
D. Bresolin and P. Ganty (Eds.): 12th International Symposium

on Games, Automata, Logics, and Formal Verification (GandALF 2021)

EPTCS 346, 2021, pp. 18–34, doi:10.4204/EPTCS.346.2

© A. R. Balasubramanian, C. Weil-Kennedy

This work is licensed under the

Creative Commons Attribution License.

Reconfigurable Broadcast Networks and Asynchronous

Shared-Memory Systems are Equivalent

A. R. Balasubramanian Chana Weil-Kennedy

Technical University of Munich
Munich, Germany *

bala.ayikudi@tum.de chana.weilkennedy@in.tum.de

We show the equivalence of two distributed computing models, namely reconfigurable broadcast

networks (RBN) and asynchronous shared-memory systems (ASMS), that were introduced indepen-

dently. Both RBN and ASMS are systems in which a collection of anonymous, finite-state processes

run the same protocol. In RBN, the processes communicate by selective broadcast: a process can

broadcast a message which is received by all of its neighbors, and the set of neighbors of a process

can change arbitrarily over time. In ASMS, the processes communicate by shared memory: a pro-

cess can either write to or read from a shared register. Our main result is that RBN and ASMS can

simulate each other, i.e. they are equivalent with respect to parameterized reachability, where we are

given two (possibly infinite) sets of configurations C and C ′ defined by upper and lower bounds on

the number of processes in each state and we would like to decide if some configuration in C can

reach some configuration in C ′. Using this simulation equivalence, we transfer results of RBN to

ASMS and vice versa. Finally, we show that RBN and ASMS can simulate a third distributed model

called immediate observation (IO) nets. Moreover, for a slightly stronger notion of simulation (which

is satisfied by all the simulations given in this paper), we show that IO nets cannot simulate RBN.

1 Introduction

In this paper, we consider three models of distributed computation, one in which communication happens

by (selective) broadcasts, another in which communication happens by means of a shared memory, and

finally one in which communication happens by observation. We first expand a bit more on these models,

then describe our main results and finally derive some consequences from these results.

The first model that we consider is reconfigurable broadcast networks (RBN)[12, 11]. In this model,

we have a collection of anonymous, finite-state processes executing the same protocol. Further, every

process has a set of neighbors. At each step, a process can broadcast a message which is then received by

all of the processes in its neighborhood. The neighborhood topology is reconfigurable, meaning that the

set of neighbors of a process can change arbitrarily between two steps. Parameterized verification of RBN

aims to prove that a property is correct, irrespective of the number of participating processes. Dually, it

attempts to find an execution of some population of processes for which a property is violated. Within

this context, the complexity of different variants of (parameterized) reachability and repeated coverability

have been studied for RBN [12, 11, 8]. Moreover, many extensions of RBN with clocks, registers and

probabilities have been proposed and studied, mainly within the perspective of parameterized verification

[10, 5, 4].

The second model that we consider is a formal model of asynchronous shared-memory systems

(ASMS)[13, 7, 6]. In this model, we have a collection of anonymous, finite-state processes executing the

*This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020

research and innovation programme under grant agreement No 787367 (PaVeS).

http://dx.doi.org/10.4204/EPTCS.346.2
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

A. R. Balasubramanian, C. Weil-Kennedy 19

same protocol, and a single register which all processes can access to perform a read/write operation. The

set of values that can be stored in this register is finite. No locks onto the register are allowed and so no

process can perform a sequence of atomic operations whilst preventing other processes from accessing

the register. Similar to RBN, major questions of interest in ASMS are those pertaining to parameterized

verification, i.e. finding bad executions over some population of processes. The complexity of some

(parameterized) reachability and model-checking questions for ASMS have been explored in a series of

papers [13, 14, 7]. Further extensions of this model with leaders, stacks, etc. have also been studied

[14, 9, 20, 18]. Finally, [6] considers ASMS in the setting in which a stochastic scheduler picks a process

(uniformly at random) at each step to be executed, and under this setting studies the question of whether

a given state can be reached by some process almost-surely, i.e., with probability 1.

The third model that we consider is immediate observation Petri nets (IO nets) [15, 17], which were

introduced with motivations from the field of population protocols [2, 1]. Intuitively, in this model, we

have a collection of anonymous, finite-state processes executing the same protocol. The only communi-

cation allowed between processes is observation, i.e., a process can only observe that another process is

at some other state, and based on this observation can execute a step. The process being observed cannot

detect if some process is observing it. Motivated by application to population protocols, the authors of

[15, 17] study parameterized reachability questions for IO nets.

In this paper, we show that RBN and ASMS can simulate each other, with respect to (parameterized)

reachability. Roughly speaking, we show that any instance of a parameterized reachability question for

RBN can be efficiently translated to an instance of parameterized reachability for ASMS and vice versa.

More specifically, we consider the question of cube-reachability. In the cube-reachability question, we

are given an instance of a model (which can be either an RBN, an ASMS or an IO net) and two sets of

configurations C ,C ′, each of them defined by lower and upper bounds on the number of processes in

each state. (The upper bounds on some states might be ∞, which means that we allow arbitrary number

of processes in that state). We would then like to decide if there is a configuration in C which can reach

a configuration in C ′. As we shall explain in the next section, the cube-reachability question covers

parameterized reachability and coverability problems, parameterized reachability problems with leaders,

and allows for a uniform transfer of results between the models that we study in this paper.

Our main result is that the cube-reachability questions for RBN and ASMS are polynomial-time

equivalent to each other. This result, along with the constructions achieving this result, enable us to

translate various parameterized reachability results from RBN to ASMS and vice versa. First, we show

that a special case of cube-reachability, called unbounded initial cube reachability, is PSPACE-complete

for ASMS, by using our reduction and already existing similar results on RBN. Then, we introduce the

model of RBN-leader protocols and use already existing results on ASMS-leader protocols to prove that

the RBN-leader reachability problem is NP-complete. Finally, we show that the almost-sure coverability

problem for RBN is decidable in EXPSPACE by translating the analogous result for ASMS [6].

Additionally, we show that the cube-reachability problem for IO nets reduces to the cube-reachability

problem for RBN, leading to a transfer of results from RBN to IO nets. For the other direction, we

actually show an impossibility result. We define a stronger form of reduction for the cube-reachability

problem and we notice that the reductions given in this paper all satisfy this stronger property. Then,

using results from IO net theory, we show that there can be no reduction from the cube-reachability

problem for RBN to the cube-reachability problem for IO nets which satisfies this stronger property. We

leave open the problem of whether there can exist other reductions from RBN to IO nets.

The rest of the paper is organized as follows: In Section 2, we present some preliminary definitions

and notations, then in Section 3, we describe RBN and ASMS. Section 4 proves our main result that

RBN and ASMS can simulate each other. Section 5 presents some transfer of results between RBN and

20 RBN and ASMS are Equivalent

ASMS. In Section 6, we introduce IO nets, show that they can be simulated by RBN, and prove that the

other direction is not true for a stronger form of simulation. For space reasons, all missing proofs are

relegated to the full version of this paper [3].

2 Preliminaries

Multisets. A multiset on a finite set E is a mapping C : E → N, i.e. for any e ∈ E , C(e) denotes

the number of occurrences of element e in C. We let M(E) denote the set of all multisets on E . Let

He1, . . . ,enI denote the multiset C such that C(e) = |{ j | e j = e}|. We sometimes write multisets using

set-like notation. For example, H2 ·a,bI and Ha,a,bI denote the same multiset. Given e ∈ E , we denote

by eee the multiset consisting of one occurrence of element e, that is HeI. Operations on N like addition or

comparison are extended to multisets by defining them component wise on each element of E . Subtrac-

tion is allowed as long as each component stays non-negative. Given a multiset C on E and a multiset C′

on E ′ such that E ∩E ′ = /0, we denote by C ·C′ the multiset on E ∪E ′ equal to C on E and to C′ on E ′.

We call |C|
def
= ∑e∈E C(e) the size of C, and ‖C‖

def
= {e |C(e) > 0} the support of C. Given E ′ ⊆ E define

C(E ′)
def
= ∑e∈E ′ C(e).

