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In this paper, we give a Nivat-like characterization for weighted alternating automata over commutative
semirings (WAFA). To this purpose we prove that weighted alternating can be characterized as the
concatenation of weighted finite tree automata (WFTA) and a specific class of tree homomorphism.
We show that the class of series recognized by weighted alternating automata is closed under inverses
of homomorphisms, but not under homomorphisms. We give a logical characterization of weighted
alternating automata, which uses weighted MSO logic for trees. Finally we investigate the strong
connection between weighted alternating automata and polynomial automata. Using the corresponding
result for polynomial automata, we are able to prove that the ZERONESS problem for weighted
alternating automata with the rational numbers as weights is decidable.

1 Introduction

Non-determinism, a situation with several possible outcomes, is usually interpreted as a choice. An
(existential) automaton accepts if there exists at least one successful run. Contrary to this, one can
view non-determinism as an obligation. A universal automaton would accept if all possible runs are
successful. While this notion of non-determinism is less prominent, it is equally natural. Allowing for
the simultaneous use of existential and universal determinism leads to the concept of alternation, such as
in alternating Turing machines [4]] or alternating automata on finite [3]], or infinite structures [[7]]. States
of an alternating finite automaton (AFA) are either existential, or universal. For an existential state at
least one of the outgoing runs needs to be successful, for a universal state all of the outgoing runs need
to be successful to make the entire run successful. It is even possible to mix both modes by assigning
a propositional formula over the states to each pair of state and letter. Alternating finite automata have
been known for a long time. They are more succinct than finite automata and constructions like the
complement, or intersection are easy for them. Due to this, they have many uses such as a stepping stone
between logics and automata [8], or in program verification [23]].

While alternating automata recognize the same class of languages as finite automata, the situation
is different in the weighted setting. A weighted finite automaton (WFA) assigns a weight to each of its
transitions. The weight of a run is computed by multiplying its transition weights. Finally, the automaton
assigns to each input the sum over all weights of runs corresponding to this input. By this, a weighted
automaton recognizes a quantitative language a mapping from the set of words into a weight structure.
Depending on the weight structure used, we may view a quantitative language, as a probability distribution
over the words, as a cost or yield assignment, or as the likelihood or quantity of success for each input.
To simultaneously allow for a multitude of interesting weight structures, weighted automata have been
studied over arbitrary semirings [13]].
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To adapt alternating automata into the weighted setting, we observe that the existence of a run in a
finite automaton becomes a sum over all runs in a weighted automaton. Analogously, the demand for all
runs to be successful becomes a product over all runs. More precisely, if a weighted alternating finite
automaton (WAFA) is in an additive state, it will evaluate to the sum over the values of all outgoing runs.
If the weighted alternating automaton is in a multiplicative state, it will evaluate to the product over the
values of all outgoing runs. And again, we are able to mix both modes, this time by assigning polynomials
over the states to each pair of state and letter. Weighted alternating automata over infinite words where
studied in [6] and in [[1]] over finite words. While these authors focused on very specific weight structures,
a more recent approach defines weighted alternating automata over arbitrary commutative semirings [[18]].

Weighted alternating automata have the same expressive power as weighted automata if and only
if the semiring used is locally finite [18]]. However, for many interesting semirings such as the rational
numbers, weighted alternating automata are strictly more expressive than weighted automata. While we
have a fruitful framework for weighted automata, woven by results like the Nivat theorem for weighted
automata [[14]], the equivalence of weighted automata and weighted rational expressions [22] and weighted
restricted MSO logic [[10]], or the decidability of equality due to minimization if weights are taken from a
fields [22] and many more, no such results are known for weighted alternating automata. In this paper we
will extend the results on weighted alternating automata by connecting them to known formalisms and
thereby establishing further characterizations of quantitative languages recognized by weighted alternating
automata. From there on, we will use these connections to prove interesting properties for weighted
alternating automata, but also to translate known results for weighted alternating automata into other
settings.

After a brief recollection of basic notions and notations in Section 2, Section 3 will establish several
normal forms for weighted alternating automata (Lemma 3.1} Lemma[3.2) that are used as the basis of
later proofs. Section 4 includes our core result (Theorem[.4), a characterization of weighted alternating
automata by the concatenation of weighted finite tree automata (WFTA) together with certain homomor-
phisms. More precisely, we consider word-to-tree homomorphisms that translate words viewed as trees
into trees over some arbitrary ranked alphabet. We can show that a quantitative language is recognized by
a weighted alternating automata if, and only if there exists word-to-tree homomorphism and a weighted
tree automaton such that the evaluation of the weighted alternating automata on any given word is the
same as the evaluation of the weighted tree automaton on the image of the homomorphism of this word.

In Section 5 we will use this result to prove that the class of quantitative languages recognized by
weighted alternating automata is closed under inverses of homomorphisms (Corollary [5.2). However,
we can prove the same is not true for homomorphisms in general (Lemmal[5.3)). Since the closure under
homomorphisms plays a key part in the proof of the Nivat theorem for weighted automata this prohibits a
one-to-one translation of the Nivat theorem for weighted automata into the setting of weighted alternating
automata. Nonetheless, we will utilize the connection between weighted alternating automata and
weighted tree automata, as well as a Nivat theorem for weighted tree automata, to prove an adequate result
for weighted alternating automata (Theorem [5.6). This will lead us directly into a logical characterization
of quantitative languages recognized by weighted alternating automata with the help of weighted restricted
MSO logic for weighted tree automata (Section 6 Theorem [6.2)). It is well known that recognizable
tree languages are closed under inverses of tree homomorphisms. However, the same does not hold in
the weighted setting for arbitrary commutative semirings. Section 7 gives a precise characterization of
the class of semirings for which weighted tree automata are closed under inverses of homomorphisms
(Theorem . For this purpose, we will use our core theorem, and a result form [18]].

