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The Satisfiability Modulo Theories (SMT) issue concerns the satisfiability of formulae from multiple

background theories, usually expressed in the language of first-order predicate logic with equality.

SMT solvers are often based on variants of the Nelson-Oppen combination method, a solver for

the quantifier-free fragment of the combination of theories with disjoint signatures, via cooperation

among their decision procedures. When each of the theories to be combined by the Nelson-Oppen

method is convex (that is, any conjunction of its literals can imply a disjunction of equalities only

when it implies at least one of the equalities) and decidable in polynomial time, the running time

of the combination procedure is guaranteed to be polynomial in the size of the input formula. In

this paper, we prove the convexity of a fragment of Zermelo-Fraenkel set theory, called Multi-Level

Syllogistic, most of whose polynomially decidable fragments we have recently characterized.
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Introduction

In the process of developing reliable and provably correct software, it is often necessary to express and

then subsequently verify properties that belong to different logical languages. Thus, the correctness

of a software system depends on being able to prove these conditions, expressed in distinct first-order

signatures with equality. The search for a satisfying assignment of a given formula with respect to some

background first-order theory is known as the SMT (Satisfiability Modulo Theories) problem.

SMT solvers [2] are particularly useful tools for the automated verification of properties expressed

with quantifier-free first-order formulae. Some theories usually integrated with common SMT solvers

are the theory of arrays, of bit-vectors, of linear arithmetic, and the theory of uninterpreted functions.

Every background theory used in some SMT solver comes along with its own satisfiability procedure.

The problem of modularly combining such special-purpose algorithms is highly non-trivial, since without

the appropriate restrictions it is not even decidable [3].
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We will now briefly introduce some definitions to understand how to tackle this question and under

which assumptions one can do it effectively.

A first-order quantifier-free theory T , identified with the set of its theorems, is stably infinite if every

formula ϕ satisfiable in T is satisfiable in an infinite model of T . Let Σ1 and Σ2 be signatures for a

first-order language. A (Σ1∪Σ2)-formula ϕ is pure if every literal in ϕ is a Σ1-literal or a Σ2-literal. It is

easy to see that every quantifier-free (Σ1∪Σ2)-formula ϕ can be purified, yet maintaining satisfiability,

by (i) substituting every impure subterm of the form f (t) with f (x), where x is a new variable, (ii) adding

to ϕ the conjunct x = t, and (iii) recursively purifying the term t, if needed.

We say that two theories T1 and T2 over the signatures Σ1 and Σ2, respectively, are disjoint when Σ1

and Σ2 do not share any non-logical symbols.1 The Nelson-Oppen [16] procedure provides a method for

combining decision procedures for disjoint, stably infinite theories T1 and T2 into one for T1⊕T2, namely

the (Σ1∪Σ2)-theory defined as the deductive closure of the union of the theories T1 and T2.

A theory T is convex if for all conjunctions of literals ϕ in T and for all nonempty disjunctions
∨n

i=1 xi = yi of equalities, ϕ implies
∨n

i=1 xi = yi in T if and only if ϕ implies xi = yi in T for some

i ∈ {1, ...,n}.

Examples of convex theories are the theory of Linear Rational Arithmetic TLRA and the theory of list

structure TL.

The non-logical symbols of the theory of TLRA are +, −, 6, 0, 1; following [4, Chapter 3.4.2], its

axioms (universally quantified) are:

x+0 = x, x+(−x) = 0,

(x+ y)+ z = x+(y+ z), x+ y = y+ x,

x 6 y∧ y 6 x→ x = y, x 6 y∨ y 6 x,

x 6 y→ x+ z 6 y+ z, x 6 y∧ y 6 z→ x 6 z,

nx = 0→ x = 0, (∃y) x = ny (for each positive integer n),

where nx stands for x+ · · ·+ x
︸ ︷︷ ︸

n times

. After [16], the non-logical symbols of the theory of list structure TL are

car, cdr, cons, and atom, and its axioms are:

car(cons(x,y)) = x,

cdr(cons(x,y)) = y,

¬atom(x)→ cons(car(x),cdr(x)) = x,

¬atom(cons(x,y)),

where (i) cons is a binary function, with cons(x,y) representing the list constructed by prepending the

object x to the list y, (ii) car and cdr are unary functions, the left and right projections, respectively, and

(iii) atom is true if and only if x is a single-element list.

Given two disjoint stable infinite theories T1 and T2, the Nelson-Oppen combination technique estab-

lishes the satisfiability of a conjunction of pure formulae ϕ1∧ϕ2 (where ϕi has signature Σi) in T1⊕T2

from the decision procedures for ϕ1 and ϕ2. The key idea is to propagate equalities x = y to ϕ2 whenever

T1 ∪ϕ1 implies x = y, and conversely. This iterative process can be performed quickly in polynomial

time, when the theories involved are convex. On the other hand, case-splitting would occur when dealing

1Besides propositional connectives, logical symbols comprise equality.
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with non-convex theories, since only one of the equalities of the disjunct implied by ϕi must be chosen

at every step.

In [19, 21, 20], variants of the Nelson-Oppen method were used to combine theories involving

sets/multisets of urelements (i.e., objects with no internal structure) with the theory of integers and with

the theory of cardinal numbers in presence of a cardinality operator. The SMT problem in the context of

the theory of finite sets is considered in [1].

