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A key result in the theory of the modal µ-calculus is the disjunctive normal form theorem by Janin &

Walukiewicz, stating that every µ-calculus formula is semantically equivalent to a so-called disjunc-

tive formula. These disjunctive formulas have good computational properties and play a pivotal role

in the theory of the modal µ-calculus. It is therefore an interesting question what the best normal-

isation procedure is for rewriting a formula into an equivalent disjunctive formula of minimal size.

The best constructions that are known from the literature are automata-theoretic in nature and consist

of a guarded transformation, i.e., the constructing of an equivalent guarded alternating automaton

from a µ-calculus formula, followed by a Simulation Theorem stating that any such alternating au-

tomaton can be transformed into an equivalent non-deterministic one. Both of these transformations

are exponential constructions, making the best normalisation procedure doubly exponential. Our key

contribution presented here shows that the two parts of the normalisation procedure can be integrated,

leading to a procedure that is single-exponential in the closure size of the formula.

1 Introduction

The modal µ-calculus [1] is a general modal logic enriched with fixpoint operators that allow to reason

about the ongoing, possibly infinite behaviour of a system. The generality and complexity of the modal

µ-calculus calls for research into fragments of the logic. On the one hand, this concerns fragments tailor-

made for certain application domains such as the temporal logics LTL, CTL or dynamic logics [20]. On

the other hand, one focuses on fragments of the µ-calculus that are either semantically or syntactically

well-behaved and where a better understanding increases our knowledge about the full µ-calculus. One

key fragment of the latter kind is formed by the so-called disjunctive formulas [13] . These are formulas,

where the use of conjunctions is strictly limited to conjunctions of propositional atoms and the formula ⊤
(thought of as the empty conjunction). We state the formal definition here - the meaning of the ∇-operator

will be discussed later.

Definition 1.1 The set µDML of disjunctive µ-calculus formulas is given by the following grammar:

ϕ ::= ⊥ | ⊤ |
∧

L∧∇Φ | (ϕ1 ∨ϕ2) | µ p.ϕ | ν p.ϕ

where L is a finite set of literals (i.e., propositional variables or their negations), Φ is a finite set of

formulas in µDML, and p is a propositional variable. Furthermore we require that in a formula η p.ϕ
all occurrences of p in ϕ are positive, guarded and not in the context of a conjunction p∧ψ .
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While disjunctive formulas correspond to a proper syntactic fragment of the µ-calculus, it is a some-

what surprising fact that each formula of the µ-calculus is semantically equivalent to a disjunctive one.

This has many applications, e.g., satisfiability checking of a disjunctive formula can be carried out effi-

ciently [13] (being ExpTime-complete in for arbitrary formulas [7, 8]) and disjunctive formulas facilitate

the computation of uniform interpolants [4, 5]. Furthermore, disjunctive formulas play a pivotal role

in the completeness theory of the modal µ-calculus [23, 9]. Finally, disjunctive formulas also provide

insights for characterising important semantic fragments such as the continuous, additive and monotone

fragments of the modal µ-calculus [10].

Recipes to rewrite a given arbitrary µ-calculus formula into an equivalent disjunctive one are well-

known [13]. The size of the resulting disjunctive formula is crucial, in particular, in connection with

satisfiability and uniform interpolation. The construction of a disjunctive formula usually proceeds in

two stages: first a given µ-calculus formula is transformed into an equivalent, possibly alternating modal

automaton, which is then transformed into an equivalent non-deterministic “disjunctive” modal automa-

ton. The latter can be easily translated back into a disjunctive formula. We will argue that the outlined

two-stage construction will inevitably lead to a double-exponential blow-up in the size of the formula.

This is, because the first move from formulas to automata involves bringing the formula into a guarded

format, i.e., a form where each fixpoint variable is in the scope of at least one modality. That guarding is

problematic has been observed in the work by Bruse et al. [2] - we will argue that it necessarily entails

an exponential blow-up in the size of the structures involved.

This sets the stage for our main result: a procedure that directly turns an arbitrary, possibly unguarded

formula in the modal µ-calculus into an equivalent disjunctive automaton of exponential size. The latter

can be turned easily into a disjunctive formula, which leads to our main theorem.

Theorem 1.2 For any µ-calculus formula ϕ we can construct an equivalent disjunctive µ-calulus for-

mula ϕd of size 2O(n2k·log(nk)) and alternation depth O(n ·k), where n = |ϕ | and where k is the alternation

depth of ϕ .

In the above theorem, the size of a formula refers to the size of its Fisher-Ladner closure, which

has been shown in [2] to provide the tightest measure of formula size. For a discussion and comparison

of different size measures see [15] where we also propose so-called “parity formulas” as a versatile

tool to study the complexity of formula constructions. Parity formulas are a graph-shaped variant of µ-

calculus formulas which is closely related to Wilke’s alternating automata [24] and hierarchical equation

systems [6]. While we stated the above theorem with reference to standard formulas, we will work

throughout the paper with parity formulas instead. At the same time we will explain why Thm. 1.2 is a

consequence of our work.

The outline of our paper is thus as follows: we will first introduce the necessary terminology for

parity formulas, modal automata and their respective disjunctive variants. After that, in Section 3, we

will discuss why guarding a parity formula can lead to an exponential blow-up. We then demonstrate

that turning an arbitrary formula into an equivalent modal automaton is at least as costly as guarding a

formula which means that the earlier mentioned two-stage method of constructing a disjunctive formula

will in general lead to a double-exponential blow-up. Section 5 contains the central result of this paper,

a construction that turns any given parity formula into an equivalent disjunctive modal automaton. This

will provide a proof of Thm. 1.2.

Related Work. In addition to the already mentioned papers we would like to highlight a few more

closely related lines of research. In spirit, our construction is related to the work by Friedmann & Lange

on tableaux for unguarded µ-calculus formulas [11] but the cited paper is not concerned with disjunctive

normal forms. Similarly, our automata theoretic result could be obtainable from a more general result
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in [21] - a key definition in that paper, however, appears to make an implicit assumption on the names of

fixpoint variables (“cleanness”) whereas our results from [15] demonstrate that cleaning a formula can

lead to an exponential blow-up in (closure) size. In addition, it is not clear how to extract a disjunctive

formula from the purely automata-theoretic constructions in [21]. Finally, the work by Lehtinen [17]

studies how the alternation depth of a formula relates to the alternation depth of an equivalent disjunctive

formula. While it turns out that the difference in alternation depth can be arbitrarily big, we note that

this is not in conflict with the bound in our theorem, as we refer to a particular disjunctive equivalent as

opposed to an arbitrary one.

Acknowledgements. We would like to thank the anonymous referees for valuable comments that

helped to improve this paper.

