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The choice of the right trade-off between expressiveness and complexity is the main issue in interval

temporal logic. In their seminal paper [10], Halpern and Shoham showed that the satisfiability prob-

lem for HS (the temporal logic of Allen’s relations) is highly undecidable over any reasonable class

of linear orders. In order to recover decidability, one can restrict the set of temporal modalities and/or

the class of models. In the following, we focus on the satisfiability problem for HS fragments under

the homogeneity assumption, according to which any proposition letter holds over an interval if only

if it holds at all its points. The problem for full HShom has been shown to be non-elementarily de-

cidable [13], but its only known lower bound is EXPSPACE (in fact, EXPSPACE-hardness has been

shown for the logic of prefixes and suffixes BEhom, which is a very small fragment of it [3]). The logic

of prefixes and infixes BDhom has been recently shown to be PSPACE-complete [5]. In this paper, we

prove that the addition of the Allen relation Meets to BDhom makes it EXPSPACE-complete.

1 Introduction

Interval temporal logics (ITLs for short) are versatile and expressive formalisms for specifying properties

of sequences of states and their durations. When it comes to fundamental problems like satisfiability,

their high expressive power is often paid at the price of undecidability. For instance, the most widely

known ITLs, that is, HS logic, proposed by Halpern and Shoham’s [10], and CDT logic, proposed by

Venema [17], turn out to be highly undecidable w.r.t. the satisfiability problem. Despite these negative

results, a number of decidable formalisms have been identified by weakening ITLs (see [6] for a complete

classification of HS fragments). Here the term “weakening” is intended as a set of syntactic and/or

semantics restrictions imposed on the formulas of the logic and/or the models on which such formulas

are interpreted, respectively. Among the plethora of possible weakenings, in this paper we focus on (the

combination of) the following two natural and well-studied restrictions:

• Restrict the set of interval relations. Many decidable fragments of ITLs are obtained by consid-

ering a restricted set of Allen’s relations for comparing intervals. This approach naturally induces

fragments of HS logic with modal operators corresponding to the selected subset of interval rela-

tions. As an example, the logic of temporal neighborhood, called PNL, features only two interval

relations among the possible 13 ones, namely, A (adjacent to the right) and its inverse Ā. The
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corresponding interval modal logic has been shown to be decidable over basically every class of

linear orders (e.g. see [7, 14]);

• Restrict the class of models. Based on a principle similar to the above one, some ITLs can be

tamed by considering classes of models that satisfy certain specific assumptions. An example

of this type of restriction can be found in a series of recent papers that studied model-checking

problems for ITLs (e.g. see the seminal paper [13]) , as well as ITL expressiveness compared to

classical point-based temporal logics, like LTL, CTL, and CTL
∗

[2]. In this setting, models are

represented as Kripke structures, and so inherently point-based rather than interval-based. The

generated models can be equivalently obtained by making the so-called homogeneity assumption,

that is, by assuming that every proposition letter holds over an interval if and only if it holds at all

its points. It is important noticing that, under the homogeneity assumption, the full HS logic has

a decidable satisfiability problem (as a matter of fact, the model-checking procedures introduced

in the aforementioned works can be easily turned to satisfiability procedures, while often retaining

the same complexity). Because of this, the focus in studying HS logics under the homogeneity

assumption is shifted from decidability to complexity.

Let us focus now on the Chop logic C which is a proper fragment of CDT admitting as single modality

called chop operator, that allows one to split the current interval in two parts and to require properties

to hold separately on the two parts. In the general setting even the satisfiability problem for the logic

C is undecidable, however if we impose the homogeneity constraint for satisfiability, thus obtaining the

logic Chom, then it can be easily shown that there is a LOGSPACE reduction of the emptiness problem for

star-free generalized regular expressions to the satisfiability problem for Chom and vice versa. However,

a classic result in formal languages proved by Stockmeyer states that the emptiness problem for star-free

generalized regular expressions is non-elementarily decidable (tower-complete) [15, 16]. This means

that the satisfiability problem for Chom is also non-elementarily decidable.

As we mentioned above, the satisfiability problem for the full logic HS when interpreted under the

homogeneity assumption, called HShom from now on, is decidable [13], and the only known decision

algorithm for such problem features a non-elementary complexity. To this day, the exact complexity of

the satisfiability problem for HShom is still an open problem since a matching lower bound has not been

fixed yet. From an expressivity standpoint, the aforementioned logic Chom can capture only three of the

12 modal operators featured by HS, namely, the operators B, for “begins”, corresponding to the prefix

relation on pairs of intervals, D, for “during”, corresponding to the infix relation on pairs of intervals,

and E , for “ends”, corresponding to the suffix relation on pairs of intervals. It is easy to see that any

fragment of HShom that contains both the operators B and E also contains D, since the infix relation may

be expressed, for istance, as some prefix of some suffix or vice versa. Let us notice that the opposite is not

true, e.g., the BDhom fragment of HShom cannot express the E operator. Informally speaking, this means

that not all the properties about the prefixes of an interval cannot be expressed in terms prefixes and

infixes. The satisfiability problem for the fragment BEhom has been proved to be EXPSPACE-hard in [3]

while the upper bound ranges from EXPSPACE to non-elementary. We conjecture that the complexity of

the satisfiability problem of BEhom coincides with the complexity of the problem of the full logic HShom.

A couple of arguments that make BEhom such a peculiar beast are the following: (i) according to the

results proved/summarized in [3] w.r.t. the satisfiability problem the only known fragments of HShom

for which it has been possible to provide an EXPSPACE lower bound for the complexity must contain

both B and E operators; (ii) the satisfiability problem for the logic DEhom (and it symmetric BDhom),

which is a maximal proper fragment of BEhom has been recently proved to be PSPACE-complete (see

[1, 4, 5]). In this paper, we provide the first known fragment of HShom not including both the prefix and
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suffix modalities (B and E) in the EXPSPACE-completeness class. Such a fragment is the logic ABDhom

which is the extension of BDhom with the meet modality A relating pairs of intervals where one interval

begins exactly where the other ends).

In this paper we provide two main novel results: (i) we prove that the satisfiability problem for

ABDhom is EXPSPACE-hard on finite models by a reduction to the exponential corridor tiling problem;

(ii) we provide a small model theorem for finite models of ABDhom formulas that is doubly exponential

in the size of the input formula. Then, by means of such small model theorem, we prove that there exists

a decision procedure for the satisfiability problem of ABDhom formulas that works using only exponential

space w.r.t. the size of the input formula.

The paper is structured as follows. In Section 2, we introduce syntax and semantics of ABDhom under

the homogeneity assumption. In Section 3 we prove that the satisfiability problem for ABDhom interpreted

over finite models is EXPSPACE-hard. In Section 4, we introduce the notion of homogeneous compass

structure, that provides a particularly useful representation for models of ABDhom formulas. In Section 5,

we give an EXPSPACE decision procedure for checking the satisfiability of ABDhom formulas. Finally,

in Section 6, we provide an assessment of the work done and outline future research directions.

2 The logic ABDhom

In this section, we introduce the logic ABDhom and we define the satisfiability relation under the homo-

geneity assumption.