Lastly, in Section 8, we investigate the connection between weighted alternating automata and
recently introduced polynomial automata [2]] to prove the decidability of the ZERONESS and EQUALITY
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problems for weighted alternating automata if weights are taken from the rational numbers (Corollary
Due to the limitation of space, we moved the technical parts of some proofs into the Appendix which
can be found in the long version of this paper on the authors website.

2 Preliminaries

Let N={0,1,2,...} denote the set of non-negative integers. For sets M, N we denote the cardinality of
M by |M|, the set of subsets of M by P (M), the Cartesian product of M and N by M x N, and the set of
mappings from M to N by N = {f | f: M — N}. If M is finite and non-empty, it is also called alphabet.

For the remainder of this paper, let X,I" and A denote alphabets. The set of all (finite) words over X is
denoted by I*. Let |w| denote the length of a word w and ¥ = {w € £* | |w| = k}. The unique word in
Y9 is called empty word and denoted by &. The concatenation of words u, v is denoted by u - v or just uv.
A mapping h: A* — X* is called homomorphism if h(u-v) = h(u) - h(v) and h is non-deleting if h(a) # €
forall a € A.

A monoid is an algebraic structure (M, -, 1), where - is a binary associative internal operation and
m-1=1-mforallm € M. A monoid is commutative if - is commutative.

A semiring is an algebraic structure (S,+,-,0,1), where (S,+,0) is a commutative monoid, (S,-,1) is
amonoid, s-0=0=0-sforall s€ S, and s3- (s] +52) =s3-51 +s3-52 and (51 +52)-53 =51 -3+ 5253
for all s1,s7,53 € S. A semiring is commutative if (S,-,1) is commutative.

For the remainder of this paper, let S denote a commutative semiring.

For any set M, we denote S by S{M). For L C M we define the characteristic function 1; € S{M)
by 1z(w) =1 if w € L and 1;(w) = 0 otherwise for all w € M. An element s € S(X*)) is called S-weighted
Y-language (for short: weighted language).

Let X, always denote a linear ordered set with |X,,| = n € N, we refer to the i-th element of X, by
x;. Let S(X,,) denote the semiring of polynomials with coefficients in § and commuting indeterminates
X1y X0, We say m € S(X,,) is a monomial if m = s-x}' - ... x% for some s € S and ky,. ..k, € N. The
degree of mis Y.}, ki. A monomial m is a constant monomial if its degree is zero. Each polynomial which
can be written as a sum of distinct non-constant monomials is called a non-constant polynomial and the
set of all non-constant polynomials is denoted by S(X,,).ons—o- FOT P, P15, pn € S(Xy) let p(p1,...,pn)
denote the simultaneous substitution of x; by p;in p forall 1 <i <n.

A ranked alphabet is an ordered pair (I',Rank), where Rank : " — N is a mapping. Without loss
of generality, we assume X, N\[" = &. Moreover, let ") = {y € " | Rank(y) = r} and Rank(T) =
max({Rank(y) | y€T}).

The set of ['-terms over X,, is the smallest set 7r-[X,,] such that rOyux, C v [Xa]; and g(t1, . ., tRank(g)) €
Tr[X,] forall g € Tand all 71, . .., frank(g) € Tr[Xu]. We denote Tr-(Xo) = Tr(2) by Tr. We extend Rank by
putting Rank(x;) = O for all / € N. If Rank is clear from the context, we just write g(71,...,#). Moreover,
we identify g and g() for g € I UX,. Hence, all terms ¢ € Tr-[X,,] are of the form ¢t = g(ty,...,%;) for
some g € TUX, and 1q,...,4 € Tr[X,].

We define Pos : Tr-[X,] — P(N*) : g(r1,...,1%) — {€} UU {i} - Pos(t;). Letr =g(ty,....1;). The
mapping Label, : Pos(r) — ['UX, is defined by Label, (&) = g; and Label,(w) = Label,. (v) if w =iv €
Pos(t). We will identify ¢ and the mapping Label,: We write #(w) to denote Label,(w) and refer to terms
as trees. Consequently, we have t~!(g) = {w € Pos(¢) | Label, (w) = g} for all g € Tr[X,,].

Fort=g(t1,...,t%),t' € Tr[X,], and w € Pos(t), the subtree of t at w, denoted by ¢|,, and the substitution
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of t' in t at w, denoted by t(w < ') are defined by | =7 and 1(€ + t') =1' if w=¢; and 1|, = 1;|,
and t(w < 1"y = g(t1,...,ti—1,6;(v <), tiy1,...,t;) for w = iv € Pos(t). Moreover, let M C Pos(t) and
M| = 1. We define t(M <« (t{,...,t])) = t{m; < t])---(my < t]), where m; is the i-th element of M
regarding to the lexicographical order on N*. In case 1] = ... =1/ =1, we abbreviate t(M <« (1{,...,1]))
by t(M + t'). It M =t'(x;), we write #{x; < (t{,...,7])) to denote #(M <+ (t],...,t/)). Finally, let
t{t], .., thy =t (x1) < 1]) - (t 1 (x,) « /) denote the simultaneous substitution in trees.