In this paper, we start an investigation for combining decidable fragments of pure Zermelo-Fraenkel

set theory (in which sets are recursively built up from other sets) with other theories within the Nelson-

Oppen framework. More specifically, our main result is that the theory Multi-Level Syllogistic (the

basic language of computable set theory—MLS for short) is convex and therefore its decision procedure

(and those of its several polynomial fragments [8, 10]) can be efficiently combined with the decision

procedures of other basic decidable theories, such as for instance the theory of lists and the theory of

linear rational arithmetic, since set theory is plainly stably infinite.

—————

The paper is organized as follows. Section 1 introduces the syntax and semantics of the theory MLS

of our interest. Then, in Section 2, we prove the main result of the paper, namely that the theory MLS is

convex. We also review several fragments of MLS endowed with polynomial-time decision procedures,

since these inherit convexity from MLS and are therefore particularly interesting for efficient combina-

tions with other convex decidable theories. Subsequently, in Section 3, we prove the non-convexity of

various extensions of MLS. Finally, in Section 4, we provide some closing remarks and plans for future

research.

1 Syntax and semantics of MLS

Multi-Level Syllogistic (MLS) is the quantifier-free propositional closure of atoms of the types:

x =∅, x = y, x⊆ y, x ∈ y, x = y\ z, x = y∪ z, x = y∩ z, (1)

where x,y,z stand for set variables. We denote by Vars(ϕ) the collection of the set variables occurring in

any MLS-formula ϕ .

The satisfiability problem for MLS has been first solved in the seminal paper [14]. Its NP-completeness

(and that of its extension MLSS with the singleton operator) has been later proved in [11]. Several ex-

tensions of MLS have been proved decidable over the years, giving rise to the field of Computable Set

Theory (see [9, 12, 18, 13] for an in-depth account).

The semantics of MLS is defined in the most natural way by means of set assignments.

A SET ASSIGNMENT M is any map from a finite collection of set variables V , denoted dom(M), into

the von Neumann universe V .

We recall that V is the cumulative hierarchy constructed in stages by transfinite recursion over the

class On of all ordinals. Specifically,

V :=
⋃

α∈On

Vα ,

where, recursively,

Vα :=
⋃

β<α

P(Vβ ),
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for every α ∈ On, with P(·) denoting the powerset operator.

The notion of rank of a set is strictly connected to the construction steps of the von Neumann hier-

archy. Specifically, for any set s ∈V , the rank of s (denoted rk(s)) is defined as the least ordinal α such

that s⊆ Vα . The rank function is extended to set assignments M, by putting rk (M) := max{rk (Mx) | x ∈
dom(M)}.

The set operators and relators of MLS are interpreted according to their usual semantics. Thus, given

a set assignment M, we put:

M(x⋆ y) := Mx⋆My

and

M(x = y) = true ⇐⇒ Mx = My,

M(x ∈ y) = true ⇐⇒ Mx ∈My,

M(x = y⋆ z) = true ⇐⇒ Mx = M(y⋆ z),

where ⋆ ∈ {∪, ∩, \} and x,y,z ∈ dom(M).
Finally, for all MLS-formulae ϕ and ψ , we put by structural recursion:

M(¬ϕ) := ¬M(ϕ), M(ϕ ∧ψ) := Mϕ ∧Mψ ,

M(ϕ ∨ψ) := Mϕ ∨Mψ , M(ϕ→ ψ) := Mϕ→Mψ .

An MLS-formula ϕ is SATISFIABLE if there exists a set assignment M over Vars(ϕ) such that Mϕ = true,

in which case we also write M |= ϕ and say that M is a MODEL for ϕ . If ϕ is satisfied by all set

assignments, we say that ϕ is TRUE and write |= ϕ .

By way of disjunctive normal form, the satisfiability problem for MLS can be reduced to the satis-

fiability problem for conjunctions of MLS-literals, namely MLS-atoms of types (1) and their negation.

In addition, for the purposes of simplifying some proofs, we can further restrict ourselves to MLS-

conjunctions involving a minimal number of literal types. As shown in [8], all the atoms in (1) and their

negations can be rewritten in terms of atoms of type x ∈ y and x = y\ z only by repeatedly applying the

following equivalences much as rewrite rules (the existential quantifiers are then just dropped while the

quantified variables are replaced by fresh ones):

• |= x =∅ ←→ x = x\ x,

• |= x 6=∅ ←→ (∃w)w ∈ x,

• |= x /∈ y ←→ (∃w)(x ∈ w ∧ w = w\ y),

• |= x = y ←→ (∃e)(x = y\ e ∧ e = e\ e),

• |= x = y∩ z ←→ (∃w)(w = y\ z ∧ x = y\w),

• |= x = y∪ z ←→ (∃e,w)(w = x\ y ∧ w = z\ y ∧ e = y\ x ∧ e = e\ e),

• |= x⊆ y ←→ x = y∩ x,

• |= x 6= y ←→ (∃v,w,z)(w = x∪ y ∧ z = x∩ y ∧ v ∈ w ∧ v /∈ z),

• |= x 6= y⋆ z ←→ (∃w)(x 6= w ∧ w = y⋆ z),

where ⋆ ∈ {∪,∩,\}.
Henceforth, we will restrict ourselves to MLS-formulae that are conjunctions of atoms of the follow-

ing two types only:

x ∈ y, x = y\ z. (2)
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In the rest of the paper, these will be simply referred to as MLS-conjunctions.

Finally, as a piece of notation, for any given finite set L of literals, we write
∧

L (resp.,
∨

L ) to

denote the conjunction (resp., disjunction) of all the literals in L .

