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We consider the runtime enforcement of Linear-time Temporal Logic formulas on decentralized
systems with no central observation point nor authority. A so-called enforcer is attached to each
system component and observes its local trace. Should the global trace violate the specification, the
enforcers coordinate to correct their local traces. We formalize the decentralized runtime enforcement
problem and define the expected properties of enforcers, namely soundness, transparency and optimality.
We present two enforcement algorithms. In the first one, the enforcers explore all possible local
modifications to find the best global correction. Although this guarantees an optimal correction, it
forces the system to synchronize and is more costly, computation and communication wise. In the
second one, each enforcer makes a local correction before communicating. The reduced cost of this
version comes at the price of the optimality of the enforcer corrections.

1 Introduction

Runtime verification [1, 14] is the collection of theories, techniques, and tools dedicated to the verification
of system executions against a formal specification. Runtime enforcement (cf. [15, 17]) extends runtime
verification and consists in using runtime enforcers to ensure the absence of violation to the specification.
The specification is formalized for instance as a Linear-time Temporal Logic (LTL) formula [27]. Usually,
the system is seen as a black box; only its execution is observable (not its implementation). The execution
is abstracted as a sequence of events where each event contains the set of relevant atomic propositions
that hold on the system state. In (centralized) enforcement, the sequence of events, called trace, is fed
to one (central) enforcer which transforms it and outputs a sequence that does not violate the property.
Usually, enforcers must be sound, transparent and optimal, that is, their output trace should not violate
the property, they should only alter the execution if needed (i.e. to prevent property violations), and the
alteration should be minimal, respectively.

Motivation and challenges. We consider decentralized systems, that is systems with no central obser-
vation point nor authority but which are instead composed of several components, each producing a
local trace. Decentralized systems abound (e.g., multithreaded processors, drone swarms, decentralized
finance), some of which can have safety critical properties to be ensured. It is desirable to define
enforcement techniques for decentralized systems so as to ensure their desired properties. In the decentra-
lized setting, enforcers should coordinate and modify their local traces in such a way that the global trace
respects the enforced property.

Approach overview. We address the problem of enforcing LTL formulas on decentralized systems.
We start by defining the runtime enforcement problem in the decentralized setting. Then, we define our
enforcement algorithms, which intuitively proceed as follows. Upon each new event σ emitted by the
system, using LTL expansion laws [27], we transform the formula to be enforced at the current timestamp
into what we refer to as a temporal disjunctive normal form, where each disjunct is composed of a present
and future obligation formula separated. The enforcers can then evaluate the present obligations and alter
their local observation if needed, i.e. when outputting σ would violate it. We note that our enforcers only
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evaluate the present obligations in the disjuncts. After their evaluations with the current event, a subset
of the disjuncts will have their present obligations different from ⊥. Only the future obligations of these
disjuncts are kept for the next timestamp. This strategy spares the rewriting of the future obligations of
the discarded disjuncts. When σ needs to be corrected, the enforcers keep track of possible corrections
of σ and of the associated formulas. As the system is decentralized, each enforcer can only observe
some atomic propositions of the system. Therefore, the enforcers update the associated formulas with
their local observations. Then, they send it to another enforcer that will, in turn, do the same until the
present obligations are entirely evaluated. In our first algorithm, the formula is evaluated with every
possible event over the set of atomic propositions of the system. This allows the enforcers to find the
best possible correction if needed. Through communication, they will naturally build the entire set of
possible events (the update can be seen as the exploration of a tree whose leaves represent every possible
assignment of the atomic propositions). After each local update, each enforcer garbage collects the events
that cannot be extended to a viable correction of σ . Then, once the formula has been entirely evaluated,
the output event is so that soundness, transparency, and optimality are preserved. Our second algorithm
proceeds similarly: the only difference is that, instead of exploring the entire set of possible events, each
enforcer makes a local decision before sending the function to another enforcer. This decision consists
in choosing one event from the domain (w.r.t. soundness and transparency as well) and only sending
this one in order to prevent the exponential growth of the domain. In both cases, the formula to be
enforced in the next timestamp is built after choosing the output event. Since enforcers make (optimal)
local decisions, optimality of the global event is not guaranteed by the second algorithm using the future
obligations associated with the emitted event.

Related work. This paper is at the intersection of two topics, namely decentralized monitoring and
runtime enforcement. In decentralized monitoring (cf. [18] for an overview), a lot of work has been done
on the verification of decentralized systems for several specifications languages such as LTL and finite-
state automata. These research efforts differ mainly in the assumptions they make on the underlying
system. Similarly to this paper, some existing approaches to decentralized monitoring (e.g., [3, 6])
are based on formula rewriting [30]; the specification is usually represented as an LTL formula or in
an extension of LTL like MTL [31] and then rewritten and simplified until a verdict can be emitted.
Other approaches focus on monitoring distributed systems and tackle the problem of global predicate
detection [24, 25] or of fault tolerance for monitors [5], that is, reaching consensus with monitors
that are subject to faults. The aforementioned work performs decentralized monitoring on centralized
specifications. In [9, 11], the focus is on monitoring decentralized specifications that is, multiple interde-
pendent specifications that apply to separate parts of the system.

The above approaches are dedicated to verification in that they focus on determining a verdict
but do not consider at all 1) what should be done when the property is violated and 2) what can
be done to prevent violations. Runtime enforcement (cf. [15]) approaches try to prevent violations
during the execution of the system. This topic has also seen a lot of research efforts on modeling and
synthesizing enforcement monitors from several specifications formalisms for discrete-time [16, 12, 7]
and timed properties [26, 13, 17] and even stochastic systems [23]. To the best of our knowledge, the
only enforcement approaches for decentralized systems are [20, 21], respectively tailored to artifact
documents and robotic swarms. However, in this paper, we formally define the decentralized runtime
enforcement problem in a generic manner and provide two generic algorithms. Finally, we note that the
setting of our approach also differs from the one in runtime enforcement techniques with (uncontrollable)
actions/events [2, 28, 22, 29] where system action/events are blocked/buffered in that our monitors
instead directly modify the truth value of some atomic propositions of interest.
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Outline. Sec. 2 defines preliminary notions. Sec. 3 introduces the decentralized runtime enforcement
problem. Sec. 4, defines the transformation of the formula allowing the separation between the present
and future. Sec. 5 defines the data structure used to encode the enforcer state. In Sec. 6, we define how
the enforcers evaluate the formula. Sec. 7 and 8 present and compare the algorithms based on global and
local exploration, respectively. Sec. 9 concludes and outlines some research avenues.