We say a tree t is non-deleting in [ variables if it contains at least one symbol from I" and each of
the variables xp,...,x; occurs at least once in t. We say ¢ is linear in [ variables if it is non-deleting in
[ variables and each of the variables occurs at most once in t. Moreover, let r(t) = Y7, [t ! (x;)| and
Tr(r) (Xp) ={t € Tr(X,) | r(t) = r} forall r € N.

A tree homomorphism h : Tr — Ty is a mapping such that for all g € (") there exists t, € TAlX,] with
h(g(ti,...,t,)) =t (h(t1),...,h(t,)) forall t1,...,t. € Tr. We will denote ¢, by h(g), even though f, is not
necessarily in T5. A tree homomorphism is non-deleting (resp. linear) if each h(g) is non-deleting (resp.
linear) in Rank(g) variables.

3 Weighted alternating finite automata

This section introduces weighted alternating finite automata (WAFA) and shows how to achieve desirable
normal forms of WAFA (Lemma[3.1] Lemma3.2). We will follow the definitions of [18]].

A weighted alternating finite automaton (WAFA) is a 5-tuple A = (Q,X,8,P),7), where Q =
{q1,...,qx} is a finite set of states, X is an alphabet, § : Q X £ — S(Q) is a transition function, Py € S{Q)
an initial polynomial, and 7 : Q — S a final weight function.

Let A= (Q,X,0, R, ) be a WAFA. Its state behavior [A] : Q x £* — § is the mapping defined by

. T(q) ifw=g,
) {6<q,a><[A1<q1,v>,...,[A1<qn,v>> ifw—avforac .

Usually, we will write [A],(w) instead of [A](g,w). Now, the behavior of A is the weighted language
[A] : =* — S defined by

[A10w) = Po([Alg, (W), -, [Alg, (w)) -

A weighted language s is recognized by A if and only if [.A] = s. Two WAFA are said to be equivalent if
they recognize the same weighted language. To ease late proofs, let M(, ,) denote the set of monomials
that appear in 6(q,a).

We say a WAFA (Q,X,6,P),7) with Q = {q1,...,q.} is a weighted finite automaton (WFA) if
Py=Y_1s;j-q;and 8(qi,a) = Yj_ys{;-qj forall 1 <i<n,a € X. This definition coincides with the
usual definition [11],[10]. We can see this by defining the initial weight function by A(g;) = s;, the
transition weight function by p(a)(gi,q;) = s{;, and the final weight function by y(g;) = 7(g;) for all
1<i,j<nandallacX.

We say A is nice if it has the following properties:

(i) 8(q,a) is a finite sum of pairwise distinct, monomials of the form s- qllcl o..-gtnforallgc Q,acy,
(ii) all monomials in Py and & are non-constant,
(i) P=qi.

Moreover, we say that A is purely polynomial if:
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(iv) all monomials (in P and &) have coefficient 1.

We want to show that we can always assume a WAFA to be nice and purely polynomial.
Lemma 3.1. For each WAFA A there exists an equivalent WAFA A’ such that (i)-(iv) hold for A'.

Proof. Let A= (Q,X,6,P,7) be a WAFA.

(i) Since - is distributive and commutative in S(Q) there exists an equivalent WAFA A’ such that (i)
holds.

(i) Assume (i) holds for A= (Q,X,8, Py, 7). We define a WAFA A’ = (Q',X, ', P, v') which includes a
new state g. for each constant ¢ occurring in .A. Furthermore, 6’ and P} are as & and Py, respectively,
but each occurrence of each constant c is replaced by ¢.. Moreover, 6'(g.,a) = g, for all a € ¥ and
7'(g.) = c. There is a finite number of constants in .A. Thus, A’ is a WAFA. It is easy to see that A
and A’ are equivalent and that (i)-(ii) hold for A’.

(iii) Assume (i)-(ii) hold for A. Due to Lemma 6.3 of [18]], there exists an equivalent WAFA A’ such
that (i)-(iii) hold for A’.
(iv) Assume that (i)-(iii) hold for A. We define

Q' = QU{g; | s is the coefficient of some monomial in A}.

Without loss of generality, we can assume that these sets are disjoint. Furthermore, let 8’ be defined
by

Yy qlk'...q,,k”-qs if g € Q and
5/((],61) = s-q|k1,,_ann E114((1,(1)

q otherwise

forall g € Q, a € . Moreover, let 7 be defined by

T(q) ifge Qand
T'(Q)Z{ @ -
s if g = gs

for all ¢ € Q'. Consider the WAFA A" = (Q',X, Ry, 0, 7’). It is easy to see that [.A] = [.A] and that
every monomial in A’ has 1 as coefficient.

If the appropriate order on Q' is chosen, properties (i)-(iii) hold for A’, too. However, if this
construction is applied to a WFA A, the resulting A’ does not have to be a WFA.

O]

In L8]] the transition function and the initial polynomial are not allowed to contain constants. This
corresponds to the property that runs are not allowed to terminate before the entire word is read. Since
it will ease later constructions, we allowed constants in our definition. Nevertheless, as Lemma [3.1] (ii)
shows, the introduction of constants does not increase expressiveness since it is possible to simulate
terminating transitions by ,,deadlock‘*-states.

We say a WAFA (Q,X, 8, Py, T) is equalized if all monomials occurring in § have the same degree.

