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We present a version of so called formula size games for regular expressions. These games character-

ize the equivalence of languages up to expressions of a given size. We use the regular expression size

game to give a simple proof of a known non-elementary succinctness gap between first-order logic

and regular expressions. We also use the game to only count the number of stars in an expression

instead of the overall size. For regular expressions this measure trivially gives a hierarchy in terms

of expressive power. We obtain such a hierarchy also for what we call RE over star-free expres-

sions, where star-free expressions, that is ones with complement but no stars, are combined using the

operations of regular expressions.

1 Introduction

Even though regular expressions, abbreviated RE, are a very thoroughly studied topic in computer sci-

ence, little work has been done on their succinctness, or size, until recently. The pioneering paper on

the size of RE seems to be in 1974 by Ehrenfeucht and Zeiger [4]. They define the size of an RE as the

number of occurrences of alphabet symbols in it and show that there is a deterministic finite automata

with n states such that the smallest RE defining the same language has size 2n−1. In 2005, Ellul et al. [5]

noted the lack of work on succinctness and presented several open problems as well as some results of

their own. Some of these open problems were related to the succinctness of RE expanded with operations

such as intersection. These and other similar problems were independently solved by Gelade and Neven

[6, 7] on the one hand and Gruber and Holzer [8, 9] on the other.

Gelade and Neven use a generalization of the result of Ehrenfeucht and Zeiger [4] to obtain double

exponential lower bounds for the size of an RE defining the complement of a single RE or the intersection

of a finite number of RE in a fixed size alphabet [7]. Gelade uses the same technique to also obtain

double exponential lower bounds for the added operations of interleaving and counting [6]. Gruber and

Holzer go even further, obtaining tighter bounds for all of the above in a two-letter alphabet [8, 9]. They

link the size of RE to their star height via a measure on the connectivity of the underlying DFA. The

measure is called cycle rank and was first introduced by Eggan and Büchi [3]. These two groups worked

independently although they were clearly aware of the other group’s work.

Many problems in finite model theory have been solved via the use of games such as the famous

Ehrenfeucht-Fraı̈ssé game that characterizes quantifier rank or depth in first-order logic. A similar game

for RE was presented by Yan [15]. This so called split game characterizes the depth of both catenation

and stars for generalized regular expressions, or GRE, where complement is added as an operation. Cate-

nation depth is sometimes referred to as dot-depth and star depth is more commonly known as star height.

For RE, Hashiguchi famously proved that star height gives a full hierarchy in terms of expressive power

[10]. For GRE, it is notoriously not even known if a language that requires an expression of star height

two exists. Yan offers his game as a possible way to attack the generalized star height problem but is

only able to complete results on infinite ω-words.
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In the vein of EF-games, there are also games for succinctness. These are often called formula size

games. They are games of definability just as the EF-game, but instead of quantifier rank they measure the

size of the defining formula. To our knowledge, the earliest example of such a game is for propositional

logic by Razborov [13]. Perhaps more well known is the later game by Adler and Immerman [1] for a

modal logic called CTL. To our knowledge, ours are the first formula size games presented for regular

expressions.

While EF-games are played on two structures, formula size games are instead played on two sets of

structures, A and B. In the context of regular expressions, these sets are languages. Our version of the

games also has a resource parameter k. The first player S is trying to show that there is an expression

R with A ⊆ L(R), B ⊆ Σ∗ \ L(R) and size at most k. S essentially sketches the syntax tree of such a

separating expression as the game goes on, but in a single game only one branch of the tree is visited. It

is the role of the second player D to choose which branch this is, and try to find the error in the strategy of

S. A separating expression of appropriate size exists if and only if S has a winning strategy. In addition

to the size, in this paper we are also interested in the number of stars in an expression. Thus we add a

separate parameter s to the game to track this. The game is very easy to modify in this way to track the

number or depth of whatever operators one is interested in.

We use the RE-version of the game to give a simpler proof for a known non-elementary succinctness

gap between FO and RE. Stockmeyer [14] showed that star-free expressions are non-elementarily more

succinct than RE and together with an elementary translation from FO to star-free by McNaughton and

Papert [12], the result follows. In addition, we consider the number of stars in an expression as a measure

of complexity. For RE a hierarchy in terms of expressive power can be trivially obtained in star height

one. For GRE this presents a difficult problem as the full use of complement ramps up the complexity

of the game significantly. We present RE over star-free expressions as a natural middle ground between

RE and GRE. These include all star-free expressions with complement and their combinations using the

operations of RE. For RE over star-free expressions we use a corresponding version of the game to show

that the number of stars also gives a full hierarchy in terms of expressive power already in star height

one.

The outline of the paper is as follows. In Section 2 we introduce RE, GRE and RE over star-free

expressions. We also discuss our definition of size for these expressions and define some notation for

the rest of the paper. In Section 3 we present the GRE size game and prove that it works as intended.

We also present variations of the game for RE and RE over star-free, and prove some useful lemmas

for later. In Section 4 we use the game for RE to show that defining a large finite language requires a

large RE. We then define a finite language of non-elementary size via a FO-formula of exponential size,

thus reproving the succinctness gap between FO and RE. In Section 5 we show that the number of stars

in an expression gives a hierarchy in terms of expressive power for RE over star-free expressions. We

conclude in Section 6.

2 Preliminaries

We begin by defining some basic notions such as regular expressions and our concept of the size of a

regular expression. For more on regular expressions we refer the reader to [11]. We omit the syntax

and semantics of first-order logic and direct the reader to [2] for a textbook with a finite model theory

approach.

Let Σ be an alphabet. Strings of symbols from the alphabet are called words and sets of words are

called languages. We denote the length of a word w with |w|.
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The regular expressions, or RE, of Σ are defined recursively as follows: /0, ε and every a ∈ Σ are

regular expressions. If R1 and R2 are regular expressions, then also R1 ∪R2, R1R2 and R∗
1 are regular

expressions. The generalized regular expressions, or GRE, of Σ are defined in the same way with the

following addition: if R is a GRE, then ¬R is also a GRE. Sometimes GRE are also defined to include a

separate intersection operation. As the effect on succinctness is negligible, we define intersection as the

shorthand R1 ∩R2 := ¬(¬R1 ∪¬R2) to keep the number of moves in our game smaller.