2 Convexity of MLS

Our main goal is to prove that the theory MLS is convex, namely that, for any MLS-conjunction ϕ and

any given finite nonempty set E of equalities among variables, we have:

|= ϕ −→
∨

E =⇒ |= ϕ −→ x = y, for some equality x = y in E .

To prove that the theory MLS is convex, we will proceed by way of contradiction.

Thus, let us suppose that there exists an MLS-conjunction ϕ (namely a conjunction of literals of type

(2)) and a finite, nonempty set E of equalities among variables such that:

(C1) |= ϕ −→
∨

E ;

(C2) 6|= ϕ −→ x = y, for any x = y in E

(that is, for every x = y in E there exists some set assignment Mx,y such that Mx,y |= ϕ ∧ x 6= y).

It is not restrictive to additionally assume that Vars(E )⊆ Vars(ϕ).2

In view of condition (C2), our conjunction ϕ is satisfiable. Among all the models for ϕ , we select

one, say M, that satisfies as few as possible equalities in E , namely such that the cardinality of E
+

M
:= {ℓ∈

E |M |= ℓ} is minimal. We also set E
−

M := {¬ℓ | ℓ ∈ E \E +
M }, so E

−
M is the collection of the inequalities

x 6= y such that x = y is in E and M 6|= x = y (hence, M |= x 6= y).

Plainly, we have M |= ϕ ∧
∧

E
+

M ∧
∧

E
−
M . Notice that, while

∧
E
−

M may be empty, the conjunction
∧

E
+

M must contain at least one literal, since M |=
∨

E by condition (C1).

Let ℓ be any equality x= y in
∧

E
+

M , which will be referred to in the rest of our proof as the designated

equality of E . We will prove that the conjunction

ϕ∗
Def

:= ϕ ∧
∧(

E
+

M \{ℓ}
)
∧

∧

E
−

M ∧ x 6= y

is satisfiable, thereby contradicting the assumed minimality of M, since for every model M∗ for ϕ∗ we

would have E
+
M∗ = E

+
M \{ℓ}, and therefore |E +

M∗ |< |E
+

M |.

Before diving into the details of the proof, we provide an overview of how the set assignment M can

be suitably enlarged into another set assignment M∗ that satisfies all the conjuncts of ϕ ∧
∧

E
+

M ∧
∧

E
−

M

but the designated equality ℓ, thus proving that ϕ∗ is satisfiable.

Proof overview

The construction of M∗ consists in two phases: the first one, the BOOLEAN PHASE, takes care of the

satisfiability of the Boolean literals of ϕ∗, namely the literals in ϕ∗ of type x = y \ z, x = y, and x 6= y,

whereas the second one, the MEMBERSHIP PHASE, takes care of the satisfiability of the membership

literals of ϕ∗, namely those of the form x ∈ y.

In order to model x 6= y, we add to exactly one between Mx and My a new member s not already

occurring in
⋃

x∈Vars(ϕ) Mx. The set s must be chosen with care to prevent that no set produced during the

2Indeed, without disrupting conditions (C1) and (C2), for any variable x∈ Vars(E ) one may add to ϕ the literal x∈w, where

w stands for some fresh variable.
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subsequent membership phase is new to the current set assignment. In addition, the set s must be added

to the right sets Mx in order that the resulting assignment keeps satisfying all of the Boolean literals in

ϕ ∧
∧

E
+

M ∧
∧

E
−

M other than the designated equality x = y. The first problem is solved by selecting as

s any set of rank strictly greater than that of M. As for the second condition, recalling that, by (C2),

the conjunction ϕ ∧ x 6= y is satisfiable, we can select a model M for it. Therefore Mx 6= My, and so

we can pick some element t belonging to exactly one of the sets Mx and My. By adding our special

set s as an element to all and only those sets Mx such that t ∈ Mx, for x ∈ Vars(ϕ), we obtain a new

assignment, which will be denoted M0. It turns out that M0 correctly models all the conjuncts in ϕ∗, but

the membership literals x ∈ y for which M0x 6= Mx. We denote by V0 the collection of variables x in ϕ

such that M0x 6= Mx.

Example 2.1. We illustrate the Boolean phase of our enlargement process with the following MLS-

conjunction

ϕ
Def

:= x = y\ z ∧ x = x\w ∧ x 6= y ∧ y ∈ w ∧ w ∈ v ∧ z ∈ v

and with the equality x = y.

Let M and M be the set assignments over Vars(ϕ) = {v,w,x,x,y,z} so defined, where to enhance

readability we use the shorthand { /0}2 := {{ /0}}—likewise, { /0}4 will denote the set {{{{ /0}}}}:

Mx = /0, Mx = My = { /0}, Mz = Mw = { /0,{ /0}}, Mv = {{ /0,{ /0}}},

Mx = /0, My = Mz = { /0}, Mx = Mw = { /0}2, Mv = {{ /0},{ /0}2}.

It can easily be checked that M |= ϕ ∧ x = y and M |= ϕ ∧ x 6= y hold.

Let s := { /0}4, so that rk (s) = 4 > 3 = rk(Mv) = rk(M). Since /0 ∈My\Mx, we can put t := /0, and

so we have:

M0u =







{ /0,s} if u = y

{ /0,{ /0},s} if u = z

Mu otherwise

and V0 = {y,z}.

Plainly, M0 satisfies all literals in ϕ ∧ x 6= y but the literals y ∈ w and z ∈ v.