2 Preliminaries

2.1 The µ-calculus and parity formulas

We will now recall the standard syntax of the modal µ-calculus and its reformulation in terms of parity

formulas. It will be convenient for us to assume that µ-calculus formulas are in so-called negation normal

form. We assume an infinite set of propositional variables, and define a literal to be either a propositional

variable p or its negation p.

Definition 2.1 The formulas of the modal µ-calculus µML are given by the following grammar:

ϕ ::= ℓ | ⊥ | ⊤ | (ϕ1 ∨ϕ2) | (ϕ1 ∧ϕ2) | ✸ϕ | ✷ϕ | µ p.ϕ | ν p.ϕ ,

where ℓ is a literal, p is a propositional variable, and the formation of the formulas µ p.ϕ and ν p.ϕ is

subject to the constraint that ϕ is positive in p, i.e., there are no occurrences of p in ϕ . With |ϕ | we

denote the size of a formula measure in the number of distinct formulas in its Fisher-Ladner closure.

We often restrict attention to formulas of which the free variables belong to some fixed finite set

P; these are interpreted over Kripke models over P (in the following referred to as models), i.e., triples

S= (S,R,Val) where S is a set of points, R is a binary relation and Val : P→℘S. We sometimes refer to

the propositional type cs := {p ∈ P | s ∈ Val(p)} of s ∈ S as the colour of s. A pointed model is a model

S together with a designated point sI ∈ S. Finally, it will be convenient to extend Val to all literals by

putting Val(p) = S\Val(p).
In this paper, we will not work with µ-calculus formulas in their usual shape, but with formulas repre-

sented as graphs, so-called “parity formulas”. Parity formulas will facilitate discussing the complexity of

our constructions. In addition, the fact that parity formulas resemble automata will simplify our proofs,

as key constructions in our paper turn formulas into automata and vice versa. While parity formulas were

introduced in [15] they are closely related to alternating automata [24] and hierarchical equation systems,

see for instance [6]. A detailed discussion of the connections can be found in [15, Section 5]. Before

giving the definition it will be useful to fix some terminology for directed graphs (which we will also

apply to structures such as parity formulas that possess a directed graph structure). For binary relations

R ⊆ X ×X and x ∈ X we will use the notation R[x] to denote the set {x′ ∈ X | (x,x′) ∈ R}.

Definition 2.2 Let (V,E) be a directed graph. A path π through (V,E) is a finite, non-empty sequence

π = v0 . . .vn ∈V ∗ such that vi+1 ∈ E[vi] for all i ∈ {0, . . . ,n−1}. We denote by first(π) and last(π) the

first and last element of the path π , respectively. Concretely, for the above path we have first(π) = v0

and last(π) = vn. A path π with first(π) = last(π) is called a cycle if it consists of at least two nodes.
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Position Player Admissible moves

(v,s) with L(v) = l and s ∈ Val(l) ∀ ∅

(v,s) with L(v) = l and s /∈ Val(l) ∃ ∅

(v,s) with L(v) = ε - E[v]×{s}
(v,s) with L(v) = ∨ ∃ E[v]×{s}
(v,s) with L(v) = ∧ ∀ E[v]×{s}
(v,s) with L(v) =✸ ∃ E[v]×R[s]
(v,s) with L(v) =✷ ∀ E[v]×R[s]

Table 1: The evaluation game E (G,S).

Given the set P of proposition letters, we let Lit(P) and At(P) := Lit(P)∪{⊥,⊤} denote the set

of literals and atomic formulas over P, respectively.

Definition 2.3 Let P be a finite set of proposition letters. A parity formula over P is a quintuple G =
(V,E,L,Ω,vI), where

• (V,E) is a finite, directed graph, with |E[v]| ≤ 2 for every vertex v;

• L : V → At(P)∪{∧,∨,✸,✷,ε} is a labelling function;

• Ω : V
◦
→ ω is a partial map, the priority map of G; and

• vI is a vertex in V , referred to as the initial node of G;

such that

1. |E[v]|= 0 if L(v) ∈ At(P), and |E[v]|= 1 if L(v) ∈ {✸,✷}∪{ε};

2. every cycle of (V,E) contains at least one node in Dom(Ω).

A node v ∈ V is called atomic if it is either constant or literal, boolean if L(v) ∈ {∧,∨}, and modal if

L(v) ∈ {✸,✷}. We denote by Va, Vb and Vm the collections of atomic, boolean and modal nodes, respec-

tively. The elements of Dom(Ω) will be called states. The size of a parity formula G= (V,E,L,Ω,vI) is

defined as its number of nodes: |G| := |V |.

Definition 2.4 Let S = (S,R,Val) be a Kripke model for a set P of proposition letters, and let G =
(V,E,L,Ω,vI) be a parity formula over P. We define the evaluation game E (G,S) as the parity game

(G,E,Ω′) of which the board consists of the set V ×S, the priority map Ω′ : V ×S → ω is given by

Ω′(v,s) :=

{
Ω(v) if v ∈ Dom(Ω)
0 otherwise,

and the game graph is given in Table 1. Here all possible game positions are listed in the left column,

the owner of a position is either ∀ or ∃1 and the set of possible moves is specified in the right column. As

usual, finite plays of the game are lost by the player who owns the last position of the play from which no

more move is possible (“the player who gets stuck loses”). An infinite play is won by ∃ if the maximum

priority occurring infinitely often along the play is even, and by ∀ if it is odd.

The parity formula G holds at a point s if the pair (vI ,s) is winning for ∃ in the evaluation game.

1Note that we do not need to assign a player to positions that admit a single move only.
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A central complexity measure for both parity formulas and modal automata will be the so-called

index. We define the index of a parity formula as the size of the range of its priority function Ω. We

will rely on the following result from [15] that ensures that throughout the paper we are able to work on

parity formulas instead of formulas in standard syntax.

Proposition 2.5 There is an algorithm that constructs for any formula ϕ ∈ µML an equivalent parity

formula Gϕ such that |Gϕ | = |ϕ | and such that the index of Gϕ is smaller or equal to the alternation

depth of ϕ . Conversely, there is an algorithm that constructs for a given parity formula G an equivalent

formula ϕG ∈ µML such that |ϕG| ≤ 2 · |G| and such that the alternation depth of ϕG is smaller or equal

to the index of G.

2.2 Modal Automata

Intuitively, modal automata correspond to parity formulas in a certain normal form - the precise connec-

tion will be discussed in Section 4 below. Modal automata are based on the modal one-step language.

This language consists of very simple modal formulas, built up from a collection A of variables, which

represent the states of the automaton and correspond to the fixpoint variables of a formula.

