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Parity gamesare two-player infinite-duration games on graphs that play acrucial role in various
fields of theoretical computer science. Finding efficient algorithms to solve these games in prac-
tice is widely acknowledged as a core problem in formal verification, as it leads to efficient solu-
tions of the model-checking and satisfiability problems of expressive temporal logics,e.g., the modal
µCALCULUS. Their solution can be reduced to the problem of identifyingsets of positions of the
game, called dominions, in each of which a player can force a win by remaining in the set forever.
Recently, a novel technique to compute dominions, calledpriority promotion, has been proposed,
which is based on the notions of quasi dominion, a relaxed form of dominion, and dominion space.
The underlying framework is general enough to accommodate different instantiations of the solution
procedure, whose correctness is ensured by the nature of thespace itself. In this paper we propose
a new such instantiation, calleddelayed promotion, that tries to reduce the possible exponential be-
haviours exhibited by the original method in the worst case.The resulting procedure not only often
outperforms the original priority promotion approach, butso far no exponential worst case is known.

1 Introduction

The abstract concept ofgamehas proved to be a fruitful metaphor in theoretical computerscience [1].
Severaldecision problemscan, indeed, be encoded aspath-forming games on graphs, where a player
willing to achieve a certain goal, usually the verification of some property on the plays derived from the
original problem, has to face an opponent whose aim is to pursue the exact opposite task. One of the
most prominent instances of this connection is representedby the notion ofparity game[18], a simple
two-player turn-based perfect-information game played ondirected graphs, whose nodes are labelled
with natural numbers calledpriorities. The goal of the first (resp., second) player,a.k.a., even(resp.,
odd) player, is to force a playπ, whose maximal priority occurring infinitely often alongπ is of even
(resp., odd) parity. The importance of these games is due to the numerous applications in the area of
system specification, verification, and synthesis, where itis used as algorithmic back-end of satisfiabil-
ity and model-checking procedures for temporal logics [6, 8, 16], and as a core for several techniques
employed in automata theory [7, 10, 15, 17]. In particular, it has been proved to be linear-time interre-
ducible with the model-checking problem for themodalµCALCULUS [8] and it is closely related to other
games of infinite duration, asmean payoff[5,11], discounted payoff[24], simple stochastic[4], anden-
ergy[3] games. Besides the practical importance, parity games are also interesting from a computational
complexity point of view, since their solution problem is one of the few inhabitants of the UPTIME ∩
COUPTIME class [12]. That result improves the NPTIME ∩ CONPTIME membership [8], which easily
follows from the property ofmemoryless determinacy[7, 18]. Still open is the question about the mem-
bership in PTIME. The literature on the topic is reach of algorithms for solving parity games, which
can be mainly classified into two families. The first one contains the algorithms that, by employing a
divide et imperaapproach, recursively decompose the problem into subproblems, whose solutions are
then suitably assembled to obtain the desired result. In this category fall, for example,Zielonka’s recur-
sive algorithm[23] and itsdominion decomposition[14] andbig step[19] improvements. The second
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family, instead, groups together those algorithms that tryto compute a winning strategy for the two play-
ers on the entire game. The principal members of this category are represented byJurdziński’s progress
measurealgorithm [13] and thestrategy improvementapproaches [20–22].

Recently, a newdivide et imperasolution algorithm, calledpriority promotion (PP, for short), has
been proposed in [2], which is fully based on the decomposition of the winning regions intodominions.
The idea is to find a dominion for some of the two players and then remove it from the game, thereby
allowing for a recursive solution. The important difference w.r.t. the other two approaches [14,19] based
on the same notion is that these procedures only look for dominions of a certain size in order to speed
up classic Zielonka’s algorithm in the worst case. Consequently, they strongly rely on this algorithm for
their completeness. On the contrary, the PP procedure autonomously computes dominions of any size,
by suitably composing quasi dominions, a weaker notion of dominion. Intuitively, aquasi dominion
Q for playerα ∈ {0,1} is a set of vertices from each of which playerα can enforce a winning play
that never leaves the region, unless one of the following twoconditions holds:(i) the opponentα can
escape from Q (i.e., there is an edge from a vertex ofα exiting from Q) or(ii) the only choice for player
α itself is to exit from Q (i.e., no edge from a vertex ofα remains in Q). A crucial feature of quasi
dominion is that they can be ordered by assigning to each of them a priority corresponding to an under-
approximation of the best value forα the opponentα can be forced to visit along any play exiting from it.
Indeed, under suitable and easy to check assumptions, a higher priority quasiα-dominion Q and a lower
priority one Q, can be merged into a single quasiα-dominion of the higher priority, thus improving the
approximation for Q. This merging operation is called a priority promotion of Q to Q. The PP
solution procedure has been shown to be very effective in practice and to often significantly outperform
all other solvers. Moreover, it also improves on the space complexity of the best know algorithm with an
exponential gainw.r.t. the number of priorities and by a logarithmic factorw.r.t. the number of vertexes.
Indeed, it only needs O(n· logk) space against the O(k ·n· logn) required by Jurdziński’s approach [13],
wheren andk are, respectively, the numbers of vertexes and priorities of the game. Unfortunately, the PP
algorithm also exhibits exponential behaviours on a simplefamily of games. This is due to the fact that,
in general, promotions to higher priorities requires resetting promotions previously performed at lower
ones.

In this paper, we continue the study of the priority promotion approaches trying to find a remedy to
this problem. We propose a new algorithm, called DP, built ontop of a slight variation of PP, called PP+.
The PP+ algorithm simply avoids resetting previous promotions to quasi dominions of the same parity.
In this case, indeed, the relevant properties of those quasidominions are still preserved. This variation
enables the new DP promotion policy, that delays promotionsthat require a reset and only performs
those leading to the highest quasi dominions among the available ones. For the resulting algorithm no
exponential worst case has been found. Experiments on randomly generated games also show that the
new approach performs much better than PP in practice, whilestill preserving the same space complexity.

2 Preliminaries

Let us first briefly recall the notation and basic definitions concerning parity games that expert readers
can simply skip. We refer to [1] [23] for a comprehensive presentation of the subject.