The extended version [19] of this paper contains details about some formula transformations, a
complete example of an execution of both algorithms, and proposition proofs.

2 Preliminary Notions

This section introduces some preliminary notions and states the assumptions of our approach.

Decentralized systems. A decentralized system consists of n components C1, . . . ,Cn. On each compo-
nent Ci, i ∈ [1 . . .n], we assume a local set of atomic propositions of interest APi. We also assume that
{AP1, . . . ,APn} forms a partition of AP.

Events and traces. An event is a set of atomic propositions describing the system state. For an event
σ ∈ 2AP, when p ∈ σ , it means that atomic proposition p holds on the system. We denote the set of all
events 2AP as Σ and we call this set the alphabet. Similarly, Σi = 2APi denotes the set of local events to
component Ci. Note that Σ 6=

⋃
i∈[1,n] Σi.

At runtime, each component Ci emits a local trace ui of events from its local set of atomic propositions
APi. At any timestamp t, the local trace is of the form ui(1) · ui(2) · · ·ui(t) with ∀t ′ < t,ui(t ′) ∈ Σi

and where ui( j) represents the j-th local event of Ci. The global trace represents the sequence of
events emitted by the system as a whole. At any timestamp t, the global trace is of the form: u =
u(1) ·u(2) · · ·u(t) with ∀t ′ < t,u(t ′) ∈ Σ and where u( j) represents the j-th event emitted by the system.
It is possible to build the global trace from the local traces: u = u1(1) ∪ ·· · ∪ un(1) · u1(2) ∪ ·· · ∪
un(2) · · ·u1(t)∪·· ·∪un(t) as well as the local traces from the global trace: ui = u(1)∩APi · · ·u(t)∩APi.
The set of all finite traces over an alphabet Σ is denoted as Σ∗ whereas the set of all infinite traces over Σ

is denoted as Σω . The suffix of a (finite or infinite) trace starting at time t is wt = w(t) ·w(t +1) · · · . The
set of all traces is denoted as Σ∞ = Σ∗∪Σω .

To measure the differences between two events, we use a distance function that returns the number
of atomic propositions with different value between them.

Definition 1 (Distance between events) Let σ ,σ ′′ ∈ Σ. Function distance: Σ× Σ× 2AP → N is
defined as follows: distance(σ ,σ ′′,AP) = #{AP∩ (σ ∩σ ′′ ∪σ ∩σ ′′)}, where the complementary
events are taken w.r.t. AP.

Note that we cannot directly use the Hamming Distance because the events are not represented as strings
composed of the atomic propositions or their negations. Instead, an atomic proposition with value ⊥ is
not included in the set.

Linear-time temporal logic on finite traces. The specification of the expected system behavior is
formalized using Linear-time Temporal Logic (LTL) [27] over the (global) set of atomic propositions
AP. We refer to the set of syntactically correct LTL formulas over AP as LTL. We assume the reader
is familiar with LTL and its operators (Globally (G), Eventually (F), strong Until (U), . . . ). We denote
by � the usual semantic relation between traces and formulas. We say that two formulas ϕ1 and ϕ2 are
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semantically equivalent if for any w ∈ Σ∞, w � ϕ1 iff w � ϕ2 and we denote this by ϕ1 ≡ ϕ2. In this
paper, we use a finite-trace semantics (from [4]). A finite trace u evaluates to > (resp. ⊥) for ϕ if all its
infinite extensions satisfy (resp. do not satisfy) ϕ . We denote this by u ∈ good(ϕ) (resp. u ∈ bad(ϕ)). In
monitoring and evaluating formulas, we will need to refer to the atomic propositions that have not been
evaluated yet in a formula: apFormula(ϕ)⊆ AP is the set of free atomic propositions occurring on ϕ .

Normal forms. To use the definition of literals, monomials and normal form with Linear-time temporal
logic, we extend them to cover temporal operators: A literal is an atomic proposition or the negation of
an atomic proposition. A monomial is a conjunction of literals and/or of temporal operators applied to
any formulas. A formula is in normal form if it only contains the operators ∨,∧ and ¬ and/or temporal
operators (X, G, F, U, R) and if negations that are not below a temporal operators are only applied
to atomic propositions. Finally, a formula is in disjunctive normal form (DNF) if it is a disjunction of
monomials. We say that a formula is in temporal disjunctive normal form (TDNF) if it is in DNF and
each monomial is of the form ϕ1 ∧Xϕ2 where ϕ1 only contains propositional logic operators (i.e. it
represents a condition on the present).

map, fold, and filter. We shall make use of functions map, fold and filter. Consider
two arbitrary types/sets A and B. Function map takes as argument a function f : A→ B and a set S
containing elements of some type A. It then returns the set S′ = { f (s) | s ∈ S}. Function filter takes
as argument a predicate p over elements of A and a set S of elements from A and returns the subset of S
with elements that satisfy p. Function fold takes as arguments a commutative function f : A×B→ B,
a set S containing elements of type A and an element b of type B. It is inductively defined: if S 6= /0, it
returns fold( f ,S\ s, f (s,b)) (where s ∈ S). Otherwise, it returns b.

3 Decentralized Runtime Enforcement

In this section, we first define the decentralized runtime problem, stating our assumptions. Then, we
define the requirements on decentralized enforcers.

Problem statement and assumptions. Let ik ∈Σ∗k (with k∈ [1 . . .n]) be the local trace of each component
Ck and i ∈ Σ∗ the global trace obtained from the union of the local traces. For k ∈ [1 . . .n], local trace ik
is input to enforcer Mk. Similarly, let ok ∈ Σ∗k be the local output trace of each enforcer and o ∈ Σ∗ the
global output trace obtained from the union of the local outputs.