The subsequent membership phase performs the following enlargement step, for k = 0,1,2, . . ., until

needed:

extend the assignment Mk by putting, for each u ∈ Vk,

Mk+1u := Mku ∪ {Mkv | v ∈ Vk and Mv ∈Mu},

while setting Mk+1u := Mku for the remaining variables u in Vars(ϕ), and define Vk+1 as the

collection of variables u in Vars(ϕ) such that Mk+1u 6= Mku.

For k = 0,1,2, . . ., it turns out that each Mk correctly models all the Boolean literals in ϕ∗ and all the

membership literals in ϕ∗ but those of the form x ∈ y with x ∈ Vk+1. Hence, as soon as some Vk is

empty, the assignment Mk is plainly a model for ϕ∗, and so the membership phase can stop. By the

well-foundedness of the membership relation, such a situation occurs in at most n := |Vars(ϕ)| steps,

and therefore Mn is a model for ϕ∗, proving that ϕ∗ is satisfiable.
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Example 2.1 (cont’d). We continue our example by illustrating the membership phase of our enlargement

process. We recall that V0 = {y,z}. Since My ∈ Mw = Mz and Mz ∈ Mv, we have V1 = {z,w,v},
M1z = { /0,{ /0},s,{ /0,s}}, M1w = { /0,{ /0},{ /0,s}}, M1v = {{ /0,{ /0}},{ /0,{ /0},s}}, and M1u = M0u for all

u 6= z,w,v. Next, since Mw ∈Mv and Mz ∈Mv, we have V2 = {v}, M2u = M1u for all u 6= v, and

M2v = {{ /0,{ /0}},{ /0,{ /0},s},{ /0,{ /0},s,{ /0,s}},{ /0,{ /0},{ /0,s}}}.
Finally, since Mv /∈

⋃

u∈Vars(ϕ) Mu, we can actually stop. In fact, at this point we have

M2 = M3 = M4 = · · · .

Plainly, M2 |= ϕ ∧ x 6= y.

Proof details

For any V ⊆ Vars(ϕ), we will use the notation MV to denote the set {Mv | v ∈V}. Let s be any fixed set

whose rank is larger than the rank of M, namely such that rk (s)> rk(M).
We define by recursion two sequences {Vn}n∈N and {Mn}n∈N, respectively of subsets of Vars(ϕ) and

of set assignments over Vars(ϕ), by putting:

V0 := {u ∈ Vars(ϕ) | t ∈Mu}, (3)

Vn := {u ∈ Vars(ϕ) | Mu∩MVn−1 6= /0}, for n > 1, (4)

and

M0v :=

{

Mv∪{s} if v ∈ V0

Mv if v ∈ Vars(ϕ)\V0,
(5)

Mnv :=

{

Mn−1v∪Mn−1{u ∈ Vn−1 |Mu ∈Mv} if v ∈ Vn

Mn−1v if v ∈ Vars(ϕ)\Vn,
(6)

for n > 1 and v ∈ Vars(ϕ).

As a direct consequence of (5) and (6), the following results can be easily proved by induction:

Lemma 2.2. (a) For every v ∈ Vars(ϕ), we have

Mv ⊆ M0v ⊆ ·· · ⊆ Mnv ⊆ ·· · .

(b) For all v ∈ Vars(ϕ) and n ∈ N, we have:

Mnv ⊆ Mv ∪ {s} ∪
n−1⋃

k=0

Mk{u ∈ Vk |Mu ∈Mv}.

Lemma 2.2(a) implies that the sequence of assignments {Mn}n∈N is plainly pointwise convergent. As

a consequence of the next lemma and corollary, it will follow in fact that {Mn}n∈N converges “uniformly”,

and it does so in at most |Vars(ϕ)| steps.

Lemma 2.3. Let k ∈ N. We have:

(a) if Vk = /0 then, for all n > k,

(a1) Vn = /0,

(a2) Mn = Mk;
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(b) if Vk 6= /0, then

k 6 min
(
|Vars(ϕ)|−1, rk(M)

)
. (7)

Proof. If Vk = /0, then Vk+1 = /0 and Mk+1 = Mk by (4) and (6), respectively. By iterating the same

argument, one can easily prove that Vn = /0 and Mn = Mk, for all n ∈ N, proving (a).

As for (b), we preliminarily observe that, by (4), for all v ∈ Vars(ϕ) and n > 1 we have

v ∈ Vn =⇒ (∃u ∈ Vn−1)Mu ∈Mv. (8)

Thus, if Vk 6= /0, by picking any vk ∈ Vk and by repeatedly applying (8), it follows that there exist

v0,v1, . . . ,vk−1 ∈ Vars(ϕ) such that

Mv0 ∈ Mv1 ∈ ·· · ∈ Mvk−1 ∈ Mvk. (9)

By the well-foundedness of ∈, the variables v0,v1, . . . ,vk−1,vk must be pairwise distinct. Hence, k+1 6

|Vars(ϕ)|. In addition, (9) also yields k 6 rk(Mvk)6 rk(M). Thus, (7) follows, proving (b).

The preceding lemma yields immediately the following result.

Corollary 2.4. For all h,k > min
(
|Vars(ϕ)|−1, rk(M)

)
, we have Mh = Mk.

Letting n := |Vars(ϕ)|, Corollary 2.4 implies that Mn = Mn, for all n > n.

Next we prove a number of technical lemmas that will culminate in the proof that

Mn |= ϕ ∧
∧

E
−

M ∧ x 6= y,

where x = y is the designated equality of E . Thus, we will have that

E
−

M ( E
−
Mn

and |E +
Mn
|< |E +

M |,

contradicting the minimality of |E +
M |. Hence, the convexity of MLS will follow, since our initial assump-

tion on ϕ and E that conditions (C1) and (C2) hold will be proved to be untenable.