Given a partial functionf : A ⇀ B, by dom(f) ⊆ A and rng(f) ⊆ B we indicate the domain and
range off, respectively. In addition,⊎ denotes thecompletion operatorthat, takenf and another partial
functiong : A ⇀ B, returns the partial functionf ⊎g, (f \dom(g))∪g : A ⇀ B, which is equal tog on
its domain and assumes the same values off on the remaining part of A.
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A two-player turn-basedarenais a tupleA =〈Ps,Ps,Mv〉, with Ps∩Ps = /0 and Ps, Ps∪Ps,
such that〈Ps,Mv〉 is a finite directed graph. Ps (resp., Ps) is the set of positions of player 0 (resp., 1)
andMv⊆ Ps×Ps is a left-total relation describing all possible moves. Apath in V ⊆ Ps is a finite or
infinite sequenceπ ∈ Pth(V) of positions in V compatible with the move relation,i.e., (πi ,πi+1) ∈Mv,
for all i ∈ [0, |π|−1[. For a finite pathπ, with lst(π) we denote the last position ofπ. A positional
strategyfor playerα ∈ {0,1} on V⊆ Ps is a partial functionσα ∈ Strα(V)⊆ (V ∩Psα)⇀ V, mapping
eachα-positionv∈ dom(σα) to positionσα(v) compatible with the move relation,i.e., (v,σα (v)) ∈Mv.
With Strα(V) we denote the set of allα-strategies on V. Aplay in V ⊆ Ps from a positionv∈ V w.r.t.
a pair of strategies(σ,σ) ∈ Str(V)×Str(V), called ((σ,σ),v)-play, is a pathπ ∈ Pth(V) such
that π = v and, for all i ∈ [0, |π| −1[, if πi ∈ Ps then πi+1 = σ (πi) elseπi+1 = σ (πi). The play
functionplay : (Str(V)×Str(V))×V→ Pth(V) returns, for each positionv∈ V and pair of strategies
(σ,σ) ∈ Str(V)×Str(V), the maximal((σ,σ),v)-play play((σ ,σ ),v).

A parity gameis a tuplea = 〈A ,Pr,pr〉, whereA is an arena, Pr⊂ N is a finite set of priorities,
andpr : Ps→ Pr is apriority function assigning a priority to each position. The priority function can
be naturally extended to games and paths as follows:pr(a) , maxv∈Pspr(v); for a pathπ ∈ Pth, we
setpr(π) ,maxi∈[0,|π|[ pr(πi), if π is finite, andpr(π) , limsupi∈N pr(πi), otherwise. A set of positions
V ⊆ Ps is anα-dominion, with α ∈ {0,1}, if there exists anα-strategyσα ∈ Strα(V) such that, for
all α-strategiesσα ∈ Strα(V) and positionsv∈ V, the induced playπ = play((σ,σ),v) is infinite and
pr(π)≡2 α . In other words,σα only induces on V infinite plays whose maximal priority visited infinitely
often has parityα . By a\V we denote the maximal subgame ofa with set of positions Ps′ contained in
Ps\V and move relationMv′ equal to the restriction ofMv to Ps′.

Theα-predecessor of V, in symbolspreα(V), {v∈ Psα : Mv(v)∩V 6= /0}∪{v∈ Psα : Mv(v)⊆ V},
collects the positions from which playerα can force the game to reach some position in V with a single
move. Theα-attractoratrα(V) generalises the notion ofα-predecessorpreα(V) to an arbitrary number
of moves, and corresponds to the least fix-point of that operator. When V= atrα(V), we say that V
is α-maximal. Intuitively, V isα-maximal if playerα cannot force any position outside V to enter
the set. For such a V, the set of positions of the subgamea \V is precisely Ps\V. Finally, the set
escα(V) , preα(Ps\V)∩V, called theα-escapeof V, contains the positions in V from whichα can
leave V in one move. The dual notion ofα-interior, defined asintα(V), (V∩Psα)\escα(V), contains,
instead, theα-positions from whichα cannot escape with a single move. All the operators and sets
above actually depend on the specific gamea they are applied in. In the rest of the paper, we shall only
adda as subscript of an operator,e.g., escα

a
(V), when the game is not clear from the context.

3 The Priority Promotion Approach

The priority promotion approach proposed in [2] attacks theproblem of solving a parity gamea by
computing one of its dominions D, for some playerα ∈ {0,1}, at a time. Indeed, once theα-attractor
D⋆ of D is removed froma, the smaller gamea \D⋆ is obtained, whose positions are winning for one
player iff they are winning for the same player in the original game. This allows for decomposing the
problem of solving a parity game to that of iteratively finding its dominions [14].

In order to solve the dominion problem, the idea is to start from a much weaker notion than that of
dominion, calledquasi dominion. Intuitively, a quasiα-dominion is a set of positions on which playerα
has a strategy whose induced plays either remain inside the set forever and are winning forα or can exit
from it passing through a specific set of escape positions.
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Definition 3.1 (Quasi Dominion [2]). Let a ∈ PG be a game andα ∈ {0,1} a player. A non-empty
set of positionsQ ⊆ Ps is a quasiα-dominion in a if there exists anα-strategyσα ∈ Strα(Q) such
that, for all α-strategiesσα ∈ Strα(Q), with intα(Q)⊆ dom(σα), and positions v∈Q, the induced play
π = play((σ,σ),v) satisfiespr(π)≡2 α , if π is infinite, andlst(π) ∈ escα(Q), otherwise.

Observe that, if all the induced plays remain in the set Q forever, this is actually anα-dominion
and, therefore, a subset of the winning region Wnα of α . In this case, the escape set of Q is empty,
i.e., escα(Q) = /0, and Q is said to beα-closed. In general, however, a quasiα-dominion Q that is
not anα-dominion, i.e., such thatescα(Q) 6= /0, need not be a subset of Wnα and it is calledα-open.
Indeed, in this case, some induced play may not satisfy the winning condition for that player once exited
from Q, by visiting a cycle containing a position with maximal priority of parity α . The set of pairs
(Q,α) ∈ 2Ps×{0,1}, where Q is a quasiα-dominion, is denoted by QD, and is partitioned into the sets
QD− and QD+ of open and closed quasiα-dominion pairs, respectively.