Our assumptions on the system are as follows:

• The formula formalizing the specification is not equivalent to ⊥.
• The system cannot emit a new event until the previous one has been treated by the enforcer.
• An enforcer Mk can only read and modify the atomic propositions in APk.
• All enforcers are capable to communicate with one another by exchanging messages.
• All exchanged messages are delivered reliably, in order, and with no alteration.
• Enforcers are not malicious, i.e., they do not exchange wrong information.

Intuitively, every time a new event σ is emitted by the system, the enforcers compute the set of events
that respect the specification using their local observations of σ . They will then choose to emit one of
these events and modify their local observations accordingly. We denote this event by E(σ). At time
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t, we have E(i) = E(i(1)) ·E(i(2)) · · ·E(i(t)) = o and E(ik) = E(ik(1)) ·E(ik(2)) · · ·E(ik(t)) = ok. Let
ϕ be the formula representing the specification to be enforced of the system and AP the set of atomic
propositions present in ϕ . We want to obtain online decentralized enforcers so that if σ ∈ bad(ϕ), then
E(σ) /∈ bad(ϕ).

Example 1 (Running example) We will illustrate each part of the subsequent enforcement algorithms
on formula φ = ¬(Ga∨Fb). We consider an example system with two components C1 and C2. We use
two enforcers M1 and M2 with AP1 = {a} and AP2 = {b}. The initial event emitted by the system is
σ = {a} and the enforcer M1 is doing the initialization (this is an arbitrary choice).

For the remainder of this paper, unless specified otherwise, σ ∈ Σ represents the global event emitted by
the system, E(σ) ∈ Σ denotes the event outputted by the enforcers and ϕ ∈ LT L represents the formula
to be enforced. At timestamp 1, ϕ is equal to the specification formula ϕinit and then, at timestamp t +1,
ϕ is equal to ϕ t+1, the formula obtained at the end of the t-th timestamp.

Requirements on enforcers. We define the requirements on a decentralized enforcer E.

Definition 2 (Soundness) ∀i ∈ Σ∗, E(i) /∈ bad(ϕ).

An enforcer is sound if its output is not a bad prefix of the specification.

Definition 3 (Transparency) ∀i ∈ Σ∗,∀σ ∈ Σ, E(i) ·σ /∈ bad(ϕ)⇒ E(i ·σ) = E(i) ·σ .

An enforcer is transparent if its input is modified only when it leads to a violation of the specification.
We also define the notion of optimality.

Definition 4 (Optimality)

∀i ∈ Σ∗, ∀σ ∈ Σ, ∃σ ′ ∈ Σ,
E(i ·σ) = E(i) ·σ ′
∧ ∀σ ′′ ∈ Σ, distance(σ ,σ ′′,AP)< distance(σ ,σ ′,AP) =⇒ E(i) ·σ ′′ ∈ bad(ϕ).

An enforcer is optimal if it outputs the closest event to the input that respects the property.

4 Normalizing LTL Formulas

We transform the formula into its Temporal Disjunctive Normal Form (TDNF) to get a disjunction of
monomials. For this, we start by separating present and future obligations in the formula (Sec. 4.1) and
then use an algorithm to transform the result of the previous step into its DNF (Sec. 4.2). These two
operations applied one after the other on the input formula yield the TDNF, in which each monomial
represents a logical model of the formula and is the conjunction of two sub-formulas: a state formula
(i.e. the present obligation) and a conjunction of temporal operators (i.e. the future obligation).

4.1 Separating Present and Future Obligations

The enforcers determine whether or not there is a violation of the set of properties by evaluating the
corresponding formula with σ . To achieve this, we use the expansion laws (as defined in [27]) to separate
what σ needs to satisfy in the current timestamp, i.e. the present obligations, from what needs to be
satisfied in the future, i.e. the future obligations. For example, to evaluate Ga, we first need to rewrite it
as a∧X(Ga). We can see that, after rewriting, a has to hold on the current event σ and that Ga has to
hold in the future.
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Definition 5 (Expansion function (rwT)) Let ϕ,ϕ1,ϕ2 ∈LTL. Function rwT: LTL→LTL is inductively
defined as follows:

rwT(p) = p, for p ∈ AP rwT(>) =>
rwT(ϕ1∨ϕ2) = rwT(ϕ1)∨rwT(ϕ2) rwT(⊥) =⊥
rwT(ϕ1∧ϕ2) = rwT(ϕ1)∧rwT(ϕ2) rwT(¬ϕ) = ¬rwT(ϕ)
rwT(ϕ1⇒ ϕ2) = rwT(ϕ1)⇒ rwT(ϕ2) rwT(Xϕ) = Xϕ

rwT(ϕ1Uϕ2) = rwT(ϕ2)∨ (rwT(ϕ1)∧X(ϕ1Uϕ2)) rwT(Gϕ) = rwT(ϕ)∧X(Gϕ)

rwT(ϕ1Rϕ2) = rwT(ϕ2)∧ (rwT(ϕ1)∨X(ϕ1Rϕ2)) rwT(Fϕ) = rwT(ϕ)∨X(Fϕ)

Example 2 (rwT) Recall that φ = ¬(Ga∨Fb). We have rwT(φ ) = ¬(a∧X(Ga)∨b∨X(Fb)) = φ ′.

Any formula outputted by function rwT is semantically equivalent to the input formula:

Property 1 ∀ϕ ∈ LTL, ϕ ≡ rwT(ϕ).

Moreover, thanks to the expansion laws, the formulas produced by rwT satisfy the following syntactic
property.

Property 2 Let ϕ ∈ LTL. In the syntactic tree of rwT(ϕ), any temporal operator different from X is
below a X.

4.2 Transforming to Temporal Disjunctive Normal Form

A problem that arises now is knowing which formula has to be evaluated in the future based on the
current observation. For example, with aUb, the formula to evaluate in the future will be either> or aUb
depending on the values of a and b in the current event.

Each monomial of a formula in DNF represents one of its model. The transformation to DNF
gives, for each model, a formula of the form ϕ1 ∧Xϕ2 where ϕ1 is a conjunction of literals and ϕ2
is a conjunction of temporal operators, that is, ϕ1 (resp. ϕ2) represents the present obligation (resp.
future obligation). Intuitively, if the present obligations of a monomial hold, then the corresponding
future obligations should hold on the trace later on and should therefore be included in the formula that
needs to be evaluated during the next timestamp.