Lemma 3.2. For each WAFA A there exists an equivalent and equalized WAFA A'.
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Proof. Let A= (Q,X%,d,q1,7) be a nice WAFA and d the maximum degree of monomials occurring in 8.
Let g,+1 be a new state and

kr, d— Zu lk

Yy s-qi" .. .qn i if g€ Q and

&' (g,a) = { st ..qfneMy
qiiwrl
forallge Q',a € X. As well as,

otherwise

?(q) = 7(q) ifge Qand
1 if g =gt
forall ¢ € Q'. Clearly, A' = (QU{qn+1},%,6',q1,7’) is equalized. Also, it is easy to see that A and A’
are equivalent and that A’ is nice.

Please note that the coefficients of monomials in .A where not changed, thus we also can assume that
all these coefficients are 1. O

Nice WAFA can be represented in the following way: As usual we depict each state by a circle. Then,
each monomial s - qll<1 ...q" in 8(q;,a) is represented by a multi-arrow which is labeled by a : s, begins in
gi» and has k; heads in ¢; for all 1 < j < n, respectively. In case a multi-arrow has more than one head,
we join these heads by ae. If s = 1, we omit the s-label. If s = 0, we omit the complete multi-arrow. The
initial polynomial is represented analogously. The final weights are represented as usual. Note that the
multi-arrows can be viewed as a parallel or simultaneous transitions and that this representation coincides
with the usual representation if the automaton is a WFA. Consider the following example:

Example 3.3. LetS= (N,+,-,0,1), X ={a,b}, and s the weighted language
s X — S A
@) ifw=dbl |
w —
0 otherwise.

We consider the WAFA A = ({¢,p},Z, Py, 5, 7), defined by:

R =g 8(q,a) = ¢* 8(q,b) = p
t(q) = 1 t(p) = 2 6(p,a) = 0 &(p,b) = 2-p

A depiction of this automaton can be seen in Figure ! 1} One can check that [.A] = s, for example:

[A] (aabb) = q([A],(aabb),[A],(aabb))

[Al,(aabb) . 7*([Al, aabép), [A],(aabb)) s

([Alq(abb)) = ([Aly(b ) = ([A]pz(b)) |
= @) = )T = @

It is easy to see that s from Example [3.3]is not recognizable by a WFA. Thus, WAFA are more
expressive than WFA when weights are taken from the non-negative integers. However, this is not the case
for every semiring. A semiring S is locally finite if for every finite X C S the generated subsemiring (X) is
finite. The following result characterizes semirings on which WAFA and WFA are equally expressive:

Theorem 3.4 (Theorem 7.1 in [18]]). The class of S-weighted ¥-languages recognizable by WAFA and
the class of S-weighted Y-languages recognizable by WFA are equal if and only if S is locally finite.



G. Grabolle 247

‘A >
1

b:2

Figure 1: Representation of A Figure 2: Representation of equalized, nice A

4 A characterization of WAFA via weighted finite tree automata

Our central result Theorem 4.4]is included in this section, as well as the definition for weighted finite tree
automata.

The connection between alternating automata and trees is well known. Often trees are used to define
the runs of alternating automata. This is possible for WAFA too (see Appendix in the long version). We
want to strengthen this connection by the use of tree automata and tree homomorphisms. In order to do so,
we need some additional definitions.

An element r € S(Tr)) is called (S-weighted) tree language. A weighted finite tree automaton (WFTA)
is a 4-tuple A = (Q,T’,5,1), where Q = {q1,...,q,} is a finite set of states, I is a ranked alphabet,
8 = (& | 1 <k <Rank(T)) is a family of transition functions & : [®) — §9%Q and A : Q — S a root
weight function.

If k is clear from the context, we will denote tuples (pi, ..., px) by p. Moreover, since k in &/(g) is
clear from g, we will denote 3 (g) by &,.

Let A= (Q,T,5,A) be a WFTA. Its state behavior [A] : Q X Tr — S is the mapping defined by

k
[A](qag(tlv"'atk)) = Z 58(?7‘1)'11[“4](171'7”) :

peok i

Usually, we will write [A],(r) instead of [A](g,7). Now, the behavior of A is the weighted tree language
[A] : Tr — S defined by

n

[A](1) = Z{M%) [Alg, (1) -
i=
A weighted tree language s is recognized by A if and only if [A] = s.

It is well known that a word over X can be represented as a 1-ary tree: Each letter of X is given rank one
and a new end-symbol # of rank zero is added. Then wow; ...w, translates to the tree wo(wy (... w,(#)...)).
Here, we want to represent words as full r-ary trees for any arbitary » € N. Given an alphabet £ and
r > 1, we define the ranked alphabet X} = X U {#} with Rank(#) = 0 and Rank(a) = r for all a € X. For
all w € L the tree ¢, € Ty is defined by t; = #; and 1}, = a(t),...,t}) if w=av with a € . We call
h" X" — Ty : w1y, the generic tree homomorphism (of rank r). The case r = 1 is special since for all
te TZ,L there exists w € X* such that t = tJV. Therefore, if clear from the context, we will identify ¥ and i

¥* and T2; ,as well as w and ¢. It is well known that a weighted ¥ language is recognizable by a WFA

over X if and only if it is recognizable by a WFTA over Z#
The key observation is that the behavior of a WAFA 4 on w can be characterized by the behavior of a
WEFTA on ], where r is the degree of polynomials in an equalized version of .A. Even more, the behavior
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q
| ———h — 5 T~
_—
q 1
11—y 2
# b a

Figure 3: Run of translated WFTA on £2,

of a WFTA on h(w) (where h is a tree homomorphism) can be characterized by the behavior of a WAFA
on w.

Lemma 4.1. [fs € S(X*)) is recognized by a WAFA, then s = [B] o h” for some WFTA B and r € N.