ABDhom formulas are built up from a countable set Prop of proposition letters according to the fol-

lowing grammar: ϕ ∶∶= p ∣ ¬ψ ∣ ψ ∨ψ ∣ ⟨A⟩ψ ∣ ⟨B⟩ψ ∣ ⟨D⟩ψ , where p ∈ Prop and ⟨A⟩,⟨B⟩, and ⟨D⟩
are the modalities for Allen’s relations Adjacent (meets), Begins, and During, respectively.

Let N ∈ N be a natural number and let IN = {[x,y] ∶ 0 ≤ x ≤ y ≤ N} be the set of all intervals over

the prefix 0 . . .N of N. A (finite) model for BD formulas is a pair M = (N,V), where V ∶ IN → 2
Prop

is a

valuation that maps intervals in IN to sets of proposition letters. Let M be a model and [x,y] an interval.

The semantics of a ABDhom formula is defined as follows:

• M,[x,y] ⊧ p iff p ∈ V([x,y]);

• M,[x,y] ⊧ ¬ψ iff M,[x,y] /⊧ ψ ;

• M,[x,y] ⊧ ψ1∨ψ2 iff M,[x,y] ⊧ ψ1 or M,[x,y] ⊧ ψ2;

• M,[x,y] ⊧ ⟨A⟩ψ iff there is y
′
, with y

′
≥ y, such that M,[y,y′] ⊧ ψ ;

• M,[x,y] ⊧ ⟨B⟩ψ iff there is y
′
, with x ≤ y

′
< y, such that M,[x,y′] ⊧ ψ ;

• M,[x,y] ⊧ ⟨D⟩ψ iff there are x
′
and y

′
, with x < x

′
≤ y

′
< y, such that M,[x′,y′] ⊧ ψ .

The logical constants ⊤ (true) and ⊥ (false), the Boolean operators ∧,→, and ↔, and the (universal) dual

modalities [A], [B], and [D] can be derived in the standard way. Moreover, it turns out to be useful to

define: a constant π = [B]⊥ that holds only on intervals of the type [x,x] (i.e., points); a global operator[G]ψ = ψ ∧ [A]ψ ∧ [B]ψ ∧ [B][A]ψ in order to impose constraints on all the intervals in the model.

We say that a ABDhom formula ϕ is (finitely) satisfiable if and only if there exist a model M = (N,V)
and an interval [x,y] such that M,[0,N] ⊧ ϕ . We say that a model M = (IN ,V) is homogeneous if V

satisfies the following property:

∀p ∈ Prop ∀[x,y] ∈ IN (p ∈ V([x,y]) ⇔ ∀z ∈ [x,y] p ∈ V([z,z])).
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Figure 1: A homogeneous model (a -

above) vs. a general one (b - below).

In Fig. 1, we show a homogeneous model (a) and a non-

homogeneous one (b). In homogeneous models, for any propo-

sition letter, the labelling of point-intervals determines that of

arbitrary intervals. This is not the case with arbitrary models

(see, e.g., [4,6]). As a consequence, in homogeneous models,

the labelling of the intersection of two intervals contains the

labellings of the two intervals (this is the case with intervals[1,6] and [4,7] in Fig. 1 (a), whose intersection is the interval[4,6]). Once again, this is not the case with arbitrary models

(see the very same intervals in Fig. 1 (b)).

Satisfiability can be recast in the case of homogeneous

models. We say that a ABDhom formula ϕ is satisfiable un-

der homogeneity if there is a homogeneous model M such that

M,[0,N] ⊧ ϕ .

Satisfiability under homogeneity is clearly more restricted

than plain satisfiability. We know from [11, 12] that dropping

the homogeneity assumption makes D undecidable. This is not

the case with the fragment B that, being extremely weak in

terms of expressive power, remains decidable [9]. The rest of

this paper is devoted to prove the following theorem.

Theorem 1. Given a ABDhom formula ϕ the problem of deciding whether or not there exists an homo-

geneous model M = (N,V) s.t. M,[0,N] ⊧ ϕ is an EXPSPACE-complete problem.

The proof of Theorem 1 is distributed over the next three sections. First, in Section 3, we prove

that such problem is EXPSPACE-hard, then, in Section 4 we provide a representation of homogeneous

models, called compass structure, exploited in Section 5 to design an EXPSPACE decision procedure for

the satisfiability problem of ABDhom formulas.

3 EXPSPACE-hardness for the logic ABDhom over finite linear orders

In this section we prove that the satisfiability problem for ABDhom interpreted over finite linear orders

is EXPSPACE-hard. The result is obtained by a reduction from the exponential-corridor tiling problem,

which is known to be EXPSPACE-complete [8]. Such a problem can be stated as follows.

Problem 1. Given a tuple T = (T,⇒,⇑,C) where T,C ∈ N (C is expressed in binary), and ⇒,⇑ ⊆{0, . . . ,T}× {0, . . . ,T}, the exponential-corridor tiling problem consists of determining whether or not

there exists a function tile ∶ N×{0, . . . ,C}→ {0, . . . ,T} such that:

1. for every x ∈ N we have tile(x,0) = 0 and tile(x,C) = T ;

2. for every x ∈ N and every 0 ≤ y ≤C we have (tile(x,y), tile(x+1,y)) ∈⇒;

3. for every x ∈ N and every 0 ≤ y <C we have (tile(x,y), tile(x,y+1)) ∈ ⇑.

The following classical result will be exploited to prove the main goal of this section.

Theorem 2. [8] The exponential-corridor tiling problem is EXPSPACE-hard.

For defining a reduction from Problem 1 to the finite satisfiability of ABDhom we have to deal with

the problem that the formulas of ABDhom are interpreted over finite domains whereas the tile functions

ranges over an infinite domain. Roughly speaking, we shall solve Problem 1 by means of an infinite

“unfolding” of a finite portion of the tiling space that can be encoded by a (finite) model for a suitable

ABDhom formula. The following result is crucial to that purpose.
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Lemma 1. Given an instance T = (T,⇒,⇑,C) of Problem 1 we have that T is a positive instance if

and only if there exists a function tile ∶ N×{0, . . . ,C}→ {0, . . . ,T} that fulfills conditions 1, 2, and 3 of

Problem 1 together with the following one:

4. there exist pre f ix ∈ N and period ∈ N
+

s.t. for every x ≥ pre f ix and every 0 ≤ y ≤ C we have

tile(x,y) = tile(x+ period,y).

The proof of Lemma 1 is straightforward and omitted. Lemma 1 allows us to bound the search space

for the existence of the function tile to a finitely representable function tile ∶ {0, . . . , pre f ix, . . . , pre f ix+

period} → {0, . . . ,T} for some pre f ix ≥ 0 and period > 0. Function tile witnesses that T is a positive

instance of Problem 1 if it satisfies conditions 1, 2, and 3 restricted to (x,y) ∈ N× {0, . . . ,C} with x <

pre f ix+ period plus the condition that tile(pre f ix,y) = tile(pre f ix+ period,y) for every y ∈ {0, . . . ,C}.