Algorithm 1: The Searcher. [2]

signature srcD : SD →QD+
aD

function srcD(s)
1 (Q,α)←ℜD (s)
2 if (Q,α) ∈QD+

aD
then

3 return (Q,α)

else
4 return srcD(s↓D(Q,α))

The priority promotion algorithm explores a partial order,
whose elements, calledstates, record information about the
open quasi dominions computed along the way. The initial
state of the search is the top element of the order, where the
quasi dominions are initialised to the sets of positions with the
same priority. At each step, a new quasi dominion is extracted
from the current state, by means of aquery operatorℜ, and
used to compute a successor state, by means of asuccessorop-
erator↓, if the quasi dominion is open. If, on the other hand,
it is closed, the search is over. Algorithm 1 implements the do-
minion search proceduresrcD . A compatibility relation� connects the query and the successor operators.
The relation holds between states of the partial order and the quasi dominions that can be extracted by the
query operator. Such a relation defines the domain of the successor operator. The partial order, together
with the query and successor operator and the compatibilityrelation, forms what is called adominion
space.

Definition 3.2 (Dominion Space [2]). A dominion spacefor a gamea ∈ PG is a tupleD ,〈a,S ,�,ℜ,
↓〉, where(1) S ,〈S,⊤,≺〉 is a well-founded partial orderw.r.t.≺ ⊂ S×Swith distinguished element
⊤ ∈ S, (2) � ⊆ S×QD− is thecompatibility relation, (3) ℜ : S→ QD is thequery operatormapping
each element s∈ S to a quasi dominion pair(Q,α) , ℜ(s) ∈ QD such that, if(Q,α) ∈ QD− then
s�(Q,α), and (4) ↓ : �→ S is thesuccessor operatormapping each pair(s,(Q,α)) ∈ � to the element
s⋆ , s↓(Q,α) ∈ S with s⋆≺s.

The notion of dominion space is quite general and can be instantiated in different ways, by providing
specific query and successor operators. In [2], indeed, it isshown that the search proceduresrcD is sound
and complete on any dominion spaceD . In addition, its time complexity is linear in theexecution depth
of the dominion space, namely the length of the longest chainin the underlying partial order compatible
with the successor operator, while its space complexity is only logarithmic in the spacesize, since only
one state at the time needs to be maintained. A specific instantiation of dominion space, called PP
dominion space, is the one proposed and studied in [2]. Here we propose a different one, starting from a
slight optimisation, called PP+, of that original version.

PP+Dominion Space. In order to instantiate a dominion space, we need to define a suitable query
function to compute quasi dominions and a successor operator to ensure progress in the search for a
closed dominion. The priority promotion algorithm proceeds as follows. The input game is processed in
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descending order of priority. At each step, a subgame of the entire game, obtained by removing the quasi
domains previously computed at higher priorities, is considered. At each priority of parityα , a quasi
α-domain Q is extracted by the query operator from the currentsubgame. If Q is closed in the entire
game, the search stops and returns Q as result. Otherwise, a successor state in the underlying partial
order is computed by the successor operator, depending on whether Q is open in the current subgame or
not. In the first case, the quasiα-dominion is removed from the current subgame and the searchrestarts
on the new subgame that can only contain position with lower priorities. In the second case, Q is merged
together with some previously computed quasiα-dominion with higher priority. Being a dominion space
well-ordered, the search is guaranteed to eventually terminate and return a closed quasi dominion. The
procedure requires the solution of two crucial problems:(a) extracting a quasi dominionfrom a subgame
and(b) merging together two quasiα-dominionsto obtain a bigger, possibly closed, quasiα-dominion.

The solution of the first problem relies on the definition of a specific class of quasi dominions, called
regions. An α-region R of a gamea is a special form of quasiα-dominion ofa with the additional
requirement that all the escape positions inescα(R) have the maximal priorityp, pr(a) ≡2 α in a. In
this case, we say thatα-region R has priorityp. As a consequence, if the opponentα can escape from
theα-region R, it must visit a position with the highest priorityin it, which is of parityα .

Definition 3.3 (Region [2]). A quasiα-dominionR is anα-region ina if pr(a)≡2 α and all the positions
in escα(R) have prioritypr(a), i.e.escα(R)⊆ pr−(pr(a)).

It is important to observe that, in any parity game, anα-region always exists, for someα ∈ {0,1}. In
particular, the set of positions of maximal priority in the game always forms anα-region, withα equal to
the parity of that maximal priority. In addition, theα-attractor of anα-region is always an (α-maximal)
α-region. A closedα-region in a game is clearly anα-dominion in that game. These observations give
us an easy and efficient way to extract a quasi dominion from every subgame: collect theα-attractor
of the positions with maximal priorityp in the subgame, wherep≡2 α , and assignp as priority of the
resulting region R. This priority, calledmeasureof R, intuitively corresponds to an under-approximation
of the best priority playerα can force the opponentα to visit along any play exiting from R.

Proposition 3.1 (Region Extension [2]). Let a ∈ PG be a game andR⊆ Psan α-region ina. Then,
R⋆ , atrα(R) is anα-maximalα-region ina.

A solution to the second problem, the merging operation, is obtained as follows. Given anα-region
R in some gamea and anα-dominion D in a subgame ofa that does not contain R itself, the two sets
are merged together, if the only moves exiting fromα-positions of D in the entire game lead to higher
priority α-regions and R has the lowest priority among them. The priority of R is called thebest escape
priority of D for α . The correctness of this merging operation is established by the following proposition.

Proposition 3.2(Region Merging [2]). Leta ∈ PGbe a game,R⊆ Psan α-region, andD ⊆ Psa\R an

α-dominion in the subgamea\R. Then,R⋆ , R∪D is anα-region ina. Moreover, if bothR andD are
α-maximal ina anda\R, respectively, thenR⋆ is α-maximal ina as well.

The merging operation is implemented by promoting all the positions ofα-dominion D to the mea-
sure of R, thus improving the measure of D. For this reason, itis called apriority promotion. In [2] it is
shown that, after a promotion to some measurep, the regions with measure lower thanp might need to be
destroyed, by resetting all the contained positions to their original priority. This necessity derives from
the fact that the new promoted region may attract positions from lower ones, thereby potentially invali-
dating their status as regions. Indeed, in some cases, the player that wins by remaining in the region may
even change fromα to α . As a consequence, the reset operation is, in general, unavoidable. The original
priority promotion algorithm applies the reset operation to all the lower priority regions. However, the
following property ensures that this can be limited to the regions belonging to the opponent player only.
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Proposition 3.3(Region Splitting). Leta⋆ ∈ PG be a game andR⋆ ⊆ Psa⋆ an α-maximalα-region in
a⋆. For any subgamea of a⋆ andα-region R⊆ Psin a, if R♮ , R\R⋆ 6= /0, thenR♮ is anα-region in
a\R⋆.