Proof. Assume s is recognized by a WAFA. Due to Lemma [3.T]and Lemma[3.2] we may assume that s is
recognized by a nice and equalized WAFA A = (Q,X, &, Py, T). Let r be the unique degree of monomials
in A. We define the WFTA B = (Q, X}, B,4) with A = 1, and

Be(e.q) = 1(q)

_ s ifs-pr-...-pr €M, ,
Bu(p.g) = . r= )
0 otherwise .

Please note that the order of py,...,p, is of importance. Thus, due to the fact that A is nice, B,(p,q)
becomes always zero if the p; are not ordered according to the linear order on the states of .A.
By induction over the length of w € X* (see Appendix in the long version), we get

forall g € Q, w € £*. Since A is nice and thus Py = q;, we consequently have

[AY(w) = [Aly, () = [Bloy (1) = ¥ A(q:) - [Bla(e]) = [B1(15)

i=1

for all w € £*. Since h"(w) = t],, this finishes our proof. O

The following example illustrates this connection between WAFA and WFTA.

Example 4.2. We consider the automaton .A from Example[3.3] It is easy to construct the corresponding
WFTA B = (Q,T,8,4) from the equalized version A’ (Figure[2). First, we copy the set of states (in
order) Q = {q, p, 1 }. Since the maximum degree of polynomials in A was 2 we get ' = {a(®), () #(0)},
The root weight function corresponds to the initial weights. However, A’ is nice and thus A =1 {q)- The
transition weight functions 3, and f3, can be defined using the multi arrows in Figure 2| For example, the
b-labeled multi arrow in the middle corresponds to B,(phi,q) = 1. Finally, the final weights in A’ are
captured by By(€,q) = 1, Bs(€,h1) = 1, and By(€, p) = 2. The only non-zero run on 2, can be seen in

Figure 3]



G. Grabolle 249

Lemma 4.3. Let B= (Q,I',6,A) a WFTA and h : X* — Tr a tree homomorphism, then [B] oh is
recognized by a WAFA.

Proof. Assume s = [B]oh € S(X*)), where B= (Q,I",6,1) isa WFTA with |Q| =nand h:X* — Tr a
tree homomorphism. We want to construct a WAFA A such that [A] = .

If i would be the generic homomorphism, we could define 6'(¢,a) = Y. ;o 84(P, ¢q) and use the same
proof as in the first direction. However, we want to prove this for arbitrary homomorphisms. To achieve
this, we give some additional definitions.

Under h, each letter becomes a tree. Nonetheless, we are not interested in the structure of h(a), but
want to handle it as if it is a ranked letter. Therefore, we use h(a)(x; < (p1,...,pr)) to disambiguate
its r =r(h(a)) variables. Furthermore, we extend the family of transition functions (& )o<t<Rankr into
a family (8])ren With & : Tr(k) ({x1}) — S2%2. We use the same notations for 8 as for & and define o,
recursively as follows.

(1)  Forall g€ T let §}(¢,q) = 8,(€,q) forall ¢ € Q,
(2 6,(p,q) =Ly (p) forall (p,q) € Q x Q, and
(3) ift=g(t;,...,1;) for some g € I, we define
k
5,’(?’17- e apkaQ) = Z Sg(ﬁ,aQ) H(Sz:(ﬁhpi)
peot =1
for all (p1,...,Px,q) € Q") x ... x Q') x Q.

Please note, for ¢ € T we have J; (&, q) = [A],(r) by definition.

Now, we are well equipped to define the WAFA A= (Q,X,a, Py, 7). Let Bh =Y A(qi) - qi» T(q:) =

84 (€. i) forall 1 <i <n,and a(g,a) = Lo 8y, (P.4) - TL1" piforall g€ Q.a € 5.

By induction over the length of w € X* we get (see Appendix in the long version)

[Bg(h(w)) = [Al4(w)

for all ¢ € O, w € X*. Finally, for all w € £* we get:

Agi) - [Alg, (W) = Po([Blg, (W), .. [Alg, (W) = [A](w)

D=
D=

[Bl(7(w)) = ), A(qi) - [Blg,(h(w)) =

1 1

This leads us to our main result.

Theorem 4.4. A weighted language s € S(X*)) is recognized by a WAFA if and only if there exists a
ranked alphabet T', a tree homomorphism h: £* — Tr, and a WFTA A= (Q,T', 8, 1) such that s = [ A] o h.

Proof. This is an immediate consequence of Lemma.T|and Lemma4.3] O

This result allows us to transfer results from WFTA to WAFA. Moreover, additional observations in
the proofs show that one can give a weight preserving, bijective mapping between the runs of .4 and B.
This allows us to translate results about runs of WFTA into results of runs of WAFA.
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5 A Nivat theorem for WAFA

This section leads to the Nivat-like characterization of WAFA (Theorem @, but first we will prove that
weighted languages recognized by WAFA are closed under inverses of homomorphisms (Corollary [5.2)),
but not under homomorphisms (Lemma[5.3)).

Let 51 ® 52 denote the Hadamard product (pointwise product) of two weighted languages sy, s, €
S{X*)). Furthermore, a word homomorphism % : I — ¥* is called non-deleting if and only if h(a) # €
forall a € X. Let r € S{(I'*)). For h: T"* — X* a non-deleting homomorphism, we define i(r) € S(X*)
by A(r)(w) = Xyen1(w) 7(v) for all w € £*. For h: ¥ — I'* we define =1 (r) € S(Z*) by h= ' (r)(w) =
r(h(w)) for all w € £*. Note that we have 4(1.)(w) = 1 if and only if there exists v € I'* with h(v) =w
and v € L in the boolean setting. Thus, h(1.) = 1,). Analogously, we get h~'(1.) = 1j-1(1)- Hence,
h(r) corresponds to the application of a homomorphism, while 4~ (r) corresponds to the application of
the inverse of a homomorphism in the non-weighted setting.