Cubes. Given a finite set Q, a cube C is a subset of M(Q) described by a lower bound L : Q → N and

an upper bound U : Q → N∪{∞} such that C = {C : L ≤ C ≤ U}. Abusing notation, we identify the

set C with the pair (L,U). All the results in this paper are true irrespective of whether the constants are

encoded in unary or binary.

Reachability. Let T = (S,→) be a transition system where S is a set of configurations and → is a

binary relation on S called the transition (or) step relation. Given configurations C and C′, we say C′

is reachable from C if C
∗
−→ C′ , where

∗
−→ denotes the reflexive-transitive closure of the step relation.

Let S be a set of configurations. The predecessor set of S is pre∗
T
(S)

def
= {C′|∃C ∈ S .C′ ∗

−→C}, and

the successor set of S is post∗
T
(S)

def
= {C|∃C′ ∈ S .C′ ∗

−→ C}. The immediate predecessor set of S

is preT (S)
def
= {C′|∃C ∈ S .C′ →C}, and the immediate successor set of S is postT (S)

def
= {C|∃C′ ∈

S .C′ →C}. When it is clear from the context, we will drop the T subscript. The reachability problem

consists of deciding, given a system T and configurations C,C′, whether C′ is reachable from C in T .

Cube reachability. If T is a transition system whose set of configurations is the set of all multisets on

a finite set Q, then the reachability problem can be generalized to the cube-reachability problem which

consists of deciding, given T and two cubes C ,C ′ over Q, whether there exists configurations C ∈ C

and C′ ∈ C ′ such that C′ is reachable from C in T . If this is the case, we say C ′ is reachable from C .

As mentioned before, the cube-reachability problem generalizes the reachability problem. It also

generalizes the coverability problem : Given a configuration C and a state q ∈ Q, decide if there exists C′

such that C
∗
−→C′ and C′(q)≥ 1. It can also talk about parameterized reachability problems, for e.g., given

two finite sets of states I and F , do there exist configurations C and C′ such that ‖C‖ ⊆ I,‖C′‖ ⊆ F and

C
∗
−→C′. Further, the cube-reachability problem is important in the model of immediate observation Petri

nets (IO nets). This model was introduced to study immediate observation population protocols [15, 17],

and the correctness problem for these protocols is solved using cube-reachability in IO nets.Additionally,

as we will see in Section 5.2, the cube-reachability problem is a generalization of the so-called leader

A. R. Balasubramanian, C. Weil-Kennedy 21

a1

b1

c1

a2

b2

c2

a3

b3

c3

tok

sent

!1

?1

?1

!2
?2

?2

!3
?3

?3

!4

Figure 1: An RBN simulating a counter to 23.

reachability problem and allows for an elegant way to transfer results between the models that we study

in this paper.

3 Two Models

3.1 Reconfigurable Broadcast Networks

Reconfigurable broadcast networks (RBN) [12, 11] are networks comprising an arbitrary number of

finite-state, anonymous processes and a communication topology specifying the presence or absence of

communication links between different processes. During a step, a process can broadcast a message

which is immediately received by all of its neighbours. The process and its neighbours then update their

states according to a transition relation. Before each such broadcast step, the communication topology

can reconfigure in an arbitrary manner. Since our main focus in this paper is regarding reachability in this

model, we can forget the communication topology and simply define the semantics of an RBN directly

in terms of collections of processes.

Definition 1. A reconfigurable broadcast network is a tuple R = (Q,Σ,δ) where Q is a finite set of states,

Σ is a finite alphabet and δ ⊆ Q×{!a,?a | a ∈ Σ}×Q is the transition relation.

If (p, !a,q) (resp. (p,?a,q)) is a transition in δ , we will denote it by p
!a
−→ q (resp. p

?a
−→ q). A

configuration C of an RBN R is a multiset over Q, which intuitively counts the number of processes

in each state. Given a letter a ∈ Σ and two configurations C and C′ we say that there is a step C
a
−→ C′

if there exists a multiset Ht, t1, . . . , tkI of δ for some k ≥ 0 satisfying the following: t = p
!a
−→ q, each

ti = pi
?a
−→ qi, C ≥ ppp+∑i pppiii, and C′ =C− ppp−∑i pppiii+qqq+∑i qqqiii. We sometimes write this as C

t+t1,...,tn
−−−−−→C′,

and intuitively it means that a process at the state p broadcasts the message a and moves to q, and for

each 1 ≤ i ≤ k, there is a process at the state pi which receives this message and moves to qi. We denote

by
∗
−→ the reflexive and transitive closure of the step relation. A run is then a sequence of steps.

Example 1. Consider the RBN of Figure 1, with set of states {tok,sent} ∪ {ai,bi,ci|1 ≤ i ≤ 3}. It is

inspired by a similar example described in Section 5.1 of [6]. Let C0 be the cube which puts exactly

one process in each ai, an arbitrary number of processes in tok and 0 processes elsewhere. That is,

C0 = (L,U) such that L(ai) = U(ai) = 1 for all i, L(tok) = 0 and U(tok) = ∞, and L(q) = U(q) = 0

for all other states q. Let C f be the cube which puts at least one process in c3 and an arbitrary number

elsewhere. Suppose some configuration in C0 reaches some configuration in C f . By construction, for a

process to reach c3 it must start in a3 and receive 3 twice. For a process to broadcast 3 it must start in

a2 and receive 2 twice, and for a process to broadcast 2 it must start in a1 and receive 1 twice. So a run

22 RBN and ASMS are Equivalent

a1 a2 a3 a4

b3b2b1 c1 c2 c3

W (1)

W (2)

R(3) R(4)

R(1) W (3) R(2) W (4)

Figure 2: An example of an ASMS

from a configuration of C0 to a configuration of C f must contain at least 23 broadcasts of 1. Since the

only way to broadcast 1 is for a process to go from tok to sent, there must be at least 23 processes in tok

in the initial configuration of C0.

3.2 Asynchronous Shared-Memory Systems

Asynchronous shared-memory systems (ASMS) [14, 13] consist of an arbitrary number of finite-state,

anonymous processes. These processes can communicate with each other by means of a single shared

register, to which they can either write a value or from which they can read a value.

Definition 2. An asynchronous shared-memory system (ASMS) is a tuple P = (Q,Σ,δ) where Q is a

finite set of states, Σ is a finite alphabet, and δ ⊆ Q×{R,W}×Σ×Q is the set of transitions. Here R

stands for read, and W stands for write.

We use p
R(d)
−−→ q (resp. p

W(d)
−−−→ q) to denote that (p,R,d,q)∈ δ (resp. (p,W,d,q) ∈ δ). The semantics

of an ASMS is given by means of configurations. A configuration C of an ASMS is a multiset over Q∪Σ

such that ∑d∈ΣC(d) = 1, i.e., C contains exactly one element from the set Σ. Hence, we sometimes

denote a configuration C as (M,d) where M is a multiset over Q (which counts the number of processes

in each state) and d ∈ Σ (which denotes the content of the shared register). The value d will be denoted

by data(C).
A step between configurations C = (M,d) and C′ = (M′,d′) exists if there is t = (p,op,d′′,q) ∈ δ

such that M(p) > 0, M′ = M − ppp+ qqq and either op = R and d = d′ = d′′ or op = W and d′ = d′′. If

such a step exists, we denote it by C
t
−→C′ and we let

∗
−→ denote the reflexive transitive closure of the step

relation. A run is then a sequence of steps. Given a sequence of transitions σ = t1, . . . , tn, we sometimes

use C
σ
−→C′ to denote that there is a run of the form C

t1−→C1
t2−→ . . .Cn−1

tn−→C′.

A cube C = (L,U) of an ASMS P = (Q,Σ,δ) is defined to be a cube over Q∪ Σ satisfying the

following property : There exists d ∈ Σ such that L(d) = U(d) = 1 and L(d′) = U(d′) = 0 for every

other d′. Hence, we sometimes denote a cube C as (L,U,d) where (L,U) is a cube over Q and d ∈ Σ.

Membership of a configuration C in a cube C is then defined in a straightforward manner. The cube-

reachability problem for ASMS is then to decide, given P and two cubes C ,C ′ whether C can reach

C ′, i.e., whether there are configurations C ∈ C ,C′ ∈ C ′ such that C
∗
−→C′.

