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Extended Bounded Response LTL with Past (LTLEBR+P) is a safety fragment of Linear Temporal
Logic with Past (LTL+P) that has been recently introduced in the context of reactive synthesis.
The strength of LTLEBR+P is a fully symbolic compilation of formulas into symbolic deterministic
automata. Its syntax is organized in four levels. The first three levels feature (a particular combination
of) future temporal modalities, the last one admits only past temporal operators. At the base of such
a structuring there are algorithmic motivations: each level corresponds to a step of the algorithm
for the automaton construction. The complex syntax of LTLEBR+P made it difficult to precisely
characterize its expressive power, and to compare it with other LTL+P safety fragments.

In this paper, we first prove that LTLEBR+P is expressively complete with respect to the safety
fragment of LTL+P, that is, any safety language definable in LTL+P can be formalized in LTLEBR+P,
and vice versa. From this, it follows that LTLEBR+P and Safety-LTL are expressively equivalent.
Then, we show that past modalities play an essential role in LTLEBR+P: we prove that the future
fragment of LTLEBR+P is strictly less expressive than full LTLEBR+P.

1 Introduction

Linear Temporal Logic (LTL) was introduced in the late seventies [13] as a modal logic for reasoning over
computer programs, modeling their computations as state sequences (i.e., linear orders) that represent the
state a computer program is in at a given time. LTL originally used temporal modalities for moving only
in the future of a time point. Later, it turned out that adding modalities for moving in the past (we
refer to this logic as LTL+P) does not add expressive power to LTL [10], but only succinctness [11].
The definition of the operators in the syntax of LTL+P was proved to be carefully designed. In fact,
Kamp [8] as well as Gabbay et al. [6] proved that the properties that one can formalize in LTL+P are
exactly those definable in the first-order fragment of the monadic second-order theory of one successor
(S1S, for short), which is in turn decidable [1, 2].

Among the different properties that one can define in LTL+P, two notable classes are the set of safety
and co-safety properties. Safety properties express the intuitive requirement that something bad never
happens, and thus each counterexample of a safety property is finite. Co-safety properties are duals of
safety properties: each state sequence that satisfies the property has a finite witness. The safety and
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co-safety classes play a crucial role in verification and synthesis, since their main feature of having finite
witnesses makes in general the problems much simpler [9, 18].

Several safety fragments of LTL have been introduced over the years. One of the most natural exam-
ples is Safety-LTL [3, 16, 18]. The Safety-LTL logic is defined as the set of all and only those formulas
of LTL (with only future modalities) such that, when in negated normal form, do not contain existential
temporal operators (like the until operator). In [3], Chang et al. proved that all the safety properties
definable in LTL are expressible in Safety-LTL as well, and vice versa.

Extended Bounded Response LTL with Past (LTLEBR+P) is a recently introduced safety fragment
of LTL+P with an efficient reactive synthesis problem. In addition to the fact that realizability from
LTLEBR+P specifications is EXPTIME-complete (while LTL realizability is 2EXPTIME-complete), in
practice realizability and synthesis from LTLEBR+P specifications turned out to be much more efficient
than other approaches [4]. The syntax of LTLEBR+P is articulated over layers: the first three layers
comprise a combination of future temporal modalities, while the last layer includes only past temporal
operators. Each of the layers was carefully designed in order to correspond to a step of the algorithm
for constructing a symbolic automaton starting from an LTLEBR+P specification. This results into a
great performance improvement in practice, but the syntax of LTLEBR+P makes it hard to find its exact
expressive power, and, consequently, makes it hard also to compare it with other safety fragments of
LTL+P, like, for instance, Safety-LTL.

In this paper we prove that LTLEBR+P is expressively complete with respect to the safety fragment
of LTL+P. As a by-product, we obtain that LTLEBR+P and Safety-LTL are expressively equivalent. The
core of the proof exploits a normal form theorem for each safety property definable in LTL+P [3, 17],
which establishes a correspondence between safety properties definable in LTL+P and properties of the
form Gα , where G is the globally operator of LTL and α is a pure past formula. Consequently, it is clear
that the pure past layer of LTLEBR+P plays a crucial role for the expressive equivalence of LTLEBR+P.
We show that this layer is really necessary. In fact, we prove that LTLEBR, that is LTLEBR+P devoid
of the pure past layer, is strictly less expressive than full LTLEBR+P. This is shown by proving that all
the formulas of LTLEBR can constrain, for any time point i in an infinite state sequence, only a bounded
prefix before (or interval around) i. This implies that formulas that are able to constrain, for each time
point i, a prefix of unbounded (although finite) length before i, like for instance G(p1→ Hp2) (where H
is the historically past operator of LTL+P), are not definable in LTLEBR.

The rest of the paper is organized as follows. In Section 2, we give the necessary background. The
expressive power of LTLEBR+P is proved in Section 3. In Section 4, we prove that the future fragment
of LTLEBR+P is strictly less expressive than LTLEBR+P. Finally, we summarize the results of the paper
in Section 5.

2 Preliminaries

In this section, we give the definitions that are necessary throughout the paper.