The language of a regular expression R, denoted by L(R) is defined as follows:

• L( /0) = /0,

• L(ε) = {ε} (the empty word),

• L(a) = {a} for a ∈ Σ,

• L(R1 ∪R2) = L(R1)∪L(R2),

• L(R1R2) = L(R1)L(R2) = {uv | u ∈ L(R1),v ∈ L(R2)} and

• L(R∗
1) = L(R1)

∗ = {w1 · · ·wn | n ∈ N,wi ∈ L(R1) for each i ∈ N}.

For generalized regular expressions, additionally L(¬R1) = Σ∗ \L(R1).

We will also refer to star-free expressions. These are generalized regular expressions with the ∗-rule

removed. A classical result by McNaughton and Papert [12] states that star-free expressions have the

same expressive power over words as first-order logic. Note that this means many languages naturally

expressed by a RE with stars are also expressible by star-free expressions. For example, if Σ = {a,b},

then L((ab)∗) = L(ε ∪ (a¬ /0∩¬ /0b∩¬(¬ /0aa¬ /0)∩¬(¬ /0bb¬ /0))).

Finally we present a middle ground between RE and GRE we call RE over star-free expressions.

These expressions are defined by R in the following grammar (we omit parentheses for simplicity):

R ::= R∪R | RR | R∗ | S

S ::= S∪S | SS | ¬S | /0 | ε | a for every a ∈ Σ

As the name suggests, RE over star-free expressions include all star-free expressions in the sense of GRE

and can combine them using only the operations of RE. Essentially this means that stars cannot occur

inside a complement. Since star-free expressions correspond to FO-definable properties of words, we

feel this is a natural variation of RE to consider in terms of succinctness. It is quite possible someone

else has already presented it but we could not find it in the literature.

There are several ways one could define the size of a regular expression. Gruber and Holzer [8] use

alphabetic width defined as the number of occurrences of symbols from Σ in the expression. Gelade

and Neven [7] on the other hand note that this is not sufficient for GRE since one can construct non-

trivial expressions with no symbols from Σ. Thus they count also operations, ending up with the size of

the syntax tree of the expression. This is also sometimes called reverse polish length [5]. We use the

latter concept here but the game can easily be adapted to alphabetic width or actual string length with

parentheses if desired.

Definition 2.1. The size of a GRE is defined recursively as follows:

• sz( /0) = sz(ε) = sz(a) = 1 for every a ∈ Σ,

• sz(R∗) = sz(¬R) = sz(R)+1 and

• sz(R1 ∪R2) = sz(R1R2) = sz(R1)+ sz(R2)+1.



M. Vilander 261

In the sequel we will deal with some rather large expression sizes. In particular, we will show a

non-elementary succinctness gap between FO and RE. This means that the difference in required size is

not expressible by an elementary function. In practice, it suffices to show that the size of the RE is above

an exponential tower. For this, we define the function twr as follows:

• twr(0) = 1,

• twr(n+1) = 2twr(n).

We also use the shorthand

[n] := {1, . . . ,n}.

Finally we define some concepts and notations for the RE size game. First is the concept of regular

expressions separating languages.

Definition 2.2. Let A,B ⊆ Σ∗. A GRE R separates A from B if A ⊆ L(R) and B ⊆ Σ∗ \L(R).

Note that if A = L(R) and B = Σ∗ \L(R), then R defines the language A, so separation is a sort of

partial version of defining languages with expressions.

To consider catenation and star in the game, we will need notation for the different ways one can

split a word into two or more shorter words.

Let w ∈ Σ∗ and n ∈ N. The set of n-splits of w is the set

Spn(w) = {(w1, . . . ,wn) | w1 . . .wn = w}.

We also use the notation

Sp(w) :=
⋃

n∈N

Spn(w)

for the set of all splits of w.

3 Generalized regular expression size game

In this section we define a game for generalized regular expressions that is the equivalent of so called

formula size games previously developed for different logics. Since we consider both overall size and

number of stars in this paper, we present a game with a separate parameter for stars.

The GRE size game has two players, Samson (S) and Delilah (D). The game has four parameters:

two sets of Σ-words, A0 and B0, and two natural numbers k0 and s0 with k0 ≥ s0. Samson wants to show

that A0 can be separated from B0 using a GRE with size at most k0 and at most s0 stars. Delilah wants to

refute this. The GRE size game with the above parameters is denoted by GRES(k0,s0,A0,B0).
Positions of the game are of the form (k,s,A,B) where A and B are sets of words, k,s ∈ N and k ≥ s.

The starting position is (k0,s0,A0,B0). In a position P = (k,s,A,B), if k = 0, then the game ends and D

wins. Otherwise S has a choice of six moves (note that the empty word ε is covered in the a -move):

• a -move: S chooses a ∈ Σ∪{ε}. If A ⊆ {a} and a /∈ B, the game ends and S wins. Otherwise D

wins.

• /0-move: If A = /0, S wins. Otherwise D wins.

• ∪ -move: S chooses subsets A1,A2 ⊆ A such that A1 ∪A2 = A and natural numbers k1,k2,s1,s2

such that ki ≥ si, k1 + k2 +1 = k and s1 + s2 = s. Then D chooses a number i ∈ {1,2}. The game

continues from the position (ki,si,Ai,B).
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• cat-move: For every w ∈ A, S chooses a 2-split (w1,w2). Let Ai = {wi | w ∈ A}. Then for every

v ∈ B, S chooses a function fv : Sp2(v)→{1,2}. Let Bi = {vi | fv(v1,v2) = i,(v1,v2) ∈ Sp2(v)}. S

chooses numbers k1,k2,s1,s2 such that ki ≥ si, k1 + k2 +1 = k and s1 + s2 = s. Finally D chooses

a number i ∈ {1,2}. The game continues from the position (ki,si,Ai,Bi).

• ∗ -move: If ε ∈ B, D wins. Otherwise, for every w ∈ A\{ε}, S chooses a natural number n(w)> 0

and an n(w)-split (w1, . . . ,wn(w)) with wi 6= ε for every i ∈ [n(w)]. Let A′ = {wi | i ∈ [n(w)],w ∈ A}.