This proposition, together with the observation thatα-regions that can be extracted from the corre-
sponding subgames cannot attract positions contained in any retainedα-region, allows for preserving all
the lowerα-regions computed so far.

To exemplify the idea, Table 1 shows a simulation of the resulting procedure on the parity game of
Figure 1, where diamond shaped positions belong to player 0 and square shaped ones to its opponent 1.
Player 0 wins the entire game, hence the 0-region containingall the positions is a 0-dominion in this case.
Each cell of the table contains a computed region. A downwardarrow denotes a region that is open in
the subgame where it is computed, while an upward arrow meansthat the region gets to be promoted to
the priority in the subscript. The index of each row corresponds to the measure of the region. Following
the idea sketched above, the first region obtained is the single-position 0-region{a} of measure 6, which
is open because of the two moves leading tod ande. The open 1-region{b,f,h} of measure 5 is, then,
formed by attracting bothf andh tob, which is open in the subgame where{a} is removed. Similarly, the
0-region{c,j} of measure 4 and the 1-region{d} of measure 3 are open, once removed{a,b,f,h} and
{a,b,c,f,h}, respectively, from the game. At priority 2, the 0-region{e} is closed in the corresponding
subgame. However, it is not closed in the whole game, becauseof the move leading toc, i.e., to the
region of measure 4. Proposition 3.2 can now be applied and a promotion of{e} to 4 is performed,
resulting in the new 0-region{c,e,j} that resets 1-region{d}. The search resumes at the corresponding
priority and, after computing the extension of such a regionvia the attractor, we obtain that it is still open
in the corresponding subgame. Consequently, the 1-region{d} of measure 3 is recomputed and, then,
priority 1 is processed to build the 1-region{g}. The latter is closed in the associated subgame, but not
in the original game, because of a move leading to positiond. Hence, another promotion is performed,
leading to the closed region of measure 3 at Column 3, which inturn triggers a promotion to 5. When
the promotion of 0-region{i} to priority 6 is performed, however, 0-region{c,e,j} of measure 4 is not
reset. This leads directly to the configuration in Column 6, after the maximisation of 0-region 6, which
attractsb, d, g, andj. Notice that, as prescribed by Proposition 3.3, the set{c,e}, highlighted by the grey
area, is still a 0-region. On the other hand, the set{f,h}, highlighted by the dashed line and originally
included in 1-region{b,d,f,g,h} of priority 5, needs to be reset, since it is not a 1-region anymore. It
is, actually, an open 0-region instead. Now, 0-region 4 is closed in its subgame and it is promoted to 6.
As result of this promotion, we obtain the closed 0-region{a,b,c,d,e,g,i,j}, which is a dominion for
player 0.

c/4 e/2

j/4

a/6

i/0

d/3

b/5

g/1

h/1 f/2

Figure 1: Running example.

1 2 3 4 5 6

6 a↓ ·· · · · · · · · · · · a,b,d,g,i,j↓
5 b,f,h↓ ·· · · · · b,d,f,g,h↓ ·· ·
4 c,j↓ c,e,j↓ ·· · c,j↓ c,e,j↓ c,e↑6
3 d↓ d↓ d,g↑5
2 e↑4 e↑4
1 g↑3
0 i↑6

Table 1: PP+ simulation.

We can now provide the formal account of the PP+ dominion space. We shall denote with Rg the set
of region pairs ina and with Rg− and Rg+ the sets of open and closed region pairs, respectively.

Similarly to the priority promotion algorithm, during the search for a dominion, the computed regions,
together with their current measure, are kept track of by means of an auxiliary priority functionr ∈ ∆ ,
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Ps→ Pr, calledregion function. Given a priorityp ∈ Pr, we denote byr(≥p) (resp., r(>p), r(<p), and
r(≡2p)) the function obtained by restricting the domain ofr to the positions with measure greater than or
equal top (resp., greater than, lower than, and congruent modulo 2 top). Formally, r(∼p) , r↾{v ∈ Ps
: r(v) ∼ p}, for ∼∈ {≥,>,<,≡2}. By a

≤p
r , a\dom

(
r(>p)

)
, we denote the largest subgame obtained

by removing froma all the positions in the domain ofr(>p). Themaximisationof a priority function

r ∈ ∆ is the unique priority functionm ∈ ∆ such thatm−(q) = atrα
a
≤q
m

(
r−(q)∩Ps

a
≤q
m

)
, for all priorities

q∈ rng(r) with α , q mod 2. In addition, we say thatr is maximalabovep∈ Pr iff r(>p) =m(>p).
As opposed to the PP approach, where a promotion top≡2 α resets all the regions lower thanp,

here we need to take into account the fact that the regions of the opponentα are reset, while the ones of
playerα are retained. In particular, we need to ensure that, as the search proceeds fromp downward to
any priorityq< p, the maximisation of the regions contained at priorities higher thanq can never make
the region recorded inr at q invalid. To this end, we consider only priority functionsr that satisfy the
requirement that, at all priorities, they contain regionsw.r.t. the subgames induced by their maximisations
m. Formally,r ∈ R ⊆ ∆ is a region functioniff, for all priorities q∈ rng(m) with α , q mod 2, it holds
thatr−(q)∩Ps

a
≤q
m

is anα-region in the subgamea≤q
m , wherem is the maximisation ofr.

The status of the search of a dominion is encoded by the notionof state sof the dominion space,
which contains the current region functionr and the current priorityp reached by the search ina. Initially,
r coincides with the priority functionpr of the entire gamea, while p is set to the maximal prioritypr(a)
available in the game. To each of such statess, (r, p), we then associate thesubgame at sdefined as
as , a

≤p
r , representing the portion of the original game that still has to be processed.

The following state space specifies the configurations in which the PP+ procedure can reside and the
relative order that the successor function must satisfy.

Definition 3.4 (State Space for PP+). A PP+ state spaceis a tupleS ,〈S,⊤,≺〉, where:

1. S⊆ R×Pr is the set of all pairs s, (r, p), calledstates, composed of a region functionr ∈ R and
a priority p∈ Pr such that(a) r is maximal above p and(b) p∈ rng(r);

2. ⊤, (pr,pr(a));

3. two states s , (r, p),s , (r, p) ∈ S satisfy s≺s iff either (a) r(>q) = r
(>q) and r− (q) ⊂

r− (q), for some priority q∈ rng(r) with q≥ p, or (b) bothr = r and p < p hold.