The original Nivat Theorem [20] characterizes word-to-word transducers. A generalized version for
WFA over arbitrary semirings (Theorem 6.3 in [14]) can be stated in the following way:

Theorem 5.1 (Nivat-like theorem for WFA [14]). A weighted language s € S(X*)) is recognized by
a WFA if and only if there exist an alphabet T, a non-deleting homomorphism h : T* — ¥*, a regular
language L C T, and a WFA A,, with exactly one state such that:

s=h([AJ] 1) .

Please note, .4,, does not depend on any input and is called .4,, since it is responsible for the application
of weights. Our goal is, to generalize this result up to WAFA. This Nivat-like theorem is strongly connected
to the closure of weighted languages recognized by WFA under (inverses) of homomorphisms. Thus, we
will investigate these properties for WAFA.

5.1 Closure properties

A class K of S-weighted languages is said to be closed under homomorphisms if s € S(X£*) NK and
h:T* — ¥£* a homomorphism implies A(s) € K. Moreover, K is closed under inverses of homomorphisms
if s € S(T*) NK and h: T'* — £* a homomorphism implies 4~ !(s") € K. The same notions are used for
weighted tree languages.

The class of weighted languages recognized by WFA is closed under (inverses of) homomorphisms
(Lemma 6.2 in [14]). WAFA are also closed under inverses of homomorphisms. In fact, this is an easy
corollary of Lemma.T]and Lemma[4.3]

Corollary 5.2. The class of weighted languages recognized by WAFA is closed under inverses of
homomorphisms.

Proof. Let h' : A* — ¥* be a homomorphism and s € S{X*)) recognized by a WAFA. Due to Lemma
4.1, we get s = [B] oh”. Clearly, K" oh' : A* — ¥}, is a tree homomorphism. Thus, due to Lemma
K~ (s) = ([B]oh") o' = [B] o (h" o}) is recognized by a WAFA. O

However, the same is not true for the closure under homomorphisms.
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Lemma 5.3. The class of weighted languages recognized by WAFA is not closed under homomorphisms.

Proof. Let ¥ = {a,b,#}, B the Boolean semiring, and B[x] the semiring of polynomials in one indetermi-
nate. Consider
o, S
. Y M ifw=d#b |
rg X — Bx]:w— ¢ k=0
0 otherwise.

Due to Lemma 8.3 from [18], we know rp is not recognized by a WAFA. Let I = {a,c,d,#}, h : " — £*
the non-deleting homomorphism induced by h(a) = a,h(#) = #,h(c) = h(d) = b, and

xki ifw= i# kdl
rg:T" = Bx]:w— nw fl ca
0  otherwise.

Then

Y rr(v) ifw=d#b
h(rr)(w) = ¥ rr(v) — {ven-iw)
veR™ () 0 otherwise

j N . i .
Y rr(a#ckdi=*) if w = a'#b/ Y XK if w = a'#b/
k=0 k=0 =rp(w)

0 otherwise 0 otherwise

for all w € X*. Thus, h(rg) is not recognized by a WAFA. The series rg is recognized by the WAFA Ag
which can be found in the appendix of the long version. This completes our proof. 0

Nonetheless, the proof of the second direction of Theorem [5.1] relies on the closure under homo-
morphisms. Thus, due to Lemma a one to one translation of Theorem into the framework of
alternating automata is prohibited. Moreover, in the proof of the first direction of Theorem [5.1] L is
defined as a language of runs of .4. As mentioned above, runs of WAFA are trees. Therefore, we will
utilize a Nivat-like theorem for WFTA to prove the corresponding result for WAFA.

5.2 A Nivat-like characterization of WFTA

Nivat-like characterizations for weighted tree languages have been investigated in the past. Unranked
trees were considered in [[12], while a very general result for graphs can be found in [9]]. Here, for the
readers convenience, we want to restate a more restricted version for ranked trees.

Let i : Tr — Ty be a non-deleting tree homomorphism, s € S{7,)). In analogy to words, we define
h(s) € S{Tr) by h(s)(t) = Lyep1()s(t') for all t € Tr. For linear homomorphisms the following is
known:

Lemma 5.4 (Theorem 3.8 in [[17]]). The class of weighted tree languages recognized by WFTA is closed
under linear homomorphisms.

Based on this, it is easy to prove the following result:



252 Nivat Therorem for WAFA

Theorem 5.5 (Nivat-like theorem for WFTA (Theorem 12 in [12]])). A weighted tree language s € S{Tr)
is recognized by a WFTA if and only if there exist a ranked alphabet A, a linear tree homomorphism
h: T — Tr, a regular tree language L C Ty, and a WFTA A,, with exactly one state such that:

s = ]’l([[.Aw]] ® 1L> .

Proof. A proof can be found in [12]]. There, the =--direction is proved based on a WFTA A recognizing s.
The components A, &, L, and A,, are chosen to be the set of transition in .4, the mapping to the letters
in T', the tree language of runs in 4, and an automaton adding weights to the transitions, respectively.
This yields the desired equation. See Appendix in the long version for a proof of correctness of this
construction. O

Based on this result and Theorem B.4] a characterization of WAFA via a Nivat-like Theorem is
immediate.