Then for every v ∈ B, S chooses a function fv : Sp(v) → N such that fv(v1, . . . ,vn) ∈ [n]. Let

B′ = {vi | fv(v1, . . . ,vn) = i,(v1, . . . ,vn)∈ Sp(v)}. The game continues from the position (k−1,s−
1,A′,B′).

• ¬ -move: The game continues from the position (k−1,s,B,A).

Note that since every move either ends the game or decreases the resource k, the game always ends

in a finite number of moves and one of the players wins.

We now prove the crucial theorem that states the connection of the game to the succinctness of

generalized regular expressions.

Theorem 3.1. Let A,B ⊆ Σ∗ and k,s ∈N with k ≥ s. The following are equivalent:

1. S has a winning strategy in the game GRES(k,s,A,B).

2. There is a generalized regular expression that separates A from B with size at most k and at most

s stars.

Proof. In the following we will always have i ∈ {1,2} without explicit statement. We show the equiva-

lence of 1 and 2 for all A and B by induction on the number k. The case k = 0 is clear.

1 ⇒ 2: Let δ be a winning strategy for S in the game GRES(k,A,B). Since δ is a winning strategy,

we have k > 0. The proof is divided into cases according to the first move of δ :

• a -move: If the first move is an a -move, because δ is a winning strategy, we have A ⊆ {a} = L(a)
and a /∈ B so B ⊆ Σ∗ \L(a). Thus the regular expression a separates A from B.

• /0-move: Now A = /0 so /0 separates A from B.

• ∪ -move: S chooses A1,A2 ⊆ A and k1,k2,s1,s2 according to δ . Since δ is a winning strategy, S has

winning strategies from both of the possible following positions (ki,si,Ai,B). Thus by induction

hypothesis there are GREs R1 and R2 such that Ri separates Ai from B, sz(Ri) ≤ ki and Ri has at

most si stars. Now Ai ⊆ Ri and B ⊆ Σ∗ \L(Ri). Therefore

A0 = A1 ∪A2 ⊆ L(R1)∪L(R2) = L(R1 ∪R2).

and B ⊆ (Σ∗ \L(R1))∩ (Σ∗ \L(R2)) = Σ∗ \L(R1 ∪R2) so R1 ∪R2 separates A from B. In addition,

sz(R1 ∪R2) = sz(R1)+ sz(R2)+1 ≤ k1 + k2 +1 = k and R1 ∪R2 has at most s1 + s2 = s stars.

• cat-move: S makes his choices according to δ . Now S has a winning strategy for both positions

(ki,si,Ai,Bi) so by induction hypothesis there are GREs R1 and R2 such that Ri separates Ai from

Bi, sz(Ri)≤ ki and Ri has at most si stars. Now Ai ⊆ L(Ri). For every w ∈ A there are w1 ∈ A1 and

w2 ∈ A2 such that w1w2 = w so A ⊆ L(R1)L(R2) = L(R1R2). On the other side Bi ⊆ Σ∗ \L(Ri). For

every v ∈ B and every (v1,v2)∈ Sp2(v), either v1 ∈ B1 or v2 ∈ B2. Thus v /∈ L(R1)L(R2) = L(R1R2)
so B ⊆ Σ∗ \L(R1R2). The GRE R1R2 thus separates A from B. The size and number of stars are

handled as in the previous case.
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• ∗ -move: S makes his choices according to δ . S has a winning strategy for the following position

(k−1,s−1,A′,B′) so by induction hypothesis there is a GRE R such that R separates A′ from B′,

sz(R)≤ k−1 and R has at most s−1 stars. We have A′ ⊆ L(R). For every w ∈ A there is n(w) ∈N
and an n(w)-split (w1, . . . ,wn(w)) such that w j ∈ A′ for j ∈ [n(w)]. Thus A ⊆ L(R)∗ = L(R∗). On

the other side, B′ ⊆ Σ∗ \L(R). For every v ∈ B and every (v1, . . . ,vn) ∈ Sp(v), there is j ∈ [n] such

that v j ∈ B′. Thus v /∈ L(R)∗ = L(R∗) so B ⊆ Σ\L(R∗). The GRE R∗ thus separates A from B. In

addition, sz(R∗) = sz(R)+1 ≤ k and R∗ has at most s−1+1 = s stars.

• ¬ -move: S has a winning strategy from the following position (k−1,s,B,A) so there is a GRE R

that separates B from A with sz(R)≤ k−1 and at most s stars. Now the GRE ¬R separates A from

B. In addition, sz(¬R) = sz(R)+1 ≤ k and ¬R has at most s stars.

2 ⇒ 1: Let R be a GRE that separates A and B with size at most k and at most s stars. The proof is

divided into cases according to the outermost operator in R:

• R = a ∈ Σ∪{ε}: Since R separates A from B, we have A ⊆ {a} and B ⊆ Σ∗ \{a} so a /∈ B. Thus

S wins by making an a -move.

• R = /0: Now A = /0 so S wins by making a /0-move.

• R = R1 ∪R2: Since R separates A from B, we have A ⊆ L(R) = L(R1)∪L(R2). Let Ai = A∩L(Ri),
let k1 = sz(R1) and let k2 = k−k1−1. Similarly let s1 be the number of stars in R1 and let s2 = s−s1.

Now A1 ∪A2 = A, ki > si, k1 + k2 +1 = k and s1 + s2 = s so these are valid choices for a ∪ -move.

After the ∪ -move, Ai ⊆ L(Ri) and B ⊆ Σ∗ \L(R) = (Σ∗ \L(R1))∩ (Σ∗ \L(R2)) so B ⊆ Σ∗ \L(Ri).
Now Ri separates Ai from B. In addition, sz(R1)= k1, sz(R2)= sz(R)−sz(R1)−1≤ k−k1−1= k2.

Similarly R1 has s1 stars and R2 has at most s− s1 = s2 stars. By induction hypothesis, S has a

winning strategy for the game GRES(ki,si,Ai,B). Together with the first move, this is a winning

strategy for the game GRES(k,s,A,B).

