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We study games with reachability objectives under energy constraints. We first prove that under
strict energy constraints (either only lower-bound constraint or interval constraint), those games are
LOGSPACE-equivalent to energy games with the same energy constraints but without reachability
objective (i.e., for infinite runs). We then consider two kinds of relaxations of the upper-bound
constraints (while keeping the lower-bound constraint strict): in the first one, called weak upper bound,
the upper bound is absorbing, in the sense that it allows receiving more energy when the upper bound
is already reached, but the extra energy will not be stored; in the second one, we allow for temporary
violations of the upper bound, imposing limits on the number or on the amount of violations.

We prove that when considering weak upper bound, reachability objectives require memory,
but can still be solved in polynomial-time for one-player arenas; we prove that they are in coNP in
the two-player setting. Allowing for bounded violations makes the problem PSPACE-complete for
one-player arenas and EXPTIME-complete for two players.

1 Introduction

Games on weighted graphs. Weighted games are a common way to formally address questions related
to consumption, production and storage of resources: the arenas of such game are two-player turn-
based games in which transitions carry positive or negative integers, representing the accumulation or
consumption of resource. Various objectives have been considered for such arenas, such as optimizing
the total or average amount of resources that have been collected along the play, or maintaining the total
amount within given bounds. The latter kind of objectives, usually referred to as energy objectives [8, 3],
has been widely studied in the untimed setting [9, 11, 13, 17, 21, 23, 26, 6, 4, 14], and to a lesser extent in
the timed setting [2, 5]. As their name indicates, energy objectives can be used to model the evolution of
the available energy in an autonomous system: besides achieving its tasks, the system has to take care of
recharging batteries regularly enough so as to never run out of power. Energy objectives were also used to
model moulding machines: such machines inject molten plastic into a mould, using pressure obtained by
storing liquid in a tank [7]; the level of liquid has to be controlled in such a way that enough pressure is
always available, but excessive pressure in the tank would reduce the service life of the valve.

Energy games impose strict constraints on the total amount of energy at all stages of the play. Two
kinds of constraints have been mainly considered in the literature: lower-bound constraints (a.k.a. L-energy
constraints) impose a strict lower bound (usually zero), but impose no upper bound; on the other hand,
lower- and upper-bound constraints (a.k.a. LU-energy constraints) require that the energy level always
remains within a bounded interval [L;U ]. Finding strategies that realize L-energy objectives along infinite
runs is in PTIME in the one-player setting, and in NP∩ coNP for two players; for LU-energy objectives,
it is respectively PSPACE-complete and EXPTIME-complete [3]. Some works have also considered the
existence of an initial energy level for which a winning strategy exist [11].

In this paper, we focus on weighted games combining energy objectives together with reachability
objectives. Our first result is the (expected) proof that L-energy games with or without reachability
objectives are interreducible; the same holds for LU-energy games. We then focus on relaxations of
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the energy constraints, in two different directions. In both cases, the lower bound remains unchanged,
as it corresponds to running out of energy, which we always want to avoid. We thus only relax the
upper-bound constraint. The first direction concerns weak upper bounds, already introduced in [3]: in that
setting, hitting the upper bound is allowed, but there is no overload: trying to exceed the upper bound
will simply maintain the energy level at this maximal level. Yet, a strict lower bound is still imposed.
Following [3], we name these objectives LW-energy objectives. They could be used as a (simplified)
model for batteries. When considered alone, LW-energy objectives are not much different from L-energy
objectives, in the sense that the aim is to find a reachable positive loop. LW-energy games (with no
other objectives besides maintaining the energy above L) are in PTIME for one-player games, and in
NP∩ coNP for two players [3]. When combining LW-energy and reachability objectives, we prove in this
paper that the situation changes: different loops may have different effects on the energy level, and we
have to keep track of the final energy level reached when iterating those loops.

We introduce and study a second way of relaxing upper bounds, which we call soft upper bound:
it consists in allowing a limited number (or amount) of violations of the soft upper bound (possibly
within an additional strong upper-bound): when modeling a pressure tank, the lower-bound constraint
is strict (pressure should always be available) but the upper bound is soft (excessive pressure may be
temporarily allowed if needed). We consider different kinds of restrictions (on the number or amount
of violations), and prove that deciding whether Player 1 has a strategy to keep violations below a given
bound is PSPACE-complete for one-player arenas, and EXPTIME-complete for two-player ones. We also
provide algorithms to optimize violations of the soft upper bound under a given strict upper bound.

Related work. Quantitative games have been the focus of numerous research articles since the 1970s,
with various kinds of objectives, such as ultimately optimizing the total payoff, mean-payoff [15, 27],
or discounted sum [27, 1]. Energy objectives, which are a kind of safety objectives on the total payoff,
were introduced in [8] and rediscovered in [3]. Several works have extended those works by combining
quantitative conditions together, e.g. multi-dimensional energy conditions [17, 23] or conjunctions of
energy- and mean-payoff objectives [11]. Combinations with qualitative objectives (e.g. reachability [10]
or parity objectives [9, 12, 14]) were also considered. Similar objectives have been considered in slightly
different settings e.g. Vector Addition Systems with States [25] and one-counter machines [19, 20].

2 Preliminaries

Definition 1 A two-player arena is a 3-tuple G = (Q1,Q2,E) where Q = Q1 ]Q2 is a set of states,
E ⊆Q×Z×Q is a set of weighted edges. For q ∈Q, we let qE = {(q,w,q′) ∈ E | w ∈Z, q′ ∈Q}, which
we assume is non-empty for any q ∈ Q. A one-player arena is a two-player arena where Q2 = /0.