Example 2. Consider the ASMS of Figure 2 where the alphabet is {#,1,2,3,4}. Let C be the cube

which puts exactly one process in a1, arbitrary number of processes in b1 and c1 and exactly 0 processes

elsewhere. Let C ′ be the cube where C ′ puts at least one process in a4 and arbitrary number of processes

elsewhere. It can be verified that the cube C cannot reach C ′ for the following reason: Since there is

only one process in a1 in C , it follows that this process can either write 1 or 2, but not both. Hence,

A. R. Balasubramanian, C. Weil-Kennedy 23

either processes from b1 can move into b2 to write 3 or processes from c1 can move into c2 to write 4, but

both cannot happen. It then follows that it is impossible to read both 3 and 4, and so the state a4 cannot

be reached.

4 RBN and ASMS are Cube-Reachability Equivalent

Throughout this paper, whenever we talk about one model simulating another model, we mean that

the cube-reachability problem for the second model can be reduced in polynomial time to the cube-

reachability problem for the first model. In this section, we prove our main result that RBN and ASMS

can simulate each other. As we will see in the next section, this simulation will allow us to transfer results

from RBN to ASMS and vice versa.

4.1 ASMS Simulate RBN

Construction Let R = (QR,ΣR ,δR) be an RBN. We construct an ASMS that simulates R. The register

value is used to store which message can be received, additional states are used to represent that a

broadcast is in progress, and a fresh register value is written when the simulation of a broadcast is over.

For every a ∈ ΣR , we let δ !a
R

(resp. δ ?a
R

) be the subset of the transitions in δR that broadcast (resp.

receive) the letter a. Let P = (QP ,ΣP ,δP) be the following ASMS: The set of states QP is QR ∪ I

with I = {[p,a, p′] : (p,?a, p′) ∈ δ or (p, !a, p′) ∈ δ}, where I stands for intermediary. The alphabet ΣP

is ΣR ∪ {#} where # is a letter which is not in Σ. The transition relation δP is such that for every

t = (q, !a,q′) ∈ δR there are transitions t̂ := q
W(a)
−−−→ [q,a,q′] and t# := [q,a,q′]

W (#)
−−−→ q′ in δP , and for

every t = (q,?a,q′) ∈ δR there are transitions t̂ := q
R(a)
−−→ [q,a,q′] and t# := [q,a,q′]

W(#)
−−−→ q′ in δP , as

represented in Figure 3.

q q,a,q′ q′ p p,a, p′ p′
W (a) R(a) W (#)W (#)

Figure 3: Simulation in P of transitions q
!a
−→ q′ and p

?a
−→ p′ of R.

A configuration (C,d) of P is called good if C(I) = 0 and d = #. There is a natural bijection between

configurations of R and good configurations of P . If C is a configuration of R, we will use (Ĉ,#) to

denote the corresponding good configuration of P .

Correctness of construction We now show that C′ ∈ post∗
R
(C) iff (Ĉ′,#) ∈ post∗

P
(Ĉ,#) for any con-

figurations C and C′ of R. Suppose C
t+t1,...,tn
−−−−−→C′ is a step in R. It is easy to see that we have a run in

P of the form (Ĉ,#)
t̂,t̂1,...,t̂n,t

#,t#
1 ,...,t

#
n

−−−−−−−−−−→ (Ĉ′,#). Hence, if C
∗
−→C′ for some configurations C,C′ in R, then

(Ĉ,#)
∗
−→ (Ĉ′,#) in P .

For the other direction, we first define the notion of a pseudo-step between two good configurations

of P . A run (Ĉ,#)
σ
−→ (Ĉ′,#) of P is called a pseudo-step if there exists a ∈ Σ and transitions t ∈ δ !a

R
and

t1, . . . , tn ∈ δ ?a
R

such that σ = t̂, t̂1, . . . , t̂n, t
#, t#

1 , . . . , t
#
n . The intuition behind this notion is that if (Ĉ,#)

σ
−→

(Ĉ′,#) where σ is a pseudo-step with σ = t̂, t̂1, . . . , t̂n, t
#, t#

1 , . . . , t
#
n then C

t+t1...tn−−−−→C′ is a step in R. Hence,

pseudo-steps of P “behave” similarly to a single step in R.

24 RBN and ASMS are Equivalent

Now a run (Ĉ,#)
σ
−→ (Ĉ′,#) of P is said to be in normal form if it is either the empty run or if it

can be decomposed into a sequence of pseudo-steps. Hence, it follows that if (Ĉ,#)
σ
−→ (Ĉ′,#) is a run in

normal form then C
∗
−→C′ in R.

The following lemma asserts that whenever there is a run between two good configurations of P ,

then there is also a run between those configurations in normal form. Hence, using this lemma and the

discussion in the previous paragraph, it follows that if (Ĉ,#)
∗
−→ (Ĉ′,#) in P then C

∗
−→C′ in R.

Lemma 3 (Normal form lemma). Suppose (Ĉ,#)
ρ
−→ (Ĉ′,#) is a run in P . Then there exists σ such that

(Ĉ,#)
σ
−→ (Ĉ′,#) is a run in normal form.

Proof sketch of normal form lemma. Let n be the length of ρ . We proceed by induction on n. If n = 0,

we are done. Let n > 0 and ρ = ρ1, . . . ,ρn. Assume now that any run of length strictly less than n can

be put in normal form. By analysing the structure of the transitions in P and noticing that ρ begins at a

good configuration, we can first show that ρ1 must be of the form q
W(a)
−−−→ [q,a,q′] for some a ∈ Σ. Then

we consider two cases:

Case 1: Suppose there is no i > 1 such that ρi is a transition which writes a value b 6= #. Hence,

every transition in ρ2, . . . ,ρn either reads the value a or writes # and so there must be an index 2 ≤ j ≤ n

such that every transition in ρ2, . . . ,ρ j−1 reads a and every transition in ρ j, . . . ,ρn writes #. Now, by

analysing the transitions going in and out of the subset I and noticing that the run begins and ends at

good configurations, we can show that (Ĉ,#)
ρ
−→ (Ĉ′,#) must be a pseudo-step.

Case 2: Suppose there is i > 1 such that ρi is a transition which writes a value b 6= #. By the

same argument as before, it is easy to see that there must exist 2 ≤ j ≤ i− 1 such that every transi-

tion in ρ2, . . . ,ρ j−1 reads a and every transition in ρ j, . . . ,ρi−1 writes #. Let Z be the configuration

reached after ρi−1. Let M = Z(I), i.e., M is the multiset of processes at the configuration Z which

are in some intermediary state. Since the only way out of the set I is to write # onto the register, if

M = H[p1,a, p′1], . . . , [pk,a, p′k]I then there must exist i1, . . . , ik > i such that each ρil is [pl,a, p′l]
W(#)
−−−→ p′l .

We can then rearrange the run by first following ρ up till ρi−1, then “preponing” the transitions ρi1 , . . . ,ρik

and then firing the rest of ρ to reach (Ĉ′,#). With this rearrangement, the run up till ρik becomes a

pseudo-step and so we can apply induction hypothesis on the rest of the run.

The reduction With this construction, we can now simulate RBN by ASMS as follows: Let R be an

RBN with states QR and let C1 = (L1,U1),C
′
1 = (L′

1,U
′
1) be two cubes of R. Construct the ASMS P

as described above. Then construct the following two cubes C2 = (L2,U2,#),C
′
2 = (L′

2,U
′
2,#) of P:

L2(q),U2(q),L
′
2(q) and U ′

2(q) are respectively equal to L1(q),U1(q),L
′
1(q) and U ′

1(q) if q is a state of R.

If q is in I, then L2(q) = U2(q) = L′
2(q) = U ′

2(q) = 0. It is then easy to see that C ∈ C1 (resp. C ′
1) iff

Ĉ ∈ C2 (resp. C ′
2). Hence, by correctness of our construction, it follows that C1 can reach C ′

1 iff C2 can

reach C ′
2.