2.1 Linear Temporal Logic

Linear Temporal Logic (LTL) is a modal logic interpreted over infinite, discrete linear orders [5, 13].
Syntactically, LTL can be seen as an extension of propositional logic with the addition of the next operator
(Xφ , i.e., at the next state φ holds) and the until operator (φ1Uφ2, i.e., φ2 will eventually hold and φ1 will
hold until then).
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LTL with Past (LTL+P) extends LTL with the addition of temporal operators able to talk about what
happened in the past with respect to the current time, and it is obtained from LTL by adding the follow-
ing past temporal operators: (i) the yesterday operator (Yφ , i.e., there exists a previous state in which φ

holds); (ii) the weak yesterday operator (Zφ , i.e., either a previous state does not exists or in the previous
state φ holds); (iii) and the since operator (φ1 Sφ2, i.e., there was a past state where φ2 held, and φ1 has
held since then). We will now briefly recall the syntax and semantics of LTL+P, which encompasses
that of LTL as well. Formally, given a set Σ of proposition letters, LTL+P formulas over Σ are generated
by the following grammar:

φ := p | ¬φ | φ1∨φ2 | φ1∧φ2 propositional connectives

| Xφ1 | φ1 Uφ2 | φ1 Rφ2 | Fφ1 | Gφ1 future temporal operators

| Yφ1 | φ1 Sφ2 | φ1 Tφ2 | Oφ1 | Hφ1 | Zφ1 past temporal operators

where p ∈ Σ and φ1 and φ2 are LTL+P formulas. Most of the temporal operators of the language can be
defined in terms of a small number of basic ones. We refer to [4] for the definition of these shortcuts. We
say that an LTL+P formula is pure past if and only if all the temporal operators inside the formula are
past operators. We call pure past LTL, written as LTLP, the fragment of LTL+P containing only pure
past formulas.

Formulas from LTL+P are interpreted over state sequences. A state sequence σ = 〈σ0,σ1, . . .〉 is
an infinite, linearly ordered sequence of states, where each state σi is a set of proposition letters, that is
σi ∈ 2Σ for i ∈ N. We will interchangeably use also the term ω-word over the alphabet 2Σ for referring
to a state sequence. A set of ω-words is called ω-language. Given two indices i, j ∈ Z, with i ≤ j,
we denote as σ[i, j] the interval of σ from index i to index j, that is 〈σi, . . . ,σ j〉 if i ≥ 0, or 〈σ0, . . . ,σ j〉
otherwise. With σ[i,∞] we denote the (infinite) suffix of σ starting from i.

Given a state sequence σ , a position i ≥ 0, and an LTL+P formula φ , we inductively define the
satisfaction of φ by σ at position i, written as σ , i |= φ , as follows:

1. σ , i |= p iff p ∈ σi;
2. σ , i |= ¬φ iff σ , i 6|= φ ;
3. σ , i |= φ1∨φ2 iff σ , i |= φ1 or σ , i |= φ2;
4. σ , i |= Xφ iff σ , i+1 |= φ ;
5. σ , i |= Yφ iff i > 0 and σ , i−1 |= φ ;
6. σ , i |= φ1 Uφ2 iff there exists j ≥ i such that σ , j |= φ2,

and σ ,k |= φ1 for all k, with i≤ k < j;
7. σ , i |= φ1 Sφ2 iff there exists j ≤ i such that σ , j |= φ2,

and σ ,k |= φ1 for all k, with j < k ≤ i;

We say that σ satisfies φ , written as σ |= φ , if it satisfies the formula at the first state, i.e., if σ ,0 |= φ :
in this case, we call σ a model of φ . We say that two formulas φ and ψ are equivalent (φ ≡ ψ) if and
only if they are satisfied by the same set of state sequences.

If φ is a full LTL+P formula, then we define the language of φ , written L (φ), as L (φ) = {σ ∈
(2Σ)ω | σ |= φ}. If, instead, φ contains only past operators, we change the definition of language as
follows: for all φ ∈ LTLP, we define the language over finite words of φ as L <ω(φ) := {σ ∈ (2Σ)∗ | σ =
〈σ0, . . . ,σn〉∧σ ,n |= φ}.
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Notation From now on, given a linear temporal logic L, with some abuse of notation, we will denote
with L also the set of formulas that syntactically belong to L. Conversely, we denote with JLK the set
of all and only those languages L of infinite words for which there exists a formula φ ∈ L (i.e., φ

syntactically belongs to L) such that L = L (φ). For the LTLP logic, we write JLTLPK<ω for denoting
the set of languages L over finite words such that L = L <ω(φ) for some φ ∈ LTLP.

It is known that past modalities do not add expressive power to LTL [6, 10, 11], therefore writing
JLTLK is the same as writing JLTL+PK.

2.2 ω-regular expressions and (co-)Safety classes

We denote as REG the set of regular languages of finite words [7]. An ω-regular language is a set of
ω-words recognized by an ω-regular expression, that is, an expression of the form

⋃n
i=1Ui · (Vi)

ω , where
n ∈N and Ui,Vi ∈ REG for i = 1, . . . ,n. With ω-REG, we denote the set of the ω-regular languages. One
of the seminal results in automata theory is the correspondence between ω-regular languages and Büchi
automata [1, 2]. An important class of ω-regular languages comprises those languages that express the
fact that something “bad” (like for instance a deadlock, or a simultaneous access into a critical section
by two different processes) never happens. For this reason, they are called safety languages (or safety
properties).

Definition 1 (Safety language [9]). Let L ⊆ Σω be an ω-regular language. We say that L is a safety
language if and only if for all the words σ ∈ Σω it holds that, if σ 6∈L , then ∃i∈N . ∀σ ′ ∈ Σω .σ[0,i] ·σ ′ 6∈
L . The class of safety ω-regular languages is denoted as SAFETY.