Consider a state q0 ∈ Q. A finite path in an arena G from an initial state q0 is an finite sequence of
edges π = (ei)0≤i<n such that for every 0≤ i < n, writing ei = (qi,wi,q′i), it holds q′i = qi+1. Fix a path
π = (ei)0≤i<n. Using the notations above, we write |π| for the size n of π , π̂i for the i-th state qi of π

(with the convention that qn = q′n−1), and first(π) = π̂0 for its first state and last(π) = π̂n for its last state.
The empty path is a special finite path from q0; its length is zero, and q0 is both its first and last state. Given
two finite paths π = (ei)0≤i<n and π ′ = (e′j)0≤ j<n′ such that last(π) = first(π ′), the concatenation π ·π ′ is
the finite path ( fk)0≤k<n+n′ such that fk = ek if 0≤ k < n and fk = e′k−n if n≤ k < n+n′. For 0≤ k ≤ n,
the k-th prefix of π is the finite path π<k = (ei)0≤i<k. We write FPaths(G,q0) for the set of finite paths
in G issued from q0 (we may omit to mention G in this notation when it is clear from the context). Infinite
paths are defined analogously; we write Paths(G,q0) for the set of infinite paths from q0.
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A strategy for Player 1 (resp. Player 2) from q0 is a function σ : FPaths(q0)→ E associating with
any finite path π with last(π) ∈ Q1 (resp. last(π) ∈ Q2) an edge originating from last(π). A strategy is
said memoryless when σ(π) = σ(π ′) whenever last(π) = last(π ′).

A finite path π = (ei)0≤i<n conforms to a strategy σ of Player 1 (resp. of Player 2) from q0 if
first(π) = q0 and for every 0≤ k < n, either ek = σ(π<k), or last(π<k) ∈ Q2 (resp. last(π<k) ∈ Q1). This
is extended to infinite paths in the natural way. Given a strategy σ of Player 1 (resp. of Player 2) from q0,
the outcomes of σ is the set of all (finite or infinite) paths π issued from q0 that conform to σ .

A game is a triple (G,q0,O) where G is a two-player arena, q0 is an initial state in Q, and O ⊆
Paths(G,q0) is a set of infinite paths, also called objective (for Player 1). A strategy for Player 1 from q0
is winning in (G,q0,O) if its infinite outcomes all belong to O.

Given a set R⊆ Q of states, the reachability objective defined by R is the set of all paths containing
some state in R, while the safety objective defined by R is the set of all infinite paths never visiting any
state in R. In this paper, we also focus on energy objectives [8, 3], which we now define.

Definition 2 Fix a finite-state arena G = (Q1,Q2,E). Let L ∈Z. The L-energy arena associated with G
is the infinite arena GL = (C1,C2,T ) where C1 = {qerr}∪Q1× [L;+∞) and C2 = Q2× [L;+∞) are sets
of configurations, and T ⊆C1×Z×C2 is such that

• for any (q, l) and (q′, l′) in Q× [L;+∞) and any w∈Z, we have ((q, l),w,(q′, l′))∈ T if, and only if,
(q,w,q′) ∈ E and l′ = l +w≥ L; we also impose a loop (qerr,0,qerr) ∈ T .

• for any (q, l) ∈ Q× [L;+∞), we have ((q, l),w,qerr) ∈ T if, and only if, there exists a transi-
tion (q,w,q′) ∈ E such that l +w < L

Similarly, given L ∈ Z and U ∈ Z, the LU-energy arena associated with G is the finite-state arena
GLU = (C1,C2,T ) where C1 = {qerr}∪Q1× [L;U ] and C2 = Q2× [L;U ], and T ⊆C1×Z×C2 is such that

• for any (q, l) and (q′, l′) in Q× [L;U ] and any w ∈Z, we have ((q, l),w,(q′, l′)) ∈ T if, and only if,
(q,w,q′) ∈ E and l′ = l +w ∈ [L;U ]; we also impose a loop (qerr,0,qerr) ∈ T .

• for any (q, l)∈Q× [L;U ], we have ((q, l),w,qerr)∈ T if, and only if, there is a transition (q,w,q′)∈
E such that l +w < L or l +w >U;

Finally, given L ∈ Z and W ∈ Z, the LW-energy arena associated with G is the finite-state arena
GLW = (C1,C2,T ) where C1 = {qerr}∪Q1× [L;W ] and C2 =Q2× [L;W ], and T ⊆C1×Z×C2 is such that

• for any (q, l) and (q′, l′) in Q× [L;W ] and any w ∈Z, we have ((q, l),w,(q′, l′)) ∈ T if, and only if,
(q,w,q′) ∈ E and l′ = min(W, l +w)≥ L; we also impose a loop (qerr,0,qerr) ∈ T .

• for any (q, l)∈Q× [L;W ], we have ((q, l),w,qerr)∈ T if, and only if, there is a transition (q,w,q′)∈
E such that l +w < L;

An L-run (resp. LU-run, LW-run) ρ in G from q with initial energy level l is a path in GL (resp GLU,
GLW) from (q, l) never visiting qerr. With such a run ρ = (ti)i in G, writing ti = ((qi, li),wi,(q′i, l

′
i)), we as-

sociate the path π = (ei)i such that ei = (qi,wi,q′i). We define ρ̂i = (qi, li), corresponding to the i-th
configuration along ρ , and ρ̃i = li, which we name the energy level in that configuration.

Similarly, a path π is said L-feasible (resp. LU-feasible, LW-feasible) from initial energy level L if
there exists an L-run (resp. LU-run, LW-run) from (first(π),L) whose associated path is π . Notice that
if such a run exists, it is unique (because paths are defined as sequences of transitions).

The L-energy (resp. LU-energy, LW-energy) objective is the set of infinite paths that are L-feasible
(resp. LU-feasible, LW-feasible) (from initial energy level L). Similarly, given a target set R ⊆ Q, the
L-energy- (resp. LU-energy-, LW-energy-) reachability objective is the set of L-feasible (resp. LU-feasible,
LW-feasible) paths visiting R.
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Remark 3 Taking L as the initial energy level results in no loss of generality, since any energy level can
be obtained by adding an initial transition from (q0,L).