• R = R1R2: Since R separates A from B, we have A ⊆ L(R) = L(R1)L(R2). Thus for every w ∈ A0

there is (w1,w2) ∈ Sp2(w) such that w1 ∈ L(R1) and w2 ∈ L(R2). S makes a cat-move and chooses

such a split for each w ∈ A. On the other side we have B ⊆ Σ∗ \L(R) = Σ∗ \L(R1)L(R2). Thus

for every v ∈ B and every (v1,v2) ∈ Sp2(v), we have v1 /∈ L(R1) or v2 /∈ L(R2). For the function

fv : Sp(v) → N, S chooses i = fv(v1,v2) so that vi /∈ L(Ri). S chooses ki and si as in the previous

case. Finally we have Ai ⊆ L(Ri) and Bi ⊆ Σ∗ \L(Ri) so Ri separates Ai from Bi. The resources

k and s are handled like in the previous case. By induction hypothesis, S has a winning strategy

from the position (ki,si,Ai,Bi).

• R = R∗
1: Since R separates A from B, we have A ⊆ L(R) = L(R1)

∗. Thus for every w ∈ A there

is (w1, . . . ,wn) ∈ Sp(w) such that w j ∈ L(R1) for all j ∈ [n]. S makes a ∗ -move and chooses

such a split for each w ∈ A. On the other side we have B ⊆ Σ∗ \L(R) = Σ∗ \L(R1)
∗. Note that

ε /∈ B so D does not win outright. Now for every v ∈ B and every (v1, . . . ,vn) ∈ Sp(v) we have

v j /∈ L(R1) for some j ∈ [n]. For the function fv : Sp(v) → N, S chooses j = fv(v1, . . . ,vn) so that

v j /∈ L(R1). Finally we have A′ ⊆ L(R1) and B′ ⊆ Σ∗ \L(R1) so R1 separates A′ from B′. In addition,

sz(R1) = sz(R)−1≤ k−1 and R1 has at most s−1 stars. By induction hypothesis, S has a winning

strategy from the position (k−1,s−1,A′,B′).

• R = ¬R1: S makes a ¬ -move. Since R separates A from B, it follows that R1 separates B from A.

In addition, sz(R1) = sz(R)−1 ≤ k−1 and R1 has at most s stars. By induction hypothesis, S has

a winning strategy from the position (k−1,s,B,A).
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We have defined the game for generalized regular expressions but this full game turns out to be very

complex in a combinatorial sense. For the results in this paper we will use simpler games for RE and RE

over star-free.

The RE size game RES(k,A,B) is the game GRES(k,s,A,B) with the ¬ -move and the star parameter

s removed. The proof of Theorem 3.1 with the ¬ -move cases and s removed proves the following

analogue for this game:

Theorem 3.2. Let A,B ⊆ Σ∗, k ∈N. The following are equivalent:

1. S has a winning strategy in the game RES(k,A,B).

2. There is a regular expression that separates A from B with size at most k.

The RE over star-free size game RESFS(k,s,A,B) is the game GRES(k,s,A,B) with the following

modification: after a ¬ -move, the following position is (k,0,B,A) instead of the normal (k,s,B,A). This

corresponds with the syntax of RE over star-free, where stars cannot occur under complement. We omit

the proof of the analogous theorem for this game:

Theorem 3.3. Let A,B ⊆ Σ∗ and k,s ∈N with k ≥ s. The following are equivalent:

1. S has a winning strategy in the game RESFS(k,s,A,B).

2. There is a RE over star-free expression that separates A from B with size at most k and at most s

stars.

As is usual with these sorts of games, we will need a simple lemma stating that if the same word is

present on both sides of the game, D has a winning strategy. We prove the lemma for the GRE game and

note that it can just as easily be proven for the other variations.

Lemma 3.4. In a position P = (k,s,A,B) of a game GRES(k0,s0,A0,B0), if there is w ∈ A∩B, then D

has a winning strategy from position P.

Proof. Under the assumptions, we describe a strategy for D. For any move of S, this strategy either wins

or maintains the condition of having w ∈ A∩B. It is thus a winning strategy. We consider the cases for

each possible move of S.

• a -move: Assume S chooses a ∈ Σ∪{ε}. If A ⊆ {a}, then a = w ∈ B, so D wins.

• /0-move: Since w ∈ A, A 6= /0 and D wins.

• ∪ -move: Assume S chooses subsets A1,A2 ⊆ A. Since A1 ∪A2 = A, there is i ∈ {1,2} such that

w ∈ Ai. D chooses this i and in the following position (ki,si,A1,B), we have w ∈ Ai ∩B.

• cat-move: Let (w1,w2) be the split S chooses for w on the A-side and let fw : Sp2(w)→ {1,2} be

the function S chooses for w on the B-side. D chooses the number i := fw(w1,w2). In the following

position (ki,si,Ai,Bi), we have wi ∈ Ai ∩Bi.

• ∗ -move: If w = ε , D wins. Otherwise, let (w1, . . . ,wn) be the split S chooses for w on the A-side

and let fw : Sp(w)→ N be the function S chooses for w on the B-side. Let i := fw(w1, . . . ,wn). In

the following position (k−1,s−1,A′,B′) we have wi ∈ A′∩B′.

• ¬ -move: In the following position (k−1,s,B,A), we have w ∈ B∩A.
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For the RE over star-free game, we need a further lemma that gives an easy condition to guarantee

that the current sets A and B cannot be separated via a star-free expression. The language we use for the

game has words with long strings of the same symbol in them. We call these a-chains for a ∈ Σ. For

example, the word baabbaaa has two a-chains of lengths 2 and 3 respectively. We use the GRE game

with s = 0 to argue about star-free expressions.

Lemma 3.5. In a position P = (k,0,A,B) of a game GRES(k0,s0,A0,B0), if there are w ∈ A and w′ ∈ B

such that they only differ from each other by lengths of one or more chains of symbols, each of length

more than k in both, then D has a winning strategy from position P.

Proof. We describe a strategy for D. For each move of S, this strategy either wins or maintains the

assumptions of the lemma so it is a winning strategy. We consider each possible move of S:

• a -move: S chooses a ∈ Σ∪ ε . Since w has a chain with length more than k > 0, clearly w 6= a so

D wins.