The following lemma provides some useful bounds on the rank of Mnv, for n ∈ N and v ∈ Vars(ϕ).

Lemma 2.5. For all n ∈N and v ∈ Vars(ϕ), we have

- rk(Mnv) = rk(s)+n+1, if v ∈ Vn,

- rk(Mnv)6 rk (s)+n, if v /∈ Vn.

Proof. We proceed by induction on n. For n = 0 and v∈ V0, from (5) we have M0v = Mv ∪ {s}. Hence,

rk (M0v) = max{rk (Mv) , rk ({s})}= rk (s)+1, since rk (s)> rk(Mv). On the other hand, if v /∈V0, then

rk (M0v) = rk(Mv)< rk(s).

Next, let n > 0 and v ∈ Vn. By (6), we have:

rk (Mnv) = max
(
rk(Mn−1v) , rk (Mn−1{z ∈ Vn−1 |Mz ∈Mv})

)
. (10)

By inductive hypothesis, we readily have

- rk(Mn−1v)6 rk(s)+n, and

- rk(Mn−1{z ∈ Vn−1 |Mz ∈Mv})6 rk (s)+n+1.



D. Cantone, A. De Domenico, and P. Maugeri 203

In addition, since v∈Vn, then by (4), Mu∈Mv for some u∈Vn−1. Hence, again by inductive hypothesis,

rk (Mu) = rk (s)+n, and since u ∈ {z ∈ Vn−1 |Mz ∈Mv}, we have

rk (Mn−1{z ∈ Vn−1 |Mz ∈Mv}) = rk(s)+n+1.

Thus, by (10), we get rk(Mnv) = rk (s)+n+1.

On the other hand, if v /∈ Vn, then by (6) and by the inductive hypothesis we have rk (Mnv) =
rk (Mn−1v)6 rk (s)+n.

Next we prove that the set s can enter Mn only when n = 0.

Lemma 2.6. For all n ∈N and v ∈ Vars(ϕ), we have:

(a) Mnv 6= s;

(b) s ∈Mnx ⇐⇒ s ∈M0x.

Proof. Concerning (a), we proceed by induction on n.

For n = 0, by (5) we have:

- rk(M0v) = rk(s)+1, if v ∈ V0 (by Lemma 2.5);

- rk(M0v) = rk(Mv)< rk(s), if v /∈ V0.

In both cases, it follows that M0v 6= s.

For the inductive step, let n > 1. If v ∈ Vn, then by Lemma 2.5 we have rk (Mnv) = rk(s)+ n+ 1,

and therefore Mnv 6= s. On the other hand, if v /∈ Vn, then Mnv = Mn−1v 6= s, by (6) and by the inductive

hypothesis.

Next we prove (b) by induction on n.

The base case n = 0 is trivial.

For the inductive step, let n > 0. If s ∈M0x, then Lemma 2.2(a) yields readily s ∈Mnx. Conversely,

let s ∈ Mnx. If x /∈ Vn, then by (6) we have s ∈ Mnx = Mn−1x, and therefore by inductive hypothesis

s ∈M0x. On the other hand, if x ∈ Vn, then again by (6) we have

s ∈ Mnx = Mn−1x ∪ Mn−1{y ∈ Vn−1 |My ∈Mx}.

In view of (a), the latter formula yields s ∈ Mn−1x, and therefore s ∈ M0x follows again by inductive

hypothesis, completing the proof of (b), and in turn of the lemma.

The following lemma proves that, at each construction step of the assignments Mn’s, only elements

of rank at least rk(s) can enter into play.

Lemma 2.7. For every set q ∈Mnx, for some x ∈ Vars(ϕ) and n ∈N, if rk(q)< rk (s) then q ∈Mx.

Proof. Let x ∈ Vars(ϕ), n ∈N, and q ∈Mnx, with rk (q)< rk(s). From Lemma 2.2(b), we have

Mnx ⊆ Mx ∪ {s} ∪
n−1⋃

k=0

Mk{y ∈ Vk |My ∈Mx}.

Since, by Lemma 2.5, the rank of each member of {s}∪
⋃n−1

k=0 Mk{y ∈ Vk |My ∈Mx} is greater than or

equal to rk (s), then necessarily q ∈Mx

All the inequalities x 6= y satisfied by M are satisfied by every Mn, as proved in the following corollary.
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Corollary 2.8. If Mx 6= My, for some x,y ∈ Vars(ϕ), then Mnx 6= Mny, for every n ∈ N.

Proof. W.l.o.g., let us assume that Mx * My, and let q ∈Mx \My. Also, let n ∈ N. By Lemma 2.2(a),

q ∈Mnx. Plainly, rk (q) < rk (Mx) < rk (s) and q /∈My. Thus, Lemma 2.7 yields q /∈Mny, proving that

Mnx 6= Mny.

To show that every membership x ∈ y satisfied by M is correctly modeled by Mn, we will need the

following result.

Lemma 2.9. For all n ∈N and x,y ∈ Vars(ϕ), if x ∈ Vn and Mx ∈My, then y ∈ Vn+1 and Mnx ∈Mn+1y.

Proof. Let n ∈ N and assume that Mx ∈ My, for some x,y ∈ Vars(ϕ), and that x ∈ Vn. Then, by (4),

y∈Vn+1. In addition, from (6), the latter membership relation yields immediately that Mnx∈Mn+1y.

We are now ready to prove our main lemma.

Lemma 2.10. The assignment Mn satisfies ϕ .