In the following, we use a function DNF that transforms any formula in DNF. The details of each step
of the transformation can be found in [19].

Example 3 (Transformation to DNF) We transform φ ′ into its DNF:

DNF(φ ′) = ¬a∧¬b∧X(G¬b)∨X(F¬a)∧¬b∧X(G¬b).

We denote DNF(φ ′) by φDNF .

Any formula outputted by function DNF is semantically equivalent to the input formula:

Property 3 ∀ϕ ∈ LTL, ϕ ≡ DNF(ϕ).

Moreover, the transformation to DNF ensures the following syntactic property:

Property 4 Let ϕ be an LTL formula that has been rewritten by rwT. In the syntactic tree of DNF(ϕ),
any temporal operator different from X is below a X.
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Corollary 1 A formula rewritten by rwT and then transformed into its DNF with DNF is in TDNF.

Definition 6 (Present obligation) LTLp is the set of formulas representing the present obligations. It is
defined by the following grammar (where p ∈ AP): ϕp ∈ LTLp ::= ¬p | p | > | ⊥ | ϕp∧ϕp.

Definition 7 (Future obligation) LTLf is the set of formulas representing the future obligations. It is
defined by the following grammar (where ϕ ∈ LTL): ϕ f ∈ LTLf := Xϕ | ϕ f ∧ϕ f .

5 Temporal Enforcement Encoding

Normalization (Sec. 4) provides a clear separation between present and future and ensures that the
specification formula is in TDNF. We define in Sec. 5.1 an encoding that associates each monomial
of the formula with a pair (present, future) where present (resp. future) is a formula that represents the
present obligations (resp. future obligations). Then, we define the partial function representing the state
of an enforcer in Sec. 5.2.

5.1 Encoding Present and Future: Temporal Obligation Pairs (TOP)

The enforcers are now able to rewrite and evaluate the present obligations to determine whether or not
σ leads to a violation of the specification. To represent the whole formula, we generate a set containing
a pair for each monomial of the formula. We refer to these pairs as temporal obligation pairs (TOP). As
the set represents a disjunction of monomials, there is a violation iff the present obligations of every pair
in the set evaluate to ⊥.

This separation allows the enforcers to only work on the present obligations. This is useful because,
for example, at timestamp t, the next formula to be enforced ϕ t+1 contains some of the future obligations
of ϕ t but not necessarily all of them. Let present∧ future be a monomial in ϕ t . If E(σ) � present,
then future is included in ϕ t+1. Evaluating future obligations is useless if they are not included in the
next formula to be enforced. To illustrate this, consider formula aUb, we have rwT(aUb) = b∨ (a∧
X(aUb)). We can see here that if b ∈ σ (b holds), then the trace should satisfy > in the future and
that, if only a is true, then the trace should satisfy aUb in the future. Therefore, we associate aUb
with {(b,>),(a,aUb)}. Furthermore, splitting the formula to be enforced into smaller formulas reduces
the cost of the simplification because we do not need to rewrite the future obligations in the current
timestamp as stated above.

We define function encodewhich transforms an LTL formula into a set of pairs (present, future). We
assume that the input formula has already been rewritten by the expansion function and then transformed
into its TDNF. We know from Property 4 that any temporal operators is below a X. Therefore, we do not
need to define the following function for temporal operators as there cannot be any in present obligations.

Definition 8 (Temporal obligation pair) Let ϕ,ϕ1,ϕ2 ∈ LTL. Function encode : LTL→ 2LTLp×LTLf is
defined as follows:

encode(ϕ1∨ϕ2) = encode(ϕ1)∪encode(ϕ2) encode(ϕ1∧ϕ2) = {(pϕ1 ∧ pϕ2 , fϕ1 ∧ fϕ2)} where

encode(¬p) = {(¬p,>)},with p ∈ AP {(pϕ1 , fϕ1)}= encode(ϕ1)

encode(p) = {(p,>)},with p ∈ AP and

encode(Xϕ) = {(>,ϕ)} {(pϕ2 , fϕ2)}= encode(ϕ2)
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Example 4 (Temporal obligation pair) Let φ1 =¬a∧¬b∧X(G¬b) and φ2 = X(F¬a)∧¬b∧X(G¬b),
we have encode(φ1) = {(¬a ∧¬b, G¬b)} and encode(φ2) = {(¬b, F¬a ∧G¬b)}. As φDNF =
φ1∨φ2, we have encode(φDNF) = {(¬a∧¬b, G¬b),(¬b,F¬a∧G¬b)}. We denote by φTOP the result
of encode(φDNF).

Property 5 Let S ∈ 2LTLp×LTLf . We have: ∀ϕ ∈ LTL, encode(ϕ) = S=⇒ϕ ≡
∨

(p, f )∈S p∧ f .

Using the semantics of LTL, we obtain the following corollary.
Corollary 2 Let σ ∈ Σ∗, σ /∈ bad(ϕ) iff ∃(p, f ) ∈ encode(ϕ),σ /∈ bad(p)∧ (sigma /∈ bad( f ).

5.2 Temporal Correction Log (TCL, Enforcer State)

To enforce the specification, we explore the correction events σ ′ s.t. σ ′ /∈ bad(ϕ). For this, we define
the Temporal Correction Log (TCL) which serves as a state of the enforcer, encoding the status of the
exploration. The TCL is a function that associates events of the alphabet with a pair containing a set of
temporal obligation pairs and a natural number. We denote the set of all possible TCL by TCL and an
object from this set by tcl. When the event observed by the enforcers is σ and tcl(σ ′) = (S,n), it
means that the LTL formula that would need to be satisfied if the enforcers choose to produce event σ ′

as output is encoded by the set of TOP S and that the distance between σ and σ ′ is n. A TCL is built
incrementally: each enforcer updates the values associated with the events using their local observations.
It is a partial function tcl : Σ→ 2LT Lp×LT L f ×N. Initially, the state of the enforcers is initialized to
[ /0 7→ (encode(DNF(rwT(ϕ))),0)].

6 Evaluating the Formula

After initializing their state, the enforcers have to evaluate the formula to be able to choose the output
event. To achieve this, they update their state using their local observations and send it to other enforcers
to gather information on the global event. In Sec. 6.1, we define how the state of an enforcer is updated
using its local observation and we then give in Sec. 6.2 a function to reduce the size of the state of an
enforcer as well as defining the communication between the enforcers.