Given an instance T = (T,⇒,⇑,C) of Problem 1 we provide a ABDhom formula ϕT that is satisfiable

over finite models if and only if there exists a function tile that satisfies the aforementioned properties

an thus, by Lemma1, if and only if T is a positive instance of Problem 1. In the proposed encoding we

force each point of the model to represent exactly one tile. This is done by exploiting T +1 propositional

variables t0, . . . , tT , called tile variables, constrained by the following formulas:

ψ∃ = [G](π →
T

⋁
i=0

ti) , given a point in the model at least one tile variable holds over it;

ψ! = [G]( T

⋀
i=0

(ti∧π → ( T

⋀
j=0, j≠i

¬t j))) , given a point in the model at most one tile variable

holds over it (i.e., mutual exclusion).

Let us assume w.l.o.g. that C = 2
c
− 1 for some c ∈ N. Then, we associate to each model point a

number in {0, . . . ,C} by a binary encoding via c-propositional variables b1, . . . ,bc, where b1 is the most

significative bit. Formally, given a model M = (N,V) and a point we define a function with

bitV ∶ {0, . . . ,N}×{b1, . . . ,bc}→ {0,1} where bitV(n,bi) = { 1 if bi ∈ V([n,n])
0 otherwise

.

For the sake of brevity, we denote with yn the natural number whose c-bit length binary encoding is

bitV(n,b1) . . .bitV(n,bc). We encode the domain of a general function tile ∶ {0, . . . , pre f ix, . . . , pre f ix+

period} → {0, . . . ,T} into a finite model M = (N,V) by enumerating all the points of the grid {0, . . . ,

pre f ix+ su f f ix}× {0, . . . ,C} along the timepoints {0, . . . ,N} of the model in a lexicographical order.

The formula ψtile = ψ∃∧ψ!∧ψboundaries ∧ψ↑ is used to force such constraint where ψboundaries and ψ↑

are formulas defined as follows:

ψboundaries = ⟨B⟩(π ∧
c

⋀
i=1

¬bi)∧ [A]( c

⋀
i=1

bi) , every model M = (N,V) for ψboundaries satisfies y0 = 0

and yN =C;

ψ↑ = [G]([B]π → ( c

⋀
i=1

⟨B⟩bi∧([A]⊥∨ c

⋀
i=1

⟨A⟩(π → ¬bi)))∨ψ
1
+) ,

for every n ∈ {0, . . . ,N} if yn =

C then either n = N or yn+1 = 0,

if yn < N then yn+1 = yn+1;

ψ
i
+ =

(⟨B⟩bi → ⟨A⟩(π∧¬bi)∧ψ
i+1
+ )∧(⟨B⟩¬bi → ⟨A⟩bi∧ψ

i+1
= ) ,

formula ψ
i
+ encodes the bit-wise increment for every bit

bi with i ∈ {1, . . . ,c−1}; ψ
1
+ is triggered by ψ↑ on every

interval [n,n+1] with yn <C;

ψ
c
+ = ¬⟨B⟩bi∧ ⟨A⟩bi,

formula ψ
c
+ encodes the bit-wise increment for the bit bc; it is triggered by ψ

c−1
+

on every interval [n,n+1] for which bitV(n,bi) = 1 for every 1 ≤ i < c;

let us notice that it does not propagate and it handles overflows by creating a contradiction;

ψ
i
= = ¬π ∧

j=c

⋀
j=i

(⟨B⟩(π∧bi)↔ ⟨A⟩(π∧bi)) , formula ψ
i
= holds over an interval [n,n′] if and only if

n < n
′
and bitV(n,b j) = bitV(n

′
,b j) for every i ≤ j ≤ c;
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Note that if ψ
1
= holds over [n,n′] then yn = yn′ . Formula ψ

i
= is used for guaranteeing the correct

bitwise increment in formulas ψ
i
+, moreover it will be used in the following for correctly identifying

tiles which are in the ⇒ relation.

It is worth noticing that any model M = (N,V) that satisfies ψtile = ψ∃ ∧ψ! ∧ψboundaries ∧ψ↑ fulfills

some properties. First of all, the interplay between ψboundaries and ψ↑ guarantees that N is a multiple

of (C+1) and thus, for suitably chosen pre f ix and su f f ix, we can associate each point (x,y) ∈ {0, . . . ,

pre f ix+ su f f ix}× {0, . . . ,C} to a point n ∈ {0, . . . ,N} by means of a bijection map ∶ {0, . . . , pre f ix+

su f f ix}×{0, . . . ,C}→ {0, . . . ,N} defined as map(x,y)= x⋅(C+1)+y (i.e., map
−1(n)= (⌊ n

C+1
⌋,n % C)

where % is the integer remainder operation). Moreover, let us observe that for every element (x,y) in the

grid, we have that x is just implicitly encoded in the model by map(x,y) (i.e., x = ⌊map(x,y)
C+1

⌋), while y is

both implicitly encoded (i.e., x = ⌊map(x,y)% C) and explicitly encoded by the the values of variables

b1 . . .bc since it is easy to prove that ψboundaries ∧ψ↑ forces y = ymap(x,y). Finally, the conjuncts ψ∃∧ψ!

ensure that each point in n ∈ {0, . . . ,N}}, and thus, by means of map, any point in the grid, is associated

with exactly one tile, that is the unique tile variable that belongs to V([n,n]).

For the aforementioned properties, if we consider the function f that maps a function tile ∶ {0, . . . ,M}
× {0, . . . ,C} → {0, . . . ,T} in the model M = (M ⋅ (C+ 1),V) where for every (x,y) ∈ {0, . . . ,M}×{0, . . . ,C} we have ti ∈ V([map(x,y),map(x,y)]) if and only if tile(x,y) = i and ymap(x,y) = y, it is

easy to prove that f is a bijection between the set of all such tile function, for every M ∈ N
+

, and the

set of all finite models for ψtile. In summary, the detailed description above shows that any model for

ψtile is basically a way to represent a generic function tile ∶ {0, . . . ,M}× {0, . . . ,C} → {0, . . . ,T} and

that, viceversa, each of such functions is represented by exactly one model of ψtile. The next step is the

encoding of the constraints of Lemma 1 in ABhom which allow to check whether there exists a function

tile that witnesses that T is a positive instance. Such conditions, restricted to the finite case, are imposed

by the following formulas:

ψ0,C = [G](((π ∧
C

⋀
i=1

¬bi)→ t0)∧((π ∧
C

⋀
i=1

bi)→ tT)) , formula ψ0,C forces condition 1 of Prob-

lem 1, that is, the bottom tile of each column

is 0 and the top tile of each column is T ;

ψ⇒ = [G](π ∧ ⟨A⟩¬π → ⟨A⟩(ψ
min
= ∧( ⋁(i, j)∈⇒(⟨B⟩ti∧ ⟨A⟩t j)))) , formula ψ⇒ forces condition 2 of

Problem 1, that is, each pair of

grid points of type (x,y),(x+1,y) must be labelled with two tiles that are in the ⇒ relation. This is

done by taking for each point n < N the minimal interval [n,n′] with n < n
′
and yn = yn′ ; then, the ⇒

relation is forced between the pair of tile variables that hold over [n,n] and [n′,n′], respectively;

