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We introduce a weighted linear dynamic logic (weightedLDL for short) and show the expressive
equivalence of its formulas to weighted rational expressions. This adds a new characterization for
recognizable series to the fundamental Schützenberger theorem. Surprisingly, the equivalence does
not require any restriction to our weightedLDL. Our results hold over arbitrary (resp. totally com-
plete) semirings for finite (resp. infinite) words. As a consequence, the equivalence problem for
weightedLDL formulas over fields is decidable in doubly exponential time. In contrast to classi-
cal logics, we show that our weightedLDL is expressively incomparable to weightedLTL for finite
words. We determine a fragment of the weightedLTL such that series over finite and infinite words
definable byLTL formulas in this fragment are definable also by weightedLDL formulas.

1 Introduction

Linear Temporal Logic (LTL for short) is widely used in several areas of Computer Science like, for
instance in model checking where it plays the role of a specification language [3, 22], and in artificial
intelligence [22]. Nevertheless,LTL formulas are expressively weaker than finite automata, namely the
class ofLTL-definable languages coincides with the class of First-Order (FO for short) logic definable
languages (cf. [7] for an excellent survey on the topic). Therefore, it was greatly desirable, especially
for applications, to have a logic which combines the complexity properties of reasoning onLTL and the
expressive power of finite automata. This was recently achieved in [22], where the authors introduced
a Linear Dynamic Logic(LDL for short) which is a combination ofPropositional Dynamic Logic(cf.
[23]) andLTL. The satisfiability, validity, and logical implication ofLDL formulas interpreted over finite
words were proved to be PSPACE-complete [22, 21], as forLTL. This was obtained by a translation of
LDL formulas to finite automata. Similar results were stated forLDL formulas interpreted over infinite
words in [38].

In the weighted setup, a Büchi type theorem stating the coincidence of recognizable series with the
ones defined in a fragment of a weighted Monadic Second-Order(MSOfor short) logic over semirings,
was firstly proved in [8] (cf. also [9]). Then, weightedMSO logics have been investigated for several
objects, including trees, pictures, nested words, graphs,and timed words. The weight structure of the
semiring has been also replaced by more general ones incorporating average or discounting of weights.
Most of the results work for finite as well as infinite objects.A weighted version ofLTL over De Morgan
algebras was firstly introduced in [25]. In [15] the authors proved several characterizations ofLTL-
definable andLTL-ω-definable series over arbitrary bounded lattices. Recently, a weightedLTL with
averaging modalities was studied in [5], and a weightedLTL over idempotent and zero-divisor free
semirings satisfying completeness axioms was investigated in [28, 30]. In [1, 2] the authors considered
a discountedLTL with values in[0,1] and in [28, 29] in the max-plus semiring.

It is the goal of this paper to introduce and investigate aweighted LDLover arbitrary semirings. Our
work is motivated as follows. In recent applications like verification of systems [6] and artificial intel-
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ligence (cf. for instance [26]), classical automata have been replaced by quantitative ones. Therefore it
is highly desirable to have a quantitative logic which is expressively equivalent to weighted automata.
However, the class of series which are definable by all weighted MSO logic sentences exceeds that of
recognizable series. Furthermore, the weightedFO logic over finite words is, in general, expressively
incomparable to weighted finite automata [8], and this is shown here also for the weightedLTL. There-
fore, in view of the results of [22, 21] forLDL, we investigate weightedLDL. We show that our weighted
LDL is expressively equivalent to weighted finite automata oversemirings. Surprisingly, there is no need
to consider, as for the weightedMSO logic, any fragment of our logic to achieve the aforementioned
equivalence. Our results hold for finite and infinite words and this shows the robustness of our theory
and in turn the robustness of theLDL of [22, 21, 38]. Our main results are as follows.

• The class ofLDL-definable series coincides with the class of generalized rational series over arbi-
trary semirings.

• The class ofLDL-definable series coincides with the class of recognizable series over commutative
semirings. This extends the fundamental Schützenberger theorem, for commutative semirings,
with a logic directed characterization.