Definition 2.6 Given a set A. The set 1ML(A) of modal one-step formulas over A is inductively given as

follows:

α ::=⊥ | ⊤ | ✸a | ✷a | α ∧α | α ∨α ,

where a ∈ A. We let Sfor(α) denote the collection of subformulas of a one-step formula α .

Definition 2.7 Let P be a finite set of propositional variables. A modal P-automaton A is a quadruple

(A,∆,Ω,aI) where A is a non-empty finite set of states, of which aI ∈ A is the initial state, Ω : A → ω is

the priority map, and the transition map ∆ : A×℘P→ 1ML(A) maps pair of states and colors to one-step

formulas.

The size of a modal automaton is defined as follows.

Definition 2.8 Let A = (A,∆,Ω,aI) be a modal automaton. We define its state size |A|s := |A|, its size

as

|A| :=
∣∣∣
⋃

{Sfor(α) | α ∈ Ran(∆)}
∣∣∣+ |A|s,

and its index as ind(A) := |Ran(Ω)|.

Modal automata operate on pointed models, acceptance is defined via parity graph games.

Definition 2.9 Let A = (A,∆,Ω,aI) be a modal automaton and let (S,sI) be a model. The acceptance

game A (A,S) of A has the game board displayed in Table 2. A pointed model (S,sI) is accepted by A if

∃ has a winning strategy at position (aI ,sI) in A (A,S).

2.3 Disjunctive Formulas & Automata

In this section we introduce disjunctive formulas and their automata-theoretic pendant, so-called disjunc-

tive automata. Disjunctive formulas can be best characterised in a modal language that has one “cover

modality” ∇ that takes a finite set of formulas as its argument. Given such a set Φ, one may think of the

formula ∇Φ as the abbreviation

∇Φ ≡
∧

ϕ∈Φ

✸ϕ ∧✷

∨

ϕ∈Φ

ϕ .
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Position Player Admissible moves

(a,s) ∈ A×S − {(∆(a,cs),s)} with cs = {p ∈ Q | s ∈ Val(p)}

(⊥,s) ∈ 1ML(A)×S ∃ /0

(⊤,s) ∈ 1ML(A)×S ∀ /0

(α1 ∨α2,s) ∃ {(α1,s),(α2,s)}

(α1 ∧α2,s) ∀ {(α1,s),(α2,s)}

(✸a,s) ∃ {(a,s′) | s′ ∈ R[s]}

(✷a,s) ∀ {(a,s′) | s′ ∈ R[s]}

Table 2: The game board of the accepance game of a modal automaton.

Position Player Admissible moves

(v,s) with L(v) = ε - E[v]×{s}
(v,s) with L(v) =⊤ ∀ ∅

(v,s) with L(v) = ∨ ∃ E[v]×{s}
(v,s) with L(v) = ∧l and s 6∈ Val(l) ∃ ∅

(v,s) with L(v) = ∧l and s ∈ Val(l) ∀ E[v]×{s}
(v,s) with L(v) = ∇ ∃ {Z ⊆V ×S | (E[v],R[v]) ∈ Z}
Z ⊆V ×S ∀ {(v′,s′) | (v′,s′) ∈ Z}

Table 3: The evaluation game E (G,S).

It is called the “cover modality” since, intuitively, the formula ∇Φ holds at a point s if the set of successors

of s and the set of elements of Φ cover each other, in a sense that can be made precise using the notion

of relation lifting. For a relation Z ⊆ X ×Y we define its lifting Z ⊆℘X ×℘Y by putting

(U,V ) ∈ Z if ∀x ∈U.∃y ∈V.(x,y) ∈ Z and ∀y ∈V.∃x ∈U.(x,y) ∈ Z.

It is then easy to verify that the formula ∇Φ holds at a point s if the pair (R[s],Φ) belongs to the lifting

of the truth relation between points and formulas. The operator ∇ is well-known from the literature,

cf. e.g. [13, 22, 17].

Definition 2.10 Let P be a finite set of propositional variables. A disjunctive parity formula over P is a

quintuple G= (V,E,L,Ω,vI) such that

• L : V →{∧l | l ∈ Lit(P)}∪{∇,∨,⊤,ε} is a labelling function;

• for all v ∈V with L(v) 6= ∇ we have |E[v]| ≤ 2

and such that all other conditions of the definition of parity formulas in Def. 2.3 are met. The board of

the evaluation game E (G,S) of a disjunctive parity formula on a model S is displayed in Table 3.

Intuitively, a node v labelled with ∇ represents the formula ∇{ϕw | w ∈ E[v]}, where for each w ∈ E[v]
we write ϕw for the formula represented by w. Furthermore ∧l is intended to be a unary operator that

represents the conjunction of its argument with l. In other words, disjunctive formulas are formulas that

contain conjunctions only in the form of conjunctions with literals and in the form of ⊤ that can be

thought of as the empty conjunction. Disjunctive formulas have their automata-theoretic pendant, the

so-call disjunctive modal automata – the so-called µ-automata of Janin & Walukiewicz [13]. These are

defined by restricting the shape of transition conditions.
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Definition 2.11 Given a finite set A, we define the set 1DML(A) of disjunctive modal one-step formulas

over A via the following grammar:

α ::=⊥ | ⊤ | ∇B | α ∨α ,

where B ⊆ A. A disjunctive modal P-automaton is a tuple A = (A,∆,Ω,aI) such that ∆ : A×℘P →
1DML(A). The acceptance game A (A,S) on a model S is defined as for general modal automata with

the difference that the rule for ∧ no longer applies and that the rules for ✷ and ✸ are replaced by

Position Player Admissible moves

(∇B,s) ∃ {Z ⊆ A×S | (B,R[s]) ∈ Z}

Z ⊆ A×S ∀ {(v′,s′) | (v′,s′) ∈ Z}

3 Guarding Revisited

Existing approaches for turning a µ-calculus formula into a modal automaton rely on the assumption

that the input formula is guarded. As [2] have shown this assumption is problematic because existing al-

gorithms for guarding formulas, which have long been thought to be polynomial, are in fact exponential.

In this section we discuss two results on the complexity of guarding formulas. We do this in the setting

of parity formulas.

Definition 3.1 A path π = v0v1 · · ·vn through G is unguarded if n ≥ 1, v0,vn ∈Dom(Ω) while there is no

i, with 0 < i ≤ n, such that vi is a modal node. A parity formula is guarded if it has no unguarded cycles,

and strongly guarded if it has no unguarded paths.

Adapting the well-known construction for guarding formulas one can show that it is possible to guard

parity formulas, with an exponential blow-up in the number of states [15].