Theorem 5.6 (Nivat-like theorem for WAFA). A weighted language s € S(X) is recognized by a WAFA
if and only if there exist a rank r € N, a ranked alphabet A, a linear tree homomorphism h: Ty — Ty;, a
regular tree language L C Ty, and a WFTA A,, with exactly one state. And for all w € X, it holds:

s(w) =h([A] ©1)(,) -

Proof. = Let A be a nice, equalized WAFA such that [A] = s. Due to Lemma r € N and a WFTA
B exist such that s(w) = [B] o h"(w) = [B](z},). Applying Theorem 5.5]to [B] gives us the desired result.

<: By Theorem [5.5] there exists a WFTA B such that [B] = A([A,] ©1.). Let A" : £* — Ty; be
the generic homomorphism. In consequence of Theorem a WAFA A exists such that [A](w) =
[B](H(w)) = h([Aw] ©@1L) (K" (w)) = h([Aw] © 1L)(t],) for all w € E. This finishes our proof. O

6 A logical characterization of WAFA

Based on Theorem 4.4 we are able to give a logical characterization of WAFA (Theorem[6.2). For this
purpose, we will use the logical characterization by weighted MSO logic for trees which was introduced
in [13].

Weighted MSO logic over trees is an extension of MSO logic over trees. It allows for the use of usual
MSO formulas, but also incorporates quantitative aspects such as semiring elements and operations, as well
as weighted quantifiers. In the end, every weighted MSO formula defines a weighted tree language. More
precisely, let I" be a ranked alphabet, each weighted MSO formula ¢ € MSO(T',S) defines a weighted tree
language [@] : Tr — S. Weighted MSO logic is strictly more expressive than WFTA. Nevertheless, it is
possible restrict the syntax of weighted MSO in such a way that it characterizes weighted tree languages
recognized by WFTA. This fragment is called weighted syntactically restricted MSO (stMSO). Due to
a lack of space, we have to omit the formal definition of stMSO. We will use syntax and semantics of
weighted srMSO without any changes and refer the interested reader to [[17] or [16]. Our characterization
of WAFA will be fully based on the following characterization theorem for WFTA:

Theorem 6.1 (Theorem 3.49 (A) in [17]]). A weighted tree language s € S{Tr)) is recognized by a WFTA
if and only if there exist ¢ € ssMSO(I',S) such that s = [@].
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However, we still have to handle the homomorphism used in Theorem [4.4] This will be done by
choosing an appropriate way of representing words as relational structures.
By definition [¢@] € S(Tr)) for all ¢ € stMSO(I',S). However, we want to use weighted stMSO

on trees to define weighted languages on words. To this end, we define [@]x € S{Tr)) by [¢]z(w) =

[@] (65 for all ¢ € srtMSO(T',S), w € £*. Since stMSO(T',S) C stMSO(I" U x5
assume without loss of generality @ € stMSO(IUZ;""™

easy to see that [@]y = [@] oh where h: £ — Z}:ank(r)

,S), we can
(F),S). Hence, [@]yx is well defined for all X. It is
UT is the generic homomorphism.

Theorem 6.2. A weighted language s € S{L)) is recognized by a WAFA if and only if there exist a
ranked alphabet T" and ¢ € stMSO(T',S) such that s = [@]x.

Proof. =: Assume s € S(X)) is recognized by a WAFA. By [4.1] there exists r € N and a WFTA B such
that s = [B] o . By Theorem [6.1 ¢ € srtMSO(X},S) exists such that [B] = [@]. Thus s = [B]oh” =
[olor = [o]s.

<: If s = [@]x for some ¢ € erSO(FUZEank(F),S), we get s = [@] o AR By Theorem a
WFTA B exists such that [¢] = [B]. Therefore s = [B] o hR*"X(I), Since B is a WFTA and hR*K(T) 3
homomorphism, a WAFA A with s = [A] exists by Lemma[4.3] O

7 Closure of WFTA under inverses of homomorphisms

It is a well known fact that regular tree languages are closed under inverses of homomorphisms. Sadly,
this is not true in the weighted case, at least not for arbitrary semirings. This raises the question if it
is possible to give a precise description of the class of semirings S for which WFTA are closed under
inverses of homomorphisms. This question will be answered by Theorem [7.1]

Theorem [5.6|and Theorem [6.T| used Theorem {.4]to apply known results for WFTA to WAFA. Vice
versa, we can use Theorem [4.4] and Theorem [3.4]to characterize S.

Theorem 7.1. The class of S-weighted tree languages recognized by WFTA is closed under inverses of
homomorphisms if and only if S is locally finite.

To prove this result we will use the notion of recognizable step functions: A weighted tree language
r € S(Tr) is a recognizable step function if there exist recognizable tree languages Ly, ..., L; and values
li,...,lx € S such that r = ):5‘21 l;-1;,. Due to [15], we know the following about recognizable step
functions:

Lemma 7.2 (Lemma 3.1 in [13]). Ifr € S{Tr)) is a recognizable step function, then a partition Ly, ... Ly
of Tr exits such that r = ):le i1y, for some ly,... Iy € S.

Note, this lemma is not redundant since the definition of recognizable step functions does not demand
that the recognizable tree languages are pairwise disjoint. Due to Lemma[7.2] we know that a weighted
tree language is a recognizable step function if and only if it has a finite image and each preimage is a
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recognizable tree language. The next Lemma characterizes recognizable weighted tree languages over
locally finite semirings.