• The equivalence problem for weightedLDL formulas is decidable in doubly exponential time for
a large class of weight structures including computable fields, as the realizability problem forLDL
[21].

• The class ofLDL-ω-definable series coincides with the class of generalizedω-rational series over
totally complete semirings.

• The class ofLDL-ω-definable series coincides with the class ofω-recognizable series over totally
commutative complete semirings.

Our weightedLDL consists of the classical, unweightedLDL of [22] with the same interpretation and a
copy of it which is interpreted quantitatively. Therefore,practitioners can use the classicalLDL part as
they are used to, and the copy of it in the same way to compute quantitative interpretation. A similar
approach was followed for weightedMSOlogic recently in [20]. While the translation of the restricted
weightedMSOlogic formulas of [9] to weighted automata as forMSOis non-elementary, the translation
of the present weightedLDL into weighted automata can be done in doubly exponential time, as forLDL.
We prove that our weightedLDL interpreted over finite words, is in general expressively incomparable
to weightedLTL of [28, 30]. We define a fragment of that weightedLTL and prove that series over finite
and infinite words definable by weightedLTL formulas in this fragment are definable as well by weighted
LDL formulas. Furthermore, our weightedLDL is expressively equivalent to weighted conjunction-free
µ-calculus [31] for a particular class of semirings.

2 Semirings and rational operations

Let A be an alphabet, i.e., a finite nonempty set. As usually, we denote byA∗ (resp. Aω ) the set of all
finite (resp. infinite) words overA andA+ = A∗ \{ε}, whereε is the empty word. We write a finite (resp.
infinite) word often asw=w(0) . . .w(n−1) (resp.w= w(0)w(1) . . .) wherew(i)∈A for everyi ≥ 0. For
every finite (resp. infinite) wordw= w(0) . . .w(n−1) (resp.w= w(0)w(1) . . .) and every 0≤ i ≤ n−1
(resp.i ≥ 0) we denote byw≥i the suffixw(i) . . .w(n−1) (resp.w(i)w(i +1) . . .) of w. In the sequel, we
use the lettera with indices to denote the elements of an alphabetA.
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A semiring (K,+, ·,0,1) is denoted simply byK if the operations and the constant elements are
understood. If no confusion is caused, we shall denote the operation · simply by concatenation. The
result of the empty product as usual equals to 1.

Throughout the paper A will denote an alphabetandK a semiring.
A formal series(or simplyseries) over A∗ and K is a mappings: A∗ →K. We denote byK 〈〈A∗〉〉 the

class of all series overA∗ andK. Theconstant series̃k (k∈ K) is defined, for everyw∈ A∗, by k̃(w) = k.
Thecharacteristic series1L of a language L⊆A∗ is given by 1L(w) = 1 if w∈ L and 1L(w)= 0 otherwise.
If L = {w} is a singleton, then we writew in place of 1{w}. Let s, r ∈ K 〈〈A∗〉〉 andk∈ K. Thesum s+ r,
the products with scalars ksand sk as well as theHadamard product s⊙ r are defined elementwise
by (s+ r)(w) = s(w)+ r(w), (ks)(w) = ks(w), (sk)(w) = s(w)k, (s⊙ r)(w) = s(w)r(w) for every

w∈ A∗. Trivially, the structure
(

K 〈〈A∗〉〉 ,+,⊙, 0̃, 1̃
)

is a semiring. TheCauchy product s· r ∈ K 〈〈A∗〉〉

is determined by(s· r)(w) = ∑w=uvs(u)r(v) for everyw∈ A∗. Thenth-iteration sn ∈ K 〈〈A∗〉〉 (n≥ 0) is
defined inductively bys0 = ε andsn+1 = s·sn for everyn≥ 0. The seriess is calledproper if s(ε) = 0.
If s is proper, then for everyw ∈ A∗ andn > |w| we havesn(w) = 0. Theiteration s+ ∈ K 〈〈A∗〉〉 of a
proper series sis defined bys+ = ∑n>0sn.