Theorem 3.2 There is an algorithm that transforms a parity formula G= (V,E,L,Ω,vI) into a strongly

guarded parity formula G
g such that

1) G
g ≡G;

2) |Gg| ≤ 21+|Dom(Ω)| · |G|;
3) ind(Gg)≤ ind(G).

It is unclear whether this result can be improved such that the number of states of Gg is polynomial

in the number of states in G. The results in section 4 of Bruse, Friedmann & Lange [2] show that certain

guarded transformation procedures are as hard2 as solving parity games. Theorem 3.3 below can be seen

as our parity-formula version of this observation. Our proof is in fact simpler because we can exploit the

close connection between parity games and parity formulas and thus do not need the product construction

from [14] that is used for the results from [2].

Theorem 3.3 If there is a procedure that runs in polynomial time and transforms a parity formula G to

a guarded parity formula G
γ with G

γ ≡G then solving parity games is in PTIME.

For a proof of Theorem 3.3 we refer to [15], where we also discuss in some detail the relation with

other results in [2].

2It is an open question whether parity games can be solved in polynomial time. Despite considerable efforts no polynomial

algorithm has been found so far. In the recent literature, however, various quasi-polynomial algorithms have been given,

following the breakthrough work of Calude et alii [3].
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4 Modal Automata and Strongly Guarded Parity Formulas

In this section we establish a close connection between modal automata and parity formulas. We will first

see that a modal automaton can be turned into a strongly guarded parity formula that is of linear size if we

ignore propositional variables. In particular this shows that turning a parity formula into an equivalent

modal automaton is at least as hard as the guarding construction from the previous section (hardness

of the latter does not depend on formulas containing propositional variables). We close by showing

how to turn a parity formula into an equivalent modal automaton of exponential size. Collectively the

results from this section will show that constructing a disjunctive modal automaton from a parity formula

by first turning the latter into an equivalent modal automaton to which we then apply a known “non-

determinisation” construction would yield a doubly exponential blow-up (in closure size). This sets the

stage for our main result in the next section where a new construction that is single exponential in closure

size from parity automata to disjunctive modal automata is provided.

Theorem 4.1 There is an algorithm that constructs, given a modal automaton A, a strongly guarded

parity formula G such that

1) G≡ A;

2) |G| ≤ 2|P| · |A|;
3) ind(G)≤ ind(A).
4) If A is disjunctive then so is G.

Proof. We only sketch the construction. For each a ∈ A we let ∆′(a) =
∨

c∈℘P(
∧

p∈c p ∧
∧

p6∈c p ∧
∆(a,c)). Given a modal automaton A= (A,∆,Ω,aI) we define the set of nodes of G by

V = A∪
⋃
{Sfor(α) | α ∈ Ran(∆′)}

To defined the edge relation E of G we put E[a] = ∆′(a) for all a ∈ A. For all other elements of V we let

E be the “immediate subformula” relation, e.g. E[α1 ∧α2] = {α1,α2}, E[✸a] = {a}, etc. The priority

map ΩG of G assigns to each element a ∈ A the priority Ω(a). The initial state vI of G is defined as

vI = aI . Finally, the map L assigns to each element a ∈ A the label ε and for each formula α the label

consists of the top-most operator of α . It is easy to see that G thus defined satisfies conditions 2) and 3).

The proof of condition 1) is following a standard argument and is omitted here. Concerning 4) it suffices

to note that for a disjunctive a ∈ A we put

∆′(a) =
∨

c∈℘P

(∧l1 (· · ·∧lm (∆(a,c))))

where l1, . . . , ln is an enumeration of all propositional variables in c and the negation of all variables not

in c. Otherwise G is defined as in the non-disjunctive case and the result is a disjunctive formula. QED

Theorem 4.2 There is an algorithm that constructs, given a parity formula G, a modal automaton A

such that

1) A≡G;

2) |A|s ≤ 21+|Dom(Ω)| · |G| and |A| ≤ 2|P|+1+|Dom(Ω)| · |G|;
3) ind(A)≤ ind(G).

Proof. By Theorem 3.2 we may effectively construct from G an equivalent, strongly guarded parity

formula H = (V,E,L,Ω,vI) such that |H| ≤ 21+|Dom(Ω)| · |G| and ind(H) ≤ ind(G). As shown in [15],

we may additionally assume that in H, every predecessor of a node v ∈ Dom(Ω) is a modal node. The
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state space of the modal automaton A will be given as the set A :=E[Vm]∪{vI}, so that by the assumption

on H every state of H is a state of A. In addition, vI and possible other successors of modal nodes are

states of A as well. We can then simply define ΩA := Ω, and take vI as the initial state of A. It remains

to define the transition function ∆ of A.

Our first step will be to associate, with each node v ∈ V , a formula α(v), which belongs to the

collection 1AML(P,A) of alternative one-step formulas given by the following grammar:

α ::= ⊥ | ⊤ | p | p | ✸a | ✷a | α ∧α | α ∨α ,

where p ∈ P and a ∈ A. As the formula H is strongly guarded and by the additional property that

E−1[Dom(Ω)]⊆Vm, there is a unique map α : V → 1AML(P,A) which satisfies the following conditions:

α(v) =





L(v) if v ∈Vl

♥a where L(v) =♥ and E[v] = {a} if v ∈Vm⊙{
α(u) | u ∈ E[v]

}
where L(v) =⊙ if v ∈Vb

α(u) where E[v] = {u} if v ∈Vε

We can now define the transition map ∆ : A×℘(P) → 1ML(A) as follows. For each state a ∈ A

and color c ∈ ℘(P) we define the formula ∆(a,c) as ∆(a,c) := α(a)[σc], where the substitution σc :

1AML(P,A)→ 1ML(A) is given by putting

σc(p) :=

{
⊤ if p ∈ c

⊥ if p 6∈ c.

This completes the definition of the automaton A. It is easy to see that |A|s ≤ |V | ≤ 21+|Dom(Ω)| · |G|,
that |A| ≤ 2|P|×V ≤ 2|P|+1+|Dom(Ω)| · |G| and that ind(A) = ind(H) ≤ ind(G), which proves the items

2) and 3) of the theorem. The equivalence of A and H (and thus, of A and G) can be proved by a routine

argument. QED

5 The Simulation Theorem

The main result of this section, and the main technical contribution of the paper, is the following theorem.

Theorem 5.1 Let G be a parity formula of size n and index k with propositional variables contained in

P with |P|= l. Then we can effectively construct a disjunctive modal automaton3
A= (A,Θ,Ω,aI) with

|A| ≤ 2n2k, |A| ≤ n2n2k+l+n and G≡ A.