6.1 Updating the Temporal Correction Log

When an enforcer receives the state of another one (i.e. a TCL), it updates its domain by adding its local
observations. Each new event is associated with an updated pair and the old events are removed from
the domain. The set of TOP is updated by rewriting the present obligations and the distance metric is
updated using the new local observation.

We define the local function used by each enforcer for the rewriting of the present obligations using
a local observation σ ′′ ∈ Σi. This function uses the set of local atomic propositions to differentiate an
atomic proposition that does not hold on σ ′′ from one that has not been observed yet.
Definition 9 (Rewriting of the present obligations) Let ϕ,ϕ1,ϕ2 ∈ LTLp and σ ′′ ∈ 2APi . On enforcer
Mi, function rwi: LTLp×Σi→ LTLp is defined as:

rwi(p ∈ AP,σ ′′) =


> if p ∈ σ ′′

⊥ if p /∈ σ ′′∧ p ∈ APi

p otherwise

rwi(¬ϕ,σ ′′) = ¬rwi(ϕ,σ
′′)

rwi(ϕ1∨ϕ2,σ
′′) = rwi(ϕ1,σ

′′)∨rwi(ϕ2,σ
′′) rwi(ϕ1∧ϕ2,σ

′′) = rwi(ϕ1,σ
′′)∧rwi(ϕ2,σ

′′)
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Note: These cases are sufficient because we only use function rwi on present obligations. Therefore,
there is no temporal operators (nor implications or equivalences thanks to function DNF).

We now build the set of atomic propositions that still need to be evaluated (the remaining atomic
propositions in the formula). When this set is empty, every atomic proposition of the formula has been
evaluated, which means the evaluation phase is over and we then need to decide about the event to
emit. Therefore, we define function apr : TCL→ 2AP, which builds this set using apFormula. More
precisely, apr yields the union of the result of apFormula on the present obligations of every set
of TOP in the codomain of the tcl, that is, apr(tcl) = fold(∪, map(apFormula,{p | (p, f ) ∈
top,(top,−) ∈ codom(tcl)}), /0).

Additionally, to prevent useless rewritings with atomic propositions that are not in the formula, we
update the tcl using each event from 2APi∩apr(tcl) instead of Σi. For example, in formula Fa, we have
apr(tcl) = {a}. Now suppose an enforcer M with APi = {a,b} has to update that formula. M can
observe four events locally: /0,{a},{b} and {a,b}. However, as b is not in the formula, /0 and {b} both
yield the same result after rewriting (likewise with {a} and {a,b}). Therefore, we can see that evaluating
the formula using atomic propositions that are not present in it leads to "useless" rewriting because the
result is the same with at least one other local observation. This also means that each enforcer only
receives the TCL once during the evaluation as all the atomic propositions they can observe locally are
replaced by either> or⊥. In the remainder of this paper, we denote 2APi∩apr(tcl) by Σr

i which represents,
intuitively, the set of all local observations of enforcer Mi containing only atomic propositions that are
present in the formula.

Example 5 (Rewriting of the present obligations) Recall that φTOP = {(¬a∧¬b,G¬b),(¬b,F¬a∧
G¬b)}. After initialization, we have dom(tcl) = { /0} and tcl( /0) = (φTOP, 0). Here, the present
obligation of the first monomial contains a and b, the ones from the second monomial only contains b.
Therefore, apr(tcl) = apFormula(¬a∧¬b)∪apFormula(¬b) = {a,b}. We have AP1 = {a} so
Σ1 = { /0,{a}} = Σr

1. Evaluating the present obligations using the local observations of M1 yields the
following formulas:

rwi(¬a∧¬b, /0) = ¬b rwi(¬b, /0) = ¬b rwi(¬a∧¬b,{a}) =⊥ rwi(¬b,{a}) = ¬b

Algorithm 1 Update of the current enforcer state:
updateTCL(tcl, σ , apr(tcl))

1: for each σ ′ ∈ dom(tcl) do
2: Let (pf ,n) = tcl(σ ′)
3: dom(tcl) = dom(tcl)\σ ′

4: for each σ ′′ ∈ Σr
i do

5: Let pf ′ = map(λ (p,−).rwi(p,σ ′′), pf )
6: tcl = tcl[σ ′′ ∪ σ ′ → (pf ′, n +

distance(σ ′′,σ ,APi∩apr(tcl)))]
7: end for
8: end for

We now define function updateTCL :
TCL × Σi × AP → TCL used by the enforcers
to update their state. The function takes three
arguments: the state of enforcer to update, its
local observation of the global event and the set of
atomic propositions that have not been evaluated
yet in any present obligation. It is updated using
every σ ′′ ∈ Σr

i . The domain becomes the set
σ ′ ∪ σ ′′ (with σ ′ ∈ dom(tcl), an event of the
"old" domain). Let pr be some present obligation.
pr is rewritten as follows: pr = rwi(pr, σ ′′). The
distance is updated: it is increased by 1 for each
atomic proposition p ∈ σ ′′ that has a different
truth value compared to σ , that is, if the metric

was equal to n before the update, it becomes n+distance(σ ,σ ′′,APi∩apr(tcl))). The definition
of updateTCL is given in Algorithm 1.
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Example 6 (updateTCL) Recall that AP1 = {a}, apr(tcl) = {a,b} and σ = {a}. Before M1 updates
tcl, we have tcl( /0)= (φTOP,0)= ({(¬a∧¬b, G¬b),(¬b,F¬a∧G¬b)}, 0). After updating tclwith
updateTCL, we have:

tcl( /0) = ({(¬b,G¬b),(¬b,F¬a∧G¬b)}, 1) tcl({a}) = ({(⊥,G¬b),(¬b,F¬a∧G¬b)}, 0)

6.2 Reduction of the Obligations Set and Communication

Algorithm 2 Reduce the size of the domain of the TCL

1: for each σ ′ ∈ dom(tcl) do
2: Let (pf ,−) = tcl(σ ′)
3: pf ′ = filter((λ (p, f ).(p 6≡ ⊥∧ f 6≡ ⊥)), pf )
4: if pf ′ == /0 then
5: dom(tcl) = dom(tcl)\σ ′

6: else
7: tcl= tcl[σ ′→ (pf ′, n)]
8: end if
9: end for

An issue induced by Algorithm 1 is that
the size of the domain of the tcl doubles for
each atomic propositions in APi∩apr(tcl).
Therefore, we reduce its size by removing
certain elements that become useless after
rewriting. First, we reduce the size of the
elements of the codomain (the images) by
removing the pairs in which either the present
or the future obligations have been evaluated
to ⊥, i.e. the monomials evaluated to ⊥.
Then, we remove from the domain the events
that are associated with a pair containing an
empty set of TOP as these events do not satisfy any present obligations. The second reduction guarantees
that any event in the domain at the end of the evaluation does not lead to a violation of ϕ . Therefore, this
also guarantees that adding the emitted event to the trace will not form a bad prefix of the formula.