4.2 RBN Simulate ASMS

Construction Let P = (QP ,Σ,δP) be an ASMS. We construct an RBN R where one agent acts like

the register of P and all the other agents behave like agents of P . Let R = (QR,ΣR ,δR) be an RBN

defined as follows: The set of states QR is comprised of two parts. The first part consists of the set

QP ∪{[p,a,q] : p
W(a)
−−−→ q ∈ δP}, which will intuitively be used to simulate the processes of P . The

second part consists of the set Σ∪{a : a ∈ Σ} which will intuitively be used to simulate the register of

P . The set {a : a ∈ Σ} is denoted by Σ. The alphabet ΣR is {Reada,Cha,Acka : a ∈ Σ}.

A. R. Balasubramanian, C. Weil-Kennedy 25

q q,a,q′ q′ d a a p p′
?Cha !Acka ?Reada!Cha

!Reada

?Acka

Figure 4: Simulation in R of transitions q
W(a)
−−−→ q′ and p

R(a)
−−→ p′ of P .

Before describing the transition relation δR we set up some notation: A good configuration of R is a

configuration C such that ∑a∈ΣC(a) = 1 and C(p) = 0 if p /∈QP ∪Σ. Intuitively, in a good configuration,

there is one process which stores the value of the register of P and all the other processes are in some

state of QP . Notice that there is a natural bijection between configurations of P and good configurations

of R. If C is a configuration of P , we will use Ĉ to denote the corresponding good configuration of R.

Now, the transition relation δR is constructed so that the following invariant is satisfied: For any

configurations C and C′ of P , C′ ∈ post∗
P
(C) iff Ĉ′ ∈ post∗

R
(Ĉ).

• Suppose t = p
R(a)
−−→ q is a transition in P . Correspondingly, we have two transitions a

!Reada−−−→ a

and p
?Reada−−−−→ q in R. Hence, if C

t
−→C′ in P , then Ĉ

(a,!Reada,a)+(p,?Reada,q)
−−−−−−−−−−−−−−−→ Ĉ′ in R.

• Suppose t = p
W (a)
−−−→ q is a transition in P . We first have two transitions p

?Cha−−→ [p,a,q] and

[p,a,q]
!Acka−−−→ q. Further, for every d ∈ Σ, we have the transitions, d

!Cha−−→ a and a
?Acka−−−→ a. Intu-

itively, the process responsible for the register requests to change the value of the register from

d to a by broadcasting the message Cha and moving to a. The process at state p is capable of

receiving this message and moves to the state [p,a,q] and from there it is capable of sending the

message Acka acknowledging the change sent by the register. The process at a can receive Acka

and move to a. Hence, if C
t
−→ C′ then Ĉ

(d,!Cha,a)+(p,?Cha,[p,a,q])
−−−−−−−−−−−−−−−→ Cint

([p,a,q],!Acka ,q)+(a,?Acka,a)
−−−−−−−−−−−−−−−−→ Ĉ′.

Figure 4 represents the transitions needed for this simulation.

Correctness of construction Hence, if C
∗
−→C′ in P then we have shown that Ĉ

∗
−→ Ĉ′ in R. Notice that

we have also shown that it is possible to go from Ĉ to Ĉ′ where every broadcasted message is received

by exactly one other process. Our next lemma shows that this is not an accident, and indeed any run

between Ĉ and Ĉ′ can be transformed into this form.

A run between good configurations of R is said to be in normal form if whenever Z
t+t1,...,tn
−−−−−→ Z′ is a

step in that run, then n = 1. We have the following lemma.

Lemma 4 (Normal form lemma). Suppose there is a run from Z to Z′ in R where Z and Z′ are good

configurations. Then there is a run from Z to Z′ which is in normal form.

First we will see how our simulation is correct, using the normal form lemma. Suppose Ĉ
∗
−→ Ĉ′ in

R for some configurations C and C′ of P . By the normal form lemma, we can assume that this run is

in normal form and so let Ĉ
b1+r1

−−−→C1
b2+r2

−−−→C2 . . .Cm−1
bm+rm

−−−−→ Ĉ′. We proceed by induction on m. The

base case of m = 0 is trivial. Suppose m > 0 and assume the claim holds for all numbers less than m.

Since Ĉ is a good configuration, there are only two possible cases for b1:

Case 1: Suppose b1 = (a, !Reada,a) for some a ∈ Σ. Hence r1 must be (p,?Reada,q) for some

p,q ∈ QP . It follows that C1 = Ẑ for some configuration Z of P . Since C
(p,R,a,q)
−−−−−→ Z in P , by applying

the induction hypothesis on the run from Ẑ to Ĉ′, we are done.

26 RBN and ASMS are Equivalent

Case 2: Suppose b1 = (d, !Cha,a) for some d,a ∈ Σ. Hence r1 must be (p,?Cha, [p,a,q]) for some

p,q ∈ QP . The only process which can broadcast from C1 is the process at [p,a,q] and moreover it

can only broadcast Acka. The only process which can receive Acka from C1 is the process at the state a.

Hence b2 = ([p,a,q], !Acka,q) and r2 = (a,?Acka,a). Therefore, C2 = Ẑ for some configuration Z of P .

Since C
(p,W,a,q)
−−−−−→ Z in P , by applying the induction hypothesis on the run from Ẑ to Ĉ′, we are done.

Proof sketch of normal form lemma. Suppose Z0 := Z
b1+r1

1,...,r
1
n1−−−−−−−→ Z1

b2+r2
1 ,...,r

2
n2−−−−−−−→ Z2 . . .Zm−1

bm+rm
1 ,...,r

m
nm−−−−−−−→

Zm := Z′. We proceed by induction on m. The case of m = 0 is trivial.

Suppose m > 0 and assume that the claim is true for all numbers less than m. Since Z0 is a good

configuration, there are only two possible choices for b1.

Case 1: Suppose b1 = a
!Reada−−−→ a for some a ∈ Σ. By firing b1 repeatedly, we can fire r1

1,r
1
2 , . . . ,r

1
n1

“one at a time” and reach Z1 from Z0 using a run in normal form. We can then apply the induction

hypothesis on the run between Z1 and Z′.

Case 2: Suppose b1 = d
!Cha−−→ a for some d,a ∈ Σ. Hence, Z1 is a bad configuration and so Z1 6= Z′.

If n1 = 0, then no process in Z1 can broadcast any message, which leads to a contradiction. So, n1 > 0.

For each 1 ≤ i ≤ n1, let r1
i = (pi,?Cha, [pi,a,qi]). Let S := ∑

n1

i=2 pppiii −∑
n1

i=2[[[pppiii,,,aaa,,,qqqiii]]] and let M :=

∑
n1

i=2[[[pppiii,,,aaa,,,qqqiii]]]. Notice that the only processes which can broadcast a message at the configuration Z1 are

the processes in the multiset [[[ppp111,,,aaa,,,qqq111]]]+M. Hence b2 = (pi[a]qi, !Acka,qi) for some i. Without loss of

generality, we can assume that i = 1.

Notice that the only process which can receive the message Acka at the configuration Z1 is the process

at the state a. It then follows that either n2 = 0 or n2 = 1. Hence, we get two subcases:

Case 2a): Suppose n2 = 0. Then reorder the run between Z0 and Z2 as follows: Z0

b1+r1
1−−−→ Z1 +

S
b2+(a,?Acka,a)
−−−−−−−−→ Z2+S−aaa+aaa

(a,!Cha,a)+r1
2,...,r

1
n1−−−−−−−−−−−→ Z2. Notice that the configuration Z2+S−aaa+aaa is a good

configuration and has a run of length m−1 to Z′. Applying induction hypothesis, we are then done.

Case 2b): Suppose n2 = 1. Hence, r2
1 = (a,?Acka,a) and so Z2(a) = 0 and Z2(a) = 1. We consider

two further subcases:

• Suppose there exists α > 2 such that Zα(a) = 1. Let α be the minimum such index. Hence, there

must exist some d′ ∈ Σ such that bα is (d′, !Cha,a).