Convention. In the remainder of this section we fix a parity formula G with G = (V,E,L,Ω,vI) with

|V |= n and |Ran(Ω)|= k. It will be convenient to make the following assumptions on G: (i) Ω is total,

(ii) L−1(ε) = ∅, and (iii) E[v] 6= ∅ if L(v) ∈ {∧,∨}. We leave it for the reader to convince themselves

that this is without loss of generality. Furthermore we define V∨ := L−1(∨), etc. We now turn to the

proof of Theorem 5.1.

3For the time being this will be an automaton with a regular acceptance condition. We will transform this into an automaton

with a parity condition later.
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5.1 Macrostates

We shall construct the simulating automaton via a powerset construction. That is, for the states of A

we will in principle take subsets of G. However, in order to handle infinite matches correctly we need

to store some more information in these states: A state of A will be a a macrostate over G, that is, a

ternary relation m ⊆V ×Ran(Ω)×V , representing various pieces of information. Basically, each triple

(u,k,v) ∈ m represents the projection on G of a partial play of the evaluation game of G which starts at

u, ends at v, and reaches k as its highest priority (after u). More precisely, the triple (u,k,v) represents

a path π through G with first(π) = u, last(π) = v, and such that k is the highest priority reached on π

after u. Consequently, one single match of the acceptance game of A on a pointed Kripke structure will

represent a certain bundle of matches of evaluation game of G.

Before defining and discussing macrostates formally, we need some auxiliary terminology.

Definition 5.2 A subset U ⊆ V is inconsistent if there is u ∈ U with L(u) = ⊥, or if there are nodes

u,v ∈U with L(u) = p and L(v) = p for some p ∈ P. Given a color c ∈℘P we say that U is compatible

with c if L(u) 6=⊥, L(u) = p implies p ∈ c, and L(u) = p implies p 6∈ c, for all u ∈U and p ∈ P.

Definition 5.3 We define the set MΩ of macrostates of G by putting MΩ :=℘(V ×Ran(Ω)×V ). The

range Ran(m) of a macrostate m ∈ MΩ is the set of all v ∈V such that (u,k,v) ∈ m for some u ∈V and

k ∈ Ran(Ω). With m,m′ ∈ MΩ, we define the composition m ; m′ ∈ MΩ as the set of triples (v,k,v′′) ∈
V ×Ran(Ω)×V for which we can find (v,k′,v′) ∈ m and (v′,k′′,v′′) ∈ m′ such that k = max(k′,k′′). For

a subset U ⊆V , we define ∆U := {(u,0,u) | u ∈U}; where v ∈V , we abbreviate ∆v := ∆{v}.

A macrostate m is called consistent, respectively compatible with a color c ∈℘P, if Ran(m) ⊆ V

satisfies the mentioned property w.r.t. c, in the sense of Definition 5.2.

Given a stream α = (mi)i∈ω of macrostates, we say that a stream (vi,ki)i∈ω ∈ (V ×Ran(Ω))ω is a

trace on α if (vi,ki,vi+1) ∈ mi, for all i ∈ ω . Such a trace is good (bad, respectively) if the maximum

number k occurring as ki for infinitely many i is even (odd, respectively). We let NBTΩ denote the

collection of MΩ-streams that do not carry a bad trace.

Proposition 5.4 The set NBTΩ is an ω-regular language over MΩ. Concretely, there is a deterministic

parity automaton P over MΩ such that Lω(P) = NBTΩ and P has size 2O(nk·log(nk)) and index O(nk).

Proof. We first observe that there is a non-deterministic parity word automaton W = (Q,qI ,∆W,ΩW)
that accepts the language Lbad := (MΩ)

ω \NBTΩ, i.e., all infinite streams of macrostates that do contain

a bad trace. To define W we put Q :=V , qI := vI , ∆W(v,m) := {u ∈V | ∃k.(v,k,u) ∈ m} and ΩW(v) :=
Ω(v)+ 1 for all v ∈ V and all m ∈ MΩ. It is easy to verify W is a parity automaton with n states and

index k that accepts Lbad. Standard constructions can be used to first transform W into an equivalent

non-deterministic Büchi automaton W
′ of size O(n · k) (cf. e.g. [12]) which can be in turn transformed

into an equivalent deterministic parity word automaton W
′′ that meets the size bounds of the proposition

(cf. [18, 19]). The automaton P is now constructed as the deterministic parity word automaton that

accepts the complement of the language of W′′ by adding 1 to all the priorities of states in W
′′. QED

5.2 Local strategies & the disjunctive modal automaton

In our approach of dealing with the possible unguardedness of the input parity formula, the key concept

is that of a (positional) local strategy for ∃. A local strategy represents a complete set of choices of ∃
for all disjunction nodes in G. Intuitively, one may think of a local strategy as some part of a positional

strategy of ∃ where we stay put at a point in the model. More precisely, a local strategy χ induces, in the
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evaluation game of G, for any point in the model and any vertex in G, a unique (partial) play that does

not leave the mentioned point and stops whenever a modal vertex in G is met. The projections of these

matches will be called stationary plays. Formally we define these notion, together with some related

concepts that we will discuss in a moment, as follows.

Definition 5.5 A local strategy on G is a map χ : V∨ → V such that χ(v) ∈ E[v], for all v ∈ V∨. The

collection of local strategies on G is denoted by LSG.

Now fix such a local strategy χ . Given a vertex v ∈V we define the set SPχ(v) of stationary χ-plays

from v as the smallest set S ⊆V ∗ such that

(1a) if v ∈V∨ then v ·χ(v) ∈ S;

(1b) if v ∈V∧ then v ·w ∈ S, for each w ∈ E[v];
(2a) if π ∈ S and u := last(π) ∈V∨, then π ·χ(u) ∈ S; and

(2b) if π ∈ S and u := last(π) ∈V∧, then π ·w ∈ S, for each w ∈ E[u].
Given π = vv1 · · ·vk ∈ SPχ(v), define Ω̃(π) := max{Ω(vi) | 1 ≤ i ≤ k}. Via these stationary plays we

define the following macrostates:

e−χ :=
{
(v,n,u) | v ∈Vb and u = last(π) for some π ∈ SPχ(v) with n = Ω̃(π)

}

eχ := e−χ ∪∆V

We say that on a macrostate m, χ is locally compatible with a color c ∈℘P if (i) Ran(m ; eχ) is compat-

ible with c and (ii) the stream m ; (e−χ )
ω does not contain any bad trace.

Here are some intuitions about these notions. First, note that SPχ(v) only contains paths of length

> 1, corresponding to matches where actually a move is made at v. The macrostate e−χ represents the

relevant information about all finite stationary χ-plays; hence, the collection of all infinite stationary

χ-plays corresponds to the set of all traces over the MΩ-stream (e−χ )
ω .