The class ofweighted rational expressions over A and K[11] is given by the grammarE ::= ka |
E+E | E ·E | E+ wherek ∈ K anda∈ A∪{ε}. We denote byRE(K,A) the class of all such weighted
rational expressions overA andK. For the relationship with weighted logics, we will need to consider
the Hadamard product as a rational operation. Therefore, weintroduce the class ofgeneralized weighted
rational expressions over A and Kwhich is given by the grammarE ::= ka | E+E | E ·E | E+ | E⊙E,
wherek∈ K anda∈ A∪{ε}. We shall denote byGRE(K,A) the class of generalized weighted rational
expressions overA andK. Thesemanticsof a (generalized) weighted rational expressionE is a series
‖E‖ ∈ K 〈〈A∗〉〉 which is defined inductively by‖ka‖ = ka, ‖E+E′‖ = ‖E‖+‖E′‖ , ‖E ·E′‖ = ‖E‖ ·
‖E′‖ , ‖E+‖ = ‖E‖+ (if ‖E‖ is proper; otherwise undefined),‖E⊙E′‖ = ‖E‖⊙ ‖E′‖. A series
s∈ K 〈〈A∗〉〉 is called rational (resp. g-rational) if there is a weighted (resp. generalized weighted)
rational expressionE such thats= ‖E‖. The following result is the fundamental Schützenberger theorem
stating the coincidence of rational and recognizable series, i.e., series accepted by weighted automata.
For the theory on weighted automata we refer the reader to [18, 34, 12].

Theorem 1 [35, 18, 34] Let K be a semiring and A an alphabet. Then a seriess∈ K 〈〈A∗〉〉 is rational
iff it is recognizable.

It is well-known (cf. [36, 4, 11]) that if the semiringK is commutative, then the class of recognizable
series overA andK is closed under Hadamard product. Consequently, ifK is commutative, then a series
s∈ K 〈〈A∗〉〉 is g-rational iff it is recognizable.

3 Weighted linear dynamic logic on finite words

In this section, we introduce the weighted linear dynamic logic (weightedLDL for short). Our main
result states the coincidence of the classes of g-rational series and series definable by weightedLDL
formulas. First, we recall theLDL from [22]. For the definition of our weightedLDL below, we need to
modify the notations used for the semantics ofLDL formulas in [22]. For every lettera∈ A we consider
an atomic propositionpa and we letP= {pa | a∈ A}. For everyp∈ P we identify¬¬p with p.
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Definition 2 The syntax of LDL formulasψ overA is given by the grammar

ψ ::= true | pa | ¬ψ | ψ ∧ψ | 〈θ〉ψ
θ ::= φ | ψ? | θ +θ | θ ;θ | θ+

where pa ∈ P andφ denotes a propositional formula over the atomic propositions in P.

Next, for everyLDL formulaψ andw∈ A∗ we define the satisfaction relationw |= ψ , inductively on
the structure ofψ , as follows:

- w |= true,

- w |= pa iff w(0) = a,

- w |= ¬ψ iff w 6|= ψ ,

- w |= ψ1∧ψ2 iff w |= ψ1 andw |= ψ2,

- w |= 〈φ〉ψ iff w |= φ andw≥1 |= ψ ,

- w |= 〈ψ1?〉ψ2 iff w |= ψ1 andw |= ψ2,

- w |= 〈θ1+θ2〉ψ iff w |= 〈θ1〉ψ or w |= 〈θ2〉ψ ,

- w |= 〈θ1;θ2〉ψ iff w= uv, u |= 〈θ1〉 true, andv |= 〈θ2〉ψ ,

- w |= 〈θ+〉ψ iff there existsn with 1≤ n≤ |w| such thatw |= 〈θn〉ψ ,

whereθn, n≥ 1 is defined inductively byθ1 = θ andθn = θn−1;θ for n> 1.
We let f alse=¬true. For anLDL formulaψ , we letL(ψ) = {w∈A∗ | w |= ψ}, the language defined

by ψ . A languageL ⊆ A∗ is calledLDL-definableif there is anLDL formulaψ such thatL = L(ψ).

Theorem 3 [22] A language L⊆ A∗ is LDL-definable iff L is rational.