Suppose no b ∈ {b3, . . . ,bα−1} is labelled by !Acka. Intuitively, we can then show that none of the

processes in any of the states in the multiset M ever make a step between Z2 and Zα . Hence, we

can “postpone” firing the transitions r1
2, . . . ,r

1
n1

and get Z0

b1+r1
1−−−→ Z1 + S

b2+r2
1−−−→ Z2 + S

∗
−→ Zα−1 +

S
bα+r1

2,...,r
1
n1
,rα

1 ,...,r
α
nα

−−−−−−−−−−−−→ Zα . The configuration Z2 + S is a good configuration and has a run to Z′ of

length m−2 and so we can apply the induction hypothesis.

Suppose some b ∈ {b3, . . . ,bα−1} is labelled by !Acka. Let b = bi be the first such transition. By

definition of α and by construction of the protocol, we can show that bi must be ([p j,a,q j], !Acka,q j)
for some 2 ≤ j ≤ n1 (without loss of generality we can assume j = 2) and we can also show that

no process at the ith step receives this message, i.e. ni = 0. Hence, we can “prepone” firing

the transition bi and get Z0

b1+r1
1−−−→ Z1 + S

b2+r2
1−−−→ Z2 + S

(a,!Cha ,a)+r1
2,...,r

1
n1−−−−−−−−−−−→ Z2 − aaa+ aaa

(bi+(a,?Acka,a)
−−−−−−−−→

Z2 − [[[ppp222,,,aaa,,,qqq222]]] + ppp222
∗
−→ Zi−2 − [[[ppp222,,,aaa,,,qqq222]]] + ppp222

bi−1+ri−1
1 ...ri−1

ni−1
−−−−−−−−−→ Zi. Notice that Z2 + S is a good

configuration and has a run to Z′ of length < m and so we can apply the induction hypothesis.

• Suppose there does not exist α > 2 such that Zα(a) = 1.

A. R. Balasubramanian, C. Weil-Kennedy 27

Suppose no b ∈ {b3, . . . ,bm} is labelled by !Acka. We can once again show that none of the

processes in the multiset M ever make a step between Z2 and Zm. Since Zm is a good configuration,

it must then be the case that n1 = 1, which means that Z2 is a good configuration and the run

between Z0 and Z2 is already in normal form. Because of the induction hypothesis, we are done.

Suppose some b ∈ {b3, . . . ,bm} is labelled by !Acka. Let b = bi be the first such transition. In this

case, we can do a similar rearrangement like the corresponding previous case by “preponing” bi

and then conclude by applying the induction hypothesis.

The reduction Now, suppose we are given an ASMS P and two cubes C1 = (L1,U1,d) and C ′
1 =

(L′
1,U

′
1,d

′). We construct the protocol R as we have described in this section. Then we construct two

cubes C2 = (L2,U2) and C ′
2 = (L′

2,U
′
2) of R as follows: L2(q),U2(q),L

′
2(q) and U ′

2(q) are all respectively

equal to L1(q),U1(q),L
′
1(q) and U ′

1(q) if q ∈ QP , L2(d) =U2(d) = L′
2(d

′) =U ′
2(d

′) = 1 and otherwise

L2(q) = U2(q) = L′
2(q) = U ′

2(q) = 0. It is easy to see that a configuration C ∈ C1 (resp. C ′
1) iff its cor-

responding configuration Ĉ ∈ C2 (resp. C ′
2). Hence, by our simulation it follows that C1 can reach C ′

1 in

P iff C2 can reach C ′
2 in R.

Another reduction While this construction proves the desired result, we need a slightly different con-

struction for the purposes of the next section which we now describe. Given an ASMS P and two cubes

C1 = (L1,U1,d) and C ′
1 = (L′

1,U
′
1,d

′), once again construct the RBN R described in this section and

construct two cubes C3 = (L3,U3) and C ′
3 = (L′

3,U
′
3) of R as follows: The cube C ′

3 is the same as C ′
2 de-

scribed before. The cube C3 is also exactly the same as C2, except for the constraints L2(d) =U2(d) = 1

which are replaced by L3(d) = 0,U3(d) = ∞.

Since C2 ⊆ C3, it follows from the previous reduction that if C1 can reach C ′
1, then C3 can reach C ′

3.

For the other direction, notice that, by construction of the protocol R,

If C −→C′ is a step in R, then ∑
q∈Σ∪Σ

C(q) = ∑
q∈Σ∪Σ

C′(q) (1)

Using this equation and the fact that any configuration in C ′
3 is a good configuration, it is then clear that

if C3 ∈ C3 such that C3
∗
−→ C′

3 with C′
3 ∈ C ′

3, then C3 must also be a good configuration. Hence, we can

then conclude that C3 can reach C ′
3 iff C1 can reach C ′

1.

5 Transferring Existing Results

In the previous section, we have shown that RBN and ASMS are polynomial-time equivalent with respect

to the cube-reachability problem. Though the precise complexity of this problem has not been established

for either one of these models, our result shows that it is sufficient to characterize the complexity of cube-

reachability for one of these models. Moreover, there exist results for subclasses of the cube-reachability

problem for both RBN and ASMS. In this section, we use the reductions constructed in the previous

section to transfer these results from RBN to ASMS and vice versa.

5.1 Unbounded initial cube reachability

We consider the following problem for RBN, which we call the unbounded initial cube reachability

problem: We are given an RBN R and two cubes C = (L,U),C ′ = (L′,U ′) with the special property

28 RBN and ASMS are Equivalent

that L(q) = 0 and U(q) ∈ {0,∞} for every state q and we would like to check if C can reach C ′. Notice

that there is no restriction on the cube C ′. We will call such a pair (C ,C ′) as an unbounded initial cube

pair. This problem was proved to be PSPACE-complete for RBN in ([11], Theorem 5.5). (In [11], this

result is only stated for cubes with constants encoded in unary, but the proof can be modified easily to

also give the same upper bound when the constants are encoded in binary).

In a similar way, it is possible to define the corresponding problem for ASMS. Notice that if (C ,C ′)
is an unbounded initial cube pair for an ASMS P , then the second reduction in Section 4.2 produces an

RBN R along with an unbounded initial cube pair as well. This shows that the corresponding problem

for ASMS can be solved in PSPACE.

Further, notice that given an RBN R and an unbounded initial cube pair for R, our reduction in

Section 4.1 produces an ASMS P with an unbounded initial cube pair as well. This shows that the

unbounded initial cube reachability problem for ASMS is PSPACE-hard.

Theorem 5. The unbounded initial cube reachability problem for ASMS is PSPACE-complete.

5.2 Leader protocols

The notion of an ASMS equipped with a leader has been studied in [14, 9]. Formally, an ASMS-leader

protocol is a pair of ASMS protocols PC = (QC,Σ,δC),PD = (QD,Σ,δD), where PC is called the

contributor protocol and PD is called the leader protocol. Intuitively, there is exactly one process which

executes PD (the leader) and all the other processes execute PC (contributors). This is formalized as

follows: A configuration of such a system is defined to be a triple (q,M,a) where q ∈ QD, M is a multiset

on QC and a ∈ Σ. A step between C = (q,M,a) and C′ = (q′,M′,a′) exists if one of the following is true:

• There exists (q,op,a′,q′) ∈ δD such that M′ = M and either op= R and a = a′, or op=W .

• There exists (p,op,a′, p′) ∈ δC such that q = q′, M(p) ≥ 1, M′ = M − ppp+ ppp′′′, and either op = R

and a = a′, or op=W .

We can then define the notion of a run for an ASMS-leader protocol in the usual way. The ASMS-

leader reachability problem is to decide, given an ASMS-leader protocol (PC,PD), two leader states

qI
D,q

f
D, a contributor state qI

C and two data values a,a′ ∈ Σ whether there exists a k ≥ 1 such that the

configuration (qI
D,Hk ·qI

CI,a) can reach a configuration C′ = (q f
D,M

′,a′) for some M′.