In many cases, strong upper bounds are too strict, as many system do not break as soon as their
maximal energy level is reached. Imposing a weak upper bound is a way to relax these constraints.
We introduce another way to relax energy constraints, by allowing for (limited) violations of the upper
bound: given two strict bounds L and U in Z, a soft upper bound S ∈Z with L≤ S≤U , and an LU-run ρ ,
the set of violations along ρ is the set V(ρ) = {i ∈ [0; |ρ|] | ρ̃i > S} of positions along ρ where the energy
level exceeds the soft upper bound S. There are many ways to quantify violations along a run. We consider
three of them in this paper, namely the total number of violations, the maximal number of consecutive
violations, and the sum of the violations. We thus define the following three quantities: #V(ρ) = |V(ρ)|,
#V(ρ) = max{i− j+1 | ∀k ∈ [i, j]. k ∈ V(ρ)}, and ΣV(ρ) = ∑i∈V(ρ)(ρ̃i−S).

Figure 1 shows the evolution of #V along a winning run in an LSU#-energy game. One can notice that
with a strong upper bound of 3, state qt would not be reachable. On the other hand, if the strong upper
bound is set to 6, then then there exists a run from q0 to qt , but that requires 3 violations of soft upper
bound S = 3 (and the total amount of violations is 6).
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Figure 1: Energy level and #V along a winning run in a LSU#-energy reachability game.

Given three values L≤ S≤U , and a threshold V ∈N, the LSU#-energy (resp. LSU#-energy, LSUΣ-
energy) objective is the set of LU-feasible infinite paths π such that, along their associated runs ρ

from (q0,L), the number #V(ρ) of violations (resp. maximal number of consecutive violations #V(ρ),
sum ΣV(ρ) of violations) of the soft upper bound S is at most V . Similarly, for a set of states R, the
LSU#-energy-reachability (resp. LSU#-energy-reachability, LSUΣ-energy-reachability) objective is the set
of LU-feasible paths π reaching R such that along their associated run from (q0,L), the number #V(ρ) of
violations (resp. maximal number of consecutive violations #V(ρ), sum ΣV(ρ) of violations) of the soft
upper bound S is at most V .

We study the complexity of deciding the existence of a winning strategy for the objectives defined
above, in both the one- and two-player settings. Further, for LSU?-energy games (for ? in {#,#,∑}), we
also address the following problems:

• bound existence: Given L, S and V , decide if there exists a value U ∈Z such that Player 1 wins
the LSU?-energy game;

• minimization: Given L and S, and a bound Vmax, find a value U ∈ Z such that Player 1 wins the
game with the least possible violations less than Vmax, if any.

Table 1 summarizes known results, and the results obtained in this paper (where LSU?-energy gathers
all three energy constraints with violations). We furthermore show that the minimization problem for
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LSU?-energy (reachability) games require algorithms that run in PSPACE in the one-player case, and in
EXPTIME in the two-player case.

Reachability Infinite runs

1 player 2 players 1 player 2 players

L-energy in PTIME (Thm. 4, [10]) in NP ∩ coNP (Thm. 4, [10]) in PTIME [3] in NP ∩ coNP [3]

LU-energy PSPACE-c. (Thm. 7) EXPTIME-c. (Thm. 7) PSPACE-c. [3] EXPTIME-c. [3]

LW-energy in PTIME (Thm. 22) in coNP (Coro. 26) in PTIME [3] in NP ∩ coNP [3]

LSU?-energy PSPACE-c. (Thm. 27) EXPTIME-c. (Thm. 27) PSPACE-c. (Thm. 27) EXPTIME-c. (Thm. 27)

Bound existence PSPACE-c. (Thm. 28) EXPTIME-c. (Thm. 28) PSPACE-c. (Thm. 28) EXPTIME-c. (Thm. 28)

Minimization PSPACE-c. (Thm. 29) EXPTIME-c. (Thm. 29) PSPACE-c. (Thm. 29) EXPTIME-c. (Thm. 29)

Table 1: Summary of our results

3 Energy reachability games with strict bounds

In this section, we focus on the L-energy-reachability and LU-energy-reachability problems. We first
prove that L-energy-reachability problems are inter-reducible with L-energy problems, which entails:

Theorem 4 Two-player L-energy-reachability games are decidable in NP∩ coNP. The one-player
version is in PTIME.

Remark 5 It is worth noticing that these results are not a direct consequence of the results of [9] about
energy parity games: in that paper, the authors focus on the existence of an initial energy level for which
Player 1 has a winning strategy with energy-parity objectives (which encompass our energy-reachability
objectives). When the answer is positive, they can compute the minimal initial energy level for which a
winning strategy exists, but the (deterministic) algorithm runs in exponential time.

Remark 6 These results were already proven in [10]: for one-player arenas, the authors develop a
PTIME algorithm, while they prove LOGSPACE-equivalence with L-energy games for the two-player
setting (the result then follow from [3]). Our proof uses similar arguments as in the latter proof, but with
the same full and direct reductions back and forth both for the one- and two-player cases.

Proof. We prove that L-energy and L-energy-reachability are LOGSPACE-equivalent; our reductions are
valid both for one- and two-player arenas. The result then follows from [3].

Intuitively, take a two-player L-energy game G, and build the arena G′ as in Fig. 2: roughly, G′ is
obtained from G by increasing all weights by some small1 positive value ε , and Player 1 is given the
possibility to go to the target state, with a large negative cost −δ , after each transition. If Player 1 wins
in G, playing her winning strategy in G′ will grow the energy level arbitrarily high, and will eventually
allow her to take a transition to qt . Conversely, if Player 1 wins in G′, then she must be able to grow the
energy to above δ ; taking δ to be larger than the sum of all positive weights in G, Player 1 must have
a strategy to force positive cycles before reaching qt . If ε is small enough, any positive cycle in G′ is a
non-negative cycle in G, so that the repeating same strategy is winning in G.