ψ
min
= = ψ

1
=∧ [B]¬ψ

1
=,

formula ψ
min
= holds over an interval [n,n′] if and only if n < n

′
, yn = yn′ , and

does not exist n< n
′′
< n

′
such that yn = yn′′ . Let us notice that, for the constraints

imposed by ψtile we have that n
′
− n = C+ 1 and thus, according to the definition of map, we have

map
−1(n

′) = (⌊ n

C+1
⌋+ 1,n % C); then, ψ

min
= holds on all and only those intervals whose endpoints

represent horizontally adjacent points of the original grid;

ψ⇑ = [G]([B]π∧ c

⋁
i=1

¬bi → ⋁(i, j)∈⇑(⟨B⟩ti∧ ⟨A⟩t j)) ,
formula ψ⇑ forces condition 3 of Problem 1, that

is, each pair of grid points of type (x,y),(x,y+1)
must be labelled with two tiles that are in the ⇑

relation. The constraint can be easily imposed
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since the encoding ensures that vertical consecutive points in the grid corresponds to consecutive

points in the model. The constraint is triggered on all the intervals of the type [n,n+ 1], with the

exception of the of the ones with yn =C. The constraint imposes that unique (thanks to ψ∃∧ψ!) pair

of tile variables (ti, t j) with (ti) ∈ V([n,n]) and (t j) ∈ V([n′,n′]) must satisfy (i, j) ∈ ⇑.

ψpre f ix =

⟨B⟩⟨A⟩(p∧
C

⋀
i=1

(⟨B⟩(π∧¬bi)∧ ⟨A⟩bi))∧
[G](p∧π → ⟨A⟩(ψ

1
=∧ [A]¬ψ

1
=∧

T

⋀
i=0

(⟨B⟩ti ↔ [G]ti)))
,

formula ψpre f ix forces condi-

tion 4 of Lemma 1, which im-

poses that there are two dis-

tinct columns in the grid which

are tiled identically and one of

such columns is the last one.

This is done by means of a propositional letter p. The first conjunct of formula ψpre f ix imposes that

there exists an interval [n,n′] in the model for which p ∈ V([n,n′]), yn = 0, and yn′ =C (i.e., p “cov-

ers” at least one column). Moreover, for the homogeneity assumption, we have that p ∈ V([n′′,n′′])
for every n ≤ n

′′
≤ n

′
. The second conjunct imposes that for each p labelled points n there must exist

a point n
′
> n with yn = yn′ (this implicitly implies that n is associated to a grid point which does

not belong to the last column). Moreover, formula [A]¬ψ
1
= imposes that n

′
must belong to the last

column. Finally, it is required that there exists 0 ≤ i ≤ T s.t. ti ∈ V([n,n])∩V([n′,n′]).

Notice that in the above definitions the use of the ⟨A⟩ operator enables us to deal with two key aspects:

1. we can predicate on all the intervals [n,n′] for any n,n
′
∈ {0, . . . ,N}, whereas, by using the ⟨B⟩

operator alone, we could predicate only on intervals of the form [0,n];
2. we can predicate on the ending point of any current interval [n,n′], i.e., the interval [n′,n′]. Such

a feature is missing in the logic BDhom where we can predicate only on the beginning point of any

current interval. For instance, the logic BDhom cannot express properties like ψ
1
= which checks

whether the same set of propositional letters holds over the two ending points of an interval.

Let us define now the formula ϕT as ϕT = ψtile ∧ψ0,C ∧ψ⇒∧ψ⇑∧ψpre f ix. Since the models of

ψtile represent all and only the possible finite tiling functions for T and ψ0,C,ψ⇒, ψ⇑, ψpre f ix select the

subset of such functions/models where conditions 1, 2, and 3, of Problem 1 together with condition 4 of

Lemma 1 are fulfilled we can prove the following result.

Theorem 3. Given a instance T = (T,⇒,⇑,C) of Problem 1 we have that T is a positive instance if

and only if the ABhom formula ϕT is satisfiable over finite linear orders.

It is easy to see that the formula ϕT may be generated in LOGSPACE. It suffices to observe that

we may define a multitape Turing Machine that performs the reduction using just a constant amount of

working tapes each one holding either ⌈log2 T⌉ bits or c bits. Finally, from such an observation together

with Theorem 2 we obtain the main result of this section.

Theorem 4. The satisfiability problem for the logic ABhom over finite linear orders is EXPSPACE-hard.

We conclude this section by pointing out some interesting facts that allow us to better understand

how the homogeneity assumption affects the satisfiability problem of the considered HS fragments. As

a matter of fact the complexity of the satisfiability problem for ABhom over finite linear orders does

not change if we consider its general version AB (i.e., without homogeneity assumption [6]). On the

contrary, the homogeneity assumption marks a deep difference in the fragment ABD. In fact, we shall

prove in the next section that the satisfiabilty problem for ABDhom is decidable in exponential space

whereas the problem for ABD is known to be undecidable [11, 12]. As for model checking, the model

checking problem over finite Kripke structures for ABhom is proved to be PSPACE-complete [3] while
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in this work we have already proved that the satisfiability problem over finite linear orders belongs to an

higher complexity class (i.e., EXPSPACE). The tight complexity bound for the model checking problem

over finite Kripke structures for ABDhom is still open: we only know that for its three maximal proper

fragments ABhom, ADhom and BDhom the model checkin problem is PSPACE-complete [3, 5].

4 Homogeneous compass structures

In this section, we introduce a spatial representation of homogeneous models, called homogeneous com-

pass structures, which will be used to prove that the satisfiabilty problem for ABDhom is decidable in

exponential space in Section 5.

Let ϕ be a BDAhom formula. We define the closure of ϕ , denoted by Cl(ϕ), as the set of all its

sub-formulas and of their negations, plus formulas π and ¬π . Moreover, we denote with T F
ϕ

A = {ψ ∶⟨A⟩ψ ∈ Cl(ϕ)} the set of all the arguments ψ for ⟨A⟩ψ formulas in Cl(ϕ). For every BDAhom formula

ϕ , it holds that Cl(ϕ) ≤ 2∣ϕ∣+2 and ∣T F
ϕ
A ∣ ≤ ∣Cl(ϕ)∣/2−1.

A ϕ-atom (atom for short) is a pair Fα = (F,α) where:

1. F is a maximal subset of Cl(ϕ) that, for all ψ ∈ Cl(ϕ), satisfies the following three conditions: (i)

ψ ∈ F if and only if ¬ψ ∉ F , (ii) if ψ = ψ1∨ψ2, then ψ ∈ F if and only if {ψ1,ψ2}∩F ≠∅, and

(iii) if π ∈ F then for every [A]ψ ∈ F we have ψ ∈ F;

2. α is a function α ∶ T F
ϕ
A → {◊,⧫,□} that, for all ψ ∈ T F

ϕ
A , satisfies the following four conditions:

(i) if α(ψ) = □ then ¬ψ ∈ F; (ii) if ψ ∈ F then α(ψ) = ⧫; (iii) if π ∈ F and α(ψ) = ◊ then⟨A⟩ψ ∈ F and ψ ∉ F; (iv) if π ∈ F and α(ψ) = ⧫ then ψ ∈ F .