Condition 1 requires that every regionr−(q) with measureq> p beα-maximal, whereα = q mod 2.
This implies thatr−(q)⊆Ps

a
≤q
r

. Moreover, the current prioritypof the state must be one of the measures
recorded inr. In addition, Condition 2 specifies the initial state, whileCondition 3 defines the ordering
relation among states, which the successor operation has tocomply with. It asserts that a states is
strictly smaller than another states if either there is a region recorded ins with some higher measureq
that strictly contains the corresponding one ins and all regions with measure grater thanq are equal in
the two states, or states is currently processing a lower priority than the one ofs.

A region pair(R,α) is compatible with a states, (r, p) if it is an α-region in the current subgame
as. Moreover, if such a region isα-open in that game, it has to beα-maximal and needs to necessarily
contain the current regionr−(p) of priority p in r.

Definition 3.5 (Compatibility Relation). An open quasi dominion pair(R,α) ∈QD− is compatiblewith
a state s, (r, p) ∈ S, in symbols s�(R,α), iff (1) (R,α) ∈ Rgas

and (2) if R is α-open inas then
R= atrα

as
(r−(p)).
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Algorithm 2: Query Function.

signature ℜ : S→ 2Ps×{0,1}
function ℜ(s)

let (r, p) = s in
1 α ← p mod 2
2 R← atrα

as
(r−(p))

3 return (R,α)

Algorithm 2 provides the implementation for the query
function compatible with the priority-promotion mechanism.
Line 1 simply computes the parityα of the priority to process
in the states, (r, p). Line 2, instead, computes the attractor
w.r.t. playerα in subgameas of the region contained inr at the
current priorityp. The resulting set R is, according to Proposi-
tion 3.1, anα-maximalα-region ofas containingr−(p).

The promotion operation is based on the notion of best es-
cape priority mentioned above, namely the priority of the low-
estα-region inr that has an incoming move coming from theα-region, closed in the current subgame,
that needs to be promoted. This concept is formally defined asfollows. Let I , Mv∩ ((R∩Psα)×
(dom(r)\R)) be theinterface relationbetween R andr, i.e., the set ofα-moves exiting from R and reach-
ing some position within a region recorded inr. Then,bepα(R, r) is set to the minimal measure of those
regions that contain positions reachable by a move in I. Formally, bepα(R, r),min(rng(r↾rng(I))). Such
a value represents the best priority associated with anα-region contained inr and reachable byα when
escaping fromR. Note that, if R is a closedα-region inas, thenbepα(R, r) is necessarily of parityα and
greater than the measurep of R. This property immediately follows from the maximalityof r abovep.
Indeed, no move of anα-position can lead to aα-maximalα-region. For instance, for 0-region R= {e}
with measure 2 in Column 1 of Figure 1, we have thatI = {(e,a),(e,c)} andr↾rng(I) = {(a,6),(c,4)}.
Hence,bep(R, r) = 4.

Algorithm 3: Successor Function.

signature ↓ : �→ ∆×Pr
function s↓(R,α)

let (r, p) = s in
1 if (R,α) ∈ Rg−

as
then

2 r⋆← r[R 7→ p]
3 p⋆←max(rng

(
r⋆(<p)

)
)

else
4 p⋆← bepα(R, r)
5 r⋆← pr⊎ r(≥p⋆)∨(≡2p⋆)[R 7→ p⋆]
6 return (r⋆, p⋆)

Algorithm 3 reports the pseudo-code of the suc-
cessor function, which differs from the one pro-
posed in [2] only in Line 5, where Proposition 3.3 is
applied. Given the current states and a compatible
region pair(R,α) open in the whole game as inputs,
it produces a successor states⋆ , (r⋆, p⋆) in the do-
minion space. It first checks whether R is open also
in the subgameas (Line 1). If this is the case, it as-
signs the measurep to region R and stores it in the
new region functionr⋆ (Line 2). The new current
priority p⋆ is, then, computed as the highest prior-
ity lower thanp in r⋆ (Line 3). If, on the other hand,
R is closed inas, a promotion, merging R with some otherα-region contained inr, is required. The next
priority p⋆ is set to thebep of R for playerα in the entire gamea w.r.t. r (Line 4). Region R is, then,
promoted to priorityp⋆ and all and only the regions of the opponentα with lower measure thanp⋆ in the
region functionr are reset by means of the completion operator defined in Section 2 (Line 5).

The following theorem asserts that the PP+ state space, together with the same query function of PP
and the successor function of Algorithm 3 is a dominion space.

Theorem 3.1(PP+ Dominion Space). For a gamea, thePP+ structureD , 〈a,S ,�,ℜ,↓〉, whereS

is given in Definition 3.4,� is the relation of Definition 3.5, andℜ and↓ are the functions computed by
Algorithms 2 and 3 is a dominion space.

The PP+ procedure does reduce,w.r.t. PP, the number of reset needed to solve a game and the
exponential worst-case game presented in [2] does not work any more. However, a worst-case, which
is a slight modification of the one for PP, does exist for this procedure as well. Consider the gameah

containingh chains of length 2 that converge into a single position of priority 0 with a self loop. The
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i-th chain has a head of priority 2(h+ 1)− i and a body composed of a single position with priority
i and a self loop. An instance of this game withh = 4 is depicted in Figure 2. The labels of the
positions correspond to the associated priorities. Intuitively, the execution depth of the PP+ dominion
space for this game is exponential, since the consecutive promotion operations performed on each chain
can simulate the increments of a partial form of binary counter, some of whose configurations are missing.
As a result, the number of configurations of the counter follows a Fibonacci-like sequence of the form
F(h) = F(h−1)+F(h−2)+1, with F(0) = 1 andF(1) = 2.

0

8 79 6

1 2 3 4

Figure 2: TheaPP+
 game.