Proof. We prove the lemma, by showing that Mn correctly models all the conjuncts in ϕ . We recall that,

in view of the reduction process outlined in Section 1, our formula ϕ contains conjuncts of two types

only, namely x ∈ y and x = y\ z.

Conjuncts of type x ∈ y. Let x ∈ y occur in ϕ , so that Mx ∈ My holds. If x /∈ Vn for all n ∈ N, then

Mnx = Mx ∈My⊆Mny (by Lemma 2.2(a)), from which Mnx ∈Mny follows.

Conversely, if x ∈ Vn, for some n ∈ N, we set m := max{n ∈ N | x ∈ Vn}. In addition, since Mx ∈My

and x ∈ Vm, Lemma 2.9 implies y ∈ Vm+1 and therefore, by Lemma 2.3(b), m+ 1 6 |Vars(ϕ)|− 1 6 n.

Thus, Lemma 2.9 again together with Lemma 2.2(a) yields Mnx = Mmx ∈ Mm+1y ⊆ Mny, from which

Mnx ∈Mny follows.

Conjuncts of type x = y\ z. Let x = y\ z occur in ϕ , so that Mx = My\Mz holds. We will prove that

Mn |= x = y\ z, by proving that Mnx⊆Mny\Mnz and Mny\Mnz⊆Mnx hold.

Proof of Mnx⊆Mny\Mnz. From Lemma 2.2(b), we have:

Mnx ⊆ Mx ∪ {s} ∪
n−1⋃

k=0

Mk{u ∈ Vk |Mu ∈Mx}.

Let q ∈Mnx. We first consider that case in which q ∈Mx. Then q ∈My\Mz. Hence, by Lemma 2.2(a),

q ∈Mny. In addition, since q /∈Mz and rk (q)< rk(s), Lemma 2.7 yields q /∈Mnz. Thus, q ∈Mny\Mnz.

Next, let q= s. Hence, s ∈M0x (by Lemma 2.6(b)), so that x ∈V0 (by (5) and (3)), and therefore t∈Mx.

Since Mx = My \Mz, then Mx ⊆ My, and so t ∈My and t /∈Mz; hence, y ∈ V0 and z /∈ V0. Therefore

s ∈M0y ⊆Mny (by (5) and Lemma 2.2(b)) and s /∈M0z (by (3)). Thus, by Lemma 2.6(b), s /∈Mnz. In

conclusion, if q= s then q ∈Mny\Mnz, as in the preceding case.

Finally, let q = Mku, for some 0 6 k < n and u ∈ Vk such that Mu ∈Mx. Recalling that Mx = My\Mz,

then Mu ∈ My, so that Mku ∈ Mk+1y ⊆ Mny (by Lemma 2.9). In addition, Mu /∈ Mz. By Lemma 2.5,

Mku /∈Mz∪{s}. Since, by Lemma 2.2(b),

Mnz ⊆ Mz ∪ {s} ∪
n−1⋃

k=0

Mk{v ∈ Vk |Mv ∈Mz}, (11)
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to prove that Mku /∈ Mnz, it is sufficient to show that Mku /∈
⋃n−1

h=0 Mh{v ∈ Vh | Mv ∈ Mz}. By way of

contradiction, let us assume that Mku = Mhv, for some 0 6 h < n and v ∈ Vh such that Mv ∈ Mz. By

Lemma 2.5, and since u ∈ Vk, we must have h = k. Since Mu /∈ Mz while Mv ∈ Mz, we plainly have

Mu 6= Mv. Hence, by Corollary 2.8, Mhu 6= Mhv = Mku, which contradicts our preceding assumption

Mku = Mhv. Thus, Mku /∈
⋃n−1

h=0 Mh{v ∈ Vh |Mv ∈Mz} holds. In view of Mku /∈Mz∪{s} and (11), the

latter equation implies Mku /∈Mnz, proving that q∈Mny\Mnz even in the case in which q∈
⋃n−1

k=0 Mk{u∈
Vk |Mu ∈Mz}.

From the arbitrariness of q ∈Mnx, we conclude that Mnx⊆Mny\Mnz holds.

Proof of Mny \Mnz ⊆ Mnx. Let us assume now that q ∈ Mny \Mnz, so that q ∈ Mny. Again from

Lemma 2.2(b), we have:

Mny ⊆ My ∪ {s} ∪
n−1⋃

k=0

Mk{v ∈ Vk |Mv ∈My}.

First we consider the case in which q ∈My, so that rk(q)< rk (s). Since q /∈Mnz, then by Lemma 2.2(a)

q /∈Mz, and therefore q ∈My\Mz = Mx⊆Mnx. Thus, q ∈Mnx.

Next, if q= s, then s∈Mny\Mnz. Thus, s∈M0y and s /∈M0z by Lemmas 2.6(b) and 2.2(a), respectively.

Hence, by (5), y ∈ V0 and z /∈ V0, so that t ∈ My \Mz = Mx (since M |= ϕ). In view of (3), the latter

membership relation yields x ∈ V0. Thus q= s ∈M0x⊆Mnx, which readily implies q ∈Mnx.

Finally, let us assume that q= Mkv, for some 0 6 k < n such that v∈Vk and Mv∈My. Plainly, Mv /∈Mz,

otherwise by Lemma 2.9 we should have q = Mkv ∈Mk+1z ⊆Mnz, contradicting q ∈Mny \Mnz. Thus,

Mv ∈My\Mz = Mx, so that Mv ∈Mx. But then, by Lemma 2.9 again, we get q= Mkv ∈Mk+1x⊆Mnx,

from which q ∈Mnx follows even in the last case.