For the sake of simplicity, from now on when we refer to Fα as a set, we refer to its first component

F . For instance, when we write ψ ∈ Fα , we mean ψ ∈ F . An atom Fα is final iff for every ψ ∈ T F
ϕ
A we

have α(ψ)∈ {⧫,□}. Let At(ϕ) be the set of all ϕ-atoms. We have that ∣At(ϕ)∣≤ 2
∣ϕ∣+1

⋅2
∣ϕ∣−1

= 2
2∣ϕ∣

,

where ∣ϕ∣ = ∣Cl(ϕ)∣/2.

For all R ∈ {A,B,D}, we introduce the functions ReqR, ObsR, and BoxR, that map each atom Fα ∈

At(ϕ) to the following subsets of Cl(ϕ):

• ReqR(Fα) = {ψ ∈ Cl(ϕ) ∶ ⟨R⟩ψ ∈ F};

• ObsR(Fα) = {ψ ∈ Cl(ϕ) ∶ ⟨R⟩ψ ∈ Cl(ϕ),ψ ∈ F};

• BoxR(Fα) = {ψ ∈ Cl(ϕ) ∶ [R]ψ ∈ F}.

Note that, for each Fα ∈At(ϕ) and each formula ψ , with ψ ∈ {ψ
′
∶ ⟨A⟩ψ ′

∈Cl(ϕ)}, either ψ ∈ReqA(Fα)
or ¬ψ ∈ BoxA(Fα) and similarly for B and D (it implies that BoxA(⋅), BoxB(⋅) and BoxD(⋅) are not

strictly necessary and are introduced only for technical convenience). By exploiting functions above, we

define two binary relations →B and →D over At(ϕ) as follows. For all Fα ,Gβ ∈ At(ϕ) we write

• Fα →B Gβ iff ReqB(Fα) = ReqB(Gβ)∪ObsB(Gβ) and for every ψ ∈ T F
ϕ

A we have α(ψ) = β(ψ)
if β(ψ) ∈ {⧫,□} or ψ ∉ F;

• Fα →D Gβ iff ReqD(Fα) ⊇ ReqD(Gβ )∪ObsD(Gβ).

Notice that from the definition of →B (resp., →D), it easily follows that BoxB(Fα) ⊆ G (resp.,

BoxD(Fα) ⊆ G). Notice also that →D is transitive (by definition of atom, from ReqR(Fα) ⊇ ReqR(Gα),

it immediately follows that BoxR(Fα) ⊆ BoxR(Gβ)), while →B is not.

Proposition 1. For each pair of atoms Fα ,Gβ ∈ At(ϕ), we have that F = G iff ReqR(Fα) = ReqR(Gβ)
for each R ∈ {A,B,D}, and F ∩Prop = G∩Prop.

Given N ∈ N, let GN = {(x,y) ∶ 0 ≤ x ≤ y ≤ N}, given a formula ϕ , a ϕ-compass structure (compass

structure, when ϕ is clear from the context) is a pair G = (N,L), where N ∈ N, , and L ∶GN → At(ϕ) is

a labelling function that satisfies the following properties:
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• (initial formula) ϕ ∈ L(0,N);

• (A-consistency) for all 0 ≤ x ≤ y ≤ N, ReqA(L(x,y)) = ReqA(L(y,y));

• (B-consistency) for all 0 ≤ x ≤ y < N, L(x,y+1)→B L(x,y); for all 0 ≤ x ≤ N, ReqB(L(x,x)) =∅;

• (D-consistency) for all 0 ≤ x < x
′
≤ y

′
< y ≤ N, L(x,y)→D L(x

′
,y
′);

• (D-fulfilment) for all 0 ≤ x ≤ y ≤ N and all ψ ∈ ReqD(L(x,y)), there exist x < x
′
≤ y

′
< y such that

ψ ∈ L(x
′
,y
′);

• (A-fulfilment) for every 0 ≤ x ≤ N atom L(x,N) is final.

Observe that the definition of →B and B-consistency guarantee that all the existential requests via the

relation B (hereafter B-requests) are fulfilled in a compass structure.

We say that an atom F ∈ At(ϕ) is B-reflexive (resp., D-reflexive) if F →B F (resp., F →D F). If F is

not B-reflexive (resp., D-reflexive), it is B-irreflexive (resp., D-irreflexive).

Let G = (N,L) be a compass structure. We define the function P ∶ GN → 2
Prop

such that P(x,y) ={p ∈ Prop ∶ p ∈ L(x
′
,x
′) for all x ≤ x

′
≤ y}. We say that a ϕ-compass structure G = (GN ,L) is homoge-

neous if for all (x,y) ∈ GN , L(x,y)∩Prop = P(x,y). Hereafter, we will often write compass structure

for homogeneous ϕ-compass structure.
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Figure 2: A homogeneous model and the correspond-

ing compass structure.

Figure 2 depicts the homogeneous model

M = (7,V) of Figure 1 (a) with the correspond-

ing compass structure G = (7,L), for a given

formula ϕ . We assume that Cl(ϕ)∩ Prop ={p,q}, {⟨B⟩ψ ∈ Cl(ϕ)} = {⟨B⟩⊤,⟨B⟩¬p}, and{⟨D⟩ψ ∈ Cl(ϕ)} = {⟨D⟩¬q}. We know that,

by the homogeneity assumption, the valuation of

proposition letters at point-intervals determines

that at non-point ones.

As an example, if an interval [x,y] con-

tains time point 3, as, e.g., the interval [1,6],
then {p,q} ∩ V([x,y]) = ∅. Similarly, if an

interval [x,y] contains time point 7 (resp., 0),

then it must satisfy {p}∩V([x,y]) = ∅ (resp.,{q}∩V([x,y]) = ∅). As for the compass struc-

ture G, we first observe that each interval [x,y]
in M is mapped to a point in the second oc-

tant of the N × N grid (in Figure 2, we de-

pict the first quadrant of such a grid, where

the first octant is shaded). Analogously, inter-

val relations are mapped into special relations

between points (by a slight abuse of terminol-

ogy, we borrow the names of the interval rela-

tions). As an example, point (0,2) begins (0,3).

Point (1,6) has points (2,2),(2,3),(3,3),(2,4),(3,4),(4,4),(2,5),(3,5),(4,5), (5,5) as

sub-intervals (see the hatched triangle). In gen-

eral, all points (x,x) are labelled with irreflexive

atoms containing [B]⊥, while all points (x,y),

with x < y, are labelled with atoms containing⟨B⟩⊤. The variety of atoms is exemplified by the
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following cases. Atom L(0,3) is both B-irreflexive and D-irreflexive, atom L(4,6) is both B-reflexive

and D-reflexive, atom L(4,7) is B-irreflexive (BoxB(L(4,7)) = {p} and ¬p ∈ L(4,7)) and D-reflexive

(BoxD(L(4,7)) = {q} and q ∈ L(4,7)), and atom L(0,2) is B-reflexive (BoxB(L(0,2)) = {p} and

p∈L(0,2)) and D-irreflexive (BoxD(L(0,2))= {q} and¬q ∈L(0,2)). Finally, it holds that L(4,7)→B

L(4,6) (BoxB(L(4,7)) = {p,q} and p,q ∈ L(4,6)) and L(3,0)→D L(1,2) (BoxD(L(3,0)) = {q} and

q ∈ L(1,2)).