The converse reduction is similar: this time, starting from a two-player L-energy-reachability game G,
we build a two-player L-energy game G′ by first restricting2 to states from which Player 1 has a strategy

1The value of ε will generally be a rational, but it can be made integer by scaling up all constants.
2This may require to add a (losing) sink state, so that each state has an outgoing transition.
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Figure 2: Schema of the reduction from L-energy to L-energy-reachability objectives
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Figure 3: Schema of the reduction from L-energy-reachability to L-energy objectives

to reach qt (with no quantitative constraints), removing the outgoing transitions of qt and only keep a
zero-self-loop, and substract a small positive ε to all other weights; to compensate with this, we set the
initial energy level to 1. Then if Player 1 wins in G, then by taking ε small enough, the same strategy is
winning in G′. Conversely, if she wins in G′ (for L-energy objective), then some of the outcomes may
reach qt and some other will take non-negative cycles. When played in G, that strategy will reach qt on
some outcomes, and it will take positive cycles on some others; along the latter outcomes, the energy will
grow arbitrarily high, and from some point on, Player 1 will simply have to switch to her attractor strategy
in order to reach qt . �

Similarly, for LU-energy-reachability objectives, we prove the same complexities as with classical
LU-energy objectives:

Theorem 7 One-player LU-energy-reachability games are PSPACE-complete. Two-player LU-energy-
reachability games are EXPTIME-complete.

Proof. Membership in EXPTIME is proven by considering the expanded game GLU: it can be used to
check reachability for both the one- and the two-player cases. For the one-player case, this can be achieved
by proceeding on-the-fly, without explicitly building the expanded game; the resulting algorithm runs in
PSPACE. For the two-player case, we solve reachability in that exponential-size game, which results in
an EXPTIME algorithm.

For both the one- and the two-player settings, the hardness proofs for LU-energy objectives are
readily adapted to LU-energy-reachability objectives, since they are based on reachability-like problems
(reachability in bounded one-counter automata [18] and countdown games [22], respectively). �

4 Energy reachability games with weak upper bound

Finding a strategy that satisfies an LW-energy constraint along an infinite run is conceptually easy:
it suffices to find a cycle that can be iterated once with a positive effect. It follows that memoryless
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strategies are enough, and the LW-energy problem was shown to be in PTIME for one-player arenas, and
in NP∩ coNP for two-player arenas [3].

The situation is different when we have a reachability condition: players may have to keep track of
the exact energy level in order to find their way to the target state. Obviously, considering the expanded
arena GLW, we easily get exponential-time algorithms for LW-energy-reachability objectives. However, as
proved below, in the one-player case, a PTIME algorithm exists.

Example 8 Consider the one-player arena of Fig. 4, where the lower bound is L = 0, the weak-upper
bound is W = 5, and the target state is qt . Starting from q0 with initial credit 0, we first have to move
to q1, and then iterate the positive cycle β1 = (q1,+2,q2) · (q2,−2,q3) · (q3,+1,q1) three times, ending
up in q1 with energy level 3. We then take the cycle β2 = (q1,+2,q2) · (q2,−5,q4) · (q4,+5,q1), which
raises the energy level to 5 when we come back to q1, so that we can reach qt . Notice that β1 has to be
repeated three times before taking cycle β2, and that repeating β1 more than three times maintains the
energy level at 4, which is not sufficient to reach qt . This suggests that Player 1 needs memory and cannot
rely on a single cycle to win LW-energy-reachability games.

q0 q1

q2q3 q4

qt
0

+2

−2

+1

−5

+5

−5

Figure 4: A one-player arena with LW-energy-reachability objective

This example shows that winning strategies for Player 1 may have to monitor the exact energy level
all along the computation, thereby requiring exponential memory (assuming that all constants are encoded
in binary; with unary encoding, the expanded game GLW would have polynomial size and directly give a
polynomial-time algorithm).

Proposition 9 In LW-energy-reachability games, exponential memory may be necessary for Player 1
(assuming binary-encoded constants).

Notice that this does not prevent from having PTIME algorithms: the strategy in Example 8 is not
very involved, but it depends on the energy level (up to W ).

From now on, and until Lemma 24, we consider the one-player case. In order to get a polynomial-time
algorithm, we analyze cycles in the graph, and prove that a path witnessing LW-energy reachability can
have a special form, which can be represented compactly using polynomial size. We begin with a series of
simple lemmas.

Lemma 10 Let π be a finite path in a one-player arena G. If (q,u) π−→LW (q′,u′), then for any v ≥ u,
(q,v) π−→LW (q′,v′) for some v′ ≥ u′.

This lemma states that starting with higher energy level can only be beneficial. Notice that, even if we
add condition u′ > u in the hypotheses of Lemma 10, it need not be the case that v′ > v. In other terms,
a sequence of transitions may have a positive effect on the energy level from some configuration, and a
negative effect from some other configuration, due to the weak upper bound. Below, we prove a series of
results related to this issue, and that will be useful for the rest of the proof. First, the effect of a given path
(i.e., the net amount of energy that is harvested) decreases when the initial energy level increases:
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Lemma 11 Let π be a finite path in a one-player arena G, and consider two LW-runs (q,u) π−→LW (q′,u′)
and (q,v) π−→LW (q′,v′) with u≤ v. Then u′−u≥ v′−v, and if the inequality is strict, then the energy level
along the run (q,v) π−→LW (q′,v′) must have hit W.

The next lemma is more precise about the effect of following a path when starting from the maximal
energy level W :

Lemma 12 Let π be a finite path in a one-player arena G, for which there is an LW-run (q,u) π−→LW (q′,u′).
If u′ is the maximal energy level along that run, then (q,W )

π−→LW (q′,W ); if u is the maximal energy level
along the run above, then (q,W )

π−→LW (q′,W +u′−u).