Given some temporal logic L, we say that L is a safety fragment of LTL iff φ ∈ L implies that
φ ∈ LTL, and L (φ) is a safety language (Def. 1), for all formulas φ . The class of the ω-regular co-safety
languages, that we call coSAFETY, is defined as the dual of SAFETY, that is the set of languages L
such that L ∈ coSAFETY iff L ∈ SAFETY, where L is the complement language of L .

The Safety-LTL logic [3, 16, 18] is defined as the set of LTL formulas such that, when in negated
normal form, do not contain existential temporal operators (i.e., U and F). Safety-LTL is a safety fragment
of LTL [16].

We give an alternative and equivalent definition of the SAFETY class of Def. 1, that will be useful in
the following sections: SAFETY := {L ⊆ Σω |L = K ·Σω ∧K ∈ REG}.

We define the class SAFETYSF (coSAFETYSF) as the set obtained from SAFETY (resp. coSAFETY)
by restricting K to be a star-free expression, that is, a regular expression devoid of the Kleene star [12].
In particular, coSAFETYSF := {L ⊆ Σω |L = K ·Σω ∧K ∈ SF}, where SF⊆ REG is the set of star-free
regular expressions. With ω-SF we denote the set of star-free ω-regular expressions. We now state some
equivalence results that will be helpful later. Star-free expressions (SF) and pure-past LTL (LTLP) have
the same expressive power. The same holds for the ω-SF class and LTL.

Proposition 1 (Thomas [17], Lichtenstein et al. [10]). JLTLPK<ω = SF and JLTLK = ω-SF.

Finally, we will use the following normal-form theorem, stated in [3], that proves that any LTL-
definable safety (resp. co-safety) language can be expressed by a formula of the form Gα (resp. Fα),
and vice versa. An independent proof of this theorem can be derived also from the results by Thomas
in [17].

Theorem 1 (Chang et al. [3]). JLTLK∩SAFETY = JGαK and JLTLK∩ coSAFETY = JFαK.

Fig. 1 summarizes the expressive power of the various fragments and logics, included LTLEBR+P
and LTLEBR (that are the subject of this paper).
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- ω-REG

- SAFETY

- JLTLEBR+PK

- JSafety-LTLK

- JGαK

- SAFETYSF

- coSAFETY

- coSAFETYSF

- JFαK

- ω-SF

- JLTLK

- JLTL+PK

- JLTLEBRK

Figure 1: Comparison of expressiveness between the various formalisms. For ease of exposition, we
highlighted the rectangle corresponding to LTL with thick borders.

2.3 Extended Bounded Response LTL

Extended Bounded Response LTL with Past (LTLEBR+P, for short) is a fragment of LTL+P, recently
introduced in the context of reactive synthesis [4]. Here below, we recall its syntax.

Definition 2 (The logic LTLEBR+P [4]). Let a,b ∈ N. An LTLEBR+P formula χ is inductively defined
as follows:

η := p | ¬η | η1∨η2 | Yη | η1 Sη2 Pure Past Layer

ψ := η | ¬ψ | ψ1∨ψ2 | Xψ | ψ1 U
[a,b]

ψ2 Bounded Future Layer

φ := ψ | φ1∧φ2 | Xφ | Gφ | ψ Rφ Future Layer

χ := φ | χ1∨χ2 | χ1∧χ2 Boolean Layer
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We define the bounded until operator ψ1 U
[a,b]

ψ2 as a shortcut for the LTL formula∨b
i=a(X1 . . .Xi(ψ2)∧

∧i−1
j=0X1 . . .X j(ψ1)). This means that LTLEBR+P features really only universal tem-

poral modalities (i.e., X, G, and R), and thus it is a syntactical fragment of LTL+P and also a safety
fragment (see Theorem 3.1 in [16]). We define LTLEBR as the fragment of LTLEBR+P devoid of the full
past layer. The syntax of LTLEBR+P is articulated over layers, that impose some syntactical restrictions
on the formulas that can be generated from the grammar. For example, LTLEBR+P forces the leftmost
argument of any release operator to contain no universal temporal modalities (i.e., R and G). Originally,
the layered structure was guided by the steps of the algorithm for the construction of symbolic automata
starting from LTLEBR+P-formulas. We refer the reader to [4] for more details.

All formulas in LTLEBR+P can be transformed into a canonical form (defined here below) by main-
taining the equivalence.

Definition 3 (Canonical Form of LTLEBR+P [4]). The canonical form of LTLEBR+P is the set of all and
only the formulas of the following type:

Xi1αi1⊗·· ·⊗Xi j αi j⊗
Xi j+1Gαi j+1⊗·· ·⊗XikGαik⊗

Xik+1(αik+1 Rβik+1)⊗·· ·⊗Xih(αih Rβih)

where each αi,βi ∈ LTLP, ⊗ ∈ {∧,∨}, and i, j,k,h ∈ N.

3 Expressive power of LTLEBR+P

In this section, we study the expressiveness of the LTLEBR+P logic. In particular, we compare the set of
languages definable in LTLEBR+P with the set of safety languages expressible in LTL, and prove that the
two sets are equal, that is JLTLEBR+PK= JLTLK∩SAFETY. Consequently, LTLEBR+P and Safety-LTL
are expressively equivalent (i.e., JLTLEBR+PK = JSafety-LTLK).