The following theorem shows that compass structures are proper tools for solving the satisfiability

problem (the proof is straightforward and thus omitted).

Theorem 5. A ABDhom formula ϕ is satisfiable iff there is a homogeneous ϕ-compass structure.

5 The satisfiability problem for ABDhom is decidable in EXPSPACE

In this section, we show that the problem of checking whether a ABD formula ϕ is satisfied by some

homogeneous model can be decided in exponential space. We first prove that either ϕ is unsatisfiable

or it is satisfied by a model of at most doubly-exponential size in ∣ϕ∣; then, we show that this model of

doubly-exponential size can be guessed in single exponential space.

Theorem 6. Deciding whether a ABD formula ϕ is satisfiable is a problem in EXPACE.

The proof consists of four main steps whose intuition will be detailed in the following (due to space

bounds complete proofs are omitted).

Step 1: A finite characterisation of columns and of their relationships.

In this section, we first show that, in every compass structure, the atoms that appear in a column x must

respect a certain order, that is, they cannot be interleaved. Let Fα ,Gβ , and Hγ be three pairwise distinct

atoms with ReqA(Fα) = ReqA(Gβ ) = Hγ . In Figure 3.(a), we give a graphical account of the property to

be proved, while, in Figure 3.(b), we show a violation (atom H appears before and after atom G moving

upward along the column).
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Figure 3: (a) Monotonicity of atoms

along a column in a compass struc-

ture, together with a graphical account

of the corresponding intervals and of

how proposition letters and B/D re-

quests must behave. (b) An example

of a violation of monotonicity.

We preliminarily prove a fundamental property of B-

irreflexive atoms.

Lemma 2. Let G = (N,L) be a compass structure. For all

x ≤ y < N, if ReqB(L(x,y)) ⊂ ReqB(L(x,y+1)), then L(x,y)
is B-irreflexive.

Given atom Fα in a column, let us now provide a bound on

the number of distinct atoms Gβ with ReqA(Fα) = ReqA(Gβ )
that can be placed above a Fα in a column, that takes into ac-

count B-requests, D-requests, negative literals in F , and the

number of ψ ∈ T F
ϕ
A such that α(ψ) = ◊.

Formally, we define a function ∆↑ ∶ At(ϕ)→ N as follows:

∆↑(Fα) = (2∣{⟨B⟩ψ ∈ Cl(ϕ)}∣−2∣ReqB(Fα)∣−∣ObsB(Fα) \ReqB(Fα)∣)+(∣{⟨D⟩ψ ∈ Cl(ϕ)}∣− ∣ReqD(Fα)∣)+(∣{¬p ∶ p ∈ Cl(ϕ)∩Prop}∣−∣{¬p ∶ p ∈ Cl(ϕ)∩Prop∧¬p ∈ Fα}∣)+∣{ ψ ∈ T F
ϕ

A ∶ α(ψ) = ◊}∣
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To understand why a factor 2 comes into play in the case of B-requestes, notice that to move down from

an atom including ⟨B⟩ψ to an atom including ¬ψ ,[B]¬ψ one must pass through an atom including

ψ ,[B]¬ψ . It can be easily checked that, for each Fα ∈ At(ϕ), 0 ≤ ∆↑(F) ≤ 5∣ϕ∣.
To explain how ∆↑ works, we give a simple example. Let {ψ ∶ ⟨B⟩ψ ∈ Cl(ϕ)} = {ψ1} and let

Fα →B Gβ →B Hγ , with ReqB(Hγ) = {ψ1} and ReqB(Gβ) = ReqB(Fα)=∅. For simplicity, let T F
ϕ
A =∅,{ψ ∶ ⟨D⟩ψ ∈ Cl(ϕ)} = ∅, and thus ReqD(Hγ) = ReqD(Gβ ) = ReqD(Fα) = ∅, and (Hγ ∩Gβ ∩Fα)∩

Prop = Prop = {p}. It holds that ∆↑(Fα) = (2 ⋅ 1− 2 ⋅ 0− 0)+ (0− 0)+ (1− 0)+ 0 = 3, ∆↑(Gβ) =(2 ⋅1−2 ⋅0−1)+ (0−0)+ (1−0)+0 = 2, and ∆↑(Hγ) = (2 ⋅1−2 ⋅1−0)+ (0−0)+ (1−0)+0 = 1.

We say that an atom F is initial if and only if π ∈ Fα . A B-sequence is a sequence of atoms ShB =

F
0
α0
. . .F

n
αn

such that: 1. F
0
α0

is initial and F
n
αn

is final; 2. for all 0 < i ≤ n we have F
i
αi
→B F

i−1
αi−1

, ReqD(Fi) ⊇
ReqD(Fi−1), and Fi∩Prop ⊆ Fi−1∩Prop.

A B-sequence ShB = F
0
α0
. . .F

n
αn

is minimal iff for every 0 ≤ i < n then for every 0 ≤ i < n ∆↑(F
i
αi
) >

∆↑(F
i+1
αi+1

). Let us observe that for every minimal B-sequence ShB = F
0

α0
. . .F

n
αn

we have n ≤ 5∣ϕ∣ (i.e., the

length of a minimal B-sequence is at most 5∣ϕ∣+1).

Let G = (N,L) be a compass structure for ϕ and 0 ≤ x ≤ N. We define the shading of x in G, written

Sh
G(x), as the sequence of pairs atoms (L(x,y0),y0) . . .(L(x,ym),ym) such that:

1. yi < yi+1 for every 0 ≤ i < m;

2. {∆↑(L(x,y)) ∶ 0 ≤ y ≤ N} = {∆↑(L(x,yi)) ∶ 0 ≤ i ≤ m};

3. for every 0 ≤ i ≤ m we have yi = min{0 ≤ y ≤ N ∶ ∆↑(L(x,yi)) = ∆↑(L(x,y))}, i.e., yi is the mini-

mum height on the column x that exhibits its value for ∆↑.

For every 0 ≤ x ≤ N let Sh
G(x) = L(x,y0) . . .L(x,ym) we denote with Sh

G

B(x) the sequence of atoms

L(x,y0) . . .L(x,ym), and with Sh
G

N(x) the sequence of natural numbers y0 . . .ym, that is, the projections

of Sh
G(x) of on the first and the second components of its elements, respectively.

The next lemma easily follows from the definitions of B-sequence and shading (the proof is omitted).

Lemma 3. Let G = (N,L) be a compass structure and 0 ≤ x ≤ N, then Sh
G

B(x) is a minimal B-sequence.

Step 2: Spatial arrangement of atoms between columns.