We now define a special case of cube-reachability in ASMS and notice that this special case is

exactly equivalent to ASMS-leader reachability. An ASMS-leader cube is a pair (P,C ,C ′) of the fol-

lowing form: The protocol P = (Q,Σ,δ) is such that there exists a partition of the states and transition

relation as Q= QC∪QD,δ = δC∪δD and C = (L,U,a),C ′ = (L′,U ′,a′) satisfy: There exists exactly two

states qI
D,q

f
D ∈ QD such that L(qI

D) =U(qI
D) = 1,L′(q f

D) =U ′(q f
D) = 1 and for every other state q ∈ QD,

L(q) = L′(q) =U(q) =U ′(q) = 0 and there exists exactly one state qI
C ∈ QC such that L(qI

C) = L′(qI
C) =

0,U(qI
C) = U ′(qI

C) = ∞ and for every other state q ∈ QC, L(q) = U(q) = L′(q) = 0,U ′(q) = ∞. Notice

that Example 2 is an example of an ASMS-leader cube.

It is easy to see that the ASMS-leader reachability problem is equivalent to the cube-reachability

problem for ASMS-leader cubes. The following result has been shown for ASMS.

Theorem 6 ([14]). The ASMS-leader reachability problem is in NP.

Now, we can define RBN-leader protocols and RBN-leader cubes in exactly the same way as was

done for ASMS. Further, notice that the reduction given in Section 4.1 has the following special property:

If we are given an RBN-leader cube (R,C1,C
′
1), then the reduction produces an ASMS-leader cube

A. R. Balasubramanian, C. Weil-Kennedy 29

(P,C2,C
′
2). This proves that the RBN-leader cube reachability problem (and hence the RBN-leader

reachability problem) is in NP.

Notice that the reduction given in Section 4.2 does not output a RBN-leader cube when it is given an

ASMS-leader cube as input. Hence, we do not immediately get NP-hardness of the RBN-leader reacha-

bility problem. Nevertheless, by a reduction from 3-SAT similar to that of the one given in Theorem 10

of [9], we can prove NP-hardness of RBN-leader reachability. We then get

Theorem 7. The RBN-leader reachability problem is NP-complete.

5.3 Almost-sure coverability

We now consider the notion of almost-sure coverability for ASMS. Let P = (Q,Σ,δ) be an ASMS with

two distinguished states qI ,q f and a distinguished letter d ∈Σ. Let ↑ q f denote the set of all configurations

C such that C(q f)≥ 1. For any k ≥ 1, we say that the configuration (Hk ·qII,d) almost-surely covers q f

iff post∗((Hk · qII,d)) ⊆ pre∗(↑ q f). The reason behind calling this the almost-sure coverability relation

is that the definition given here is equivalent to covering the state q f from (Hk ·qII,d) with probability 1

under a probabilistic scheduler which picks processes uniformly at random at each step.

The number k is called a cut-off if one of the following is true: 1) Either for all h ≥ k, the configu-

ration (Hh · qII,d) almost-surely covers q f . In this case, k is a positive cut-off. Or, 2) for all h ≥ k, the

configuration (Hh ·qII,d) does not almost-surely cover q f . In this case, k is a negative cut-off. Note that

from the definition alone, it is not clear that a cut-off must exist for every ASMS. The following result is

known.

Theorem 8 (Theorem 3 of [6]). Given an ASMS with two states qI ,q f and a letter d, a cut-off always

exists. Whether the cut-off is positive or negative can be decided in EXPSPACE.

We can now translate this result to RBNs. Given an RBN R and two states qI ,q f , we first set

↑ q f := {C : C(q f) ≥ 1}. Then for any k ≥ 1, we say that Hk · qII almost-surely covers q f iff post∗(Hk ·
qII) ⊆ pre∗(↑ q f). We can then define positive and negative cut-offs in a similar manner. Now for the

RBN R, let P be the ASMS protocol that we construct in our reduction given in Section 4.1. Using the

construction of P , we can then easily show that

for any k ≥ 1, post∗
R
(Hk ·qII)⊆ pre∗

R
(↑ q f) iff post∗

P
(Hk ·qII,#) ⊆ pre∗

P
(↑ q f).

This then directly implies that

Theorem 9. Given an RBN with two states qI ,q f , a cut-off always exists. Whether the cut-off is positive

or negative can be decided in EXPSPACE.

6 A Third Model

We have shown that RBN and ASMS are cube-reachability equivalent and using this we have transferred

some results between these two models. In this section, we will introduce a third model called Immediate

Observation (IO) nets and show that cube-reachability for IO nets can be reduced to cube-reachability

for RBN. Further, we show that a stronger notion of reduction – which is satisfied by all the reductions

given in this paper – cannot exist from RBN to IO nets.

30 RBN and ASMS are Equivalent

6.1 Immediate Observation Nets

Immediate observation nets, or IO nets, were introduced in [16]. They are a subclass of Petri nets

with applications in population protocols and chemical reaction networks. An IO net is a Petri net with

transitions of a certain shape: Informally, a process (or token) in a state (or place) p observes the presence

of a process in q and moves to state p′, for some states p,q, p′ not necessarily distinct. Because of this,

IO nets can be described in a simpler manner that does not use the full Petri net formalism. We will

present them this way here, to highlight the similarity to the other models and to simplify notation.

Definition 10. An immediate observation net is a tuple N = (Q,δ) where Q is a finite set of states and

δ ⊆ Q×Q×Q is the transition relation.

If (p,q, p′) ∈ δ , then we sometimes denote it by p
q
−→ p′. A configuration C of an IO net N is

a multiset over Q. It intuitively counts the number of processes in each state. There is a step from

a configuration C to a configuration C′ if there exists t = p
q
−→ p′ ∈ δ , such that C ≥ Hp,qI and C′ =

C − ppp+ ppp′′′. We denote by C
t
−→ C′ such a step, and by

∗
−→ the reflexive transitive closure of the step

relation. We can then define runs of an IO net in the usual way.

6.2 RBN Simulate IO Nets

Construction Let N = (Q,δ) be an IO net. We construct an RBN that simulates N in which processes

send messages signaling their current state. Let R = (Q′,Σ′,δ ′) be the following RBN: The set of states

Q′ and the alphabet Σ′ are both equal to Q. The transition relation δ ′ is such that for every q ∈ Q there is

a transition q
!q
−→ q in δ ′, and for every p

q
−→ p′ ∈ δ there is a transition p

?q
−→ p′ in δ ′.

Correctness of construction There is a natural bijection between configurations of R and configura-

tions of P . If C is a configuration of N , we will abuse notation and denote the corresponding config-

uration of R also as C. We now show that C′ ∈ post∗
N
(C) iff C′ ∈ post∗

R
(C) for any configurations C

and C′ of N . Indeed, if C reaches C′ by one step p
q
−→ p′ in N , then C

t+t1−−→ C′ with t = q
!q
−→ q and

t1 = p
?q
−→ p′ in R. Conversely, let C

t+t1,...,tk−−−−−→ C′ be a step in R with t = q
!q
−→ q and ti = pi

?q
−→ p′i for

some k ≥ 0. The step must be of this form because the only broadcast transitions of R are of the form

q
!q
−→ q. Then C reaches C′ by the sequence of transitions (p1

q
−→ p′1),(p2

q
−→ p′2), . . . ,(pk

q
−→ p′k) in N .

The reduction With this construction, RBN can simulate IO nets as follows: Let N be an IO net and

let C1 = (L1,U1),C
′
1 = (L′

1,U
′
1) be two cubes of N . Construct the RBN R as described above, and let

C2 = C1 and C ′
2 = C ′

1. By our construction, C1 can reach C ′
1 iff C2 can reach C ′

2.

Consequences. In [11], two further restrictions of the unbounded initial cube reachability problem

(presented in Section 5.1) are considered. The first restriction, dubbed CRP[≥ 1] (where CRP stands

for cardinality reachability problem), considers only unbounded initial cube pairs C ,C ′ in which C ′ =
(L′,U ′) is such that L′(q)∈ {0,1} and U ′(q) = ∞ for all q. The second restriction, dubbed CRP[≥ 1,= 0],
considers only unbounded initial cube pairs C ,C ′ in which C ′ = (L′,U ′) is such that L′(q) ∈ {0,1} and

U ′(q) ∈ {0,∞} for all q. For RBN, the problems CRP[≥ 1] and CRP[≥ 1,= 0] are shown to be in

PTIME and in NP (Theorem 3.3 and 4.3 of [11]), respectively. By the construction given above, it is then

immediately clear that

Theorem 11. For IO nets, CRP[≥ 1] and CRP[≥ 1,= 0] are in PTIME and in NP respectively.

