rules).

The results of our experiments are summarized in Table 20. For each automaton we present two
numbers, size(#states), its size and the number of its states. Unless specified otherwise, we use a timeout
of 1000 seconds whenever calling some determinization algorithm. Fields of the table are left blank
if an exception was raised. This happens when the determinization algorithm reached the timeout, the
memory was filled, or the stack overflowed. We conducted all the experiments on a Dell laptop with the
following specs: Intel® Core™ i7-10875H CPU @ 2.30 GHz,16 cores, and 32 GB of RAM.

The first column A of Table 20 reports on the SHAs obtained from the queries Qn.m, by the compiler
from [19] that is written in XSLT. The second column det(A) is obtained from SHA A by accessible
determinization. The blank cell in column det(A) for query Q4.4 was raised by a timeout of the deter-
minization algorithm. As one can see, this happens for all larger pairs (n,m). Furthermore, it appears
that the sizes of the automata det(A) grow exponentially with n+m.

In the third column det(A× S), the determinization of the product is presented. It yields much
smaller automata than with det(A). For Q4.3 for instance, det(A) has size 53550 (2161) while det(A×S)
has size 5412 (438). The computation continues successfully until Q6.4. For the larger queries Q6.5
and Q6.6, our determinizer runs out of memory. The fourth column detS(A) reports on schema-based
determinization. For Q4.3 for instance we obtain 3534 (329). Here and in all given examples, both
measures are always smaller for detS(A) than for det(A× S). While this may not always be the case,
but both approaches yield decent results generally. The numbers for the detS(A) for Q6.6 are marked in
gray, since its computation took around one hour, so we obtain it only when ignoring the timeout. In
contrast to det(A×S), however, the computation of detS(A) did not run out of memory though. The fifth
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A det(A) det(A×S) detS(A) sclS( mini(det mini(
det(A)) (A×S)) detS(A))

Q2.1 166 (67) 1380 (101) 540 (92) 284 (53) 284 (53) 160 (43) 73 (20)

Q2.2 199 (79) 3635 (214) 1488 (167) 830 (106) 162 (43) 75 (20)

Q2.3 232 (91) 9574 (471) 4174 (334) 2424 (227) 164 (43) 77 (20)

Q2.4 265 (103) 24813 (1052) 11502 (713) 6826 (504) 166 (43) 79 (20)

Q4.1 240 (95) 8020 (435) 710 (116) 418 (75) 164 (43) 77 (20)

Q4.2 287 (111) 20945 (968) 1944 (215) 1220 (152) 166 (43) 79 (20)

Q4.3 334 (127) 53550 (2161) 5412 (438) 3534 (329) 168 (43) 81 (20)

Q4.4 381 (143) 14794 (945) 9856 (734) 170 (43) 83 (20)

Q6.1 314 (123) 48212 (2113) 880 (140) 552 (97) 168 (43) 81 (20)

Q6.2 375 (143) 2400 (263) 1610 (198) 170 (43) 83 (20)

Q6.3 436 (163) 6650 (542) 4644 (431) 172 (43) 85 (20)

Q6.4 497 (183) 18086 (1177) 12886 (964) 87 (20)

Q6.5 558 (203) 34376 (2169)

Q6.6 619 (223) 88666 (4862)

Figure 20: Statistics of automata for XPATH queries: size(#states)

Figure 21: The automaton mini(detS(A)) of the query Q3.4.

column sclS(det(A)) contains the schema-based cleaning of det(A). This automaton is equal to detS(A)
by Correctness Theorem 2. Nevertheless, this cell is left blank in all but the smallest case Q2.1, since our
datalog implementation of schema-based cleaning quickly runs out of memory for automata with many
states. The time in seconds that for determinization in det(A× S) and detS(A) grows in dependence of
the size of the output from 0.9 seconds until passing over the timeout.

In the last two columns for mini(det(A×S)) and mini(detS(A)) we report the sizes of the minimiza-
tion of det(A×S)) and detS(A). It turns out that mini(detS(A)) is always smaller than mini(det(A×S)),
if both can be computed successfully. An example of mini(detS(Q3.4)) is shown in Figure 21.

Conclusion and Future Work

We presented an algorithm for schema-based determinization for SHAs and proved that it always pro-
duces the same results as determinization followed by schema-based cleaning. We argued why schema-
based determinization is often way more efficient than standard determinization, and why it is close in
efficiency to the determinization of the schema-product. The statements are supported by upper com-
plexity bounds and experimental evidence. The experimental results of the present paper are enhanced
by follow up work [1]. They show that one can indeed obtain small deterministic automata based on
schema-based determinization of stepwise hedge automata for all regular XPATH queries in practice. We
hope that these automata are useful in the future for experiments with query answering.
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