• /0-move: Since w ∈ A, A 6= /0 and D wins.

• ∪ -move: S chooses subsets A1,A2 ⊆ A. Since A1 ∪A2 = A, we have w ∈ Ai for some i ∈ {1,2}. D

chooses this i and in the following position (ki,0,Ai,B) we have w ∈ Ai and w′ ∈ B. In addition,

the chains of w and w′ that differ are of length more than k > ki. Thus the assumptions still hold.

• cat-move: Let (w1,w2) be the split S chooses for w ∈ A and let fw′ : Sp2(w′) → {1,2} be the

function S chooses for w′ ∈ B. Let k1,k2 be the numbers chosen by S with k1 +k2+1 = k. Since w

and w′ only differ by the lengths of some chains, for each chain in w we can find the corresponding

chain in w′.

If the split (w1,w2) splits no chains where w and w′ differ, then we consider the split (w′
1,w

′
2) of w′

at the corresponding point and in the following position (ki,0,Ai,Bi), the assumptions hold since

ki < k.

Now assume (w1,w2) splits a chain of length more than k and the length of this chain is different

but still more than k in w′. If the length of the chain in wi is at more than ki for both i, then

we consider a split (w′
1,w

′
2) of w′ where the same holds. Recall such a split can be found since

k1 + k2 +1 = k and the length of the chain is more than k in w′ also. Now the assumptions hold in

the following position.

Otherwise, by symmetry we assume that the length of the chain in w1 is less than or equal to k1.

In this case we consider the split (w′
1,w

′
2) of w′ where the length of the chain in w′

1 is identical

to w1. Now the lengths of the chains in w2 and w′
2 are more than k2 since k1 + k2 + 1 = k. Thus

if the following position is (k2,0,A2,B2), then the assumptions hold. If the following position is

(k1,0,A1,B1), then either there are still other differing chains of length more than k > k1 and the

assumptions hold, or w1 = w′
1 and D has a winning strategy by Lemma 3.4.

• ∗ -move: We assume that the star resource s = 0 in the position P so S cannot make a ∗ -move.

• ¬ -move: In the following position (k−1,0,B,A), the assumptions still hold as they are symmetric

w.r.t. A and B and k−1 < k.

Remark 3.6. The GRE size game can be modified in several ways to obtain different games. The games

for RE and RE over star-free are examples of this. Additional operations can be included by adding

moves. For example the move corresponding to intersection is the union move with the roles of A and
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B switched. One could also have separate resources for different operations or ignore some operations

entirely. It is also possible to modify how the resources work with binary moves to track the nesting

depth of an operation instead of the number.

4 The succinctness gap between FO and RE

To compare the succinctness of FO and RE, we must restrict the models of FO to word models. These

are finite models with a linear order and unary predicates to indicate which letter of the alphabet Σ is in

each spot. Thus properties of words are often defined in a language of the form FO(<,P1, . . . ,Pn).
In his thesis [14] Stockmeyer showed that star-free generalized regular expressions are non-elemen-

tarily more succinct than regular expressions. Since there is an elementary translation from FO to star-

free expressions [12], this implies that FO is non-elementarily more succinct than RE. The proof of

Stockmeyer is quite involved as he encodes computations of Turing machines into star-free expressions.

In this section, we show a simple way to obtain the gap between FO and RE via the RE size game. Our

proof relies on the following proposition which states that to define a large finite language with a RE, the

RE must be quite large as well.

Proposition 4.1. A finite language L cannot be defined via a RE with size less than log |L|.

Proof. Let L be a finite language and k0 < log |L|. We consider the game RES(k0,L,Σ
∗ \L). We will

show that after every move of S, D will either gain a winning strategy via Lemma 3.4, or D can maintain

the following two conditions in any position (k,A,B) of the game:

1. k ≤ log(|A|)

2. Σ>N := {w ∈ Σ∗ | |w|> N} ⊆ B for some N ∈ N

In the starting position (k0,L,Σ
∗ \L), we have k0 ≤ log(|L|) so condition 1 holds. For condition 2, note

that since L is finite, Σ∗ \L includes every word with length greater than the maximum length of words

in the language L.

Consider a position (k,A,B) of the game RES(k0,L,Σ
∗ \L) and assume conditions 1 and 2 hold. S

has five different moves to choose from:

• ∗ -move: Since 0 < k ≤ log(|A|), we have |A| ≥ 2 so there is w∈A with w 6= ε . Let (w1,w2, . . . ,wm)
be the split chosen by S for w. By condition 2, there is N ∈ N such that Σ>N ⊆ B. Let v = wN+1

1 .

Now |v| > N so v ∈ B. For the split (w1,w1, . . . ,w1) of v S must choose the piece w1 so in the

following position (k−1,A′,B′), we have w1 ∈A′∩B′ and by Lemma 3.4, D has a winning strategy

from this position.

• ∪ -move: Let A1,A2 ⊆ A and k1,k2 < k be the choices of S. If either Ai is empty, D chooses the

other one and both conditions are trivially maintained. Assume both Ai are non-empty. Since

A1 ∪A2 = A, we obtain |A1|+ |A2| ≥ |A|. Now we have ki ≤ log(|Ai|) for some i ∈ {1,2}, since

otherwise

k = k1 + k2 +1 > log(|A1|)+ log(|A2|)+1

= log(|A1||A2|)+1 ≥ log(|A1|+ |A2|)≥ log(|A|)≥ k,

which is a contradiction. D chooses such an i, fulfilling condition 1 in the following position is

(ki,Ai,B). Condition 2 is trivially maintained since B remains unchanged in ∪-moves.
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• cat-move: Let the two possible following positions be Pi = (ki,Ai,Bi) for i ∈ {1,2}. We consider

condition 2 first. Let w ∈ Σ>N . Let v ∈ A and let (v1,v2) = v be the split chosen by S for v. Now

u = v1w ∈ Σ>N ⊆ B. For the split (v1,w) of u, if S chooses the piece v1, then v1 ∈ A1 ∩B1 and by

Lemma 3.4, D has a winning strategy from position P1. Thus we assume that S chooses the piece

w and w ∈ B2. In the same way using the word wv2, we get w ∈ B1. Thus, in order to not give D a

winning strategy via Lemma 3.4, S must maintain condition 2 for both positions Pi.