Lemma 7.3 (Lemma 3.3 & Lemma 6.1 in [15]). Let S be locally finite. A weighted tree language
r € S(Tr)) is recognizable if and only if r is a recognizable step function.

Finally, we can proceed with the proof of Theorem

Proof of Theorem =-: Assume the class of S-weighted tree languages recognized by WFTA is closed
under inverses of homomorphisms.

Claim 1. The class of S-weighted ¥ languages recognizable by WAFA and the class of S-weighted ¥
languages recognizable by WFA are equal.

Clearly every WFA is a WAFA. Thus, for the proof of the claim, it remains to show that every
weighted language which is recognized by a WAFA is recognized by a WFA. For this purpose, assume
s € S{X*) is recognized by a WAFA A. Due to Theorem there exists a WFTA B and a homomorphism
h: £* — Tr such that [.A] = [B] o h. However, by our assumption there exists a WFTA C over I} such that
[C] = [B] oh and hence a WFA C’ over X such that [.A] = [B] o h = [C] = [C]. Thereby, s is recognized
by a WFA. This proves our claim.

By Claim[I]and Theorem [3.4]it follows that S is locally finite.

<«: Assume S is locally finite. Let r € S{Tr)) be recognizable and % : Ty — T a homomorphism. Due
to Lemma and Lemma we have r = Zf-‘: 1 li - 1z, for some partition Ly,...,L; of Tt and values
li,....Ip €S. Weclaimroh = Zf-;l l;- 1h71(L[_). To prove this, consider some arbitrary ¢ € Tp. Since the L;
form a partition of Tt there exists a unique j € {1,...,k} such that 4(¢) € L;. Therefore we have

(roh)(t)
= Y L1,00) =1
= L L)

l; unique

= YL

Since recognizable tree languages are closed under inverses of homomorphisms, we know that A= (L;),.. .,
h='(Ly) C T are recognizable. Thus, ro/ is a recognizable step function. Again, by Lemma we get
roh is recognizable. This completes our proof. O

8 WAFA and polynomial automata

We will use known results for polynomial automata, to prove the decidability of the Zeroness Problem for
WAFA if weights are taken from the rationals (Lemma 8.2).

Polynomial automata where introduced in [2]] as a generalization of both vector addition systems and
weighted automata. Polynomial automata are quite similar to WAFA, the authors of [2] even prove that
the characteristic function of the reversal of each language recognized by a non-weighted alternating
automaton is recognized by a polynomial automaton of the same size. We want to strengthen this
connection. In [2] polynomial automata are defined over the rational numbers. However, it is easy to give
a more general definition for arbitrary commutative semirings.
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A polynomial automaton (PA) is a 5-tuple A = (n,X, @, p,7¥), where n € N is the number of states, £
is an alphabet, o € S" is an initial weight vector, p : £ — S(X,,)" the transition function, and y € §(X,,) an
output polynomial. We denote the i-th entry of p(a) by pi(a).

Let A= (n,X,,p,y) be a PA. Its state behavior [A] : {1,...,n} x £* — § is the mapping defined by

[A]( ) o; ifWZS,
iLw)=
pi{[Al(Lv),....[Al(n,v)) ifw=vaforacX.
Usually we will denote [.A](i,w) by [A];(w). Now, the behavior of A is the weighted language [A] : £* — §
defined by

[AT(w) = v([AlL (W), ..., [Alu(w)).

It is easy to check that this definition is a reformulation of the definition found in [2].

Let the reversal of a weighted language s € S{Z)) be defined by s®(w) = s(wR) for all w = wy,...w, €
¥*, where w® = w, ... w;. Comparing the definition of state behavior for WAFA and PA already yields the
following lemma:

Lemma 8.1. A weighted language s € S{X) is recognized by a WAFA if and only if s® is recognized by
a PA.

Proof. Assume s is recognized by A = (Q,X,0,F, t). Let B= (|0|,Z, (T(ql),...,f(qn)),p,Po) be a
PA with p;(a) = 8(qgi,a) for all 1 <i <|Q|,a € £. Then, a straightforward induction on |w| shows
[A](w) = [B](wk) for all w € . The second direction is proven analogously to the first one. O

Let A, A’ be two WAFA. We observe [A](w) = 0 for all w € £* if and only if [.A](wR) = 0 for all
w € X*. Moreover, we have [A](w) = [[A'](w) for all w € £* if and only if [A](wR) = [A](wF) for all
w € L*. This allows us to derive the following corollary from Lemma 8.1}

Corollary 8.2. The Zeroness Problem and the Equivalence Problem for WAFA with weights taken from
the rationals are in the complexity class ACKERMANN and hard for the complexity class ACKERMANN.

Proof. Lemmal(8.1{+ Theorem 1, Theorem 4, Corollary 1 in [2]. L]

9 Conclusion

We were able to connect WAFA to a variety of formalisms, giving a better understanding of their expressive
power and characterizing the class of quantitative languages recognized by WAFA. From here, there
are various routes to take. It could be of great practical use to find a logical characterization of WAFA
via a linear formalism such as a weighted linear logic, or weighted rational expressions tailored to the
expressive power of WAFA. Similar to the work in [2f], one could investigate subclasses of WAFA allowing
for more efficient decision procedures. Alternatively, one could approach the concept of alternation in
weighted automata dealing with more complex structures than words, such as weighted alternating tree
automata. And of course, having the universal interpretation of nondeterminism in mind, one may take
several of these routes at once!
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