From Lemma 10, it follows that any run witnessing LW-energy reachability can be assumed to contain
no cycle with nonpositive effect. Formally:

Lemma 13 Let π be a finite path in a one-player arena G. If (q,u) π−→LW (q′,u′) and π can be decomposed
as π1 ·π2 ·π3 in such a way that (q,u) π1−→LW (s,v) π2−→LW (s,v′)

π3−→LW (q′,u′) with v′ ≤ v, then (q,u)
π1·π3−−−→LW

(q′,u′′) with u′′ ≥ u′.

The following lemmas show that several occurrences of a cycle having positive effect along a path
can be gathered together. This will be useful to prove the existence of a short path witnessing LW-energy
reachability.

Lemma 14 Let π be a finite path in a one-player arena G. If (q,u) π−→LW (q′,u′) with u′ > u and
(q,w) π−→LW (q′,w′) with w′ > w, then for any u≤ v≤ w, it holds that (q,v) π−→LW (q′,v′) with v′ > v.

Lemma 15 Let π be a cycle on q such that (q,u) π−→LW (q,v) for some u≤ v. Then (q,u) πW−L

−−−→LW (q,v′)
for some v′ ≥ v, and (q,v′) π−→LW (q,v′).

Fix a path π in G, and assume that some cycle ϕ appears (at least) twice along π: the first time from
some configuration (q,u) to some configuration (q,u′), and the second time from (q,v) to (q,v′). First,
we may assume that ϕ has length at most |Q|, since otherwise we can take an inner subcycle. We may
also assume that v > u′, as otherwise we can apply Lemma 13 to get rid of the resulting nonpositive cycle
between (q,u′) and (q,v). For the same reason we may assume u′ > u and v′ > v. As a consequence, by
Lemmas 14 and 10, by repeatedly iterating ϕ from (q,u), we eventually reach some configuration (q,w)
with w≥ v′, from which we can follow the suffix of π after the second occurrence of ϕ . It follows that
all occurrences of ϕ along π can be grouped together, and we can restrict our attention to runs of the form
α1 ·ϕn1

1 ·α2 ·ϕn2
2 · · ·ϕ

nk
k ·αk+1 where the cycles ϕ j are distinct, and have size at most |Q|, and the finite

runs α j are acyclic. Notice that each occurrence of any cycle ϕ j can be assumed to have positive effect,
and by Lemma 15, we may assume n j =W −L for all j.

While this allows us to only consider paths of a special form, this does not provide short witnesses,
since there may be exponentially many cycles of length less than or equal to |Q|, and the witnessing run
may need to iterate several cycles looping on the same state (see Example 8). In order to circumvent this
problem, we have to show that all cycles need not be considered, and that one can compute the "useful"
cycles efficiently. For this, we introduce universal cycles, which are cycles that can be iterated from any
initial energy level (above L).

Definition 16 Let G be a one-player arena, and q be a state of G. Let W be a weak-upper bound
and L≤W be a lower bound. A universal cycle on q in G is a cycle ϕ with first(ϕ) = last(ϕ) = q such
that (q,L)

ϕ−→LW (q,vϕ,L) for some vϕ,L (i.e., the energy level never drops below the lower bound L when
following ϕ with initial energy level L). A universal cycle is positive if vϕ,L > L.
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When a cycle ϕ is iterated W −L times in a row, then some universal cycle σ is also iterated W −L−1
times (by considering the state with minimal energy level along ϕ). As a consequence, iterating only
universal cycles is enough: we may now only look for runs of the form β1 ·σn1

1 ·β2 ·σn2
2 · · ·σ

nk
k ·βk+1

where σ j’s are universal cycles of length at most |Q|. Now, assume that some state q admits two universal
cycles σ and σ ′, and that both cycles appear along a given run π . Write h (resp. h′) for the energy levels
reached after iterating σ (resp. σ ′) W −L times. We define a preorder on universal cycles of q by letting
σ . σ ′ when h≥ h′. Then if σ . σ ′, each occurrence of σ ′ along π can be replaced with σ , yielding a
run π ′ that still satisfies the LW-energy condition (and has the same first and last states). Generalizing this
argument, each state that admits universal cycles has an optimal universal cycle of length at most |Q|, and
it is enough to iterate only this universal cycle to find a path witnessing reachability. This provides us
with a small witness, of the form γ1 · τW−L

1 · γ2 · τW−L
2 · · ·τW−L

k · γk+1 where τ j are optimal universal cycles
of length at most |Q| and γ j are acyclic paths. Since it suffices to consider at most one universal cycle
per state, we have k ≤ |Q|. From this, we immediately derive an NP algorithm for solving LW-energy
reachability for one-player arenas: it suffices to non-deterministically select each portion of the path,
and compute that each portion is LW-feasible (notice that there is no need for checking universality nor
optimality of cycles; those properties were only used to prove that small witnesses exist). Checking
LW-feasibility requires computing the final energy level reached after iterating a cycle W −L times; this
can be performed by detecting the highest energy level along that cycle, and computing how much the
energy level decreases from that point on until the end of the cycle. This provides us with a way of
accelerating the computation of the effect of iterating cycles.

We now prove that optimal universal cycles of length at most |Q| can be computed for a given state q0.
For this we unwind the graph from q0 as a DAG of depth |Q|, so that it includes all cycles of length at
most |Q|. We name the states of this DAG [q′,d], where q′ is the name of a state of the arena and d is the
depth of this state in the DAG (using square brackets to avoid confusion with configurations (q, l) where
l is the energy level); hence there are transitions ([q′,d],w, [q′′,d +1]) in the DAG as soon as there is a
transition (q′,w,q′′) in the arena.

We then explore this DAG from its initial state [q0,0], looking for (paths corresponding to) universal
cycles. Our aim is to keep track of all runs from [q0,0] to [q′,d] that are prefixes of universal cycles
starting from q0. Actually, we do not need to keep track of those runs explicitly, and it suffices for each
such run to remember the following two values:

• the maximal energy level M that has been observed along the run so far (starting from energy
level L, with weak upper bound W );

• the difference m between the maximal energy level M and the final energy level in [q′,d]. Notice
that m≥ 0, and that the final energy level in [q′,d] is M−m.