First we recall the normal-form theorem stated in Th. 1, establishing that JLTLK∩SAFETY = JGαK.
Proving that JLTLEBR+PK = JLTLK∩SAFETY is straightforward. In [16], Sistla proved that any frag-
ment of LTL+P with only universal (future) temporal operators (i.e., X, R, and G) defines only safety
properties, and thus is a safety fragment of LTL+P. Since LTLEBR+P-formulas contain only universal
(future) temporal operators, it follows that LTLEBR+P is a safety fragment of LTL+P (this corresponds
to the left-to-right direction). For the right-to-left direction it suffices to show that the normal form Gα

is syntactically definable in LTLEBR+P (i.e., Gα ∈ LTLEBR+P and thus also L (Gα) ∈ JLTLEBR+PK,
for any α ∈ LTLP).

Theorem 2. JLTLEBR+PK = JLTLK∩SAFETY.

Proof. We first prove that JLTLEBR+PK ⊆ JLTLK∩SAFETY. Let φ ∈ JLTLEBR+PK. By Def. 2, φ ∈
LTL+P, and thus, since JLTLK = JLTL+PK, it holds that L (φ) ∈ JLTLK. Moreover, since LTLEBR+P
contains only universal temporal operators, by Theorem 3.1 in [16], it is a safety fragment of LTL, and
we have that L (φ) ∈ SAFETY. Therefore, L (φ) ∈ JLTLK∩SAFETY.

We now prove that JLTLK∩SAFETY⊆ JLTLEBR+PK. Let φ be a formula such that L (φ)∈ JLTLK∩
SAFETY. By Th. 1, L (φ) ∈ JGαK. Now, Gα (for any α ∈ LTLP) is a formula that syntactically
belongs to LTLEBR+P, that is Gα ∈ LTLEBR+P, and thus JGαK⊆ JLTLEBR+PK. It follows that L (φ)∈
JLTLEBR+PK.
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3.1 Comparison between LTLEBR+P, Gα and Safety-LTL

Comparison with Gα Previously, we proved that the set of languages definable in LTLEBR+P is ex-
actly the set of safety languages definable in LTL+P. In turn, Th. 1 shows that these sets correspond
to languages definable by a formula of type Gα , where α ∈ LTLP. Despite being equivalent fragments,
we think that LTLEBR+P offers a more natural language for safety properties than the Gα fragment.
Consider for example the following property, expressed in natural language: either p3 holds forever, or
there exists two time points t ′ ≤ t such that (i) p1 holds in t, (ii) p2 holds in t ′, and (iii) p2 holds from
time point 0 to t. The property can be easily formalized in LTLEBR+P by the formula p1R(p2R p3). The
equivalent formula in the Gα fragment is G(H(p3)∨O(p2 ∧O(p1)∧H(p3))), which is arguably more
intricate.

Comparison with Safety-LTL Safety-LTL is the fragment of LTL (thus with only future temporal
modalities) containing all and only the LTL-formulas that, when in negated normal form, do not contain
any until or eventually operator. In [16], Sistla proved that this fragment expresses only safety prop-
erties, that is JSafety-LTLK ⊆ JLTLK∩ SAFETY. The converse direction, that is JLTLK∩ SAFETY ⊆
JSafety-LTLK, is reported in [3]. It immediately follows that LTLEBR+P and Safety-LTL are expres-
sively equivalent, namely JLTLEBR+PK = JSafety-LTLK.

Differently from LTLEBR+P, Safety-LTL does not impose any syntactic restriction on the nesting of
the logical operators; as a matter of fact, G(p1∨Gp2) belongs to the syntax of Safety-LTL but not to the
syntax of LTLEBR+P, even though G(p1 ∨Gp2) ≡ G(¬p2 → Hp1) ∈ LTLEBR+P. The restrictions on
the syntax of LTLEBR+P are due to algorithmic aspects: each layer of the syntax of LTLEBR+P (recall
Def. 2) corresponds to a step of the algorithm for the symbolic automata construction starting from
LTLEBR+P-formulas. As a matter of fact, in practice, LTLEBR+P has shown to avoid an exponential
blowup in time with respect to known algorithms for automata contruction for safety specifications [4].
Last but not least, the realizability problem of LTLEBR+P is EXPTIME-complete [4], as opposed to
the realizability of LTL+P, which is 2EXPTIME-complete [14, 15]. Consider now LTLEBR, that is the
fragment of LTLEBR+P devoid of past operators. Since each formula of LTLEBR syntactically belongs
to Safety-LTL, it immediately follows that JLTLEBRK⊆ JSafety-LTLK. In the next section, we will prove
that the converse direction does not hold, that is LTLEBR is strictly less expressive than LTLEBR+P, and
thus less expressive than Safety-LTL as well.

4 LTLEBR is strictly less expressive than full LTLEBR+P

In the previous sections, we have seen that:

JLTLEBR+PK = JGαK = JLTLK∩SAFETY = JSafety-LTLK

In particular, thanks to the use of the pure past layer (recall Def. 2), LTLEBR+P can easily capture the
whole class of JGαK, and thus the whole class of JLTLK∩SAFETY. However, one may wonder whether
the pure past layer is really necessary, or whether the class JGαK can be expressed in LTLEBR+P without
the use of past operators.

LTLEBR is defined as the fragment of LTLEBR+P devoid of the pure past layer (recall Section 2.3). In
this section, we investigate the problem of establishing whether LTLEBR has the same expressive power
of LTLEBR+P, or equivalently, whether LTLEBR can express every language in JSafety-LTLK. We will
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prove that this is not the case, that is

JLTLEBRK ( JLTLEBR+PK (1)

This result proves that past modalities, although being not important for the expressiveness of full
LTL (since JLTLK = JLTL+PK [6, 10, 11]), can play a crucial role for the expressive power of fragments
of LTL, like, for instance, LTLEBR.

