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Stochastic games combine controllable and adversarial non-determinism with stochastic behavior

and are a common tool in control, verification and synthesis of reactive systems facing uncertainty.

Multi-objective stochastic games are natural in situations where several—possibly conflicting—

performance criteria like time and energy consumption are relevant. Such conjunctive combinations

are the most studied multi-objective setting in the literature. In this paper, we consider the dual

disjunctive problem. More concretely, we study turn-based stochastic two-player games on graphs

where the winning condition is to guarantee at least one reachability or safety objective from a given

set of alternatives. We present a fine-grained overview of strategy and computational complexity

of such disjunctive queries (DQs) and provide new lower and upper bounds for several variants of

the problem, significantly extending previous works. We also propose a novel value iteration-style

algorithm for approximating the set of Pareto optimal thresholds for a given DQ.

1 Introduction

Stochastic games (SG), e.g. [21, 36], combine controllable and adversarial non-determinism with stochas-

tic behavior. In their turn-based two-player version, SGs are played on graphs where the vertices are

called states, and every state either belongs to one of the two players Eve and Adam, or is controlled by

a probabilistic environment. In each round, the player in control of the state chooses an action—an edge

of the graph—and the game transitions to the successor state. In probabilistic states, the successor is

sampled according to a fixed observable distribution over the outgoing edges. Simple SGs [21] have just

a single reachability objective. A key question is whether Eve can control her states such that a target is

reached with at least a certain probability, no matter the behavior of the opponent Adam. Dually, Adam

has a safety objective in this setting: He should maximize the chance of staying in the—from his point

of view—safe region, i.e., avoiding Eve’s target states.

Multi-objective stochastic games [19] extend this by allowing Boolean combinations of several dif-

ferent probability or expectation thresholds on various objectives. Such games have been used to synthe-

size optimal controllers in application scenarios where the system at hand is exposed to an environment

with both stochastic and non-deterministic aspects [6, 20, 26]. A natural subclass of multi-objectives are

disjunctive queries (DQ) [19, 27] where the player has to satisfy at least one alternative from a given set

of options.

In this paper, we study DQs with both reachability and safety options. More specifically, given

a game and a finite set of reachability and safety objectives, each equipped with a desired threshold

probability, we ask whether Eve can satisfy at least one option with probability at least the respective

threshold. Our motivation for studying DQs is twofold. (1) DQs are interesting in their own right as they

allow for a fine-grained specification of alternatives over desirable outcomes of a controlled stochastic

system. (2) DQs are equivalent to the more widely used conjunctive queries (CQs) under an alternative
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Figure 1: Example SG with a disjunctive query P(♦T1) ≥ x∨P(♦T2) ≥ y. The Pareto sets, i.e., the

feasible threshold vectors (x,y) are depicted next to the respective states.

semantics, namely if the opponent Adam has to reveal his strategy to Eve before the game starts. This

amounts to changing the quantification order over strategies from ∃∀—which is the standard order—

to ∀∃. In general, this makes a difference since multi-objective SGs are not determined [19]. This

optimistic “asserted-exposure” (∀∃) semantics is interesting in situations where the non-deterministic

system state can actually be observed at any given point in time. For instance, in the smart heating case

study from [34], the position of the doors in a house is non-deterministically controlled by Adam and

not directly observable. However, if door sensors were to be installed, the ∀∃-semantics would be more

adequate since the door positions are now observable (but still uncontrollable).

The technical intricacies of DQs are best illustrated by means of an example: Consider the SG in

Figure 1. It comprises 5 states: the probabilistic state s0, states s1 and s2 controlled by Eve and Adam,

respectively, and the two targets labeled T1 and T2. Suppose that Eve’s objective is the DQ “reach T1

with probability at least x or T2 with probability at least y”, in symbols P(♦T1) ≥ x∨P(♦T2) ≥ y. The

coordinate systems next to the states show their Pareto sets, i.e., the set of threshold vectors (x,y) for

which Eve can win the DQ, assuming the game starts in that state. For s1, the Pareto set is the whole

box [0,1]2 since Eve can reach either of the targets surely from s1 by picking the respective action. For

s2, the Pareto set contains all convex combinations of (0,1) and (1,0) and all point-wise smaller vectors,

forming a triangle. This is because Adam has to distribute the whole probability mass somewhere; for

any threshold vector (x,y), x+ y ≤ 1, he cannot avoid satisfying it. However, if x+ y > 1, Adam can

prevent Eve from winning in state s2: For example, if (x,y) = (0.6,0.6), Adam can randomize equally

between both actions, and no target is reached with at least 0.6. This also shows that solving a DQ is

not equivalent to solving each objective separately: From s2, Eve can neither guarantee that T1 nor T2 is

reached with positive probability; however, she can guarantee the thresholds (0.5,0.5) in the DQ. Finally,

Eve can achieve each threshold vector (x,y) with x ≤ 0.5 or y ≤ 0.5 from s0 because s1 is reached with

probability 0.5 where she can put all probability mass on one of the targets. On the other hand, Eve

cannot ensure any vector (x,y) with x > 0.5∧ y > 0.5 because once she has fixed a strategy, Adam can

mirror it so that both targets are reached with exactly 0.5.

The example in Figure 1 demonstrates two important properties of disjunctive queries in SGs: Firstly,

Pareto frontiers are not necessarily convex, as in state s0. This is in contrast to conjunctive queries where

the set of achievable probability thresholds is always convex [19, 24]. Secondly, as mentioned above,

SGs with multiple objectives are in general not determined [19], i.e., it is relevant which player fixes their

strategy first, thereby revealing it to the other player before the game starts. In fact, in the example above,

switching the quantification order allows Eve to take advantage by reacting to the strategy of Adam. For
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instance, she could then ensure that at least one of the targets is reached with probability at least 0.75.

Contributions and overview In summary, this paper makes the following contributions:

• A comprehensive overview of strategy (Section 3, Table 1) and computational complexity (Sec-

tion 4, Table 2) of disjunctive reachability-safety queries in stochastic games, significantly extend-

ing previous results from the literature [19, 27, 35]. In particular, motivated by the observation

that randomized strategies are undesirable or meaningless for certain applications (e.g., medical or

product design [23]), we study the setting of DQs under deterministic strategies for both players.