Thus, in all cases we have q∈Mnx. By the arbitrariness if q in Mny\Mnz, we therefore obtain Mny\Mnz⊆
Mnx.

In view of the reverse inclusion Mnx ⊆ Mny \Mnz established earlier, the latter inclusion yields Mnx =
Mny\Mnz, namely Mn |= x = y\ z.

Summing up, we have proved that the assignment Mn satisfies all the conjuncts of ϕ , and therefore Mn

satisfies ϕ .

Together with Corollary 2.8, the preceding lemma implies

Mn |= ϕ ∧
∧

E
−
M .

To find a contradiction, it only remains to prove that Mn |= x 6= y, where x = y is the designated equality

of E
+

M , which we do next.

Lemma 2.11. The assignment Mn models the inequality x 6= y correctly.

Proof. We know that t∈Mx\My, therefore x∈V0 and y /∈V0, s∈M0x\M0y. Hence, from Lemma 2.6(b)

it follows that s ∈Mnx\Mny, proving that Mn |= x 6= y.

From Lemmas 2.10 and 2.11 and Corollary 2.8, we have:

Mn |= ϕ ∧
∧

E
−

M ∧ x 6= y.
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Setting E
+

Mn
:= {ℓ ∈ E |Mn |= ℓ} and E

−
Mn

:= {¬ℓ | ℓ ∈ E \E +
Mn
}, we have E

−
M ( E

−
Mn

and so |E +
Mn
|< |E +

M |,
contradicting the minimality of |E +

M | among all the set assignments that satisfy ϕ . Thus, our initial

hypothesis that MLS were not convex is inadmissible, and therefore we can conclude that:

Theorem 2.12. The theory MLS is convex.

We expect that the proof of convexity of MLS can be suitably generalized to show that also the

extension MLSI of MLS with literals of the form x=
⋂

y is convex too, where
⋂

is the general intersection

operator.3 We recall that the intended semantics of x =
⋂

y is the following: for a given set assignment

M, we have M(x =
⋂

y) = true if and only if My 6= /0 and Mx =
⋂

My, namely Mx =
⋂

y∈My y.

Several fragments of MLS admit polynomial-time decision procedures, so they are very appealing in

the context of combination of decision procedures à la Nelson-Oppen. We briefly review them next.

2.1 Polynomial fragments of MLS

Convexity of MLS is plainly inherited by all of its fragments. In [8] and [10], we recently investi-

gated them with the goal of spotting the polynomial ones, namely the fragments of MLS endowed with

polynomial-time satisfiability tests. Specifically, we examined all the sublanguages of the theories

BST := BST(∪,∩,\,=∅, 6=∅,Disj,¬Disj,⊆, 6⊆,=, 6=) and MST :=MST(∪,∩,\,∈, /∈),

where:

- BST (acronym for Boolean Set Theory) is the collection of all the conjunctions of literals of the

types

s =∅, Disj(s, t) , s⊆ t, s = t,

s 6=∅, ¬Disj(s, t) , s 6⊆ t, s 6= t,

with s and t terms involving set variables and the Boolean operators ∪, ∩, and \ , and where

Disj(s, t) stands for s∩ t = /0;

- MST (acronym for Membership Set Theory) is the collection of all the conjunctions of literals of

the two types s ∈ t and s /∈ t, with, as above, s and t terms involving set variables and the Boolean

operators ∪, ∩, and \ .

More generally, we denote by BST(op1, . . . , pred1, . . .) (resp., MST(op1, . . . , pred1, . . .)) the subthe-

ory of BST (resp., MST) involving only the set operators op1, . . . drawn from the collection {∪,∩,\}
and the predicate symbols pred1, . . . drawn from {=∅, 6=∅,Disj,¬Disj,⊆, 6⊆,=, 6=} (resp., {∈, /∈}).

We figured out that the maximal polynomial fragments of BST and MST (namely the polynomial

fragments of BST and MST that are not strictly contained in any polynomial fragment of BST and MST,

respectively) are:

• BST(∪,=∅, 6=∅,Disj,¬Disj,*, 6=),

• BST(∪,=∅, 6=∅,¬Disj,⊆,*,=, 6=),

• BST(∩,=∅, 6=∅,Disj,¬Disj,⊆,*,=, 6=)
(all of which admitting a cubic-time satisfiability test) and

3The decision problem for MLSI has been solved in [7].
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• MST(∪,∈, /∈) (admitting a linear-time satisfiability test),

• MST(∩,∈, /∈) (admitting a quadratic-time satisfiability test).

In addition, we further spotted the following non-maximal polynomial fragments of BST admitting

sub-cubic satisfiability tests:

• BST(∪,=∅, 6=∅,Disj,*, 6=) (admitting a linear-time satisfiability test),

• BST(∪,Disj,¬Disj) (admitting a quadratic-time satisfiability test),

• BST(∩,=∅, 6=∅,Disj,¬Disj, 6=) (admitting a quadratic-time satisfiability test).

As already observed, all of the above fragments plainly inherit convexity from MLS, so that, their

decision procedures can be efficiently combined with the decision procedures of other convex theories

with disjoint signatures within a Nelson-Oppen framework.

In the following section, we review various non-convex extensions of MLS.

3 Non-convex extensions of MLS

To prove that some extensions of MLS are non-convex, we rely on the following property.