Example 17 Figure 5 shows two universal cycles from q0 in an LW-energy game with L = 0 and W = 5.
The first cycle, going via q2, ends with M1 = 5 (reached in q2) and m1 = 4, thus with a final energy level
of 1 (when starting from energy level 0); actually, iterating this cycle will not improve this final energy
level. The second cycle, via q4 and q5, has a maximal energy level M2 = 4 (reached in q3) and ends with
m2 = 1. Hence, after one iteration of this cycle, one can end in state q0 with energy level W −m2 = 4.

If we know the values (M,m) of some path from [q0,0]) to [q′,d], we can decide if a given transition
with weight w from [q′,d] to [q′′,d +1] can be taken (the resulting path can still be a prefix of a universal
cycle if M−m+w≥ L ), and how the values of M and m have to be updated: if w > m, the run will reach
a new maximal energy level, and the new pair of values is (min(W ;M−m+w),0); if m+L−M ≤w≤m,
then the transition can be taken: the new energy level M−m+w will remain between L and M, and we
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Figure 5: Two cycles with upper bound W = 5

update the pair of values to (M,m−w); finally, if w < m+L−M, the energy level would go below L, and
the resulting run would not be a prefix of a universal cycle.

Following these ideas, we inductively attach labels to the states of the DAG: initially, [q0,0] is labelled
with (M = L,m = 0); then if a state [q′,d] is labelled with (M,m), and if there is a transition from [q′,d]
to [q′′,d +1] with weight w:

• if w > m, then we label [q′′,d +1] with the pair (min(W ;M−m+w),0);

• if m+L−M ≤ w≤ m, we label [q′′,d +1] with (M,m−w).

The following lemma makes a link between runs in the DAG and labels computed by our algorithm:

Lemma 18 Let [q,d] be a state of the DAG, and M and m be two integers such that 0 ≤ m ≤ M−L.
Upon termination of this algorithm, state [q,d] of the DAG is labelled with (M,m) if, and only if, there
is an LW-run of length d from (q0,L) to (q,M−m) along which the energy level always remains in the
interval [L,M] and equals M at some point.

Lemma 19 Let [q0,d] be a state of the DAG, with d > 0. Let m be a nonnegative integer such that
L+m <W. Upon termination of this algorithm, state [q0,d] is labelled with (M,m) for some M > L+m

if, and only if, there is a universal cycle ϕ on q0 of length d such that (q0,L)
ϕW−L

−−−→LW (q0,W −m).

Proof. First assume that [q0,d] is labelled with (M,m) for some M such that M−m > L. From Lemma 18,
there is a cycle ϕ on q0 of length d generating a run (q0,L)

ϕ−→LW (q0,M−m) along which the energy

level is within [L,M]. Then M−m≥ L, so that Lemma 15 applies: we then get (q0,L)
ϕW−L

−−−→LW (q0,E)
with (q0,E)

ϕ−→LW (q0,E) and E ≥ L. Write (pi)0≤i<|ϕ| for the sequence of weights along ϕ . Also write ρ

for the run (q0,L)
ϕ−→LW (q0,M−m), and σ for the run (q0,E)

ϕ−→LW (q0,E).
As L < M−m, then by Lemma 11, it must be the case that energy level W is reached along σ . Write i0

for the first position along ρ for which the energy level is M. Assume σ̃i0 6=W : by Lemma 10, we must
have M = ρ̃i0 ≤ σ̃i0 <W . Then for all k≥ i0, ∑

k
l=i0 pl ≤ 0. Since σ̃i0 <W , then also σ̃k <W for all k≥ i0.

According to Lemma 11, energy level W is reached in σ , so there exists some k0 < i0 such that σ̃k0 =W .
However, as i0 is the index of the first maximal value in ρ , we have ρ̃k0 < M, and the energy level
increases in run ρ between k0 and i0. So according to Lemma 12, we should have σ̃i0 =W , which raises a
contradiction. Hence we proved σ̃i0 =W ; applying the second result of Lemma 12, we get E =W −m.

Conversely, if there is a universal cycle ϕ satisfying the conditions of the lemma, then it must
have positive effect when run from energy level L. Let F be such that (q0,L)

ϕ−→LW (q0,F), and M be
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the maximal energy level encountered along the run (q0,L)
ϕ−→LW (q0,F). By Lemma 18, state [q0,d] is

labelled with (M,m′) for some m′ ≥ 0 such that F = M−m′. By Lemma 15, we must have (q0,L)
ϕW−L

−−−→LW

(q0,W −m′). �

The algorithm above computes optimal universal cycles, but it still runs in exponential time (in the
worst case) since it may generate exponentially many different labels in each state [q,d] (one per path
from [q0,0] to [q,d]). We now explain how to only generate polynomially-many pairs (M,m). This is
based on the following partial order on labels: we let (M,m)� (M′,m′) whenever M−m≤M′−m′ and
m′ ≤ m. Notice in particular that

• if M = M′, then (M,m)� (M′,m′) if, and only if, m′ ≤ m;

• if m = m′, then (M,m)� (M′,m′) if, and only if, M ≤M′.

The following lemma entails that it suffices to store maximal labels w.r.t. �:

Lemma 20 Consider two paths π and π ′ such that first(π) = first(π ′) and last(π) = last(π ′), and with
respective values (M,m) and (M′,m′) such that (M,m)� (M′,m′). If π is a prefix of a universal cycle ϕ ,
then π ′ is a prefix of a universal cycle ϕ ′ with ϕ ′ . ϕ .

It remains to prove that by keeping only maximal labels, we only store a polynomial number of labels:

Lemma 21 If the algorithm labelling the DAG only keeps maximal labels (for �), then it runs in
polynomial time.