4.1 The general idea

We will prove Eq. (1) by showing that JLTLEBRK ( JSafety-LTLK. The result in Eq. (1) follows from
the fact that JSafety-LTLK = JLTLEBR+PK. We will prove that the language of the Safety-LTL-formula
ϕG :=G(p1∨G(p2)) cannot be expressed by any LTLEBR-formula. The formula ϕG belongs syntactically
to Safety-LTL, and thus L (ϕG) ∈ JSafety-LTLK. We also note that ϕG can be expressed in LTLEBR+P.
In fact, it holds that:

G(p1∨G(p2))≡ G(¬p2→ H(p1)) (2)

Since G(¬p2 → H(p1)) ∈ LTLEBR+P, it holds that L (ϕG) ∈ JLTLEBR+PK. It is worth noticing the
following points: (i) G(¬p2→ H(p1)) is of the form Gα , where α ∈ LTLP (α is a pure past formula);
(ii) the formula ϕG is equivalent to G(p2)∨ ((XGp2)R p1), but the latter formula does not syntactically
belong to LTLEBR, due to the restriction that forces the leftmost argument of any release operator to
contain no universal temporal operators (i.e., R and G). In fact, in the following, we will prove that
L (ϕG) 6∈ JLTLEBRK.

The proof of the undefinability of ϕG is based on the fact that each formula of LTLEBR cannot con-
strain an arbitrarily long prefix of a state sequence, but only a finite prefix whose maximum length
depends on the maximum number of nested next operators.

Consider again the formula ϕG :=G(p1∨G(p2)). The language L (ϕG) is expressed by the ω-regular
expression ({p1})ω +({p1})∗ · ({p2})ω . Written in natural language, each model of ϕG cannot contain
a position in which ¬p2 holds preceded by a position in which ¬p1 holds.
Remark 1. Let σ ⊆ (2Σ)ω be a state sequence. It holds that:

σ |= ϕG ⇒¬∃i, j( j ≤ i∧σ j |= ¬p1∧σi |= ¬p2)

We define i,kσ j as the state sequence such that at the time points i and k it holds p1 ∧¬p2, at time
point j it holds ¬p1 ∧ p2, and for all the other time points p1 ∧ p2 holds. The membership of i,kσ j to
L (ϕG) depends on the value of the three indices i, j and k, as follows.
Remark 2. If i < j and k < j, then i,kσ j |= ϕG. Conversely, if i≥ j or k ≥ j, then i,kσ j 6|= ϕG.

As we will see, given a generic formula ψ ∈ LTLEBR, one can always find some values for the indices
i, j and k such that (a) j is chosen sufficiently greater than i; (b) k is chosen sufficiently greater than j;
(c) ψ is not able to distinguish the state sequence i,iσ j from i,kσ j. Since, by Remark 2, i,iσ j ∈L (ϕG) but
i,kσ j 6∈L (ϕG), this proves the undefinability of ϕG in LTLEBR. The rationale is that the LTLEBR logic
combines bounded future formulas (i.e., formulas obtained by a Boolean combination of propositional
atoms and X operators) and universal temporal operators (i.e., G and R). This implies the fact that,
for a generic model σ of an LTLEBR-formula ψ , at each time point i ≥ 0 of σ (this corresponds to
the universal temporal operators) only a finite and bounded suffix after i (this corresponds to the LTLB-
formulas) can be constrained by ψ (this can be thought of as a sort of bounded memory property of
this logic). Equivalently, this means that each LTLEBR-formula is not able to constrain any finite but
arbitrarly long (unbounded) prefix of a state sequence, contrary, for instance, to the case of the formula
G(¬p2→ H(p1)) (that is equivalent to ϕG, see Eq. (2)).
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4.2 The Canonical Form

The limitation of LTLEBR-formulas mentioned before is more evident in the canonical form for the
LTLEBR logic, that we will define in this part. We first give some preliminaries definitions. We define
Bounded Past LTLP (LTLBP, for short) as the set of all and only the LTLEBR+P formulas that are a
Boolean combination of propositional atoms and yesterday operators (Y). We use the shortcut ψ1S

[a,b]
ψ2

for denoting the formula
∨b

i=a(Y1 . . .Yi(ψ2)∧
∧i−1

j=0Y1 . . .Y j(ψ1)). Given a formula α ∈ LTLBP, we
define its temporal depth, denoted as D(α), as follows:

• D(p) = 0, for all p ∈ Σ

• D(¬α1) = D(α1)

• D(α1∧α2) = max{D(α1),D(α2)}

• D(Yα1) = 1+D(α1)

• D(α1 S
[a,b]

α2) = b+max{D(α1),D(α2)}

For each α ∈ LTLBP, the language L <ω(α) consists only of words of length at most D(α) + 1.
Recall from Section 2 that, given a infinite state sequence σ = 〈σ0,σ1, . . .〉 and some n≥ 0, σ[n−d,n] is the
interval of σ of length at most d ending at index n. The crucial property of LTLBP-formulas, that can be
shown with a simple induction, is that their truth over a state sequence σ can be checked by considering
only a finite and bounded interval of σ , whose length depends on the temporal depth of the formula.

Remark 3. For any α ∈ LTLBP, with temporal depth d = D(α), and for any n≥ 0, it holds that σ ,n |= α

if and only if σ[n−d,n] |= α .

We give now the canonical form for LTLEBR, and we refer to it as Canonical-LTLEBR. The canon-
ical form of LTLEBR forces any universal unbounded operator, like globally or release, to contain only
LTLBP-formulas. Formally, we define Canonical-LTLEBR as the canonical form described in Def. 3
but such that each αi,βi is a bounded past LTL formula. By applying the same transformation from
LTLEBR+P to its canonical form given in [4], one obtain the following lemma.