Now fix a macro-state m. The macrostate m ; e−χ represents the version of m that absorbs all continu-

ations of matches in m with one of these finite stationary χ-plays; thus the set m∪ (m ; e−χ ) represents all

triples in m that are possibly continued with such a play. For technical reasons it is convenient to define

this set using the macro-state eχ , in the sense that m ; eχ = m ; (e−χ ∪∆V ) = (m ; e−χ )∪ (m ; ∆V ) = (m ;

e−χ )∪m. The stream m ; (e−χ )
ω represents all infinite plays that start with an m-play, and then continue

with an infinite stationary χ-play. To say that there is a bad trace on such a stream means that for some

v ∈ Ran(m), ∃’s opponent ∀ has a strategy such that, played against χ , the resulting match (path through

the graph of G) is bad, in the sense of the highest priority met infinitely often being odd. To say that,

relative to m, χ is locally compatible with a color c indicates, roughly, that after any m-match, if the

local point of the Kripke model has color c, then it is safe for ∃ (until the next modal vertex in G is

encountered) to continue by playing χ . Finally, it may also be useful to observe that for all m and χ we

find Ran(m)∩Vp ⊆ Ran(m ; eχ)∩Vp and Ran(m)∩Vm ⊆ Ran(m ; eχ)∩Vm.

We turn to the definition of the disjunctive modal automaton AG. For the definition of its transition

map Θ, note a macrostate m may be thought of as representing the conjunction of states in Ran(m) that

are visited by “parallel” plays of the evaluation game for G. The transition function Θ will implement the

intuition that a modal step needs to satisfy the “demands” posed by the modal nodes in Ran(m). These

demands are formulated separately for all box nodes and for each individual diamond node.

Definition 5.6 Let m ∈ MΩ be some macrostate, and let x ∈ Ran(m)∩V✸. Then we define

d✷(m) := {(u,Ω(v),v) | u ∈ Ran(m)∩V✷ and v ∈ E[u]},
dx(m) := {(x,Ω(v),v) | v ∈ E[x]}∪d✷(m).
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The macrostates d✷(m) and dx(m) correspond to, respectively, the universal and existential require-

ments made by the vertices in the range of m.

Definition 5.7 LetG=(V,E,L,Ω,vI) be a parity formula. We define the automaton AG=(A,Θ,Acc,mI)
as follows. To start with, its carrier is the collection of all macrostates: A := MΩ and its initial state is

given as mI = ∆vI
= {(vI ,0,vI)}. The transition map Θ is given as follows. For a macrostate m ∈ MΩ

and a local strategy χ we define Am,χ ⊆ MΩ:

Am,χ := {eχ ; d✷(m ; eχ)} ∪ {eχ ; dx(m ; eχ) | x ∈ Ran(m ; eχ)∩V✸},

and for a macrostate m ∈ MΩ and a color c ∈℘P we put:

Θ(m,c) :=
∨{

θ(m, .c,χ) | χ ∈ LSG is locally compatible with c on m
}
,

where

θ(m,c,χ) :=

{
∇Am,χ if Ran(m ; eχ)∩V✸ 6=∅

∇Am,χ ∨∇∅ if Ran(m ; eχ)∩V✸ =∅.

Finally, for its acceptance condition Acc we take the ω-regular language NBTΩ, i.e, an infinite play of

A will be winning for ∃ if the corresponding stream of macrostates is in NBTΩ.

To get some intuitions: to define Θ(m,c), we nondeterministically guess a local strategy χ that is

compatible with c on m – this guess is reflected by the disjunction in the definition of Θ(m,c). For

each such χ , we absorb its stationary plays into m and turn to the set of modal nodes in the range of

the resulting macro-state m ; eχ . We gather the universal and existential requirements of m ; eχ into an

appropriate collection Am,χ of “next” macro-states. This set Am,χ is then to be covered by the collection

of successors of the point in the Kripke model under inspection, as encoded by the formula ∇Am,χ . In

the special case where m ; eχ makes no existential demands (i.e., if Ran(m ; eχ)∩V✸ = ∅), we add the

disjunct ∇∅ ≡ ✷⊥, allowing for the possibility that the point has no successors at all. To see how this

all works out precisely, the reader is advised to look at the proof of Proposition 5.8 below.

5.3 Proof of Theorem 5.1

Turning to the proof of the main theorem, we first show that the disjunctive modal automaton from

Definition 5.7 is equivalent to the parity formula G that we started with. After that we prove Theorem 5.1

by showing that AG is within the desired size bounds.

Proposition 5.8 For any parity formula G, we have G≡A, where A :=AG is given as in Definition 5.7.

Proof. We show that

(vI ,sI) ∈ Win∃(E (G,S)) iff (mI,sI) ∈ Win∃(A (A,S)), (1)

where (S,sI) is an arbitrary but fixed pointed model, mI := ∆vI
, and we write Win∃ for the set of winning

positions for ∃ in a game. In the sequel we will abbreviate E := E (G,S) and A := A (A,S).
For the direction from left to right of (1), fix a positional winning strategy f for ∃ in E . For any point

s ∈ S, we may associate a map χs : V∨ →V with f , as follows. Given a vertex u ∈V∨, if (u,s) ∈ Win∃(E )
then χs maps u to the element v ∈ E[u] such that (v,s) = f (u,s); if (u,s) 6∈ Win∃(E ) we define χs(u)
to be an arbitrary element in E[u]. Clearly χs is a local strategy in the sense of Definition 5.5, and it

is not hard to prove that χs is locally compatible with the color Val(s) of s, on any m ∈ MΩ such that

(v,s) ∈ Win∃(E ) for any v ∈ Ran(m). We define the following (positional) strategy f ′ for ∃ in A . Let
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Σ be a partial A -match with last(Σ) = (m,s). In case Ran(m)×{s} 6⊆ Win∃(E ) then ∃ plays randomly

(one may show that this will never happen). If, on the other hand, Ran(m)×{s} ⊆ Win∃(E ), then we

already saw that χs is locally compatible with Val(s) on m. Compute e := eχs
and recall that with each

element (u,k,v) ∈ e we may associate a partial f -guided match π : (u,s) · · · (v,s), which is stationary at

s and such that k is the highest priority met on π after u: k = Ω̃(π). It is then not hard to see that, for

an arbitrary element w ∈ Ran(m ; e) we have (w,s) ∈ Win∃(E ). In particular, if such a w belongs to V✸,

then ∃’s winning strategy f in E selects a successor tw ∈ R[s]. This assignment, V✸ ∋ w 7→ tw, determines

∃’s strategy f ′ in A . That is, at any partial match Σ with last(Σ) = (m,s), let ∃ play

f ′(m,s) :=
{(

e ; d✷(m ; e), t
)
| t ∈ R[s]