For this, we define reduce: TCL→ TCL which implements the two aforementioned reductions in
Algorithm 2.

Example 7 (reduce) In example 5, we got tcl({a}) = ({(⊥,G¬b),(¬b,F¬a∧G¬b)}, 0). The set
of obligations associated with this event contains a monomial in which the present obligations have been
evaluated to ⊥. Therefore, tcl({a}) = ({(¬b,F¬a∧G¬b)}, 0).

After this reduction, if there still is at least one atomic proposition to evaluate, then the current enforcer
communicates its state to another enforcer that can update it, i.e. an enforcer that can locally observe one
of the remaining atomic propositions in any of the present obligations. If there are multiple enforcers
that can rewrite the formula, the one with the smallest index is chosen. If the formula has been evaluated
in its entirety, the decision rule can be applied to choose the event to emit.

Example 8 (Communication) We can see in the previous example that b has not been evaluated yet so
the tcl is sent to a enforcer that can observe this atomic proposition: M2, in that case.

7 Enforcement using a Decision based on Global Exploration

We now define the decision rule applied by the last enforcer in Sec. 7.1 and the algorithm itself in Sec. 7.2.
We state some properties of the algorithm in Sec. 7.3.

7.1 Decision Rule

The decision rule is used by the enforcers to determine the emitted event. Let tcl f be the partial function
representing the final state of the enforcer. Once an event has been chosen, each enforcer will modify its
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local observations accordingly (if needed). The last enforcer that updates the tcl needs to send its state
to all the other enforcers so that they all apply the decision rule and choose an event in parallel.

To respect transparency, we simply choose the event that has the least number of changes compared
to σ . We know (from section 6.2), that the events σ ′ so that u ·σ ′ ∈ bad(ϕ) (with u ∈ Σ∗ the trace up
until the current timestamp and ϕ ∈ LT L the property to enforce) have been removed from the domain
of tcl f . Therefore, if u ·σ /∈ bad(ϕ), then σ is the only element of the domain with its distance equal
to 0 so σ will be emitted. If u ·σ ∈ bad(ϕ), it is possible to have multiple events with the same distance.
Let tclcandidates be the set of events with the least number of changes from σ : tclcandidates = {σ ′ ∈
tcl f | tcl f (σ

′) = (−,nmin)} so that nmin = min({n | (−,n) ∈ codom(tcl f )}). If σ ′ is chosen, then
the local event emitted by each enforcer Mi is σ ′∩APi.

If we choose to emit event σ ′, then ϕ t+1 is the disjunction of the future obligations associated with
the emitted event and we have ϕ t+1 = fold( (λx,(−, f ).(x∨ f )), pf , ⊥)) with (pf ,−) = tcl f (σ

′).
Therefore, if (>,>) is included in the set of TOP of any events in TCLcandidates, then ϕ t+1 = >. In
this particular situation, we can stop the enforcers (any event is a good prefix of >) so, if there exists
σ ′ ∈ tclcandidates so that TCL(σ ′) = (pf ,−)∧ (>,>) ∈ pf then we reduce TCLcandidates so that it only
contains these σ ′. Finally, if we still have #TCLcandidates > 1, we choose the event to emit from this set
arbitrarily (but deterministically). Every enforcer applies the decision rule but the choice of the verdict
is deterministic so they will all choose the same one. This implies that ϕ t+1 is the same for all of them
which means that they all know the next formula to enforce without any additional communication.

Example 9 (Decision rule) After the update of M2, we have:

tcl( /0) = ({(>,>),(>,F¬a∧G¬b)}, 1) tcl({a}) = ({(>,F¬a∧G¬b)}, 0)

The events {a,b} and {b} have been removed as they lead to a violation of φ (G¬b evaluates to ⊥
if b = >). We apply the decision rule to choose the event to emit. Here, σ is chosen because it does
not lead to a violation so we do not need to modify it. The local event emitted by M1 (resp. M2) is
σ ′′ = {a} ∈ Σ1 (resp. σ ′′ = /0 ∈ Σ2). The formula that needs to be monitored during the next timestamp
is φ t+1 = F¬a∧G¬b.

7.2 Enforcement Algorithm

Let M = {M1, . . . ,Mn} be the set of enforcers. Algorithm 3 is a local algorithm run by each enforcer.
Enforcer M1 is chosen arbitrarily to be the one initializing the evaluation. M1 also updates its state
immediately if it is able to, i.e. if the formula contains an atomic propositions in AP1. All the other
enforcers start by waiting to receive a tcl. Each enforcer M j takes its local observation of the global
event σ ∈ Σ emitted by the system as input. Once the computation is over, they output their local
observations of the event σ ′ ∈ Σ, that is different from σ iff u ·σ ∈ bad(ϕ), where u is the trace up until
the current timestamp t, u ∈ Σ∗. The enforcer also builds the formula ϕ t+1 based on the emitted event.

7.3 Properties

The number of messages sent is bounded: in the worst case scenario, that is, if the formula contains at
least one local observation of each enforcer, the tcl is sent to every enforcer during the evaluation and
once more at the end so that every enforcer can apply the decision rule. Therefore, if we denote by δinit
the time needed to initialize the state of the enforcer (Algorithm 2), by δupdate the time needed for one
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Algorithm 3 Enforcement on M j using a decision based on global exploration

1: Initialization: If j == 1, tcl is initialized to [ /0 7→ (encode(DNF(rwT(ϕ t))),0)].
Otherwise, wait until a tcl is received from another enforcer. If apr(tcl) = /0 in the received
tcl, jump to step 5.