Lemma 1. JLTLEBRK = JCanonical-LTLEBRK.

Proof. Obviously JCanonical-LTLEBRK⊆ JLTLEBRK, since each formula ψ that belongs to
Canonical-LTLEBR can be turned into an equivalent one ψ ′ ∈ LTLEBR by expanding each bounded past
operators into conjunctions/disjunctions of yesterday operators.

For proving JLTLEBRK⊆ JCanonical-LTLEBRK, it is sufficient to apply the transformations described
in [4] for the translation of LTLEBR+P into canonical form. In particular, since by definition ψ has no
past temporal operators, the only past operators in ψ ′ are the ones introduced by the pastification step
described in [4], which are all bounded, that is either Y or S[a,b].

The canonical form of LTLEBR makes it easier to prove Eq. (1). Take for example the formula
XXG(p∨Yp∨YYp), that belongs to Canonical-LTLEBR. It is clear that, at each time point, this formula
can constrain only the interval consisting of the current state and its two previous states (in fact its
temporal depth is 3).

4.3 The main proof

In this part, we show the undefinability of the formula ϕG in the Canonical-LTLEBR logic. The undefin-
ability in LTLEBR follows from Lemma 1.
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j
{p2}
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0 i
{p1}

j
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k
{p1}

Legend
Type 1
Type 2
Type 3

Figure 2

Given three indices i, j,k ∈ N such that i 6= j and k 6= j, we formally define the state sequence
i,kσ j = 〈i,kσ

j
0 ,

i,kσ
j

1 , . . .〉 as follows:

i,k
σ

j
h =


{p1} if h ∈ {i,k}
{p2} if h = j
{p1, p2} otherwise

The core of the main theorem is based on the fact that any formula of type Gα or α Rβ , where α and
β are bounded past LTLP formulas, is not able to distinguish the state sequence i,iσ j with i < j (which is
a model of ϕG) from i,kσ j with k > j (which is not a model of ϕG), for sufficiently large values of i, j and
k. The choice for the values of the three indices is based on the values of the temporal depth of α and
β . Since the globally operator is a special case of the release operator, that is Gα ≡⊥Rα , it suffices to
prove the property for formulas of type α Rβ . We first prove the two fundamental properties that show
that, for any interval of i,iσ j of length at most d (for any d ∈ N), we can find the exact same interval in
i,kσ j, and vice versa. Fig. 2 shows the idea of this correspondence.

Lemma 2. Let d ∈ N. For all i≥ d, for all j ≥ i+d, and for all k ≥ j+d, it holds that:

Property 1: ∀n′ ≥ 0 . ∃n≥ 0 . i,k
σ

j
[n′−d,n′] =

i,i
σ

j
[n−d,n]

Property 2: ∀n≥ 0 . ∃n′ ≥ 0 . i,i
σ

j
[n−d,n] =

i,k
σ

j
[n′−d,n′]

Proof. Take any value for i, j, and k such that: (i) i≥ d, (ii) j ≥ i+d, (iii) k ≥ j+d. Given any interval
of length d of the state sequence i,iσ j, we show how to find an exact same one in i,kσ j, and viceversa.

The constraints above on the three indices ensure that both the state sequences i,iσ j and i,kσ j contain
only three types of intervals of length at most d. Consider i,kσ j (the case for i,iσ j is specular). The three
types are the following:

Type 1: ({p1, p2})n for some 0≤ n≤ d;

Type 2: ({p1, p2})n · ({p1}) · ({p1, p2})d−n−1, for some 0≤ n < d;

Type 3: ({p1, p2})n · ({p2}) · ({p1, p2})d−n−1, for some 0≤ n < d;

The situation is depicted in Fig. 2. Given any interval of any of the three types above, we show below
how to find the very same interval in i,iσ j (Fig. 2 tries to show visually this correspondence):

• each interval of i,kσ j of type ({p1, p2})n is equal to i,iσ
j
[0,n];

• each interval of i,kσ j of type ({p1, p2})n · ({p1}) · ({p1, p2})d−n−1 is equal to i,iσ
j
[i−n,i+d−n−1].
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• each interval of i,kσ j of type ({p1, p2})n · ({p2}) · ({p1, p2})d−n−1 is equal to i,iσ
j
[ j−n, j+d−n−1];

This proves Property 1.
Similarly, the correspondence between intervals of i,iσ j and intervals of i,kσ j is the following:

• each interval of i,iσ j of type ({p1, p2})n is equal to i,kσ
j
[0,n];

• each interval of i,iσ j of type ({p1, p2})n · ({p1}) · ({p1, p2})d−n−1 is equal to i,kσ
j
[i−n,i+d−n−1].

• each interval of i,iσ j of type ({p1, p2})n · ({p2}) · ({p1, p2})d−n−1 is equal to i,kσ
j
[ j−n, j+d−n−1];

This proves Property 2.

We can now prove that the state sequences i,iσ j and i,kσ j are indistinguishable for each formula of
type α Rβ (and, consequently, of type Gα), with α,β ∈ LTLBP.

Lemma 3. Let α,β ∈ LTLBP, and let d = max{D(α),D(β )} be the maximum between the temporal
depths of α and β . It holds that i,iσ j |= α Rβ iff i,kσ j |= α Rβ , for all i≥ d, for all j ≥ i+d, and for
all k ≥ j+d.