Proof. We prove that, when attaching to each node [q,d] of the DAG only the maximal labels (w.r.t �)
reached for a path of length d ending in state q, the number of values for the first component of the
different labels that appear at depth d > 0 in the DAG is at most d · |Q|. Since it only stores optimal
labels, our algorithm will never associate to a state [q,d] two labels having the same value on their first
component. So, any state at depth d will have at most d · |Q| labels.

So we prove, by induction on d, that the number of different values for the first component among the
labels appearing at depth d > 0 is at most d · |Q|. This is true for d = 1 since the initial state (q,0) only
contains (M = 0,m = 0), and each transition with nonnegative weight w will create one new label (w,0)
(transitions with negative weight are not prefixes of universal cycles). Now, since all those labels have
value 0 as their second component, each state [q,1] in the DAG will be attached at most one label. Hence,
the total number of labels (and the total number of different values for their first component) is at most |Q|
at depth 1 in the DAG.

Now, assume that labels appearing at depth d > 1 are all drawn from a set of labels {(Mi,mi) | 1≤ i≤
n} in which the number of different values of Mi is at most d · |Q|. Consider a state [q′,d], labelled with
{(Mi,mi) | 1≤ i≤ nq′,d} (even if it means reindexing the labels). Pick a transition from [q′,d] to [q′′,d+1],
with weight w. For each pair (Mi,mi) associated with [q′,d], it creates a new label in [q′′,d +1], which is

• either (min(W ;Mi−mi +w),0) if mi < w (maximal energy level increases);

• or (Mi,mi−w) if mi +L−Mi ≤ w≤ mi (maximal energy level in unchanged).

Now, for a state (q′′,d+1), the set of labels created by all incoming transitions can be grouped as follows:

• labels having zero as their second component; among those, our algorithm only stores the one with
maximal first component, as (Mi,0)� (M j,0) as soon as Mi ≤M j;

• for each Mi appearing at depth d, labels having Mi as their first component; again, we only keep the
one with minimal second component, as (M,mi)� (M,m j) when m j ≤ mi.
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Last, for this state [q′′,d+1], we keep at most one label for each distinct value among the first components
Mi of labels appearing at depth d, and possibly one extra label with second value 0. In other terms, at
depth d +1 the values that appear as first component of labels are obtained from values at depth d, plus
possibly one per state; Hence, at depth d +1, there exists at most (d +1) · |Q| labels, which completes the
proof of the induction step. �

Using the algorithm above, we can compute, for each state q of the original arena, the smallest
value mq for which there exists a universal cycle on q that, when iterated sufficiently many times, leads to
configuration (q,W −mq). Since universal cycles can be iterated from any energy level, if q is reachable,
then it is reachable with energy level W −mq. We make this explicit by adding to our arena a special
self-loop on q, labelled with set(W −mq), which sets the energy level to W −mq (in the same way as
recharge transitions of [16]).

In the resulting arena, we can restrict to paths of the form γ1 · ν1 · γ2 · ν2 · · ·νk · γk+1, where νi are
newly added transitions labelled with set(W −m), and γi are acyclic paths. Such paths have length at
most (|Q|+1)2. We can then inductively compute the maximal energy level that can be reached (under
our LW-energy constraint) in any state after paths of length less than or equal to (|Q|+1)2. This can be
performed by unwinding (as a DAG) the modified arena from the source state q0 up to depth (|Q|+1)2,
and labelling the states of this DAG by the maximal energy level with which that state can be reached
from (q0,L); this is achieved in a way similar to our algorithm for computing the effect of universal cycles,
but this time only keeping the maximal energy level that can be reached (under LW-energy constraint). As
there are at most |Q| states per level in this DAG of depth at most (|Q|+1)2, we get:

Theorem 22 The existence of a winning path in one-player LW-energy-reachability games can be decided
in PTIME.

Example 23 Consider the one-player arena of Fig. 6. We assume L = 0, and fix an even weak upper
bound W. The state s has W/2 disjoint cycles: for each odd integer i in [0;W −1], the cycle ci is made of
three consecutive edges with weights −i, +W and −W + i+1. Similarly, the state s′ has W/2 disjoint
cycles: for even integers i in [0;W −1], the cycle c′i has weights −i, +W and −W + i+1. Finally, there
are: two sequences of k edges of weight 0 from s to s′ and from s′ to s; an edge from the initial state to s of
weight 1, and from s′ to target state qt of weight −W. The total number of states then is 2W +2k+2.

In order to go from the initial state q0, with energy level 0, to the final state qt , we have to first take
the cycle c1 (with weights −1, +W, −W + 2) on s (no other cycles ci can be taken). We then reach
configuration (s,2). Iterating c1 has no effect, and the only next interesting cycle is c2, for which we have
to go to s′. After running c2, we end up in (s′,3). Again, iterating c2 has no effect, and we go back to s,
take c3, and so on. We have to take each cycle ci (at least) once, and take the sequences of k edges
between s and s′ W/2 times each. In the end, we have a run of length 3W +Wk+2.

q0 qt

s s′

1 −W
k edges

weight=0

k edges

weight=0

−i;+W ;−W + i+1
(i odd)

−i;+W ;−W + i+1
(i even)

Figure 6: An example showing that more than one cycle per state can be needed.
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Let us look at the universal cycles that we have in this arena: besides the cycles made of the 2k edges
with weight zero between s and s′, the only possible universal cycles have to depart from the first state of
each cycle ci (as they are the only states having a positive outgoing edge). Following Lemma 15, such
cycles can be iterated arbitrarily many times, and set the energy level to some value in [L;W ]. Since the
only edge available at the end of a universal cycle has weight +W, the exact value of the universal cycles
is irrelevant: the energy level will be W anyway when reaching the second state of each cycle ci. As a
consequence, using set-edges in this example does not shorten the witnessing run, which then cannot be
shorter than 3W +Wk+2.