The search procedure ona starts by building the following four open re-
gions: the 1-region{9}, the 0-region{8}, the 1-region{7}, and 0-region
{6}. This state represents the configuration of the counter, where all four
digits are set to 0. The closed 0-region{4} is then found and promoted to
6. Now, the counter is set to 0001. After that, the closed 1-region {3} is
computed that is promoted to 7. Due to the promotion to 7, the positions in
the 0-region with priority 6 are reset to their original priority, as they belong
to the opponent player. This releases the chain with head 6, which corre-
sponds to the reset of the least significant digit of the counter caused by the increment of the second
one,i.e., the counter displays 0010. The search resumes at priority 6and the 0-regions{6} and{4} are
computed once again. A second promotion of{4} to 6 is performed, resulting in the counter assuming
value 0011. When the closed 0-region{2} is promoted to 8, however, only the 1−region{7,3} is reset,
leading to configuration 0101 of the counter. Hence, configuration 0100 is skipped. Similarly, when, the
counter reaches configuration 0111 and 1-region{1} is promoted to 9, the 0-regions{8,2} and{6,4}
are reset, leaving 1-region{7,3} intact. This leads directly to configuration 1010 of the counter, skipping
configuration 1000.

An estimate of the depth of the PP+ dominion space on the gameah is given by the following
theorem.

Theorem 3.2(Execution-Depth Lower Bound). For all h ∈ N, there exists aPP+dominion spaceDPP+
h

with k= 2h+1 positions and priorities, whose execution depth isFib(2(h+4))/Fib(h+4)− (h+6) =

Θ
(
((1+

√
5)/2)k/2

)
.

4 Delayed Promotion Policy

At the beginning of the previous section, we have observed that the time complexity of the dominion
search proceduresrcD linearly depends on the execution depth of the underlying dominion spaceD .
This, in turn, depends on the number of promotions performedby the associated successor function and
is tightly connected with the reset mechanism applied to theregions with measure lower than the one
of the target region of the promotion. In fact, it can be proved that, when no resets are performed, the
number of possible promotions is bounded by a polynomial in the number of priorities and positions of
the game under analysis. Consequently, the exponential behaviours exhibited by the PP algorithm and
its enhanced version PP+ are strictly connected with the particular reset mechanism employed to ensure
the soundness of the promotion approach. The correctness ofthe PP+ method shows that the reset can be
restricted to only the regions of opposite parityw.r.t. the one of the promotion and, as we shall show in the
next section, this enhancement is also relatively effective in practice. However, we have already noticed
that this improvement does not suffices in avoiding some pathological cases and we do not have any
finer criteria to avoid the reset of the opponent regions. Therefore, to further reduce such resets, in this
section we propose a finer promotion policy that tries in advance to minimise the necessity of application
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of the reset mechanism. The new solution procedure is based on delaying the promotions of regions,
called locked promotions, that require the reset of previously performed promotionsof the opponent
parity, until a complete knowledge of the current search phase is reached. Once only locked promotions
are left, the search phase terminates by choosing the highest measurep⋆ among those associated with
the locked promotions and performing all the postponed onesof the same parity asp⋆ altogether. In
order to distinguish between locked and unlocked promotions, the corresponding target priorities of the
performed ones, calledinstant promotions, are recorded in a supplementary set P. Moreover, to keep
track of the locked promotions, a supplementary partial priority function r̃ is used. In more detail, the
new procedure evolves exactly as the PP+ algorithm, as long as open regions are discovered. When a
closed one with measurep is provided by the query function, two cases may arise. If thecorresponding
promotion is not locked, the destination priorityq is recorded in the set P and the instant promotion
is performed similarly to the case of PP+. Otherwise, the promotion is not performed. Instead, it is
recorded in the supplementary functionr̃, by assigning to R iñr the target priorityq of that promotion
and inr its current measurep. Then, the positions in R are removed from the subgame and thesearch
proceeds at the highest remaining priority, as in the case R was open in the subgame. In case the region R
covers the entire subgame, all priorities available in the original game have been processed and, therefore,
there is no further subgame to analyse. At this point, the delayed promotion to the highest priorityp⋆

recorded iñr is selected and all promotions of the same parity are appliedat once. This is done by first
moving all regions from̃r into r and then removing from the resulting function the regions ofopposite
parityw.r.t. p⋆, exactly as done by PP+. The search, then, resumes at priority p⋆. Intuitively, a promotion
is considered as locked if its target priority is either(a) greater than some priority in P of opposite parity,
which would be otherwise reset, or(b) lower than the target of some previously delayed promotion
recorded iñr, but greater than the corresponding priority set inr. The latter condition is required to
ensure that the union of a region inr together with the corresponding recorded region inr̃ is still a region.
Observe that the whole approach is crucially based on the fact that when a promotion is performed all the
regions having lower measure but same parity are preserved.If this was not the case, we would have no
criteria to determine which promotions need to be locked andwhich, instead, can be freely performed.

1 2 3 4

6 a↓ ·· · · · · a,b,d,g,i,j↓
5 b,f,h↓ ·· · · · ·
4 c,j↓ c,e,j↓ ·· · c,e↑6
3 d↓ d↓ d,g 6 ↑5
2 e↑4
1 g↑3
0 i↑6

Table 2: DP simulation.

This idea is summarized by Table 2, which contains the ex-
ecution of the new algorithm on the example in Figure 1. The
computation proceeds as for PP+, until the promotion of the
1-region{g} shown in Column 2, occurs. This is an instant pro-
motion to 3, since the only other promotion already computed
and recorded in P has value 4. Hence, it can be performed and
saved in P as well. Starting from priority 3 in Column 3, the
closed 1-region{d,g} could be promoted to 5. However, since
its target is greater than 4∈ P, it is delayed and recorded iñr,
where it is assigned priority 5. At priority 0, a delayed promo-
tion of 0-region{i} to priority 6 is encountered and registered,
since it would overtake priority 3∈ P. Now, the resulting subgame is empty. Since the highest delayed
promotion is the one to priority 6 and no other promotion of the same parity was delayed, 0-region{i}
is promoted and both the auxiliary priority functionr̃ and the set of performed promotions P are emp-
tied. Previously computed 0-region{c,e,j} has the same parity and, therefore, it is not reset, while the
positions in both 1-regions{b,f,h} and{d,g} are reset to their original priorities. After maximisation
of the newly created 0-region{a,i}, positionsb, d, g, andj get attracted as well. This leads to the first
cell of Column 4, where 0-region{a,b,d,g,i,j} is open. The next priority to process is then 4, where
0-region{c,e}, the previous 0-region{c,e,j} purged of positionj, is now closed in the corresponding
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subgame and gets promoted to 6. This results in a 0-region closed in the entire game, hence, a dominion
for player 0 has been found. Note that postponing the promotion of 1-region{d,g} allowed a reduction
in the number of operations. Indeed, the redundant maximisation of 1-region{b,f,h} is avoided.