Proof. Take any value for i, j, and k such that: (i) i≥ d, (ii) j ≥ i+d, (iii) k ≥ j+d.
We first prove the left-to-right direction. Suppose that i,iσ j |= α Rβ . We divide in cases:

1. Suppose that i,iσ j,n |= β for all n≥ 0. Since β ∈ LTLBP and D(β )≤ d, it holds that i,iσ
j
[n−d,n] |= β ,

for all n ≥ 0. Suppose by contradiction that there exists some n′ ≥ 0 such that i,kσ
j
[n′−d,n′] |= ¬β .

By Property 1 of Lemma 2, this means that there exists some n′′ ≥ 0 such that i,iσ
j
[n′′−d,n′′] |= ¬β .

But this is a contradiction. Thus, it holds that i,kσ
j
[n′−d,n′] |= β for all n′ ≥ 0, that is, for all n′ ≥ 0,

and thus i,kσ j |= α Rβ .

2. Suppose that ∃n≥ 0 . (i,iσ j,n |= α ∧∀0≤ m≤ n . i,iσ j,m |= β ). We divide again in cases:

(a) Suppose that n< k. Then i,iσ
j
[0,n] =

i,kσ
j
[0,n]. Clearly, it holds that i,kσ j,n |=α and i,kσ j,m |= β

for all 0≤ m≤ n. Therefore i,kσ j |= α Rβ .
(b) Suppose that n ≥ k. In particular, it holds that i,iσ

j
[n−d,n] |= α ∧ β . We use a contraction

argument for proving that in this case there exists a smaller index at which the release sat-
isfies its existential part (i.e., the formula α). Consider the time point i− 1. It holds that
i,iσ

j
[i−1−d,i−1] =

i,iσ
j
[n−d,n] and thus, since i,iσ

j
[n−d,n] |= α ∧ β and α,β ∈ LTLBP, we have

that i,iσ
j
[i−1−d,i−1] |= α ∧ β . Moreover, i,iσ

j
[0,i−1] is a prefix of i,iσ

j
[0,n], and thus, given that

i,iσ
j
[p−d,p] |= β for all 0≤ p≤ n, it holds that i,iσ

j
[p−d,p] |= β for all 0≤ p≤ i−1. From this,

it follows that i,iσ j, i− 1 |= α and i,iσ j,m |= β for all 0 ≤ m ≤ i− 1. Since i− 1 < k, by
Item 2a, it holds that i,kσ j |= α Rβ .

We now prove the right-to-left direction. Suppose that i,kσ j |= α Rβ . We divide in cases:

1. Suppose that i,kσ j,n |= β . This case is specular to Item 1.

2. Suppose that ∃n ≥ 0 . (i,kσ j,n |= α ∧ ∀0 ≤ m ≤ n . i,kσ j,m |= β ). Since α,β ∈ LTLBP and
D(α),D(β )≤ d, it holds that ∃n≥ 0 . (i,kσ

j
[n−d,n] |= α ∧∀0≤ m≤ n . i,kσ

j
[m−d,m] |= β ). We divide

again in cases:

(a) If n < k, then i,kσ
j
[0,n] =

i,iσ
j
[0,n] and thus i,iσ j,n |= α and i,iσ j,m |= β for all 0≤ m≤ n, that

is i,iσ j |= α Rβ .
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(b) If k≤ n≤ k+d, then i,kσ
j
[n−d,n] =

i,kσ
j
[n−k−i−d,n−k−i] (we used again a contraction argument).

Since by hypothesis i,kσ
j
[n−d,n] |= α , it holds also that i,kσ

j
[n−k−i−d,n−k−i] |= α . Moreover,

i,kσ
j
[0,n−k−i] is a prefix of i,kσ

j
[0,n], and thus, since by hypothesis i,kσ

j
[p−d,p] |= β for all 0≤ p≤

n, it also holds that i,kσ
j
[p−d,p] |= β for all 0≤ p≤ n−k− i. Therefore i,kσ

j
[n−k−i−d,n−k−i] |= α

and i,kσ
j
[m−d,m] |= β for all 0 ≤ m ≤ n− k− i. Since l + n− i < k, by Item 2a, it holds that

i,iσ j |= α Rβ .
(c) Otherwise n > k+ d. We have that i,kσ

j
[n−d,n] =

i,kσ
j
[i−1,i−1−d] (also in this case we used a

contraction argument). Since by hypothesis i,kσ
j
[n−d,n] |= α , it also hold that i,kσ

j
[i−1,i−1−d] |=

α . Moreover i,kσ
j
[0,i−1] is a prefix of i,kσ

j
[0,n] and thus, since by hypothesis i,kσ

j
[p−d,p] |= β for

all 0≤ p≤ n, it also holds that i,kσ
j
[p−d,p] |= β for all 0≤ p≤ i−1. Therefore i,kσ j, i−1 |= α

and i,kσ j,m |= β for all 0≤m≤ i−1. Since i−1 < k, by Item 2a, it holds that i,iσ j |= α Rβ .

By using Lemma 3 as the proof for the base case, we prove by induction on the structure of the
formula that any formula in Canonical-LTLEBR is not able to distinguish the state sequences i,iσ j and
i,kσ j for sufficiently large values of i, j,k. In the following, given a formula ψ ∈ Canonical-LTLEBR, we
will denote with mψ the maximum number of nested next operators in ψ , and with dψ the maximum
temporal depth between all its LTLBP-subformulas.

Lemma 4. Let ψ ∈ Canonical-LTLEBR. It holds that i,iσ j |= ψ iff i,kσ j |= ψ , for all i≥mψ +dψ , for all
j ≥ i+dψ , and for all k ≥ j+dψ .