We now move to the two-player setting. We begin with proving a result similar to Lemma 10:
Lemma 24 Let G be a two-player arena, equipped with an LW-energy-reachability objective. Let q be a
state of G, and u≤ u′ in [L;W ]. If Player 1 wins the game from (q,u), then she also wins from (q,u′).

By Martin’s theorem [24], our games are determined. It follows that if Player 2 wins from some
configuration (q,v), she also wins from (q,v′) for all L≤ v′ ≤ v (assuming the contrary, i.e. (q,v′) winning
for Player 1, would lead to the contradictory statement that (q,v) is both winning for Player 1 and Player 2).
Using classical techniques [9], we prove that Player 2 can be restricted to play memoryless strategies:

Proposition 25 For two-player LW-energy-reachability games, memoryless strategies are sufficient for
Player 2.

A direct consequence of this result and of Theorem 22 is the following:
Corollary 26 Two-player LW-energy-reachability games are in coNP.

5 Energy reachability games with soft upper bound

We now consider games with limited violations, i.e. (reachability) games with LSU#-energy, LSU#-energy
and LSUΣ-energy objectives. We address the problems of deciding the winner in the one-player and
two-player settings, and consider the existence and minimization questions.

Theorem 27 LSU#-energy, LSU#-energy and LSUΣ-energy (reachability) games are PSPACE-complete
for one-player arenas, and EXPTIME-complete for two-player arenas.

Proof. Membership in PSPACE and EXPTIME can be obtained by building a variant GLSU of the GLU

arena: besides storing the energy level in each state, we can also store the amount of violations (for any of
the three measures we consider). More precisely, given an arena G, lower and upper bounds L and U on
the energy level, a soft bound S, and a bound V on the measure of violations, we define a new arena3 GLSU

with set of states (Q× ([L;U ]∪{⊥})× ([0;V ]∪{⊥})3), and each transition (q,w,q′) of the original arena
generates a transition from state (q, l,(n,c,s)) to state (q′, l′,(n′,c′,s′)) whenever

• l′ correctly encodes the evolution of the energy level: if l and l +w are in [L;U ], then l′ = l +w;
if the energy level leaves interval [L;U ] (l +w < L or l +w >U) or has formerly leaved interval
[L;U ] (in this case l =⊥), then l′ =⊥.

• n′ correctly stores the number of violations: n′ = ⊥ if l′ ∈ (S;U ] and n+ 1 > V (the number of
violations allowed is exceeded); once the number of violations is exceeded (n =⊥) or the maximal
energy level is exceeded (l′ =⊥), we have n′ =⊥; last, n′ = n if l′ ∈ [L;S] (the current state does
not violate bound S), and n′ = n+1 if l′ ∈ (S;U ] and n+1≤V (the current state is an additional
violation of soft bound S);

3In order to factor our proof, we store all three measures of violations in one single arena, even if only one measure per type
of LSU-energy game is needed.
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We can similarly update c′ to count the current number of consecutive violations, and s′ for the sum
of all violations. In the resulting arena, values n, c and s keep tack of the number of violations, number
of consecutive violations and sum of violations; their values range in [0,V ] and are set to ⊥ as soon as
they exceed bound V , or if the energy level has exceeded its bounds. The arena GLSU has size exponential,
and LSU?-energy-reachability problems can then be reduced to solving reachability of corresponding
sets of states in GLSU. The announced complexity results follow. Hardness results are obtained by a
straightforward encoding of LU-energy reachability problems, taking S =U and V = 0.

Solving LSU#-energy, LSU#-energy, LSUΣ-energy games (without reachability objective) can be
performed with arena GLSU built above. Now, the objective in LSU#-energy, LSU#-energy, LSUΣ-energy
games is to enforce infinite runs, that avoid states with l =⊥ and with n =⊥, c =⊥ or s =⊥, depending
on the chosen measure of violations. �

When the strong upper bound U is not given, the existence problem consists in deciding if such a
bound exists under which Player 1 wins the LSU?-energy game. We have:
Theorem 28 The existence problems for LSU#-energy, LSU#-energy, and LSUΣ-energy (reachability)
games are PSPACE complete for the one-player case and EXPTIME-complete for the two-player case.

Proof. Along any outcome of a winning strategy, the energy level remains below S+V ·wmax, where wmax
is the maximal weight appearing on transitions of G. This gives a strong upper bound U , with which we
can apply the construction above and check the existence of a winning strategy for Player 1. �

Theorem 29 Let G be an arena, L and S be integer bounds, and Vmax be an integer. There exist algorithms
that compute the value of U (if any) that minimizes the value of V (below Vmax) for which Player 1 has a
winning strategy in a LSU?-energy (reachability) game. These algorithms run in PSPACE for one-player
games and in EXPTIME for two-player games. These bounds are sharp.

Proof. We perform a binary search for an optimal value for V when the strict upper energy bound U varies
between S and S+Vmax.wmax. For each value U , we discard from GLSU transitions for which the energy
level exceeds U . One can remark that when U grows, the minimal amount of violation may decrease, both
in reachability and infinite-run games. We can hence discover optimal values with a polynomial number
of PSPACE checks (for the one-player games), and EXPTIME checks in the two-player case. �

6 Conclusion

This paper has considered several variants of energy games. The first variant defines games with upper and
lower bound constraints, combined with reachability objectives. The second variant defines games with a
strong lower bound and a soft upper bound, which can be temporarily exceeded. In the one player case,
complexities ranges from PTIME to PSPACE-complete, and in the two-player case from NP∩ coNP to
EXPTIME-complete. In general, the complexity is the same for a reachability and for an infinite run
objective. Interestingly, for LW-energy games, the complexity of the single player case is PTIME, but
reachability objectives require exponential memory (in the size of the weak upper bound) while strategies
are memoryless for infinite run objectives.

A possible extension of this work is to consider energy games with mean-payoff functions and
discounted total payoff, both for the energy level and for the violation constraints, and the associated
minimization and existence problems.
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