Lemma 3.1. Let T be any extension of MLS containing a conjunction ϕ with a designated variable x

such that, for some integer k > 2, we have:

- |= ϕ −→ |x|6 k,

- ϕ ∧ |x|= k is satisfiable,

where |x| stands for the cardinality of x. Then T is not convex.

Proof sketch. Given ϕ , x, and k as in the hypotheses, it is enough to set Φ := ϕ ∧
∧k+1

i=1 xi ∈ x, where

x1, . . . ,xk+1 are pairwise distinct variables not occurring in ϕ . Then, we have:

|= Φ −→
∨

16i< j6k+1

xi = x j .

In addition, each conjunction Φ ∧ xi 6= x j, with 1 6 i < j 6 k + 1, is satisfiable. Hence, none of the

statements

|= Φ −→ xi = x j

can hold, for 1 6 i < j 6 k+1. Thus, the theory T is not convex.

Using Lemma 3.1, we show next that the following extensions of MLS are non-convex:

• MLSS = MLS + ‘{·}’: MLS extended with the singleton operator x = {y} (see [14]),

• MLSP = MLS + ‘P(·)’: MLS extended with the powerset operator (see [6]),

• MLSU = MLS + ‘
⋃
·’: MLS extended with the general union operator (see [5]),

• MLS×= MLS + ‘×’: MLS extended with the Cartesian product operator.4

Concerning the theory MLSS, let us consider the conjunction

ϕ := x = {y} ∧ x′ = {y′} ∧ x = x∪ x′ .

Then,

4The decision problem for MLS× is still open.
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- for every model M for ϕ , we have Mx = {My,My′}, so that |Mx|6 2 holds;

- letting M be the set assignment for ϕ such that

My = /0, My′ = Mx = { /0}, Mx′ = {{ /0}}, Mx = { /0,{ /0}},

then M satisfies ϕ and |Mx|= 2.

Thus, by Lemma 3.1, MLSS is non-convex.

Next, as for the theory MLSP, let us consider the conjunction

ϕ := x =∅ ∧ y = P(x) ∧ x = P(y) .

Then, ϕ is plainly satisfiable and, for every set assignment M satisfying ϕ , we have Mx = { /0,{ /0}}, so

that |Mx|= 2. Thus, by Lemma 3.1, MLSP is non-convex.

Concerning the fragment MLSU, let us consider the conjunction

ϕ := x =∅ ∧
⋃

y = x ∧
⋃

x = y .

Then,

- for every set assignment M satisfying ϕ , we have Mx⊆ { /0,{ /0}} so that |Mx|6 2 holds;

- letting M be the set assignment over Vars(ϕ) such that

Mx = /0, My = { /0}, Mx = { /0,{ /0}},

we readily have that M satisfies ϕ and |Mx|= 2.

Hence, by Lemma 3.1, MLSU is non-convex.

Since MLSSP is an extension of non-convex theories, namely MLSS and MLSP, it follows immedi-

ately that MLSSP is non-convex as well.

Regarding the extension MLS× of MLS with the Cartesian product, we have

|= x× y =∅ −→ (x =∅ ∨ y =∅). (12)

Since the two conjunctions x× y =∅ ∧ x 6=∅ and x× y =∅ ∧ y 6=∅ are clearly satisfiable, then

6|= x× y =∅ −→ x =∅ and 6|= x× y =∅ −→ y =∅.

Together with (12), the latter statements imply that MLS× is non-convex.

By replacing in the above proof the Cartesian product × by the unordered Cartesian product ⊗, one

can readily show that the extension MLS⊗ of MLS with the unordered Cartesian product⊗ is non-convex

too.

Finally, notice that the membership relator did not play any role in the above proof of non-convexity

of MLS× and MLS⊗. Therefore, by exactly the same argument as the above, one can show that the

extensions BST× and BST⊗ of BST with the Cartesian product and the unordered Cartesian product are

non-convex.

Summarizing, we have proved:

Lemma 3.2. The theories MLSS, MLSP, MLSSP, MLSU, MLS×, MLS⊗, BST×, and BST⊗ are all

non-convex.
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4 Conclusions

In this paper, we have shown that the fragment of Zermelo-Fraenkel set theory called Multi-Level Syl-

logistic is convex. We also proved that most common extensions of MLS studied within the field of

computable set theory are non-convex. Two possible exceptions are MLSI, namely the extension of MLS

with the general intersection operator
⋂

, and the extension of MLS with a finiteness predicate and some

cardinality constraints. In fact, we conjecture that both extensions are convex, and we plan to prove it in

the near future.

Although the decision problem for MLS is NP-complete, several of its fragments are endowed with

polynomial decision procedures. Due to the fact that convexity is inherited by all the fragments of MLS,

the ones with polynomial-time decision procedures are particularly interesting in view of their integration

with other convex, stably infinite decidable theories with disjoint signatures (such as the theory of lists,

linear arithmetic, etc.) within a Nelson-Oppen context.

We therefore intend to continue our investigation of sublanguages of MLS that admit a polynomial

satisfiability procedure, with the ultimate goal of obtaining a complete taxonomy for the decision prob-

lem for MLS subtheories.

We also plan to explore extensions to the basic Nelson-Oppen procedure that overcome the restriction

of stable infiniteness and/or of signature disjointness (such as, for instance, the politeness property [17],

or the Noetherian property [15]) that are particularly suited for combinations of decision procedures for

fragments of set theory.

Finally, we intend to generalize to decidable fragments of pure set theory some combination results

present in literature (such as the ones with integers and cardinals—see [19, 21, 20]), which are currently

limited to flat sets of urelements only.
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