Proof. Take any value for i, j, and k such that: (i) i ≥ mψ + dψ , (ii) j ≥ i+ dψ , (iii) k ≥ j + dψ . We
proceed by induction on the structure of the formula ψ .

For the base case, we consider three cases: (i) formulas in LTLBP, that is such that all its temporal
operators refer to the past and are bounded; (ii) formulas of type Gα , where α ∈ LTLBP; (iii) formulas
of type α Rβ , where α,β ∈ LTLBP;

We consider the case of a formula α ∈ LTLBP, and suppose that i,iσ j |= α . By definition of i,iσ j and
i,kσ j, it always holds that i,iσ

j
0 = i,kσ

j
0 . Since α ∈ LTLBP refers only to the current state or to the past, it

follows that i,iσ j |= α if and only if i,kσ j |= α .
Consider now the case for αRβ , where α,β ∈ LTLBP. Since m

αRβ
= 0 (i.e., the are no next operators

in this formula), we can apply Lemma 3, having that i,iσ j |= α Rβ if and only if i,kσ j |= α Rβ . Since
Gα =⊥Rα , this proves also the case for the globally operator.

For the inductive step, since by hypothesis ψ belongs to the canonical form of LTLEBR, it suffices to
consider only the case for the next operator, conjunctions and disjunctions.

Consider first the case for the next operator, and suppose that i,iσ j |= Xψ ′. For any indices k, i and j
such that i≥mXψ ′+dXψ ′ , j≥ i+dXψ ′ and k≥ j+dXψ ′ , we want to prove that i,kσ j |=Xψ ′. By definition
of the next operator, it holds that i,iσ j,1 |= ψ ′. Now, let τ be the state sequence obtained from i,iσ j by
discarding its initial state, that is τ := i,iσ

j
[1,∞). Obviously, τ |= ψ ′. We observe that τ is equal to the state

sequence i−1,i−1σ j−1. Since the maximum number mψ ′ of nested next operators in ψ ′ is mXψ ′−1 (while
αψ ′ remains the same), we can apply the inductive hypothesis on ψ ′, having that i−1,k−1σ j−1 |= ψ ′. By
definition of τ , it follows that i,kσ j |= Xψ ′.

We consider now the case for conjunctions, and suppose that i,iσ j |= ψ1∧ψ2, for generic indices k,
i and j such that i ≥ mψ1∧ψ2 + dψ1∧ψ2 , j ≥ i+ dψ1∧ψ2 , and k ≥ j+ dψ1∧ψ2 . It holds that i,iσ j |= ψ1 and
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i,iσ j |= ψ2. Moreover, mψ1 ≤mψ1∧ψ2 and mψ2 ≤mψ1∧ψ2 . Similarly, dψ1 ≤ dψ1∧ψ2 and dψ2 ≤ dψ1∧ψ2 . This
means that we can apply the inductive hypothesis both on ψ1 and ψ2 on the current indices k, i and j.
By inductive hypothesis, we have that i,kσ j |= ψ1 and i,kσ j |= ψ2. It follows that i,kσ j |= ψ1∧ψ2. The
case for ψ1∨ψ2 is specular.

Thanks to Lemma 4, it is simple to prove the undefinability of G(p1∨G(p2)) in LTLEBR, that proves
that LTLEBR is strictly less expressive than Safety-LTL.
Theorem 3. JLTLEBRK ( JSafety-LTLK.

Proof. Consider the formula ϕG := G(p1 ∨G(p2)). We prove that there does not exists a formula ψ ∈
LTLEBR such that L (ψ) = L (ϕG). We proceed by contradiction. Suppose that there exists a formula
ψ ∈ LTLEBR such that L (ψ) = L (ϕG). By Lemma 1, there exists a formula ψ ′ ∈ Canonical-LTLEBR
such that L (ψ) = L (ψ ′). Let mψ ′ be the maximum number of nested next operators in ψ ′, and let dψ ′

be the maximum temporal depth between all the LTLBP-subformulas in ψ ′. Let k, i and j be three indices
such that: (i) i≥ mψ ′ +dψ ′ ; (ii) j ≥ i+dψ ′ ; (iii) and k ≥ j+dψ ′ . Consider the two state sequences i,iσ j

and i,kσ j. By Lemma 4, i,iσ j ∈L (ψ ′) if and only if i,kσ j ∈L (ψ ′), that is i,iσ j ∈L (ϕG) if and only if
i,kσ j ∈L (ϕG). Since it holds that i,iσ j ∈L (ϕG) but i,kσ j 6∈L (ϕG), this is clearly a contradiction.

Corollary 1. JLTLEBRK ( JLTLEBR+PK.

5 Conclusions

We considered the logic LTLEBR+P, a recently introduced safety fragment of LTL with an efficient
realizability problem. The syntax of LTLEBR+P made it difficult to exactly characterize its expressive
power. We studied the expressive power of LTLEBR+P and of its pure future fragment, LTLEBR, and
compare it with other safety fragments of LTL. It turned out that LTLEBR+P is expressively complete
with respect to the safety fragment of LTL, and, consequently, it is expressively equivalent to Safety-LTL.
We found out that past modalities are crucial for the expressive power of LTLEBR+P. In fact, LTLEBR is
strictly less expressive than full LTLEBR+P. This was somehow surprising, since it proves that, despite
not being fundamental for the expressiveness of full LTL, past modalities are crucial for fragments of
LTL, like, for instance, LTLEBR+P.
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