Notably, this lead to rather high complexities: Qualitative queries are PSPACE-hard and quantita-

tive reachability is even undecidable.

• A value iteration-style algorithm in the vein of [19] for approximating the Pareto sets of DQs or

CQs under the alternative asserted-exposure semantics (Section 5).

Related work SGs were introduced by Shapley [36] in 1953. Simple SGs—the turn-based variant with

a reachability objective—are one of the intriguing problems in NP∩coNP but not known to be in P [22].

See [21, 30] for an overview of solution algorithms. Turn-based SGs were studied with a variety of other

objectives, e.g. [12, 15, 16]. Other types of SGs include concurrent games [10, 31], limited information

games [2, 13], and bidding games [3].

Stochastic systems with multiple objectives have been extensively studied for more than a decade.

Markov decision processes, SGs with a single player, were investigated with multiple reachability or LTL

objectives [24] as well as multiple discounted sum [14], total reward [29] or mean payoff objectives [18].

Further, the question of percentile queries was addressed in [28, 35], and combinations of probabilistic

and non-probabilistic objectives in [7]. Non-standard multi-objective queries were developed together

with domain experts in [5].

For SGs with multiple objectives, many decidability questions are still open. For conjunctive reach-

ability, it is only known that the Pareto set can be approximated [1] with guaranteed precision, even in

non-stopping games. For total reward, the problem is proven decidable only for stopping games with

two-dimensional queries [9] but it can be approximated in higher dimensional stopping SGs [19]. If

only deterministic strategies are allowed, the exact problem is undecidable [19], and so are general-

ized mean-payoff objectives in SGs [37]. However, keeping mean-payoff above a certain threshold with

some probability is coNP-complete [11]. Further, lexicographic preferences over multiple reachability or

safety objectives can be reduced to single objectives [17]. The tool PRISM-games [32] implements com-

positional approaches to verification and strategy synthesis of several multi-objective problems [6, 33].

To the best of our knowledge, disjunctive queries were so far only considered as a special case of more

general Boolean combinations for expected rewards [19], mean-payoff SGs [37], and in deterministic

generalized reachability games on graphs [27].

Full version A full version of this paper including detailed proofs is available [38].

2 Preliminaries

General definitions. For sets A and B, the set of functions A→ B is written BA. The set of fi-

nite words over a non-empty set A is written A∗. For countable sets A we let Dist(A) := {P ∈ [0,1]A |

∑a∈A P(a) = 1} be the set of all probability distributions on A. The support of d ∈ Dist(A) is defined
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as supp(d) = {a ∈ A | d(a) > 0}. The i-th component of a vector ~x ∈ [0,1]n is denoted xi. We compare

vectors ~x,~y ∈ [0,1]n component-wise, i.e., ~x ≤~y iff xi ≤ yi for all i = 1, . . . ,n. A set X ⊆ R
n is convex

if for all ~x,~y ∈ X and p ∈ [0,1] it holds that p~x+ (1−p)~y ∈ X . The convex hull conv(X) of X is the

smallest convex superset of X . Given sets X ,Y ⊆R
n and a real number p∈ [0,1], we define the p-convex

combination pX +(1−p)Y := {p~x+(1−p)~y |~x ∈ X ,~y ∈Y}. The downward-closure of X ⊆ [0,1]n is de-

fined as dwc(X) := {~y ∈ [0,1]n | ∃~x ∈ X : ~y≤~x}. X is called downward-closed if X = dwc(X). A closed

half-space is a set {~x ∈R
n |~n ·~x≥ d} where~n ∈R

n \{~0} and d ∈R. A polyhedron is the intersection of

finitely many closed half-spaces. Polyhedra are convex.

Stochastic games and strategies. Intuitively, the games considered in this paper are played by

moving a pebble along the edges (called transitions from now on) of a finite directed graph. The vertices

(subsequently called states) of this graph are partitioned into three classes which determine the states

controlled by Eve, Adam, and the probabilistic environment, respectively:

Definition 1 (SG). A stochastic game (SG) is a tuple G = (SE,SA,SP,s0,P,Act), where SE⊎SA⊎SP =: S

are finite disjoint sets of states controlled either by Eve (SE), Adam (SA), or the probabilistic environment

(SP). The game starts in the initial state s0 ∈ S. Each s ∈ SE ∪ SA has a non-empty set Act(s) ⊆ S of

actions available to Eve (Adam, resp.). For all s ∈ SP, P : SP→Dist(S) is a probability distribution over

the successors of s.

For s ∈ SP and t ∈ S we write P(s, t) rather than P(s)(t). A state s ∈ S is called sink if either s ∈ SP
and P(s,s) = 1 or s ∈ S \ SP and Act(s) = {s}. P and Act together induce a directed graph on S. We

often sketch this game graph in our figures (e.g. Figure 1), drawing Eve’s, Adam’s and the probabilistic

states with boxes, diamonds and circles, respectively; and we omit the self-loops on sinks to ease the

presentation. For k ≥ 0, we let G ≤k be the restriction of G to k-steps, that is, G ≤k is obtained from G

by counting the transitions from s0 taken so far and entering an error sink once their number exceeds

k. A Markov decision process (MDP) is the 1-player version of an SG, i.e., either SE = /0 or SA = /0. A

Markov chain (MC) is a 0-player SG, i.e., S = SP. For technical reasons, we allow MDPs and MCs with

countably infinite state spaces. SGs, on the other hand, are always finite in this paper.

Strategies define the semantics of SGs. A (general) strategy for Eve is a function σ : S∗SE→Dist(S)
such that supp(σ(πs)) ⊆ Act(s) for all πs ∈ S∗SE. A strategy σ is deterministic if σ(πs) is a point-

distribution for all πs ∈ S∗SE, i.e., if it is not randomized.