It is worth noting that this procedure only requires a linearnumber of promotions, precisely
⌊

h+1
2

⌋
,

on the lower bound gameaPP+
h for PP+. This is due to the fact that all resets are performed on regions

that are not destination of any promotion. Also, the procedure appears to be much more robust, in terms
of preventing resets, than the PP+ technique alone, to the point that it does not seem obvious whether an
exponential lower bound even exists. Further investigation is, however, needed for a definite answer on
its actual time complexity.

DPDominion Space. As it should be clear from the above informal description, the delayed promotion
mechanism is essentially a refinement of the one employed in PP+. Indeed, the two approaches share
all the requirements on the corresponding components of a state, on the orderings, and on compatibility
relations. However, DP introduces in the state two supplementary elements: a partial priority function
r̃, which collects the delayed promotions that were not performed on the region functionr, and a set of
priorities P, which collects the targets of the instant promotions performed. Hence, in order to formally
define the corresponding dominion space, we need to provide suitable constraints connecting them with
the other components of the search space. The role of function r̃ is to record the delayed promotions
obtained by moving the corresponding positions from their priority p in r to the new measureq in r̃.
Therefore, as dictated by Proposition 3.2, the union ofr−1(q) and r̃−1(q) must always be a region in
the subgamea≤q

r . In addition, r̃−1(q) can only contain positions whose measure inr is of the same
parity asq and recorded inr at some lower priority greater than the current onep. Formally, we say that
r̃ ∈ ∆⇀ , Ps⇀ Pr isalignedwith a region functionr w.r.t. p if, for all priorities q∈ rng(̃r), it holds that
(a) r̃−(q)⊆ dom

(
r(>p)∧(<q)∧(≡2q)

)
and(b) r−1(q)∪ r̃−1(q) is anα-region ina≤q

r with α ≡2 q. The state
space for DP is, therefore, defined as follows.

Definition 4.1 (State Space for DP). A DP state spaceis a tupleS ,〈S,⊤,≺〉, where:

1. S⊆ SPP+×∆⇀× 2Pr is the set of all triples s, ((r, p), r̃,P), called states, composed by aPP+
state(r, p) ∈ SPP+, a partial priority functioñr ∈ ∆⇀ aligned withr w.r.t. p, and a set of priorities
P⊆ Pr.

2. ⊤, (⊤PP+,∅, /0);

3. s≺s iff ŝ≺PP+̂s, for any two states s , (ŝ,_,_),s , (ŝ,_,_) ∈ S.

The second property we need to enforce is expressed in the compatibility relation connecting the
query and successor functions for DP and regards the closed region pairs that are lockedw.r.t. the current
state. As stated above, a promotion is considered locked if its target priority is either(a) greater than
some priority in P of opposite parity or(b) lower than the target of some previously delayed promotion
recorded iñr, but greater than the corresponding priority set inr. Condition(a) is the one characterising
the delayed promotion approach, as it reduces the number of resets of previously promoted regions. The
two conditions are expressed by the following two formulas,respectively, whereq is the target priority
of the blocked promotion.

φa(q,P), ∃l ∈ P. l 6≡2 q∧ l < q φb(q, r, r̃), ∃v∈ dom(̃r) . r(v) < q≤ r̃(v)

Hence, anα-region R is calledα-locked w.r.t.a states , ((r, p), r̃,P) if the predicateφLck(q,s) ,
φa(q,P)∨ φb(q, r, r̃) is satisfied, whereq = bepα(R, r⊎ r̃). In addition to the compatibility constraints
for PP+, the compatibility relation for DP requires that anyα-locked region, possibly returned by the
query function, be maximal and contain the regionr−(p) associated to the priorityp of the current state.
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Definition 4.2 (Compatibility Relation for DP). An open quasi dominion pair(R,α) ∈QD− is compati-
blewith a state s, ((r, p),_,_) ∈ S, in symbols s�(R,α), iff (1) (R,α) ∈Rgas

and (2) if R is α-open in
as or it is α-lockedw.r.t. s thenR= atrα

as
(r−(p)).

Algorithm 4 implements the successor function for DP. The pseudo-code on the right-hand side
consists of three macros, namely #Assignment, #InstantPromotion, and #DelayedPromotion, used by
the algorithm. Macro #Assignment(ξ ) performs the insertion of a new region R into the region function
r. In presence of a blocked promotion,i.e., when the parameterξ is set tof, the region is also recorded
in r̃ at the target priority of the promotion. Macro #InstantPromotioncorresponds to the DP version of
the standard promotion operation of PP+. The only difference is that it must also take care of updating
the supplementary elementsr̃ and P. Macro #DelayedPromotion, instead, is responsible for the delayed
promotion operation specific to DP.

Algorithm 4: Successor Function.

signature ↓ : �→ (∆×Pr)×∆⇀×2Pr

function s↓(R,α)
let ((r, p), r̃,P) = s in

1 if (R,α) ∈ Rg−
as

then
2-5 #Assignment(t)

else
6 q← bepα(R, r⊎ r̃)
7 if φLck(q,s) then
8 r̂← r̃[R 7→ q]
9 if R 6= Psas then

10-13 #Assignment(f)
else

14-17 #DelayedPromotion

else
18-21 #InstantPromotion

22 return ((r⋆, p⋆), r̃⋆,P⋆)

Assignment & Promotion Macros.

macro #Assignment(ξ )
1 r⋆← r[R 7→ p]

2 p⋆←max(rng
(
r⋆(<p)

)
)

3 r̃⋆← #if ξ #then r̃ #elsêr
4 P⋆← P

macro #DelayedPromotion
1 p⋆←max(rng(̂r))

2 r⋆← pr⊎ (r⊎ r̂)(≥p⋆)∨(≡2p⋆)

3 r̃⋆← /0
4 P⋆← /0

macro #InstantPromotion
1 p⋆← q
2 r⋆← pr⊎ r(≥p⋆)∨(≡2p⋆)[R 7→ p⋆]
3 r̃⋆← r̃(>p⋆)

4 P⋆← P∩ rng(r⋆)∪{p⋆}

If the current region R is open in the subgameas, the main algorithm proceeds, similarly to Algo-
rithm 3, at assigning to it the current priorityp in r. This is done by calling macro #Assignmentwith
parametert. Otherwise, the region is closed and a promotion should be performed at priorityq, corre-
sponding to thebep of that regionw.r.t. the composed region functionr⊎ r̃. In this case, the algorithm
first checks whether such promotion is lockedw.r.t. sat Line 7. If this is not the case, then the promotion
is performed as in PP+, by executing #InstantPromotion, and the target is kept track of in the set P. If,
instead, the promotion toq is locked, but some portion of the game still has to be processed, the region
is assigned its measurep in r and the promotion toq is delayed and stored iñr. This is done by exe-
cuting #Assignmentwith parameterf. Finally, in case the entire game has been processed, the delayed
promotion to the highest priority recorded inr̃ is selected and applied. Macro #DelayedPromotionis
executed, thus mergingr with r̃. Functioñr and set P are, then, erased, in order to begin a new round of
the search. Observe that, when a promotion is performed, whether instant or delayed, we always preserve
the underlying regions of the same parity, as done by the PP+ algorithm. This is a crucial step in order
to avoid the pathological exponential worst case for the original PP procedure.