}
∪
{(

e ; dw(m ; e), tw
)
| w ∈V✸∩Ran(m ; e)

}
. (2)

It is easy to see that this move is legitimate. To show that f ′ is actually winning for ∃ consider an arbitrary

f ′-guided partial match Σ = (m0,s0) · · · (mn,sn) with (m0,s0) = (mI,sI). Via an inductive proof one can

show that Ran(mi) ⊆ {v ∈V | (v,si) ∈ Win∃(E )}, for each i ≤ m. Therefore ∃’s moves in Σ are indeed

legitimately guided as in (2) and she wins every finite f ′-guided match of A starting at (mI ,sI).
To see that ∃ also wins the infinite f ′-guided matches, let Σ = (mi,si)i∈ω be an arbitrary such

match, and consider an arbitrary trace (vi,ki)i∈ω on Σ. Let k be the maximum number occurring as

ki for infinitely many i; it then suffices to show that k is even. For every i < ω one may associate

f -guided partial E -matches σi = (ui
0,si)(u

i
1,si) · · · (u

i
ni
,si) and σ+

i := σi · (u
i+1
0 ,si+1) such that vi = ui

0,

vi+1 = ui+1
0 and k = Ω̃(σ+

i ). Putting these partial plays together, with the trace (vi,ki)i∈ω we have thus

associated a (full) infinite f -guided E -match σ = σ0σ1 · · · , such that σi = (ui
0,si)(u

i
1,si) · · · (u

i
ni
,si) and

ki = max
{

Ω(σ i
1), . . . ,Ω(σ i

ni
),Ω(σ i+1

0 )
}

. This means that k is the highest priority that occurs infinitely

often in σ , and since σ is guided by ∃’s winning strategy f , k must be even indeed.

For the other direction of (1), fix a winning strategy h for ∃ in A . W.l.o.g. we may assume that S is

an ω-expanded tree4 with root sI , so that with each s ∈ S we may associate a unique state ms such that

(ms,s) can be reached during an h-guided match of A starting from (mI ,sI). By definition of AG and

A then, with each s ∈ S we may also associate a local strategy χs, which is locally compatible with the

color Val(s) on ms and such that ∃’s strategy h is aimed at satisfying the one-step formula ∇Ams,χs
.

To define ∃’s strategy h′ in E , consider an arbitrary finite E -match σ . It is not hard to see that σ

admits a unique modal decomposition σ = σ0 · · ·σl, where for all i < l, last(σi) is the unique modal

position in σi, and σl either contains no modal positions, or a unique one at last(σl). This means that we

may present each σi as σi = (vi
0,si)(v

i
1,si) · · · (v

i
ni
,si) for some fixed point si in S. The key idea underlying

the definition of h′ is that with every h′-guided finite match σ , with σ = σ0 · · ·σl as above, we associate

an h-guided A -match Σσ = (m0,s0) · · · (ml,sl) satisfying the condition (†) given below:

(†1) for each i ≤ l, j ≤ ni, we have vi
j ∈ Ran(mi ; eχsi

).

(†2) for each i ≤ l, mi = msi
, and the sequence vi

0 · · ·v
i
ni

is χsi
-guided; for each pair j,k with j < k ≤ ni,

we have (vi
j,N

i
j,k,v

i
k) ∈ e−χsi

, where N i
j,k = max{Ω(vi

r) | j < r ≤ k};

(†3) for each i < l, with w := vi
ni

, if w ∈ V✸, then mi+1 = eχsi
; dw(mi ; eχsi

) and (vi
0,Mi,v

i+1
0 ) ∈ mi+1,

where Mi = max{Ω(vi
1), . . . ,Ω(vi

ni
),Ω(vi+1

0 )}.

(†4) for each i < l, with w := vi
ni

, if w ∈ V✷, then mi+1 = eχsi
; d✷(mi ; eχsi

) and (vi
0,Mi,v

i+1
0 ) ∈ mi+1,

where Mi = max{Ω(vi
1), . . . ,Ω(vi

ni
),Ω(vi+1

0 )}.

4A pointed model (S,sI) is ω-expanded if R is the parent-child relation of a tree (S,R) which has sI as its root, and is such

that every non-root node s in S has at least ω many bisimilar siblings. It is not hard to see that every pointed model can be

unravelled to a bisimilar model that is ω-expanded.
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Based on this connection, we define the following strategy h′ for ∃ in E ; we show at the same time

that, playing h′, ∃ can maintain the condition (†) and wins all finite matches. Consider a partial h′-

guided match σ , modally decomposed as σ = σ0 · · ·σl as above, where σl = (vl
0,sl) · · · (v

l
k,sl), and let

Σσ = (m0,s0) · · · (ml,sl) be an associated A -match satisfying (†). We distinguish cases, writing v := vl
k

and χ := χsl
for brevity.

• If v is a propositional node, we need to show that σ is won by ∃. This is immediate in case

L(v) = ⊤, so assume that L(v) = ⊥ or L(v) ∈ {p, p} for some proposition letter p. We only treat

the case where L(v) = p, the other cases being similar. By (†2) we have ml = msl
, so that χ = χsl

is locally compatible with the color Val(sl) on ml ; eχ . But then (†1) implies that L(v) ∈ Val(s).

• If v ∈V∨, define h′(σ) := (χ(v),sl). It is easy to see that σ · (χ(v),sl) and Σσ are related by (†).

• If v ∈V∧, suppose that ∀ picks a conjunct u of v. Then σ · (u,sl) and Σσ are related by (†).

• If v ∈V✸, first define ml+1 := eχ ; dv(ml ; eχ). Note that, since v ∈ Ran(ml ; eχ) by the inductive

hypothesis (†1), we find ml+1 ∈ Aml ,χ . Furthermore, recall that by our assumption on h, ∃’s move

at position (ml,sl) in A is aimed at satisfying the one-step formula ∇Aml ,χ , and so this move must

contain a pair of the form (ml+1, t) for some t ∈ R[sl]. Now define h′(σ) := (u, t), where u is the

(unique) element of E[v]. The modal decomposition of σ ′ := σ · (u, t) is then σ ′ = σ1 · · ·σmσm+1,

where σm+1 = (u, t). (That is, in the terminology of (†) we have vl+1
0 = u and sl+1 = t.)

We now check that σ ′ and Σ′ := Σ · (ml+1, t) are related by (†). For (†1), it suffices to show that

u ∈ Ran(ml+1 ; eχt
). But this is immediate by (v,Ω(u),u) ∈ dv(ml ; eχ) = ∆V ; dv(ml ; eχ) ⊆ eχ ;

dv(ml ; eχ) = ml+1 ⊆ ml+1 ; ∆V ⊆ ml+1 ; eχt
. For (†2) it suffices to show that ml+1 = mt but

this holds by construction. For (†3) we likewise have ml+1 = eχ ; dv(ml ; eχ) by construction.