Now let us address condition 1. Since for every w ∈ A there is w1 ∈ A1 and w2 ∈ A2 such that

w1w2 = w, we obtain |A1||A2| ≥ |A|. We again have ki ≤ log(|Ai|) for some i ∈ {1,2}, since

otherwise

k = k1 + k2 +1 > log(|A1|)+ log(|A2|)+1 = log(|A1||A2|)+1 ≥ log(|A|)≥ k,

which is a contradiction. D again fulfills condition 1 by choosing such an i.

• a - or /0-move: Since 0 < k ≤ log(|A|), we have |A| ≥ 2 so A * {a} and A 6= /0 and D wins the

game.

The language we use encodes sets of the cumulative hierarchy, defined as follows:

V0 := /0

Vn+1 := P(Vn).

For each set in the cumulative hierarchy, we define a set of natural encodings. The encodings correspond

to the different ways the set could be written down using only set brackets { and }. To differentiate

the encoded words from actual set notation, we will use parentheses ( and ) instead. The encodings are

defined as follows:

enc( /0) := {()}

enc(X) := {(e1 · · ·en) | ei ∈ enc(xi),x1 < · · ·< xn is a linear order of X}.

A set has several encodings corresponding to different orders of the elements. For example, the set

V2 = { /0,{ /0}} has the encodings (()(())) and ((())()).
Let Σ be the alphabet with ( and ) and let n ∈N. We consider the following language:

Ln =
⋃

X∈Vn+1

enc(X).

We first define Ln in first-order logic with linear order < and a unary predicate symbol P.

We define some auxiliary formulas. We interpret the predicate P so that the left parentheses satisfy

P and the right parentheses do not. We use the formulas L(x) and R(x) to indicate this. We also define

the formula S(x,y) that says y is the successor of x.

L(x) := P(x),R(x) := ¬P(x),S(x,y) := x < y∧¬∃z(x < z < y)

We will often want to say that the subword from position x1 to x2 encodes an instance of a set X . For

easy readability of these kinds of statements, we adopt a flexible notation, where capital letters are used

as shorthand for pairs of variables, that is to say X := (x1,x2). Whenever possible, we shall use only the

capital letters but in some cases we need the singular variables also.
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We define the formulas seti(X) and X =i Y by mutual recursion. We additionally define formulas

X ∈i Y , but since these only refer to the formula seti, they are not essential in the recursion but rather

shorthand to make the formulas more readable. The formula seti(X) says that X correctly encodes a set

in Vi with no repetition. The formula X ∈i Y assumes Y encodes a set and says that X encodes a set in

Vi and is an element of the set encoded by Y . Finally, the formula X =i Y assumes X and Y both encode

sets in Vi and says that these sets are the same. The definition by mutual recursion is as follows:

set0(X) := L(x1)∧R(x2)∧S(x1,x2)

seti+1(X) := x1 < x2 ∧L(x1)∧R(x2)

∧∀u(x1 < u < x2 →∃v(x1 < v < x2 ∧ (seti(u,v)∨seti(v,u))))

∧∀A∀B((A ∈i X ∧B ∈i X ∧a1 6= b1)→ A 6=i B)

X ∈i Y := y1 < x1 < x2 < y2 ∧seti(X)

∧¬∃U(y1 < u1 < x1 ∧ x2 < u2 < y2 ∧seti(U))

X =0 Y :=⊤

X =i+1 Y := ∀A(A ∈i X →∃B(B ∈i Y ∧A =i B))

∧∀B(B ∈i Y →∃A(A ∈i X ∧A =i B))

We use these auxiliary formulas to define the formula ϕn, which defines the language Ln. The formula

ϕn says that the first and last symbol of the word encode a set in Vn with no repetition.

ϕn :=∃X(∀z(x1 ≤ z∧ z ≤ x2)∧setn(X))

From the form of the formulas we see that sz(ϕn) = O(cn) for some small constant c.1

Now Proposition 4.1 allows us to easily prove a non-elementary succinctness gap between FO and

RE. This gap already follows from the work of Stockmeyer [14]. He found a similar gap between star-

free expressions and RE and an elementary translation from FO to star-free expressions [12] leads to this

result.

Theorem 4.2. FO(<,P) is non-elementarily more succinct than RE on words.

Proof. The language Ln is finite and |Ln| ≥ twr(n). We have shown that Ln can be defined in FO(<,P)
via a formula exponential in n. However, if k < log(twr(n)) = twr(n− 1), by Theorem 4.1, D has a

winning strategy in the game RES(k,L,Σ∗ \L). Thus, by Theorem 3.2, there is no RE that defines L with

size less than twr(n−1).

5 Number of stars in RE over star-free

We shift our attention from the overall size of regular expressions to only the number of stars. Star height

famously gives a hierarchy in terms of expressive power for RE [10] and the corresponding result for

GRE is a notorious open problem. For the number of stars, a full hierarchy can be trivially obtained

already in star height one. On the other hand, for GRE, we have so far been unable to prove results of

this nature due to the added complexity brought to the game with full use of complement. We present

1Numerical calculations performed with Maple seem to indicate sz(ϕn) = O(8n).
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an interesting middle ground between RE and GRE we call RE over star-free. For these expressions,

star-free, that is FO-definable, properties are combined using the operations of RE. For RE over star-free

we show that the number of stars gives a hierarchy in terms of expressive power.

The aforementioned trivial hierarchy for RE is obtained via the expression a∗1 ∪ ·· · ∪a∗n but we omit

that proof since we prove the stronger hierarchy for RE over star-free expressions. The language we

use is actually definable with n stars already in RE but we show that even if we allow RE over star-free

expressions, it still requires n stars to define.