To describe strategies by finite means (if possible), we use strategy automata. Formally, a strategy

automaton for Eve is a structure M = (M,µ ,ν ,m0) with M a countable set of memory elements, µ : S×
M→ M a memory update function, ν : SE×M→ Dist(S) a next move function, and m0 ∈M an initial

memory state. Given a strategy automaton M , the induced MDP is the game

G
M := ( /0, SA×M, (SP∪SE)×M, (s0,m0), PM , ActM ) ,

where the transition probability function PM is defined as follows: Let m,m′ ∈ M be arbitrary and

let s ∈ S. Then, if s ∈ SP, we let PM ((s,m),(s′,m′)) := P(s,s′) if µ(s′,m) = m′; if s ∈ SE, then

PM ((s,m),(s′,m′)) := ν((s,m))(s′) if µ(s′,m) = m′; and PM ((s,m),(s′,m′)) = 0 in all other cases.

Moreover, ActM ((s,m)) = {(s′,m′) | s′ ∈ Act(s)∧ µ(s′,m) = m′} for all (s,m) ∈ SA×M. M is called

a stochastic-update strategy if the memory update µ may additionally randomize over M (see [8] for

details). From the definition it is clear that M realizes a strategy in the general form σ : S∗SE→Dist(S).
We define the memory size of σ as the smallest k ∈ N∪{∞} such that there exists a strategy automaton

M = (M,µ ,ν ,m0) with |M|= k that realizes σ . If k =∞, then σ is infinite-memory, and otherwise finite-

memory. If k = 1, then σ is called memoryless. An MD strategy is both memoryless and deterministic.

The above definitions are analogous for the other player Adam, interchanging SE and SA.
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Throughout the paper, we consistently denote Eve’s strategies with σ and Adam’s strategies with τ .

We usually identify strategies with their realizing automata. Given a strategy σ , a counter-strategy τ is a

strategy in the induced MDP G σ and may depend on σ .

Reachability-safety queries and determinacy. Given an MC (S,s0,P) and a set T ⊆ S, the reach-

ability probability of T is P(♦T) := ∑π∈Paths(T ) Pr(π) where Paths(T ) is the set of finite paths π of the

form π = s0s1 . . . sk with k ≥ 0, sk ∈ T and si /∈ T for all i = 0, . . . ,k−1; and Pr(π) := ∏n−1
i=0 P(si,si+1).

Dually, we define P(�T) := 1−P(♦T), where T := S\T . Intuitively, P(♦T ) is the probability to even-

tually reach a target state in T and P(�T ) is the probability to stay forever within T , i.e., to avoid the

unsafe set T . We write P
σ ,τ to emphasize that we consider the probability measure in the Markov chain

G σ ,τ induced by some strategies σ ,τ .

Definition 2 (Disjunctive Queries [19]). Given an SG G with state space S, an n-dimensional disjunctive

query (DQ) for G is an expression of the form ϕ =
∨n

i=1P(⋆iTi) ≥ xi with ⋆i ∈ {♦,�}, Ti ⊆ S for all

i = 1, . . . ,n, and~x ∈ (0,1]n a threshold vector.

Note that we only allow (non-strict) lower bounds in DQs. This is w.l.o.g. as upper bounds on

reachability or safety can be recast as lower bounds on the dual objective. The standard semantics

of a DQ is defined as follows [19]: Eve can achieve1 ϕ , or equivalently, ϕ is achievable in G if

∃σ∀τ :
∨n

i=1P
σ ,τ(⋆iTi)≥ xi where σ ranges over all strategies of Eve, τ over those of Adam and P

σ ,τ is

the probability measure of the induced Markov chain G σ ,τ . A strategy of Eve witnessing achievability

of ϕ is called an achieving strategy. Note that the quantification order is such that Eve has to reveal her

strategy to Adam before the game actually starts. Since the games are not determined, this may be a

disadvantage (see [19] or our example in the introduction). Therefore, we also consider the alternative

semantics obtained by swapping the quantification order. We call this semantics asserted-exposure (∀∃
for short). In the ∀∃-semantics, Adam’s strategy is exposed to Eve before the game begins, i.e., ϕ is

∀∃-achievable if ∀τ∃σ :
∨n

i=1P
σ ,τ(⋆iTi)≥ xi holds. By definition, G is determined for ϕ iff the standard

and the alternative ∀∃-semantics coincide.

We will consider the following subclasses of DQs: If ⋆i = ♦ (⋆i =�) for all i = 1, . . . ,n, then we call

ϕ a reachability (safety) DQ. We say that ϕ is mixed to emphasize that it may contain both ♦ and �. If

~x = (1, . . . ,1) then ϕ is called qualitative DQ, and otherwise quantitative DQ. If each state contained in

a target/unsafe set is a sink then ϕ is called a sink DQ. All of the above notions are defined analogously

for conjunctive queries (CQs).

Pareto sets. If the threshold vector~x in a query ϕ has not been fixed, we can think of ϕ as a query

template. We define the set Pareto set for query template ϕ in a given SG G as

A (G ,ϕ) := {~x ∈ [0,1]n | ∃σ ∀τ :

n
∨

i=1

P
σ ,τ(⋆iTi)≥ xi }

and similarly for CQs. Further, for k ≥ 0, we call A (G ≤k,ϕ) the horizon-k Pareto set, i.e., the set

of points achievable if the game runs for at most k steps. We define A ∀∃(G ,ϕ) as the set of vectors

achievable in the alternative ∀∃-semantics. Note that in general, A (G ,ϕ) ⊆ A ∀∃(G ,ϕ), and equality

holds iff G is determined for all ϕ(~x), ~x ∈ [0,1]n. The Pareto sets A (G ,ϕ) and A ∀∃(G ,ϕ) generalize

the notion of lower and upper value in single-dimensional games. Indeed, they coincide for n = 1 as

single-dimensional SGs are determined [22]. Furthermore, A (G ,ϕ) is convex for CQs [19].

1We use the term “achieve” rather than “win” for consistency with previous works, e.g. [24, 19, 9].
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Table 1: Memory requirements for Eve in terms of the number n of objectives in the DQ. The lower

bounds in column “SG with deterministic strats.” apply already to sink queries.

SG with general strats. SG with deterministic strats. Non-SG with deterministic strats.