2: Evaluation: Compute apr(tcl), the set of atomic propositions that have not been evaluated yet.
Update tcl using updateTCL(tcl, σ , APj ∩apr(tcl)).

3: Reduction: Reduce the domain of tcl by removing the monomials that evaluate to ⊥ and the bad
prefixes of ϕ t using reduce(tcl).

4: Communication: If apr(tcl) 6= /0, let M ′ ⊆M be the set of enforcers Mk so that APk ∩
apr(tcl) 6= /0∧ j 6= k. tcl is sent to enforcer Mkmin with kmin = min{k |Mk ∈M ′}. Wait until a
tcl is received from another enforcer.
Otherwise, send tcl to all the other enforcers so that they can apply the decision rule.

5: Decision: Let tcl f be the final state of tcl. Apply the decision rule to choose the event σ ′ to
emit and set ϕ t+1 to fold( (λx,(−, f ).(x∨ f )), pf , ⊥), with (pf ,−) = tcl f (σ

′).

update of the tcl (update with each element of 2APi∩apr(tcl)) and by δdecision the time it takes to apply
the decision rule. The delay between two events emitted by the system is, at worst, #M ×δupdate+δinit+
δdecision (every enforcer executes the decision rule at the same time). The size of the messages is also
bounded: as we rewrite the obligations using every possible events in Σ, the size of the domain doubles
for each observed atomic proposition. Therefore, denoting by nAP the number of atomic propositions in
the formula, the size of the domain is bounded by 2nAP elements and the size of the last message sent
can be at most 2nAP−1. At worst, the domain contains 2#AP elements at the end. It is worth noting that
the transformation to TDNF is costly (exponential in the size of the formula) and that, in the worst case
scenario, if reduce does not remove elements from the domain, its size grows exponentially as well,
which means that, in turn, δupdate gets longer every timestamp. δdecision is negligible compared to the
other terms.

Lemma 1 Let ϕ t be the property to enforce at timestamp t and ϕ t+1 the formula built at the end of the
algorithm (that will be monitored during timestamp t +1). If ϕ t 6≡ ⊥, then ϕ t+1 6≡ ⊥.

Since the initial property is assumed to be not equivalent to⊥, Lemma 1 implies that Algorithm 3 cannot
produce a formula that is equivalent to ⊥.

Property 6 By using Algorithm 3 as a local enforcer on each component, we obtain a sound, transparent,
and optimal enforcer (as described in Sec. 3).

8 Enforcement using a Decision based on Local Exploration

In this section, we define another enforcement algorithm where each enforcer takes a local decision
before sending its state to the next enforcer: instead of sending the whole tcl, the current enforcer only
sends a single entry with its image. This also means that the enforcers do not need to make a decision
at the end of the enforcement round: the local emitted event corresponds to this local decision. The
receiving enforcer then initializes its state using the received event and applies the updates to it. The
point of this approach is to prevent the exponential growth of the domain of the tcl. The local decision
rule is defined in Sec. 8.1 and the algorithm in Sec. 8.2. We compare the two versions in Sec. 8.3 and
give the properties of the second version in Sec. 8.4. A complete example is given in Sec. 8.5.
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8.1 Local Decision Rule

To allow the enforcers to make a local decision, we redefine the decision rule. Let tcl be the partial
function representing the state of the enforcer after its update. apr(tcl) is recomputed after the
evaluation. Two cases are possible:

• If apr(tcl) = /0, the algorithm stops and the current enforcer decides which event to emit from
a set tclcandidates = {σ ′ ∈ tcl f | tcl f (σ

′) = (−,nmin)} so that nmin = min(N) with N = {n |
(−,n) ∈ codom(tcl f )}.
If there exists σ ′ ∈tclcandidates so that tcl(σ ′)= (pf ,−)∧(>,>)∈ pf , then tclcandidates = {σ ′ ∈
tclcandidates | tcl(σ ′) = (pf ,−)∧ (>,>) ∈ pf} for the same reasons as in the first algorithm: if
ϕ t+1 = >, we do not need to enforce the formula anymore as any event is a good prefix of >.
Finally, if there are multiple elements in tclcandidates, one is chosen arbitrarily (and deterministically).

• If apr(tcl) 6= /0, the current enforcer decides which element of the domain it will send to the
next enforcer (with its image). The element is chosen from the set tclc = {(σ ′,(pf ,nmin)) | σ ′ ∈
dom(tcl)∧tcl(σ ′) = (pf ,nmin)} so that nmin = min(N) with N = {n | (−,n) ∈ codom(tcl f )},
that is, it is chosen among the elements that have the smallest distance to σ .
If there are several events that respect the property mentioned above, the set is reduced to the
events that have the most models, i.e. tclc = {(−,(pf ,−)) ∈ tclc | @(−,(pf ′,−)) ∈ tclc,pf 6=
pf ′ ∧ |pf ′| > |pf |} (the formulas that have the highest amount of monomials). If there are still
multiple elements in tclc, one is chosen arbitrarily (and deterministically).

Just as in the first algorithm, if σ ′ is chosen, then Mi outputs σ ′ ∩APi. As only the last enforcer that
applies the decision rule has sufficient information to determine ϕ t+1, it needs to be sent to the other
enforcers at the end of the evaluation.

8.2 Enforcement Algorithm

To obtain the enforcement algorithm in the case of decision based on local exploration, we update
Algorithm 3 as follows.

In step 1, the (current) enforcer waits for a tcl or the formula to enforce in the next timestamp. If it
receives a formula, the execution of the algorithm for the current timestamp stops.

In step 4, the enforcer always applies the local decision rule to choose an event from the domain.
It then removes all the other events from the domain and, if apr(tcl) 6= /0, it sends tcl to the next
enforcer using the same criteria as in the first algorithm. Otherwise, it waits for the formula to enforce
in the next timestamp instead of a tcl. When it receives the formula, the current timestamp stops (the
enforcer does not go to step 5).

In step 5, the enforcer does not apply the decision rule as it already did it in the previous step. It only
builds the formula to enforce at the next timestamp and sends it to all the other enforcers.