A. R. Balasubramanian, C. Weil-Kennedy 31

Strong simulation. Consider the following alternative definition of simulation between models A and

B (where a model is to be understood as either an RBN, ASMS or IO net): Given an instance I of model

A with states QI , there exists an instance J of model B with states QJ such that J is polynomial in the size

of I with QI ⊆ QJ, and there exists a multiset h over QJ \QI of polynomial size such that C′ ∈ post∗(C)
if and only if C′ · h ∈ post∗(C · h) for any configurations C,C′ of I. Notice that strong simulation is a

transitive relation. The simulation constructions of this paper verify this strong definition of simulation.

Theorem 12. RBN and ASMS strongly simulate each other. Further, IO nets are strongly simulated by

RBN (and hence by ASMS as well).

We show that this is not the case for IO nets: they cannot strongly simulate RBN (nor ASMS).

6.3 IO Does not Strongly Simulate RBN

Assuming that IO nets can strongly simulate RBN, we will derive a contradiction. Under this assumption,

we will first transfer results on the closure of cubes from IO nets to RBN, then exhibit a particular RBN

which contradicts these results. We start by recalling definitions and properties relating to cubes.

Counting sets and norms. We consider cubes over a finite set Q. A finite union of cubes
⋃m

i=1(Li,Ui)
is called a counting constraint and the set of configurations

⋃m
i=1 Ci it describes is called a counting

set. We write JΓK for the counting set described by the counting constraint Γ. Notice that two different

counting constraints may describe the same counting set. For example, let Q = {q} and let (L,U) =
(1,3), (L′,U ′) = (2,4), (L′′,U ′′) = (1,4). The counting constraints (L,U)∪ (L′,U ′) and (L′′,U ′′) define

the same counting set. It is easy to show (see also Proposition 2 of [15]) that counting constraints and

counting sets are closed under Boolean operations.

Let C = (L,U) be a cube. Let ‖C ‖l be the the sum of the components of L. Let ‖C ‖u be the sum of

the finite components of U if there are any, and 0 otherwise. We call norm of C the maximum of ‖C ‖l and

‖C ‖u, denoted by ‖C ‖. We define the norm of a counting constraint Γ =
⋃m

i=1 Ci as ‖Γ‖
def
= max

i∈[1,m]
{‖Ci‖}.

The norm of a counting set S is the smallest norm of a counting constraint representing S , that is,

‖S ‖
def
= min

S=JΓK
{‖Γ‖}. Proposition 5 of [15] entails the following results for the norms of the union,

intersection and complement.

Proposition 13. Let S1,S2 be counting sets. The norms of the union, intersection and complement

satisfy: ‖S1 ∪S2‖ ≤ max{‖S1‖,‖S2‖}, ‖S1 ∩S2‖ ≤ ‖S1‖+‖S2‖ and ‖Nn \S1‖ ≤ ‖S1‖+‖S2‖.

The following result for IO nets is deduced directly from Theorem 6 in [17]. It states that the forward

and backward reachability set of a counting set is still a counting set, and bounds its norms polynomi-

ally. This result, transferred to RBN under the assumption of a strong simulation, will amount to a

contradiction.

Theorem 14. Let N = (Q,δ) be an IO net, and let S be a counting set of N . Then post∗(S) is also

a counting set and ‖post∗(S)‖ ≤ ‖S ‖+ |Q|3. The same holds for pre∗(S).

Assuming that IO nets strongly simulate RBN, we can transfer the result of Theorem 14 to RBN.

Theorem 15. Assume that IO nets can strongly simulate RBN. There exists a constant k such that for any

RBN R = (Q,Σ,δ), for any counting set S of R, post∗(S) is also a counting set and ‖post∗(S)‖ ∈
O(‖S ‖+ |Q|)k. The same holds for pre∗(S).

32 RBN and ASMS are Equivalent

Proof Sketch. It suffices to show the result for S a cube, since for a counting set ∪n
i=1Ci, we have

post∗(∪iCi) =∪ipost∗(Ci). Fix an RBN R = (Q,Σ,δ) and a cube C over Q. Let N = (QN ,δN) be the

IO net of the strong simulation whose existence we assume. The definition of strong simulation entails

the existence of a bijection b from configurations of R to a subset G of “good” configurations of N .

The bijection verifies that a cube of R is mapped to a cube of N , and that a cube of N restricted to

configurations of G is mapped to a cube of R.

Since b preserves cubes, b(C) is a cube. By Theorem 14, post∗(b(C)) is a counting set, and thus

there exist cubes C1, . . . ,Cn of N such that post∗(b(C)) = ∪n
i=1Ci. Let M be the set ∪n

i=1b−1(Ci|G) of

R. We show that post∗(C) = M . Since the b−1(Ci|G) are cubes by strong simulation, post∗(C) is a

counting set as a union of cubes. The size of post∗(b(C)) is polynomial in C and R by Theorem 14, and

thus the size of post∗(C) is too.

Deriving the contradiction. We now exhibit a contradiction to the result of Theorem 15, thus proving

that IO nets do not strongly simulate RBN. Recall the RBN represented in Figure 1. We can gener-

alize it to a family of RBN Rn = (Q,Σ,δ), parameterized by n ≥ 1, with set of states {tok,sent} ∪
{ai,bi,ci|1 ≤ i ≤ n}. Let C0 be the cube in which there are arbitrarily many agents in tok, exactly one

agent in each ai and 0 agents in the other states. Let C f be the cube in which there is a least one agent in

cn and an arbitrary number elsewhere. We claim that if we start from a configuration of C0, we can only

reach C f if we initially have 2n or more agents in tok. Indeed we can show by induction on i ∈ {1, . . . ,n}
that 1 must be broadcasted 2i times to reach ci, and thus that 2i agents are needed in tok initially to reach

ci. By Proposition 13 and Theorem 15, the set S := post∗(C0)∩C f is a counting set of size at most

polynomial in |Q|,‖C0‖ and ‖C f‖. The cubes ‖C0‖ and ‖C f ‖ have norms n and 1 respectively, so S is of

norm polynomial in n. Thus if it is non-empty it must contain a configuration of size at most polynomial

in n: simply take the configuration equal to the lower bounds L of one of the cubes whose union is the

counting set post∗(C0)∩C f . This contradicts the fact that 2n agents are needed to reach C f .

Acknowledgements: We would like to thank Javier Esparza and the anonymous reviewers for their

useful feedback.

References

[1] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer & René Peralta (2006): Computation in

networks of passively mobile finite-state sensors. Distributed Comput. 18(4), pp. 235–253. Available at

https://doi.org/10.1007/s00446-005-0138-3.

[2] Dana Angluin, James Aspnes, David Eisenstat & Eric Ruppert (2007): The computational power of pop-

ulation protocols. Distributed Comput. 20(4), pp. 279–304. Available at https://doi.org/10.1007/

s00446-007-0040-2.

[3] A. R. Balasubramanian & Chana Weil-Kennedy (2021): Reconfigurable Broadcast Networks and Asyn-

chronous Shared-Memory Systems are Equivalent (Long Version). Available at https://arxiv.org/abs/

2108.07510.

[4] Nathalie Bertrand & Paulin Fournier (2013): Parameterized Verification of Many Identical Probabilistic

Timed Processes. In: IARCS Annual Conference on Foundations of Software Technology and Theoretical

Computer Science, FSTTCS, pp. 501–513, doi:10.4230/LIPIcs.FSTTCS.2013.501.

[5] Nathalie Bertrand, Paulin Fournier & Arnaud Sangnier (2014): Playing with Probabilities in Reconfigurable

Broadcast Networks. In: Foundations of Software Science and Computation Structures - 17th International

Conference, FOSSACS, pp. 134–148, doi:10.1007/978-3-642-54830-7_9.

https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.1007/s00446-007-0040-2
https://doi.org/10.1007/s00446-007-0040-2
https://arxiv.org/abs/2108.07510
https://arxiv.org/abs/2108.07510
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.501
http://dx.doi.org/10.1007/978-3-642-54830-7_9

A. R. Balasubramanian, C. Weil-Kennedy 33

[6] Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier & Daniel Stan (2016): Reachability in

Networks of Register Protocols under Stochastic Schedulers. In Ioannis Chatzigiannakis, Michael Mitzen-

macher, Yuval Rabani & Davide Sangiorgi, editors: 43rd International Colloquium on Automata, Languages,

and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, LIPIcs 55, Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, pp. 106:1–106:14. Available at https://doi.org/10.4230/LIPIcs.ICALP.