� / ♦ � / ♦ � ♦

Qual. none [Lem. 2] ≥
(

n
n/2

)

[Lem. 6]
(

n
⌊n/2⌋

)

[27] none [trivial]

Quant. 2n−1 [Lem. 1, 4, 5] ∞ [Cor. 1] —not applicable—

Goal-unfolding. The following construction is folklore (e.g. [27, 19]). Given an SG G with states

S and an n-dimensional query ϕ , we define the goal-unfolding Unf(G ,ϕ) of G with respect to ϕ as a

game with state space S×{0,1}n. Let (s,~v) be a state of the unfolding. Intuitively, Unf(G ,ϕ) remembers

which targets/unsafe sets have already been visited during a specific play. This is encoded in the n-bit

vector~v. That is, if G transitions from s to t, then in the unfolding (s,~v) moves to (t,~u) where~u is obtained

from ~v by setting all bits corresponding to the targets/unsafe sets containing t to one. Accordingly, the

initial state is (s0,(0, . . . ,0)). If ϕ is a sink query then the unfolding is trivial, i.e., equal to G . Strategies

in Unf(G ,ϕ) can be interpreted as strategies in G by incorporating the vectors ~v from the states of the

unfolding into the memory of the strategy.

3 Strategy Complexity

In this section we analyze the memory complexity of Eve’s achieving strategies for DQs in terms of the

query dimension, denoted n in the following. More formally, given a class Qn of DQs with n objectives,

we determine (or bound) a number b(n) such that

1. b(n) memory is necessary for the queries in Qn, i.e., there exists a game G and query ϕ ∈Qn such

that ϕ is achievable in G iff Eve may use at least b(n) memory;

2. b(n) memory is sufficient for the queries in Qn, i.e., for all games G and ϕ ∈Qn, if ϕ is achievable

in G , then Eve has an achieving strategy using at most b(n) memory.

To give a nuanced picture of the complexity, we distinguish the classes of qualitative vs. quantitative

DQs, safety vs. reachability DQs and study the restriction to deterministic vs. general (randomized)

strategies. We stress that the latter distinction applies to both players, i.e., in the deterministic-strategies

case, neither Adam nor Eve may play randomized strategies whereas in the general-strategies case, both

players may follow arbitrary—possibly randomized—strategies.

We briefly recall the case of non-stochastic games with deterministic strategies for both players. It

was shown in [27, Lem. 1] that
(

n
⌊n/2⌋

)

memory is necessary and sufficient for safety DQs. Notably, this

means that not the whole goal-unfolding is needed (though an exponentially large fragment). Reacha-

bility DQs, on the other hand, do not need memory at all in the purely deterministic setting because a

DQ
∨n

i=1P(♦Ti)≥ 1 boils down to reaching the set
⋃n

i=1 Ti, and MD strategies are sufficient for winning

reachability games on finite graphs.

In the rest of the section we first treat the general-strategies case (Section 3.1) and then study the

restriction to deterministic strategies (Section 3.2). Table 1 summarizes the results.

Theorem 1. The memory bounds in Table 1 are correct.
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3.1 Strategy Complexity under General Strategies

Recall from above that whenever we say that a certain class of strategies are “sufficient” or “necessary”,

we are implicitly assuming that Eve actually has a winning strategy.

Lemma 1. In the general-strategies case, deterministic strategies with at most 2n−1 memory states

suffice for mixed quantitative DQs. Moreover, MD strategies are sufficient for sink queries.

Proof (sketch). By [19, Theorem 7], MD strategies are sufficient for quantitative DQs with expected

reward objectives (see the formal definition in [19]). We reduce reachability and safety to expected

reward in the goal-unfolding [38]. The resulting MD strategy in the unfolding corresponds to a strategy

of Eve with at most 2n−1 memory.

Recall that even though Lemma 1 implies that deterministic strategies are sufficient for Eve, Adam

may still use randomization. In fact, we show in Corollary 1 in Section 3.2 that Lemma 1 does not hold

in the deterministic-strategies case where both players are forced to follow a deterministic strategy. Next

we either improve the bound from Lemma 1 or prove matching lower bounds. We consider qualitative

DQs first.

Lemma 2. In the general-strategies case, MD strategies suffice for mixed qualitative DQs.

Proof (sketch). It can be shown that a given strategy of Eve achieves
∨n

i=1P(⋆iTi)≥ 1 iff it achieves the

single objective P(⋆iTi)≥ 1 for at least one 1≤ i≤ n [38]. For the latter, MD strategies are sufficient [21].

The qualitative bounds (“≥ 1”) are crucial in the previous proof. Indeed, the equivalence in the

above proof sketch does not hold for quantitative bounds (a minimal counter-example is the game in

Fig. 1 started from s2 with bounds ≥ 1/2 for both objectives). For the quantitative setting where arbitrary

bounds are allowed, the following observation relates conjunctive and disjunctive queries and enables

us to reuse some known results about CQs. Intuitively, it states that qualitative reachability CQs can be

reduced to quantitative (qualitative) DQs in the case of general (respectively deterministic) strategies.

Lemma 3. For every SG G with a qualitative reachability CQ ϕ =
∧n

i=1P(♦Ti)≥ 1, there exists a game

G ′ (where Eve’s strategies σ are in one-to-one correspondence) and a

1. quantitative reachability DQ ϕ ′quant such that σ achieves ϕ in G iff σ achieves ϕ ′quant in G ′ under

general strategies;

2. qualitative reachability DQ ϕ ′qual such that σ achieves ϕ iff σ achieves ϕ ′qual under deterministic

strategies.

Proof (sketch). G ′ is constructed as follows: The original G is only played with probability 1/2. With the

remaining 1/2, Adam freely chooses one of the n targets T1, . . . ,Tn, after which the game ends immediately

(Figure 2, left). The following can be readily verified (see [38]): In the deterministic-strategies case,

each strategy σ of Eve achieves the CQ ϕ in G iff σ achieves the qualitative DQ
∨n

i=1P(♦Ti) ≥ 1 in

G ′. Otherwise, if randomization is allowed, then σ achieves ϕ in G iff it achieves the quantitative DQ
∨n

i=1P(♦Ti)≥
1
2
+ 1

2n
in G ′.