Let Σn = {a1, . . . ,an} be a set of n symbols. We consider the following Σn-language:

Ln := L
(
⋃

i∈[n]

(a1 ∪ ·· ·∪ai−1 ∪a2
i ∪ai+1 ∪ ·· ·∪an)

∗
)

In other words, for each word in w ∈ Ln, there is i ∈ [n] such that every ai-chain in w has even length. We

don’t need the whole language Ln for the game so we use a simple subset instead. For k ∈ N and i ∈ [n],
we define

Ln,k := {ℓ1, . . . , ℓn}= {a2k+1
1 · · ·a2k

i · · ·a2k+1
n | i ∈ [n]}.

Each ℓi is a word that consists of a chain of each symbol a j in order. The chain of the specific symbol ai

has even length and all other chains of a j have odd length.

Theorem 5.1. Any RE over star-free expression Rn with L(Rn) = Ln has at least n stars.

Proof. Let n ∈ N and k0 ≥ n. We consider the languages A0 := Ln,k0
and B0 := Σ∗

n \Ln. We will show

that D has a winning strategy for the game RES(k0,n− 1,A0,B0). Since A0 ⊆ Ln and B0 = Σ∗
n \Ln, D

then also has a winning strategy for the game RES(k0,n− 1,Ln,Σ
∗
n \Ln). The number k0 is arbitrary so

by Theorem 3.1 the claim follows.

Let (k,s,A,B) be a position in the game RES(k0,n− 1,A0,B0). We will show that D can maintain

the following conditions while a ∗ -move has not been made. We will also see that if a ∗ -move is made

while the conditions hold, D gains a winning strategy. The conditions are:

There is I ⊆ [n] such that

1. |I|> s,

2. for every i ∈ I there is wi ∈ A and ui,vi ∈ Σ∗
n s.t. ℓi = uiwivi and (ai)

k+1 is a subword of wi,

3. for every r ∈ Σ∗
n if there are i, j ∈ I with uirv j ∈ B0, then r ∈ B.

Intuitively condition 2 says that in the position (k,s,A,B), the set A has some ‘descendants’ wi of the

original words ℓi in A0. The words ui and vi are the parts that have been removed from ℓi via cat-moves

to obtain wi. The set I contains the indices that still have descendants in play. Condition 1 states that the

number of such indices is always larger than the star resource s. Finally condition 3 says that the set B

has versions of the original words in B0 with some prefix ui and some suffix v j removed.

In the starting position (k0,n−1,A0,B0) the conditions hold with I = [n] and for every i ∈ I, wi = ℓi

and ui = vi = ε . We consider each possible move of S and show that in every case either the above

conditions are maintained or D wins eventually by a winning strategy described in a previous lemma.

• ¬ -move: We must first check that while the conditions hold, a ¬ -move from S leads to a win for

D. Let i ∈ I. By condition 2, the word wi has (ai)
k+1 as a subword. Let r be a word obtained from

wi by adding one ai to this ai-chain. Since ℓi = uiwivi and the ai-chain in ℓi is even, we know the

chain in uirvi is odd. The chains of all other a j are odd in ℓi and thus also in uirvi so uirvi ∈ B0. By
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condition 3, we have r ∈ B. If S makes a ¬ -move, his star resource s becomes 0. In the following

position (k−1,0,B,A), we have r ∈ B and wi ∈ A and the two words only differ by the length of a

chain with length more than k−1 so Lemma 3.5 gives D a winning strategy. This means that while

the conditions hold, S can only attempt ∪ -moves, cat-moves and ∗ -moves if he hopes to win.

• ∪ -move: Let A1,A2 ⊆ A be the subsets S chooses. For each i ∈ I, wi ∈ A1 or wi ∈ A2. Let I1, I2 ⊆ I

be the sets of indices generated this way. Since |I| > s, we have |I1| > s1 or |I2| > s2. D chooses

the position where this holds. Condition 2 still clearly holds and since B remains unchanged in

this move, so does condition 3.

• cat-move: Let i ∈ I and let (wi,1,wi,2) be the split S chooses for wi. Let k1 + k2 + 1 = k and

s1 + s2 = s be the resource splits of S. Since wi has (ai)
k+1 as a subword, wi,1 has (ai)

k1+1 as a

subword or wi,2 has (ai)
k2+1 as a subword. We divide I into subsets I1, I2 according to this condition.

Since |I| > s, we have |I1| > s1 or |I2| > s2. Assume the former. Now condition 2 is satisfied for

wi,1 by letting ui,1 := ui and vi,1 := wi,2vi. For condition 3, let ui,1rv j,1 ∈ B0 for some r ∈ Σ∗
n and

i, j ∈ I1. Now uirw j,2v j ∈ B0 so by condition 3 in the position before this move, rw j,2 ∈ B. For

the split (r,w j,2) of rw j,2 S must choose r to have a chance, since choosing w j,2 would result in an

identical word on both sides for the position (k2,s2,A2,B2). So either D has a winning strategy by

Lemma 3.4 or r ∈ B1 for every such r and condition 3 holds for the position (k1,s1,A1,B1) and D

chooses this position. The case of |I2|> s2 is handled in the same way.

• ∗ -move: S can only make this move if 1 ≤ s < |I| so we have i, j ∈ I with i < j. We will show

that this is enough to give D a winning strategy if S makes a ∗ -move. Our aim is to show that a

word of the form (w j)
m1(wi)

m2 is in B. We will use condition 3 to show this. Condition 3 requires

a word of the form uirv j to be in B0 and words in B0 have odd chains of all symbols ap. Thus we

begin by finding odd chains of all symbols in our words.

Recall that by condition 2, there are wi ∈ A and ui,vi ∈ Σ∗ such that ℓi = uiwivi and (ai)
k+1 is a

subword of wi. The same holds for j. Let u ∈ {ui,u j} be the one of the two words with more odd

chains of symbols. If they have the same number of odd chains, we choose, say, the longer word.

Choose v ∈ {vi,v j} the same way. Next, we will show that for each p ∈ [n], at least one of the

words wi, w j, u and v has an odd ap-chain.

Recall that the words in A0 have chains of symbols ap in order and only the ai-chain in a word ℓi is

even while all the others are odd. Furthermore, ℓi = uiwivi and wi has (ai)
k+1 as a subword so all

chains in ui are odd except possibly the last. Thus for each odd chain in ui there is also one of the

same symbol in u and the same goes for u j. Similarly for each odd chain in vi or v j there is one in

v.