We already saw that (v,Ω(u),u) ∈ dv(ml ; eχ), and we have (vl
0,N

l
0,k,v

l
k) ∈ e−χ by the induction

hypothesis (†2). From this, and the observation that Ml = max(N l
0,k,Ω(u)) we obtain (vl

0,Ml,u) ∈
e−χ ; dv(ml ; eχ)⊆ eχ ; dv(ml ; eχ) = ml+1. Finally, for (†4) there is nothing to prove.

• The case where v ∈ V✷ is similar to the previous one, so we skip some details. Let u ∈ E[v] be

the unique successor of v in G, and suppose that in our E -match, ∀ picks a successor t of sl; that

is, we now look at the continuation σ ′ := σ · (u, t) of the E -match σ . Consider ∃’s move in A at

position (ml,sl), which makes the one-step formula ∇Aml ,χ true, and thus contains a pair (m, t) for

some m ∈ Aml ,χ . Now define ml+1 := m, and let Σ′ := (m, t); this is an h-guided continuation of Σ.

To verify that σ ′ and Σ′ satisfy (†), first note that by definition of the set Aml ,χ , m must be of the

form eχ ; dx(ml ; eχ), where either x =✷ or x ∈ Ran(ml ; eχ). Based on this observation, checking

the conditions (†1), (†2) and (†4) are similar to the respective conditions (†1), (†2) and (†3) in the

previous case (with the only difference that we now must also take the possibility that x = ✷ into

account). Finally, condition (†3) needs no check since it is not applicable.

To see that h′ is winning for ∃ consider a full h′-guided match, and distinguish cases. For finite matches

one can check that ∃ never gets stuck. In case σ is an infinite h′-guided match, we make a further

distinction as to whether the number of modal positions that σ passes through is finite or infinite. If σ

passes through infinitely many modal positions, there is a unique way of decomposing σ as σ = σ0σ1 · · · ,
where (last(σi))i∈ω is the sequence of (all) modal positions in σ . By construction there is an associated

infinite h-guided A -match Σσ = (mi,si)i∈ω related to σ via the condition (†). It is now possible to prove

that ∃ is the winner of σ by using that h is winning for ∃ in A (details omitted due to space limitations).

If σ only passes finitely many modal positions, we may represent σ = σ0 · · ·σl , where each σi with i < l

is finite, σl is infinite, and (last(σi))i<l is the sequence of all modal positions in σ . We only consider

the subcase where l > 0. Let Σσ = (m0,s0) · · · (ml,sl) be the h-guided A -match that we have associated
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with σ (or, to be more precise, with the initial segments of σ that are long enough to have passed the last

modal node of σ ). Observe that since Σσ is h-guided, the position (ml,sl) must be winning for ∃, and that

by (†2) the macrostate ml is the unique state m in A such that (ml,sl) is met during an h-guided A -match.

Write σm = (u0,s)(u1,s)(u2,s) · · · ; that is, we write u j := vl
j and s := sl . The sequence u0u1u2 · · · is a

trace on the stream ml ; (e−χs
)ω ; but then, by the compatibility of χs with ml on Val(s), u0u1u2 · · · must be

a good trace. Since (u0,s)(u1,s) · · · is a tail of σ , this means that σ is won by ∃, as required. QED

Proof of Theorem 5.1. The equivalence part of the disjunctive modal automaton AG,vI
to G was proved

in Proposition 5.8. It remains to check the sizes of the components of the automaton A. But this is

fairly straightforward. To start with, from the definition of A we have MΩ =℘(V ×Ran(Ω)×V ) it

immediately follows that |A| ≤ 2|V×Ran(Ω)×V | = 2n2k. To compute the size of Θ, first observe that the

number of local strategies is equal to 2|A∨|, and that for each macrostate m, local strategy χ and color

c ∈℘P we find |Am,χ | ≤ |V✸|+1 ≤ n. From this it is immediate that for each formula Θ(m,c) we have

|Θ(m,c)| ≤ 2|A∨| · (|V✸|+1)≤ n2n. Finally, the table of Θ has |A| ·2|P| ≤ 2n2k ·2l = 2n2k+l entries, so that

its total size is bounded by n2n ·2n2k+l = n2n2k+l+n, as stated by the theorem. QED

Corollary 5.9 The disjunctive modal automaton AG,vI
can be turned into an equivalent disjunctive par-

ity automaton A with index O(n · k) and size 2O(n2k·log(nk)).

Proof. A standard construction, the so-called wreath product, can be used to turn the automaton AG,vI

together with the automaton P= (P,δ ,ΩP, pI) from Proposition 5.4 into a parity automaton (cf. e.g. [16,

Definition 4.3]). The transition map of the resulting automaton A will have the same size as the one of

AG, the set of states is given as the product MΩ ×P and the index of A is equal to the index of P. Hence

the parity automaton has size 2O(nk·log(nk)) ·n2n2k+l+n = 2O(n2k·log(nk)), and index O(nk). QED

We finish with the main result of our paper: there is an algorithm turning a parity formula into

an equivalent disjunctive one in exponential size of the original formula. Due to our size preserving

translations from parity formulas to µ-calculus formulas in the standard syntax, the result carries directly

over to formulas in standard syntax if we measure the size of this formula in terms of its closure.

Corollary 5.10 For any parity formula G we can construct an equivalent disjunctive parity formula G
d

with |Gd| ≤ 2O(n2k·log(nk)) and with index O(n · k). Here n = |G| and k is the index of G.

The corollary is an immediate consequence of Corollary 5.9 and Theorem 4.1. An application of

Prop. 2.5 shows that the corollary implies Thm. 1.2.

6 Conclusions

We have presented an algorithm that constructs for a given arbitrary formula in the modal µ-calculus an

equivalent disjunctive formula with a single exponential blow-up when measuring the size of a formula in

closure size. While the complexity of this construction is likely to be optimal, it is an interesting question

for future work whether or not the construction can be optimised to obtain “nice” disjunctive formulas.

In particular, the move from modal automata to parity formulas potentially adds a large number of un-

necessary disjuncts. Obtaining a nicer formula could be relevant for computing uniform interpolants.

Another nagging question is the exact repercussion of our work for satisfiability checking. While sat-

isfiability checking for disjunctive formulas is linear in subformula size, our formulas are measured in

closure size, which is potentially an exponential smaller. It has to be checked whether one can use our

result for ExpTime satisfiability checking when the input formula is measured in closure size.
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