With Lemma 3 and a result of [27] we obtain a lower bound for quantitative reachability:

Lemma 4. In the general-strategies case, quantitative reachability DQs need 2n−1 memory.
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G

T1

...

Tn

1/2

1/2

A: Env.

chooses T1

start

B: Eve

chooses T2

T

C: Adam

chooses n−|T2|−1

targets

p(T2)

1−
p(

T 2
)

Figure 2: Left: Reduction of qualitative CQs to DQs (Lemma 3). Right: Game constructed in the proof

of Lemma 5. The probability p(T2) increases with |T2|. Eve must select exactly T2 = T1 in Stage B to

avoid visiting at least one of the targets in T with maximal probability.

Proof (sketch). [27, Lem. 2] describes a family of (deterministic) games (Gn)n≥1 where Eve needs 2n−1

memory to visit all n targets under deterministic strategies, i.e., to achieve a qualitative reachability CQ.

A more detailed analysis of the games Gn shows that even if both players may use general strategies, Eve

still needs 2n−1 memory [38]. We stress that this is non-trivial: in some cases, memory can be traded for

randomization to achieve qualitative DQs. A minimal example is an MDP with SE = {s0}, SP = {t1, t2},
P(t1,s0) = P(t2,s0) = 1, Act(s0) = {t1, t2}, T1 = {t1}, T2 = {t2}; the CQ P(♦T1) ≥ 1∧P(♦T2) ≥ 1 is

achievable by a memoryless randomized strategy but not by an MD strategy. By Lemma 3.1, we can

reduce each Gn to an SG with a quantitative reachability DQ where Eve’s winning strategies are the

same as those in the original G , i.e., they require at least 2n−1 memory.

We now prove a lower bound for safety DQs. To the best of our knowledge, unlike Lemma 4,

the bound for safety DQs does not easily follow from related works. Therefore we propose a new

construction for this case (shown on the right of Figure 2; see [38] for the proof).

Lemma 5. In the general-strategies case, quantitative safety DQs need 2n−1 memory.

In summary, quantitative DQs require the full goal-unfolding—which is of exponential size in n—

while qualitative ones do not need memory at all.

3.2 Strategy Complexity under Deterministic Strategies

Example 1. Consider the SG in Figure 3 (left). The qualitative DQ P(♦T1)≥ 1∨P(♦T2)≥ 1 is achiev-

able if Adam has to choose deterministically in s0: If he chooses the upper path, then Eve chooses T1 in

s1; conversely, if he chooses the lower path, then Eve moves to T2. Clearly, this strategy requires Eve to

use one bit of memory (i.e., memory size 2) and there is no memoryless strategy that achieves the query.

This example shows that Lemma 1 is not valid in the deterministic-strategies case: memory is needed

even for sink queries.

The above example indicates that the deterministic-strategies case is already “interesting” for sink

queries. Therefore—due to space limitations of the paper—we have decided to restrict our study of de-

terministic strategies to sink queries only. The somewhat counter-intuitive situation that more memory is

needed if less general strategies are allowed is due to the fact that only Adam benefits from randomiza-

tion, but not Eve. In fact, Eve can in general achieve more queries in the deterministic-strategies setting.

Nonetheless, the example in Figure 3 shows that Eve’s added power does not come for free: She has

to invest more resources (memory) on her side as well. The following shows that this is necessary in

general:
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s0

T1

T2

s1

T1

T2

s t2t1 T2T1

Figure 3: All probabilities are 0.5. Left: If only deterministic strategies are allowed, then Eve’s achieving

strategies for P(♦T1) ≥ 1∨P(♦T2) ≥ 1 need memory, despite the fact that targets/unsafe sets contain

only sinks. Right: There exists x such that the CQ P(♦T1) ≥ x∧P(♦T2) ≥ 1−x is achievable under

deterministic strategies iff infinite memory is allowed.

Lemma 6. In the deterministic-strategies case,
(

n
n/2

)

memory is necessary for qualitative reachability or

safety DQs. This holds even for sink queries.

Proof (sketch). We sketch the construction for qualitative reachability DQs. Let n = 2q be even. The

game comprises three stages, A, B, and C. In the initial Stage A, Adam specifies a combination TA of

q different targets. Those are then visited with probability 1/2 and the game ends. With the remaining

probability of 1/2, the game moves on to Stage B which is similar to stage A, but controlled by Eve. Let

TB be the set of q targets that Eve specifies in this stage. Consequently, with total probability 1/4, the

game enters the final stage C where Adam chooses and visits q+1 different targets TC. It follows that a

target is visited with probability 1 iff it is chosen in all three stages. The only achieving strategy of Eve

consists in selecting exactly TB = TA, requiring
(

n
q

)

memory. See [38] for the remaining details and the

adaptation of the construction to safety.

We consider quantitative DQs next. The following lemma is the quantitative-bounds version of

Lemma 3. The difference is, however, that the reduction only works under deterministic strategies

(see [38] for the proof).

Lemma 7. For every SG G with quantitative reachability CQ ϕ =
∧n

i=1P(♦Ti)≥ xi, there exists a game

G ′ (where Eve’s strategies σ are in one-to-one correspondence) and a quantitative reachability DQ ϕ ′

such that, under the assumption of deterministic strategies, σ achieves ϕ in G iff σ achieves ϕ ′ in G ′.

We can use the previous reduction to show that in general, infinite memory is necessary for achieving

quantitative DQs under deterministic strategies.

Lemma 8. For the MDP from Figure 3 (right), there exists x ∈ [0,1] such that the CQ P(♦T1) ≥ x∧
P(♦T2)≥ 1−x is only achievable by an infinite-memory strategy.