We now show that for every p ∈ [n] there is an odd chain in at least one of the words wi, w j, u and

v. First, let p < i. If there is an odd ap-chain in wi we are done so let us assume there is not. Now

the ap-chain in wi is even (possibly empty) and since the chain in uiwivi = ℓi is odd, we know the

one in ui is odd. As noted above, an odd chain in ui means there is also one in u. So in this case

there is an odd ap-chain in wi or u. The case p > i is very similar and we obtain an ap-chain in wi

or v. Finally let p = i. Now p < j so like above we obtain an odd ap-chain in w j or u.

We now have an odd chain of each ap among the words wi, w j, u and v, but we still need to make

sure the specific way we catenate these words does not remove the only odd chains of a symbol by

merging them into an even one. Let f (w) be the index of the first symbol of a word w and l(w) the

index of the last. By condition 2 we have f (wi)≤ i ≤ l(wi). The same goes for f (w j)≤ j ≤ l(w j).
We start with w jwi. By the above we obtain f (wi)≤ i < j ≤ l(w j) so this catenation cannot result
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in any merging of odd chains. Next we add u to the left. If l(u) = f (w j) and both chains are odd,

this merges the chains into an even one. Here we consider two cases. First, if w j is just an odd

a j-chain, then for some m1 ∈ {1,2} the a j-chain in the word u(w j)
m1wi is odd. If w j has other

symbols besides a j, then the word u(w j)
2wi has an odd a f (w j)-chain at the start of the second w j.

We have thus obtained u(w j)
m1wi with an odd chain of a f (w j). We finally add v to the right in a

similar fashion. If l(wi) = f (v) and both chains are odd, we again consider the cases of wi being

just an odd ai-chain or a larger word and we obtain m2 ∈ {1,2} such that u(w j)
m1(wi)

m2v has an

odd chain of al(wi).

As the words wi, w j, u and v have an odd chain of each symbol and we have made sure the

catenations did not lose any, our catenated word u(w j)
m1(wi)

m2v is now in B0. Since u ∈ {ui,u j}
and v ∈ {vi,v j}, by condition 3, (w j)

m1(wi)
m2 ∈ B.

Let us finish by showing how this gives D a winning strategy after the ∗ -move in progress. S must

give splits for wi and w j and every piece of these splits is in the left set of the following position,

A′. S must also choose a piece of every split of (w j)
m1(wi)

m2 to add to the right set, B′. The split

of (w j)
m1(wi)

m2 we are interested in is the one where each subword wi and w j is split according

to the splits given by S for wi and w j. For this split, S must choose one of the pieces already in

A′ to also be in B′. Thus, in the following position (k− 1,s− 1,A′,B′), there is an identical word

on both sides and D has a winning strategy by Lemma 3.4. Thus if S makes a ∗ -move while the

conditions hold, D eventually wins.

6 Conclusion

We have presented a formula size game for GRE, RE and a middle ground between these we call RE over

star-free expressions. We used the RE version to reprove a non-elementary succinctness gap between FO

and RE via a large finite language. For RE over star-free we showed that the number of stars gives a full

hierarchy in terms of expressive power. As the astute reader has noted, we have not used the full GRE

size game in this paper. This is due to the considerable combinatorial complexity of the game. A clear

goal for further research is to find some handle on this complexity at least for some problems. A good

first candidate is to prove that there is a star height one language that requires two stars to define via a

GRE.

As noted in Remark 3.6, the games can be modified to isolate different operations with different

resources or counting the nesting depth of some operations instead of the number. This means that the

games could naturally be used to investigate any problem having to do with bounds on operators such as

the generalized star height problem.
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Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland,

July 7-11, 2008, Proceedings, Lecture Notes in Computer Science 5126, Springer, pp. 39–50, doi:10.1007/

978-3-540-70583-3_4.

[9] H. Gruber & M. Holzer (2009): Tight Bounds on the Descriptional Complexity of Regular Expressions. In

V. Diekert & D. Nowotka, editors: Developments in Language Theory, Springer Berlin Heidelberg, Berlin,

Heidelberg, pp. 276–287, doi:10.1007/978-3-642-02737-6_22.

[10] K. Hashiguchi (1988): Algorithms for Determining Relative Star Height and Star Height. Inf. Comput. 78(2),

pp. 124–169, doi:10.1016/0890-5401(88)90033-8.

[11] J. E. Hopcroft, R. Motwani & J. D. Ullman (2006): Introduction to Automata Theory, Languages, and Com-

putation, 3rd edition. Addison-Wesley Longman Publishing Co., Inc., USA.

[12] R. McNaughton & S. A. Papert (1971): Counter-Free Automata (M.I.T. Research Monograph No. 65). The

MIT Press.

[13] A. A. Razborov (1990): Applications of matrix methods to the theory of lower bounds in computational

complexity. Combinatorica 10(1), pp. 81–93, doi:10.1007/BF02122698.

[14] L. Stockmeyer (1974): The complexity of decision problems in automata theory and logic. Ph.D. thesis,

Massachusetts Institute of Technology.

[15] Q. Yan (2007): Classifying regular languages by a split game. Theoretical Computer Science 374(1), pp. 181

– 190, doi:10.1016/j.tcs.2006.12.041.

http://dx.doi.org/10.1145/800119.803886
http://dx.doi.org/10.25596/jalc-2005-407
http://dx.doi.org/10.1016/j.tcs.2010.04.036
http://dx.doi.org/10.1145/2071368.2071372
http://dx.doi.org/10.1007/978-3-540-70583-3_4
http://dx.doi.org/10.1007/978-3-540-70583-3_4
http://dx.doi.org/10.1007/978-3-642-02737-6_22
http://dx.doi.org/10.1016/0890-5401(88)90033-8
http://dx.doi.org/10.1007/BF02122698
http://dx.doi.org/10.1016/j.tcs.2006.12.041

	1 Introduction
	2 Preliminaries
	3 Generalized regular expression size game
	4 The succinctness gap between FO and RE
	5 Number of stars in RE over star-free
	6 Conclusion