The soundness of the solution procedure relies on the following theorem.
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Theorem 4.1(DP Dominion Space). For a gamea, theDP structureD , 〈a,S ,�,ℜ,↓〉, whereS is
given in Definition 4.1,� is the relation of Definition 4.2, andℜ and↓ are the functions computed by
Algorithms 2 and 4, where in the former the assumption "let (r, p) = s" is replaced by "let ((r, p),_,_) =
s" is a dominion space.

It is immediate to observe that the following mappingh : ((r, p),_,_) ∈ SDP 7→ (r, p) ∈ SPP+, which
takes DP states to PP+ states by simply forgetting the additional elements̃r and P, is a homomorphism.
This, together with a trivial calculation of the number of possible states, leads to the following theorem.

Theorem 4.2(DP Size & Depth Upper Bounds). The size of theDP dominion spaceDa for a game
a ∈ PG with n∈ N+ positions and k∈ [1,n] priorities is bounded by2kk2n. Moreover, its depth is not
greater then the one of thePP+dominion spaceDPP+

a
for the same game.

5 Experimental Evaluation

The technique proposed in the paper has been implemented in the tool PGSOLVER [9], which collects
implementations of several parity game solvers proposed inthe literature and provides benchmarking
tools that can be used to evaluate the solver performances.1

Figure 3 compares the running times of the new algorithms, PP+ and DP, against the original version
PP2 and the well-known solversRecandStr, implementing the recursive algorithm [23] and the strategy
improvement technique [22], respectively. This first pool of benchmarks is taken from [2] and involves
2000 random games of size ranging from 1000 to 20000 positions and 2 outgoing moves per position.
Interestingly, random games with very few moves prove to be much more challenging for the priority
promotion based approaches than those with a higher number of moves per position, and often require
a much higher number of promotions. Since the behaviour of the solvers is typically highly variable,
even on games of the same size and priorities, to summarise the results we took the average running
time on clusters of games. Therefore, each point in the graphshows the average time over a cluster
of 100 different games of the same size: for each size valuen, we chose the numbersk = n · i/10 of
priorities, withi ∈ [1,10], and 10 random games were generated for each pairn andk. We set a time-out
to 180 seconds (3 minutes). Solver PP+ performs slightly better than PP, while DP shows a much more
convincing improvement on the average time. All the other solvers provided in PGSOLVER, including
the Dominion Decomposition [14] and the Big Step [19] algorithms, perform quite poorly on those
games, hitting the time-out already for very small instances. Figure 3 shows only the best performing
ones on the considered games, namelyRecandStr. Similar experiments were also conducted on random
games with a higher number of moves per position and up to 100000 positions. The resulting games
turn out to be very easy to solve by all the priority promotionbased approaches. The reason seems to
be that the higher number of moves significantly increases the dimension of the computed regions and,
consequently, also the chances to find a closed one. Indeed, the number of promotions required by PP+
and DP on all those games is typically zero, and the whole solution time is due exclusively to a very
limited number of attractors needed to compute the few regions contained in the games. We reserve the
presentation of the results for the extended version.

To further stress the DP technique in comparison with PP and PP+, we also generated a second
pool of much harder benchmarks, containing more than 500 games, each with 50000 positions, 12000
priorities and 2 moves per positions. We selected as benchmarks only random games whose solution

1All the experiments were carried out on a 64-bit 3.1GHz INTEL® quad-core machine, with i5-2400 processor and 8GB of
RAM, running UBUNTU 12.04 with LINUX kernel version 3.2.0. PGSOLVER was compiled with OCaml version 2.12.1.

2The version of PP used in the experiments is actually an improved implementation of the one described in [2].
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Figure 3: Solution times on random games
from [2].

Figure 4: Comparison between PP+ and DP on
random games with 50000 positions.

requires PP+ between 30 and 6000 seconds. The results comparing PP+ and DP are reported in Figure 4
on a logarithmic scale. The figure shows that, in few cases, PP+ actually performs better than DP. This
is due to the fact that the two algorithms follow different solution paths within the dominion space and
that delaying promotions may also defer the discovery of a closed dominion. Nonetheless, the DP policy
does pay off significantly on the vast majority of the benchmarks, often solving a game between two to
eight times faster than PP+, as witnessed by the points belowthe dash-dotted line labeled 2× in Figure 4.

In [2] it is shown that PP solves all the known exponential worst cases for the other solvers without
promotions and, clearly, the same holds of DP as well. As a consequence, DP only requires polynomial
time on those games and the experimental results coincide with the ones for PP.

6 Discussion

Devising efficient algorithms that can solve parity games well in practice is a crucial endeavour towards
enabling formal verification techniques, such as model checking of expressive temporal logics and auto-
matic synthesis, in practical contexts. To this end, a promising new solution technique, calledpriority
promotion, was recently proposed in [2]. While the technique seems very effective in practice, the ap-
proach still admits exponential behaviours. This is due to the fact that, to ensure correctness, it needs to
forget previously computed partial results after each promotion. In this work we presented a new pro-
motion policy that delays promotions as much as possible, inthe attempt to reduce the need to partially
reset the state of the search. Not only the new technique, like the original one, solves in polynomial
time all the exponential worst cases known for other solvers, but requires polynomial time for the worst
cases of the priority promotion approach as well. The actualcomplexity of the algorithm is, however,
currently unknown. Experiments on randomly generated games also show that the new technique often
outperforms the original priority promotion technique, aswell as the state-of-the-art solvers proposed in
the literature.
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