By exploiting the above (finite) characterisation of columns, we can define a natural equivalence

relation of finite index over columns: we say that two columns x,x
′

are equivalent, written x ∼ x
′
, if and

only if Sh
G

B(x) = Sh
G

B(x
′).
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Figure 4: Two equivalent columns that

respect the order (a) and two equiva-

lent columns that violates it (b).

In the following, we prove that equivalent columns can be

totally ordered according to a given partial order relation over

their shadings. Formally, for any two equivalent columns x ∼

x
′

let Sh
G(x) = (L(x,y0),y0) . . .(L(x,ym),ym) and Sh

G(x
′) =(L(x,y0),y0) . . .(L(x,ym),ym), Sh

G(x) ≤ Sh
G(x

′) if and only

if for every 0 ≤ i ≤ m we have yi ≤ yi. Intuitively, if we recall

that, by definition, for every 0 ≤ i ≤ m the row yi (resp. yi) is

the the minimum row for which atom L(x,yi) =L(x
′
,yi) (from

Sh
G

B(x) = Sh
G

B(x
′)) occurs on column x (resp. x

′
) meaning that,

moving upward column x
′
, an atom cannot appear until it has

appeared on column x. In Fig. 4.(a), we depict two equivalent

columns that satisfy such a property. In general, when moving

upward, atoms on x
′
are often “delayed” with respect to atoms

in x, the limit case being when atoms on the same row are equal.
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In Fig. 4.(b), a violation of the property (boxed atoms) is shown. The following lemma shows that such

a violation never occurs in a compass structure.

Lemma 4. Let G = (N,L) be a compass structure. For every pair of equivalent columns x ∼ x
′

with

0 ≤ x < x
′
≤ N, it holds that Sh

G(x) < Sh
G(x

′).

Step 3: B-sequence suffixes starting at the same row have bounded variability in ∣ϕ∣.

⋯

y

y
′

⋯

N
x

⋯

x0

⋯

xn

⋯

∼ ∼
. . .

∼

Fα . . .Fα

L(x,y
′) = L(x0,y

′)

Fα

S→(xn,y)
S→(xi,y)

S→(x0,y)
S→(x,y)

S→(x,y) = S→(x0,y) = . . . = S→(xi,y) = . . . = S→(xn,y)

Figure 5: A graphical account of the be-

haviour of covered points. We have that

x is covered by x0 < . . . < xn on row y

and thus the labelling of points on column

x above (x,y) is exactly the same of the

correspondent points on column x0 above(x0,y), that is, L(x,y
′) = L(x0,y

′), for all

y ≤ y
′
≤ N.

Let us now provide a very strong characterization of the

rows in a compass structure by making use of a covering

property, depicted in Fig. 5.

Let G = (N,L) be a compass structure and let 0 ≤ x ≤ y.

We define S→(x,y) as the set {(Sh
G

B(x
′),L(x

′
,y)) ∶ x

′
>

x}. S→(x,y) collects the equivalence classes of ∼ which

are witnessed to the right of x on row y by means of

their B-sequence plus a “pointer” to the “current atom”,

that is, the atoms they are exposing on y. If G = (N,L)
is homogeneous (as in our setting), for all 0 ≤ x ≤ y ≤

N, the number of possible sets S→(x,y) is bounded by

2
6

5∣ϕ∣2+2∣ϕ∣
⋅

2

3

5∣ϕ∣+2

, that is, it is doubly exponential in the size

of ∣ϕ∣. For every 0 ≤ x ≤ y ≤ N let us define the fingerprint

of (x,y) in G, written f pG(x,y), as the triple f pG(x,y) =(Sh
G

B(x),L(x,y),S→(x,y)). Lemma 5 constrains the way

in which two columns x,x
′
, with x < x

′
and x ∼ x

′
, evolve

from a given row y on when f pG(x,y) = f pG(x
′
,y).

For two atoms Fα and Gβ , we say that they are equivalent

modulo A, written Fα ≡¬A Gβ if and only if F \ReqA(Fα) =
G\ReqA(Gβ ) and α = β (i.e., Fα and Gβ have at most dif-

ferent ⟨A⟩ requests).

Lemma 5. Let G = (N,L) be a compass structure and let 0 ≤ x < x
′
≤ y ≤ N. If f pG(x,y) = f pG(x

′
,y)

and y
′

is the smallest point greater than y such that L(x,y
′) ≢¬A L(x,y), if any, and N otherwise, then,

for all y ≤ y
′′
≤ y

′
, L(x,y

′′) = L(x
′
,y
′′).

From Lemma 5, the next corollary follows.

Corollary 1. Let G = (N,L) be a compass structure and let 0 ≤ x < x
′
≤ y ≤ N. If f pG(x,y) = f pG(x

′
,y)

and y
′

is the smallest point greater than y such that L(x,y
′) ≢¬A L(x,y), if any, and N otherwise, then,

for every pair of points x,x
′
, with x < x < x

′
< x

′
, with L(x,y) = L(x

′
,y) and x ∼ x

′ /∼ x, it holds that

L(x,y
′′) = L(x

′
,y
′′), for all y ≤ y

′′
≤ y

′
.

The above results lead us to the identification of those points (x,y) whose behaviour perfectly repro-

duces that of a number of points (x
′
,y) on their right with f pG(x,y) = f pG(x

′
,y). These points (x,y),

like all points “above” them, are irrelevant with respect to fulfilment in a compass structure. We call

them covered points.

Definition 1. Let G = (N,L) be a compass structure and 0 ≤ x ≤ y ≤ N. We say that (x,y) is covered iff

there exist n+1 = ∆↑(L(x,y)) distinct points x0 < . . . < xn ≤ y, with x < x0, such that for all 0 ≤ i ≤ n,

f pG(x,y) = f pG(xi,y). In such a case, we say that x is covered by x0 < . . . < xn on y.

Lemma 6. Let G = (N,L) be a compass structure and let x,y, with 0 ≤ x ≤ y ≤ N, be two points such

that x is covered by points x0 < . . . < xn on y. Then, for all y ≤ y
′
≤ N, it holds that L(x,y

′) = L(x0,y
′).
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Figure 6: An intuitive account of the statement of

Lemma 6.

In Figure 6, we give an intuitive account of

the notion of covered points and of the statement

of Lemma 6. First of all, we observe that, since

S→(x,y) = S→(x0,y) = . . .= S→(xn,y) and, for all

0 ≤ j, j
′
≤ n, it holds that (Sh

G

B(x j),L(x j,y)) =(Sh
G

B(x j′),L(x j′ ,y)), there exists xn < x̂ ≤ y such

that (Sh
G

B(xn),L(xn,y)) = (Sh
G

B(x̂), L(x̂,y)), and

x̂ is the smallest point greater than xn that satis-

fies such a condition. Now, it may happen that

S→(xn,y) ⊃ S→(x̂,y), and all points x
′
> xn with(Sh

G

B(x
′),L(x

′
,y)) = (Sh

G

B(x),L(x,y)), for some

x < x < xn, are such that xn < x
′
< x̂. Then, it can

be the case that, for all 0 ≤ i ≤ n, L(xi,y
′) = F

i+1
αi+1

,

as all points (xi,y
′) satisfy some D-request ψ that

only belongs to L(x
′
,y
′
− 1). In such a case, as

shown in Figure 6, L(x̂,y
′) = F

i
αi

, because for all points (x̂
′
, ŷ
′), with x̂ < x̂

′
≤ ŷ

′
< y

′
, ψ ∉ L(x̂

′
, ŷ
′).