2016.106.

[7] Peter Chini, Roland Meyer & Prakash Saivasan (2019): Complexity of Liveness in Parameterized Systems.

In Arkadev Chattopadhyay & Paul Gastin, editors: 39th IARCS Annual Conference on Foundations of Soft-

ware Technology and Theoretical Computer Science, FSTTCS 2019, December 11-13, 2019, Bombay, India,

LIPIcs 150, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 37:1–37:15. Available at https://

doi.org/10.4230/LIPIcs.FSTTCS.2019.37.

[8] Peter Chini, Roland Meyer & Prakash Saivasan (2019): Liveness in Broadcast Networks. In Mohamed Faouzi

Atig & Alexander A. Schwarzmann, editors: Networked Systems - 7th International Conference, NETYS

2019, Marrakech, Morocco, June 19-21, 2019, Revised Selected Papers, Lecture Notes in Computer Science

11704, Springer, pp. 52–66. Available at https://doi.org/10.1007/978-3-030-31277-0_4.

[9] Peter Chini, Roland Meyer & Prakash Saivasan (2020): Fine-Grained Complexity of Safety Verification. J.

Autom. Reason. 64(7), pp. 1419–1444. Available at https://doi.org/10.1007/s10817-020-09572-x.

[10] Giorgio Delzanno, Arnaud Sangnier & Riccardo Traverso (2013): Parameterized Verification of Broadcast

Networks of Register Automata. In: Reachability Problems - 7th International Workshop, RP, pp. 109–121,

doi:10.1007/978-3-642-41036-9_11.

[11] Giorgio Delzanno, Arnaud Sangnier, Riccardo Traverso & Gianluigi Zavattaro (2012): On the Complexity of

Parameterized Reachability in Reconfigurable Broadcast Networks. In Deepak D’Souza, Telikepalli Kavitha

& Jaikumar Radhakrishnan, editors: IARCS Annual Conference on Foundations of Software Technology

and Theoretical Computer Science, FSTTCS 2012, December 15-17, 2012, Hyderabad, India, LIPIcs 18,

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 289–300. Available at https://doi.org/10.

4230/LIPIcs.FSTTCS.2012.289.

[12] Giorgio Delzanno, Arnaud Sangnier & Gianluigi Zavattaro (2010): Parameterized Verification of Ad Hoc

Networks. In Paul Gastin & François Laroussinie, editors: CONCUR 2010 - Concurrency Theory, 21th

International Conference, CONCUR 2010, Paris, France, August 31-September 3, 2010. Proceedings, Lec-

ture Notes in Computer Science 6269, Springer, pp. 313–327. Available at https://doi.org/10.1007/

978-3-642-15375-4_22.

[13] Antoine Durand-Gasselin, Javier Esparza, Pierre Ganty & Rupak Majumdar (2017): Model checking param-

eterized asynchronous shared-memory systems. Formal Methods Syst. Des. 50(2-3), pp. 140–167. Available

at https://doi.org/10.1007/s10703-016-0258-3.

[14] Javier Esparza, Pierre Ganty & Rupak Majumdar (2016): Parameterized Verification of Asynchronous

Shared-Memory Systems. J. ACM 63(1), pp. 10:1–10:48. Available at https://doi.org/10.1145/

2842603.

[15] Javier Esparza, Pierre Ganty, Rupak Majumdar & Chana Weil-Kennedy (2018): Verification of Immediate

Observation Population Protocols. In: CONCUR, LIPIcs 118, Schloss Dagstuhl - Leibniz-Zentrum fuer

Informatik, pp. 31:1–31:16. Available at https://doi.org/10.4230/LIPIcs.CONCUR.2018.31.

[16] Javier Esparza, Mikhail Raskin & Chana Weil-Kennedy (2019): Parameterized Analysis of Immediate Ob-

servation Petri Nets. In: Lecture Notes in Computer Science, 11522, pp. 365–385. Available at https://

doi.org/10.1007/978-3-030-21571-2_20.

[17] Javier Esparza, Mikhail A. Raskin & Chana Weil-Kennedy (2019): Parameterized Analysis of Immediate

Observation Petri Nets. In Susanna Donatelli & Stefan Haar, editors: Application and Theory of Petri Nets

and Concurrency - 40th International Conference, PETRI NETS 2019, Aachen, Germany, June 23-28, 2019,

Proceedings, Lecture Notes in Computer Science 11522, Springer, pp. 365–385. Available at https://doi.

org/10.1007/978-3-030-21571-2_20.

https://doi.org/10.4230/LIPIcs.ICALP.2016.106
https://doi.org/10.4230/LIPIcs.ICALP.2016.106
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.37
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.37
https://doi.org/10.1007/978-3-030-31277-0_4
https://doi.org/10.1007/s10817-020-09572-x
http://dx.doi.org/10.1007/978-3-642-41036-9_11
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.289
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.289
https://doi.org/10.1007/978-3-642-15375-4_22
https://doi.org/10.1007/978-3-642-15375-4_22
https://doi.org/10.1007/s10703-016-0258-3
https://doi.org/10.1145/2842603
https://doi.org/10.1145/2842603
https://doi.org/10.4230/LIPIcs.CONCUR.2018.31
https://doi.org/10.1007/978-3-030-21571-2_20
https://doi.org/10.1007/978-3-030-21571-2_20
https://doi.org/10.1007/978-3-030-21571-2_20
https://doi.org/10.1007/978-3-030-21571-2_20

34 RBN and ASMS are Equivalent

[18] Marie Fortin, Anca Muscholl & Igor Walukiewicz (2017): Model-Checking Linear-Time Properties of

Parametrized Asynchronous Shared-Memory Pushdown Systems. In Rupak Majumdar & Viktor Kuncak,

editors: Computer Aided Verification - 29th International Conference, CAV 2017, Heidelberg, Germany,

July 24-28, 2017, Proceedings, Part II, Lecture Notes in Computer Science 10427, Springer, pp. 155–175.

Available at https://doi.org/10.1007/978-3-319-63390-9_9.

[19] Paulin Fournier (2015): Parameterized verification of networks of many identical processes. (Vérification

paramétrée de réseaux composés d’une multitude de processus identiques). Ph.D. thesis, University of

Rennes 1, France. Available at https://tel.archives-ouvertes.fr/tel-01355847.

[20] Salvatore La Torre, Anca Muscholl & Igor Walukiewicz (2015): Safety of Parametrized Asynchronous

Shared-Memory Systems is Almost Always Decidable. In Luca Aceto & David de Frutos-Escrig, editors:

26th International Conference on Concurrency Theory, CONCUR 2015, Madrid, Spain, September 1.4, 2015,

LIPIcs 42, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 72–84. Available at https://doi.org/

10.4230/LIPIcs.CONCUR.2015.72.

https://doi.org/10.1007/978-3-319-63390-9_9
https://tel.archives-ouvertes.fr/tel-01355847
https://doi.org/10.4230/LIPIcs.CONCUR.2015.72
https://doi.org/10.4230/LIPIcs.CONCUR.2015.72

	1 Introduction
	2 Preliminaries
	3 Two Models
	3.1 Reconfigurable Broadcast Networks
	3.2 Asynchronous Shared-Memory Systems

	4 RBN and ASMS are Cube-Reachability Equivalent
	4.1 ASMS Simulate RBN
	4.2 RBN Simulate ASMS

	5 Transferring Existing Results
	5.1 Unbounded initial cube reachability
	5.2 Leader protocols
	5.3 Almost-sure coverability

	6 A Third Model
	6.1 Immediate Observation Nets
	6.2 RBN Simulate IO Nets
	6.3 IO Does not Strongly Simulate RBN