Proof. Every deterministic strategy σ can be identified with an infinite string σ = σ1σ2 . . . ∈ {0,1}
ω

where for all i ≥ 1, σi = 1 (σi = 0) indicates that σ moves to t1 (t2, resp.) when s is entered for the i-th

time. Clearly, Pσ (♦T1) = (0.σ)2, i.e., the probability to reach T1 is equal to the real number whose deci-

mal binary representation is the infinite string 0.σ . We claim that the above CQ P(♦T1)≥ x∧P(♦T2)≥
1−x with x = (0.110120130140...)2 can only be achieved by a strategy that uses infinite memory. If

not, then let M be a finite-state strategy automaton that achieves the CQ. Since M is finite, there exist

two distinct prefixes π1 6= π2 of 110120130140... such that after reading π1 or π2, the automaton M is

in the same memory state m. Suppose that from m on, M plays action sequence π ∈ {0,1}ω . Since

M is achieving, we must have that π1π = π2π = 110120130140... which, however, implies π1 = π2,

contradiction.
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Table 2: Complexity of the feasibility problem for DQs in the standard semantics. Column “SG with

deterministic strats.” applies exclusively to sink queries.

SG with general strats. SG with deterministic strats. Non-SG with deterministic strats.

� / ♦ � / ♦ � ♦

Qual. P [Lem. 9] ≥ PSPACE [Lem. 12] PSPACE [27] P [trivial]

≤ EXPTIME [Lem. 13] / ?

Quant. ≥ PSPACE [Lem. 11,10] undecidable [Lem. 14] —not applicable—

≤ NEXPTIME

Corollary 1. In general, infinite memory is necessary for achieving quantitative reachability or safety

DQs under deterministic strategies. This holds even for sink queries.

Proof. Apply the reduction from Lemma 7 to the MDP from Lemma 8. For safety notice that in the

MDP, P(�T 1)≥ x iff P(♦T2)≥ x.

4 Computational Complexity

In this section, we study the complexity of the achievability problem for DQs in the standard seman-

tics, i.e., the decision problem “∃σ∀τ :
∨n

i=1P
σ ,τ(⋆i) ≥ xi” in some given game. We consider the same

variations of the problem as in Section 3, that is, qualitative vs. quantitative DQs, reachability vs. safety

queries and deterministic vs. general strategies. For the complexity theoretic results, we assume that all

transition probabilities in the games and thresholds in the queries are rational numbers given as binary-

encoded integer pairs.

We again briefly discuss the case of purely deterministic games on graphs. [27, Theorem 1] shows

that, in deterministic games, qualitative safety DQs are PSPACE-complete via a reduction from quan-

tified Boolean formulas. Reachability DQs, as mentioned in Section 3.1, can be reduced to solving a

standard single-target reachability game which can be solved in P. We now present our results in detail,

first for general (Section 4.1) and then for deterministic strategies (Section 4.2). Table 2 summarizes the

results.

Theorem 2. The complexity bounds in Table 2 are correct.

4.1 Computational Complexity under General Strategies

Lemma 9. In the general-strategies case, qualitative mixed DQs are decidable in P.

Proof. As in Lemma 2, in the qualitative case it suffices to check for each objective ⋆iTi, i = 1, . . . ,n,

⋆i ∈ {♦,�}, individually whether Eve can satisfy it with probability 1. Hence n queries to a polynomial

time algorithm for qualitative simple stochastic games [25] suffice.

Lemma 10. In the general-strategies case, quantitative reachability DQs are PSPACE-hard.

Proof. The feasibility problem for qualitative reachability CQs is PSPACE-hard, which holds already

for MDPs where SA = /0 [35, Lem. 2]. Lemma 3.1 in Section 3.1, reduces the MDP CQ problem to a

quantitative DQ problem in an SG in polynomial time.
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x1
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s2
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s3
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2 1 2

1,2 2 1

Figure 4: Example reduction from Lemma 12 for the QBF ∃x1∀x2∃x3(x1∧ x2∧ x3)∨ (x2∧ x3). Numbers

in target states indicate whether they belong to T1 and/or T2. The QBF is true as witnessed by Eve’s

strategy that first goes to x1 and then to x3 if Adam had selected x2 and otherwise to x3.

Lemma 11. In the general-strategies case, quantitative safety DQs are PSPACE-hard.

Proof (sketch). It can be shown that quantitative reachability CQs with strict bounds in MDPs can be

reduced to quantitative safety DQs (with non-strict bounds) in SGs. We prove that strict-bounded reach-

ability CQs in MDPs are PSPACE-hard which is done by analyzing a construction from [35, Lem. 2] in

greater detail (see [38]).

PSPACE-hardness in the previous two lemmas is caused by the exponential size of the goal-unfolding

that can, as we have shown in Section 3.1, not be avoided in general. Indeed, for sink queries the com-

plexity of quantitative (mixed) DQs drops to NP-complete in the general-strategies case [19, Corollary

1], where the upper bound stems from the fact that MD strategies suffice and can be verified in polyno-

mial time using linear programming [24].

Regarding upper bounds on quantitative DQ feasibility, we remark that the problem can be decided in

NEXPTIME: Guess an (exponentially large) MD strategy σ in the goal unfolding, consider the induced

MDP G σ and verify in polynomial time in the size of G σ that Adam does not have a strategy violating

all thresholds at once by using the multi-objective MDP algorithm from [24]. We currently do not know

of a tighter upper bound.

4.2 Computational Complexity under Deterministic Strategies

As in Section 3.2, we consider only sink queries in this section.

Lemma 12. Under deterministic strategies, qualitative reachability and safety DQs are PSPACE-hard,

even in the case of sink queries.

Proof (sketch). Inspired by similar constructions in [27, 35], we reduce from the problem of deciding

truth of a quantified Boolean formula (QBF). See Figure 4 for an example and [38] for the full proof.

Notably, the corresponding conjunctive problem in the setting of Lemma 12 (qualitative sink CQ,

deterministic strategies) can be solved in P as it reduces to simply checking if the intersection
⋂n

i=1 Ti

can be reached with probability 1. Contrary to most other results, Lemma 12 thus identifies a setting

where DQs are much harder than CQs. Moreover, due to the restriction to sink queries, Lemma 12 also

yields PSPACE-hardness for disjunctions of expected reward objectives under deterministic strategies.