Hence, (Sh
G
B(xn),F i+1

αi+1
) ∈ S→(x j,y

′) for all 0 ≤ j < n, but (Sh
G
B(xn),F i+1

αi+1
) ∉ S→(xn,y

′). Then, by apply-

ing Corollary 1, we have that S→(x0,y
′) = S→(xn−1,y

′). Since ∆↑(F
i+1
αi+1

) < ∆↑(F
i
αi
)(= n), it holds that

∆↑(F
i+1
αi+1

) ≤ n−1. The same argument can then be applied to x,x0, . . . ,xn−1 on y
′
, and so on.

Step 4: A contraction method for homogeneous compass structures.
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Figure 7: An example of contraction, where com-

pass structure (a) is contracted into compass struc-

ture (b).

Let us now complete the proof of Theorem 6

by providing a small model theorem for compass

structures. By exploiting Lemma 6, we can show

that, for each row y, the cardinality of the set of

columns x1, . . . ,xm which are not covered on y is

exponential in ∣ϕ∣. Then, the sequence of triplets

for non-covered points that appear on y is bounded

by an exponential value on ∣ϕ∣.
It follows that, in a compass structure of size

more than doubly exponential in ∣ϕ∣, there exist

two rows y,y
′
, with y < y

′
, such that the sequences

of the triplets for non-covered points that appear

on y and y
′

are exactly the same. This allows us

to apply a “contraction” between y and y
′

on the

compass structure. An example of how contrac-

tion works is given in Figure 7.

First of all, notice that rows 7 and 11 feature

the same sequences for triplets of non-covered

points, and that, on any row, each covered point

is connected by an edge to the non-covered point

that “behaves” in the same way. More precisely,

we have that column 2 behaves as column 4 be-

tween y = 7 and y
′
= 15, columns 3,5, and 7 be-
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have as column 8 between y = 11 and y
′
= 15, and column 4 behaves as column 6 between y = 11 and

y
′
= 15. The compass structure in Figure 7.(a) can thus be shrinked into the compass structure in Figure

7.(b), where each column of non-covered points x on y
′

is copied above the corresponding non-covered

point x
′
on y. Moreover, the column of a non-covered point x on y

′
is copied over all the points which are

covered by the non-covered point x
′
corresponding to x on y. This is the case with point 2 in Figure 7.(b)

which takes the new column of its “covering” point 4. The resulting compass structure is y
′
− y shorter

than the original one, and we can repeatedly apply the contraction step until we achieve the desired

bound.

The next corollary, which easily follows from Lemma 6, is crucial for the proof of the EXPSPACE

membership of the satisfiability problem for BDAhom. Roughly speaking, it states that the property of

“being covered” propagates upward.

Corollary 2. Let G = (N,L) be a compass structure. Then, for every covered point (x,y), it holds that,

for all y ≤ y
′
≤ N, point (x,y

′) is covered as well.

From Corollary 2, it immediately follows that, for every covered point (x,y) and every y ≤ y
′
≤ N,

there exists x
′
> x such that L(x

′
,y
′) = L(x,y

′). Hence, for all x,y, with x < x ≤ y
′
< y, and any D-request

ψ ∈ ReqD(L(x,y))∩ObsD(L(x,y)), we have that ψ ∈ L(x
′
,y), with x

′
> x. This allows us to conclude

that if (x,y) is covered, then all points (x,y
′), with y

′
≥ y, are irrelevant from the point of view of D-

requests. Let G = (N,L) be a compass structure and 0 ≤ y ≤ N. We define the set of witnesses of y as the

set WitG(y) = {x ∶ (x,y) is not covered}. Corollary 2 guarantees that, for any row y, the shading Sh
G

B(x)
and the labelling L(x,y) of witnesses x ∈ WitG(y) are sufficient, bounded, and unambiguous pieces of

information that one needs to maintain about y.

Given a compass structure G = (N,L) and 0 ≤ y ≤ N, we define the row blueprint of y in G, written

RowG(y), as the sequence RowG(y) = (Sh
0
B,F

0
α0
) . . .(Sh

m
B ,F

m
αm
) such that m+ 1 = ∣WitG(y)∣ and there

exists a bijection b ∶WitG(y)→ {0, . . . ,m} such that, for every x ∈ WitG(y), it holds that Sh
G

B(x) = Sh
b(x)
B

and L(x,y) = F
b(x)
αb(x) , and for every x,x

′
in WitG(y), b(x) < b(x

′)↔ x < x
′
. Now, we are ready to prove

the following small model theorem.

Theorem 7. Let G = (N,L) be a compass structure. If there exist two points y,y
′
, with 0 ≤ y < y

′
≤ N,

such that RowG(y)=RowG(y
′), then there exists a compass structure G

′
= (N

′
,L

′) with N
′
=N−(y

′
−y).

The proof of Theorem 6, is completed by proving that if a BDAhom formula is satisfiable, then it is

satisfied by a doubly exponential compass structure, whose existence can be checked in exponential

space.

Theorem 8. Let ϕ be a BD formula. It holds that ϕ is satisfiable iff there is a compass structure

G = (N,L) for it such that N ≤ 2
5∣ϕ∣⋅(610∣ϕ∣2+4∣ϕ∣

⋅
2

3

10∣ϕ∣+4)
, whose existence can be checked in EXPSPACE.

6 Conclusions

In this paper, we prove that the satisfiability problem for ABDhom over finite homogeneous linear orders

is EXPSPACE-complete. This result stems a number of observations regarding the complexity landscape

of the satisfiability and model checking problems related to HS interpreted over homogeneous structures

(HShom): 1. it improves the previously-known non-elementary upper bound [13]; 2. it provides a first

EXPSPACE-complete fragment of HShom w.r.t. to the satisfiability problem [3].

A more important fact regards how the results for ABDhom can enlight the problem of determining

the exact complexity of the satisfiability problem for the fragment BEhom which is still open today. As
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a matter of fact ABDhom and BEhom are not comparable from an expressive standpoint [6]. However,

by means of ABDhom we can capture a fragment of BEhom that is BDhom plus a restricted version of

the ⟨E⟩ operator namely ⟨E⟩πψ = ⟨A⟩(π ∧ψ) that allows one to predicate on the ending point of an

interval. As we show in Section 3, this is the only key property that enables the jump in complexity from

BDhom (PSPACE-Complete) to ABDhom (EXPSPACE-Complete) w.r.t. the satisfiability problem. It is

easy to see that the result presented here can be easily extended to the case of homogeneous structures

isomorphic to N.

In the future we plan to consider the satisfiability/model checking problem of (fragments of) HShom

interpreted over linear order like Q and R. Finally, let us point out that the precise characterization of the

complexity of the satisfiability problem for BEhom over finite structures is still the main open problem on

the path of determining the complexity of the satisfiability problem for HShom.
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