8.3 Comparison

First, let us notice that the algorithm with the local decision rule guarantees soundness and transparency,
but not optimality. Indeed, as the algorithm always sends an event associated with a set of future
obligations that has at least one solution, there is always a solution. Otherwise, this event would not be
in the domain. This guarantees soundness. Transparency is guaranteed since the input event is removed
from the domain only if it violates the property. However, as the set of all possible events over AP is not
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entirely explored, the event emitted at the end might not be the best (w.r.t. the distance to σ ). Hence,
optimality is not guaranteed.

Regarding performance, despite requiring the transformation to DNF during the initialization, the
algorithm presents a significant improvement regarding the size of the messages and of the domain (it
prevents their exponential growth). Furthermore, the size of the domain is much smaller, it only contains
one element before the update instead of, at worst, 2k−1 after k updates, which allows the enforcers to
only do one update per element of 2APi∩apr(tcl) instead of #2APi∩apr(tcl)×2k−1 updates (one per local
observation per element of the domain).

However, the algorithm has some drawbacks: the decision rule has to be applied by each enforcer,
although this is not that significant considering it is negligible compared to the other operations. Moreover,
this version does not guarantee optimality. It is worth noting that the first version of the algorithm is
better than this one in one very specific scenario: if the domain of tcl is reduced to a single element
with reduce at the end of every update, then this version is worse because it does not improve the size
of the messages/domain but the enforcers still have to apply the local decision rule after every update
instead of once in the first version. Even in this situation, the difference is not significant unless there is
a large number of enforcers.

8.4 Properties

Just as in the first version, the number of messages sent is bounded: in the worst case, that is, if the
formula contains at least one local observation of each enforcer, one message is sent to each enforcer.
An additional message is sent to all the enforcers (except 1) at the end to communicate ϕ t+1. Therefore,
the delay between two events emitted by the system is, at worst, (δupdate + δdecision)× #M + δinit with
δinit,δupdate and δdecision defined as in Sec. 7.3. As we only send a pair containing an element of the
domain of tcl and its image, the size of the message is quite small. It is not completely constant
because the size of the image may vary (although not by much).

8.5 Complete Example: Decentralized Traffic Lights

Table 1: Enforcing G((g1∧g3∧¬(g2∨g4))∨ (¬(g1∨g3)∧g2∧g4)) given event σ = {g1,g2,g3}.

Present/Future rwT(ϕ) = (g1∧g3∧¬(g2∨g4)∨¬(g1∨¬g3)∧g2∧g4)∧Xϕ = ϕrwT

Transf. to TDNF DNF(ϕrwT ) = (g1∧g3∧¬g2∧¬g4∧Xϕ)∨ (¬g1∧¬g3∧g2∧g4∧Xϕ) = ϕT DNF

Initial tcl [ /0 7→ encode(ϕT DNF) = ({(g1∧g3∧¬g2∧¬g4,ϕ),(¬g1∧¬g3∧g2∧g4,ϕ)}, 0)]
Evaluation (M1) [ /0 7→ ({(⊥,ϕ),(¬g3∧g2∧g4,ϕ)}, 1),{g1} 7→ ({(g3∧¬g2∧¬g4,ϕ),(⊥,ϕ)}, 0)]

Decision (M1) The entry corresponding to {g1} is chosen, others are removed.
Evaluation (M2) [{g1} 7→ {(g3∧¬g4,ϕ)}, 1),{g1,g2} 7→ ({(⊥,ϕ)}, 0)]

Decision (M2) {g1} is the only event left in the domain. It is therefore chosen by default.
Evaluation (M3) [{g1} 7→ ({(⊥,ϕ)}, 2),{g1,g3} 7→ ({(¬g4,ϕ)}, 1)]

Decision (M3) {g1,g3} is the only event left in the domain. It is therefore chosen by default.
Evaluation (M4) [{g1,g3} 7→ ({(>,ϕ)}, 1),{g1,g3,g4} 7→ ({(⊥,ϕ)}, 2)]

Decision (M4) {g1,g3} is the only event left in the domain. It is therefore chosen by default.
Next formula ϕ2 = ϕ
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We consider a crossroad and its four traffic lights. We have APi = {gi,yi,ri}, i ∈ {1,2,3,4}. Variable gi

(resp. yi and ri) indicates whether or not the green (resp. yellow and red) light of the i-th traffic light is
on (gi = > means it is on). Let ϕ be the property representing the following specification: At any time,
exactly two opposed traffic lights must be green at the same time. We have: ϕ = G((g1 ∧ g3 ∧¬(g2 ∨
g4))∨ (¬(g1∨g3)∧g2∧g4)). Let M1,M2,M3 and M4 be the four enforcers associated with each traffic
light (one per traffic light). Let σ ∈ Σ be the event emitted by the system, σ = {g1,g2,g3} which means
that only the green light of the first three traffic lights is on. All the transformations are given in Table 1.
A detailed description of this example on both enforcement algorithms is in [19]. In the table, shaded
pairs are removed from the set through function reduce. Then, events associated to an empty set of
TOP are removed from the domain.

9 Conclusions and Future work

Conclusions. This paper introduces the problem of decentralized runtime enforcement for systems
without a global observation/control point. We give two decentralized enforcement algorithms for
LTL formulas. Both algorithms guarantee soundness and transparency. The first also guarantees the
optimality of the modifications done by the enforcer in terms of distance to the original event emitted by
the system while the second comes with a drastically reduced cost (both in terms of time and space).

Future work. The natural extension of this work is its implementation to empirically evaluate it (on
LTL specification patterns [8], for example) in terms of computational and communication costs. Then,
we plan to integrate it into the THEMIS tool [10] which currently only supports verification. Our
enforcement algorithms can also be extended in several ways. First, using LTL formula rewriting has
a few drawbacks and in particular, rewriting renders the analysis of the runtime behavior of monitors
hard to predict as it depends on the simplification function applied to LTL formulas after rewriting.
Alternatively, we consider encoding the specification using automata, for example. Finally, we shall also
consider timed properties as they are much more expressive. There are some approaches for the runtime
enforcement of timed properties (see [17] for an overview), but all are centralized.
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