In the general-strategies case, such expected reward DQs are decidable in NP [19]. Next we show an

upper bound for qualitative safety DQs:

Lemma 13. In the deterministic-strategies case, qualitative safety sink DQs are decidable in EXPTIME.
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F(X)s Φ(X )s

s ∈ SA
⋂

t∈Act(s) Xt

⋃

t∈Act(s)Xt

s ∈ SE conv
(

⋃

t∈Act(s)Xt

) {

conv
(

⋃

t∈Act(s)Xt

)

| X ∈̇X
}

s ∈ SP ∑t∈S P(s, t)Xt

{

∑t∈S P(s, t)Xt | X ∈̇X
}

Figure 5: The value iteration operators F and Φ for computing A (G ≤k,ϕ) and A ∀∃(G ≤k,ϕ), respec-

tively.

Proof (sketch). The proof relies crucially on the fact that non-achievability of a qualitative safety DQs

can be witnessed after at most a bounded number steps of the game. Indeed, if σ is a non-achieving

strategy of Eve, then Adam has a counter-strategy that can reach all the unsafe sets T with positive

probability after at most |S| steps of the game. The result then follows by constructing a polynomially

space-bounded alternating Turing machine that simulates the game for at most |S| steps and accepts iff

the query is not achievable. We handle probabilistic branching via backtracking using a stack whose

content remains of polynomial size throughout the execution (see [38] for details).

The above proof cannot simply be extended to reachability because, intuitively, reaching a target with

probability 1 may only occur in the limit. In fact, the question whether qualitative reachability DQs are

decidable under deterministic strategies remains open.

Regarding the quantitative case, [19, Theorem 3] proves that reachability CQs are undecidable under

deterministic strategies. Thus with Lemma 7 we also have:

Lemma 14. Quantitative reachability DQs are undecidable under deterministic strategies.

5 Value Iteration

In a nutshell, value iteration (VI) algorithms in general evaluate the k-step game G ≤k using information

about the game G ≤k−1 up to some reasonable k. In this section, we present a VI-style algorithm for

computing the Pareto sets A (G ≤k,ϕ) or A ∀∃(G ≤k,ϕ ′) for a given game G , DQ ϕ or CQ ϕ ′, and step

bound k≥ 0. Consequently, we do not fix a threshold vector~x in our queries but consider query templates

instead. To keep the presentation simple, we focus on general-strategies and consider only sink queries.

We briefly recall the VI from [19] (subsequently called CQ-VI) that for a given CQ ϕ successively

outputs A (G ≤k,ϕ) for all k ≥ 0. Let C be the set of all downward-closed polyhedra in [0,1]n and let

X ∈ C
S. In the following, we write Xs for X(s). The update function F : CS → C

S is defined according

to Figure 5. Note that F is well-defined, i.e., always yields downward-closed polyhedra. For CQ ϕ =
∧n

i=1P(⋆iTi) ≥ xi and each s ∈ S define the n-dimensional zero-one vector 1
ϕ
s , such that (1

ϕ
s )i := 1 iff

s ∈ Ti and let X0(ϕ)s := dwc(1
ϕ
s ). Then [19] implies that Fk(X0(ϕ))s0

= A (G ≤k,ϕ) for all k ≥ 0.

We now address the question whether an iteration analogous to CQ-VI can be devised for DQs.

CQ-VI computes the horizon-(k+1) Pareto set of any given state by taking only the horizon-k sets of its

successors (and the relevant probability distribution) into account. For DQs, this is impossible in general:

Observation 1. Suppose s ∈ S has successors s1,s2. In general, the horizon-k Pareto sets of s1 and s2

w.r.t. a DQ do not uniquely determine the horizon-(k+1) Pareto set of s.
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Figure 6: Left: The successors of both s0 and t0 have the same Pareto set w.r.t. the DQ P(�T1) ≥
x1 ∨P(�T2) ≥ x2, but the Pareto sets of s0 and t0 are different. Right: Example run of Algorithm 1

for k = 2 and query P(♦T1) ≥ x1 ∧P(♦T2) ≥ x2. At s2, the rightmost polyhedron is removed by the

µ-operation in line 4. The result is the intersection of the two polyhedra at s0.

Proof. Consider the game in Figure 6 (left) and the DQ ϕ = P(�T1)≥ x1∨P(�T2)≥ x2. The horizon-1

Pareto sets of s1,s2 and t1, t2, as well as the horizon-2 sets of s0 and t0 are sketched next to the corre-

sponding state. We claim that the threshold vector (x1,x2) = (0.75,0.75) is achievable from t0, but not

from s0: As deterministic strategies suffice for Eve, we can assume by symmetry that she moves to T1 in

s1. But then Adam can respond by moving to T2 in s2 and both �T1 and �T2 are satisfied with probability

exactly 0.5. Thus (0.75,0.75) is not achievable. However, at t2 we can assume by symmetry that Adam

moves to T1 with probability ≥ 0.5 and so �T2 is satisfied with probability ≥ 0.75 from t0.

Intuitively, the example in Figure 6 demonstrates that—unlike in CQ-VI—the Pareto sets alone do not

convey enough information to allow for a sound VI. In the remainder of this section we present a work-

around for this problem. The idea is to account for the missing information by extending the domain of

VI to sets of Pareto sets. We will not work with DQs directly but with CQs in the ∀∃-semantics. This is

justified because non-achievability of a DQ can be recast as follows:

¬∃σ ∀τ
n
∨

i=1

P
σ ,τ(⋆iTi)≥ xi ⇐⇒ ∀σ ∃τ

n
∧

i=1

P
σ ,τ(⋆iTi)> 1− xi (1)

where ♦ = � and � = ♦. That is, for deciding achievability of a DQ ϕ =
∨n

i=1P(⋆iTi) ≥ xi, we can

equivalently consider the dual CQ ϕ :=
∧n

i=1P(⋆iTi) > 1−xi from (1) under the ∀∃-semantics in the

game G̃ where the roles of Adam and Eve have been swapped. In fact, with (1), the whole Pareto set

A (G ,ϕ) can be recovered from A ∀∃(G̃ ,ϕ).
To define our VI, we introduce some auxiliary notation first. P(C) denotes the powerset of C. For

mappings X ∈ C
S and X ∈P(C)S from states to (sets of) polyhedra, we write X ∈̇X iff X(s) ∈X (s)

for all s ∈ S. Further, we let {X} be the lifting of X to P(C)S, i.e., {X}s := {Xs}. Formally, for any fixed

CQ ϕ our new VI can be seen as a function Φ : P(C)S→P(C)S and is defined according to Figure 5.

The iteration is started with X 0(ϕ) := {X0(ϕ)}, where X0(ϕ) is the same initial element as for CQ-VI.

Lemma 15. For all k ≥ 0 we have that
⋂

(

Φk(X 0)s0

)

= A ∀∃(G ≤k,ϕ).

Proof (sketch). It can be shown that for all k ≥ 0, the set Φk(X 0)s0
contains the Pareto sets achievable

by Eve in the k-step MDPs induced by each possible deterministic k-step strategy τ of Adam [38]. The

final intersection over Φk(X 0)s0
is due to the outer ∀-quantifier in the ∀∃-semantics.

The iteration according to Lemma 15 is essentially equivalent to enumerating all possible determin-

istic k-step strategies of Adam and analyzing the induced MDPs. In the worst case, there are doubly
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exponentially many (in k) such strategies and thus the number of polyhedra |Φk(X 0)s| maintained per

state s ∈ S in the k-th step is also at most doubly exponential. This can be improved. In general, not

all k-step strategies have to be considered: If for k-step strategies τ ,τ ′ it holds that the set of points

achievable by Eve in the induced MDP G τ is contained in set of points achievable in G τ ′ , then only τ

is relevant and τ ′ can be discarded. Intuitively, Adam would always (independently of the thresholds

~x) prefer τ over τ ′ in such a situation. We can incorporate this observation into our value iteration: Let

µ : P(C)S→P(C)S be the function that removes the non-inclusion-minimal polyhedra of each Xs. We

can then iterate µ ◦Φ instead of Φ without changing the result of the “final intersection” in Lemma 15.

We summarize the overall procedure as Algorithm 1.

Theorem 3. Algorithm 1 is correct.

Experiments. To assess the complexity of Algorithm 1 in practice we have built a prototypical

implementation2 using the PARMA POLYHEDRA LIBRARY [4]. We have tested our implementation on

a variant of the smart heating example from [9] that was itself inspired from the case study in [34].

Further, we consider randomly generated 2-dimensional games with 10 states (see [38] for more details).

To determine the relative overhead of our algorithm compared to CQ-VI we consider the number nk
s of

polyhedra maintained at state s in iteration k. For the floor heating example we found that nk
s = 1 for all

k ≥ 0 and s ∈ S, which means that Adam has a unique optimal strategy from each s and step-bound k.

Moreover, the game is determined. For the randomly generated games, we observed that approximately

90% of them also had nk
s = 1 for all k ≥ 0 and s ∈ S. We conjecture that this is indeed a typical situation

(as in the floor heating example), however, 90% might be a too high estimate due to trivial random games.

In the following, we only consider “hard” instances with nk
s > 1 for at least one state s and some k ≥ 0.

In Table 4, we report the mean number of polyhedra nk = 1
|S| ∑s∈S nk

s of 100 “hard” games for various

iteration counts k. The empirical average of nk over the 100 instances that were processed within the

timeout is given in column E[nk] and the number of timeouts (10 seconds) in column T/O. We have also

compared the algorithm with and without the µ-operation in Line 4 of Algorithm 1 (columns µ ◦Φ and

Φ, respectively).

In summary, our experiments show that in many cases the necessary number of polyhedra is low

enough to be feasible, often even only 1. In “hard” cases, our results show that after dozens of iterations

the number of polyhedra blows up dramatically, frequently resulting in a timeout (which is why the num-

bers for Φ decrease after 10 iterations, as only the instances with lower nk finish). This highlights the

difficulty of DQs compared to CQs. Still, using our optimization µ , in many “hard” cases the compu-

tation finishes and the number of polyhedra per state stays below 10, and thus is 2 orders of magnitude

smaller than without µ .

6 Conclusion and Future Work

We have presented a detailed picture of computational and strategy complexity of SGs with DQ winning

conditions. The results were obtained in part by providing reductions from CQs to DQs and applying

results from the literature. Future work on the complexity side includes closing the gaps in Tables 1

and 2; however, we conjecture that this requires significant new insights. For example, a major obstacle

towards proving PSPACE membership of the quantitative general-strategies DQs problem is that one

has to reason about exact reachability probabilities in the exponentially large goal-unfolding. It is not

2Available at https://doi.org/10.5281/zenodo.5047440

https://doi.org/10.5281/zenodo.5047440
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Algorithm 1: Value Iteration for CQs in the asserted-exposure

(∀∃) semantics.

Input: Game G , (mixed) CQ ϕ , horizon k ≥ 0

Output: The horizon-k Pareto set A ∀∃(G ≤k,ϕ)
1: X ← {X0(ϕ)} ⊲ Initialization

2: for i from 1 to k do

3: X ←Φ(X ) ⊲ Apply Φ according to Figure 5

4: X ← µ(X ) ⊲ Keep only ⊆-minima of each Xs

5: return
⋂

Xs0
⊲ Intersection of curves at initial state

Table 3: Experimental results for a

fixed timeout of 10s.

E[nk] T/O

k Φ µ ◦Φ Φ µ ◦Φ

1 1.2 1.1 0 0

5 16.1 1.8 0 0

10 526.3 6.8 63 12

20 202.4 5.4 80 30

100 78.9 2.6 90 50

at all obvious that the number of bits needed for the rational representations of these quantities remains

polynomially bounded.

We have also argued that DQs are equivalent to CQs in the optimistic “asserted-exposure” (∀∃) se-

mantics obtained by changing the quantification order over strategies—unlike in simple SGs, this makes

a difference since our games are not always determined. Moreover, we have formulated the first VI-style

algorithm for DQs in the standard and CQs in the ∀∃-semantics. It should be straightforward to extend

our algorithm to expected rewards as well. Another interesting application of the algorithm is to certify

determinacy (for a finite step bound). Regarding future work, it would be appealing to implement the

algorithm in a tool such as PRISM-games and to experiment with more realistic case studies. Yet another

direction is to investigate (counter-)strategy synthesis for Eve in the ∀∃-semantics, e.g., by constructing

strategy templates where some choices depend on Adam’s observable strategy.
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