Definition 4 The syntax of formulasϕ of theweightedLDL overA andK is given by the grammar

ϕ ::= k | ψ | ϕ ⊕ϕ | ϕ ⊗ϕ | 〈ρ〉ϕ
ρ ::= φ | ϕ? | ρ ⊕ρ | ρ ·ρ | ρ⊕

where k∈ K, φ denotes a propositional formula over the atomic propositions in P, andψ denotes an
LDL formula as in Definition 2.

We denote byLDL(K,A) the set of all weightedLDL formulasϕ over A andK. We represent the
semantics‖ϕ‖ of formulasϕ ∈ LDL(K,A) as series inK 〈〈A∗〉〉. For the semantics ofLDL formulasψ
we use the satisfaction relation as defined above.

Definition 5 Let ϕ ∈ LDL(K,A). Thesemanticsof ϕ is a series‖ϕ‖ ∈ K 〈〈A∗〉〉. For every w∈ A∗ the
value‖ϕ‖(w) is defined inductively as follows:

‖k‖(w) = k, ‖ϕ1⊕ϕ2‖(w) = ‖ϕ1‖(w)+‖ϕ2‖(w),

‖ψ‖(w) =

{
1 if w |= ψ
0 otherwise

, ‖ϕ1⊗ϕ2‖(w) = ‖ϕ1‖(w) · ‖ϕ2‖(w),

‖〈φ〉ϕ‖(w) = ‖φ‖(w) · ‖ϕ‖(w≥1), ‖〈ϕ1?〉ϕ2‖(w) = ‖ϕ1‖(w) · ‖ϕ2‖(w),
‖〈ρ1⊕ρ2〉ϕ‖(w) = ‖〈ρ1〉ϕ‖(w)+‖〈ρ2〉ϕ‖(w), ‖〈ρ⊕〉ϕ‖(w) = ∑

n≥1
‖〈ρn〉ϕ‖(w),

‖〈ρ1 ·ρ2〉ϕ‖(w) = ∑
w=uv

(‖〈ρ1〉 true‖ (u) · ‖〈ρ2〉ϕ‖(v)) ,

where for the definition of‖〈ρ⊕〉ϕ‖(w) we assume that‖〈ρ〉true‖ is proper, andρn, n ≥ 1 is defined
inductively byρ1 = ρ andρn = ρn−1 ·ρ for n> 1.
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A seriess∈ K 〈〈A∗〉〉 is calledLDL-definableif there is a formulaϕ ∈ LDL(K,A) such thats= ‖ϕ‖.
For K = B (the Boolean semiring) and anyL ⊆ A∗, clearlyL is LDL-definable iff 1L ∈ B〈〈A∗〉〉 is LDL-
definable, and therefore our weightedLDL generalizesLDL.

Example 6 We consider the semiring(N,+, ·,0,1) of natural numbers, a∈ A, k∈ N \ {0}, and the
weighted LDL formula

ϕ =
〈
((〈(k⊗ pa)?〉Last)?· (〈(k⊗ pa)?〉Last)?)⊕

〉
true⊕

∧
a′∈A

¬pa′ ,

where Last denotes the LDL formula Last::= 〈true〉
∧

a′∈A¬pa′ . For every w= a0 . . .an−1 ∈ A∗ and
0≤ i ≤ n−1 we get

w≥i |= Last iff w≥i+1 6|= pa′ for every a′ ∈ A iff i = n−1,

and we can easily see that‖ϕ‖(w) = k2n whenever w= a2n for some n≥ 0, and‖ϕ‖(w) = 0 otherwise.
Furthermore, the series‖ϕ‖ is not definable by any weighted FO logic sentence (cf. [8]) orweighted
LTL formula (cf. Section 5). Indeed, let us assume that thereis a weighted FO logic sentence (resp. LTL
formula)ϕ ′ such that‖ϕ ′‖= ‖ϕ‖. Then, by replacing the non zero weights inϕ ′ with true we get an FO
logic sentence (resp. LTL formula)ϕ ′′ whose language is(aa)∗, which is impossible (cf. [7]).

Next we show that generalized weighted rational expressions can be translated to weightedLDL
formulas in linear time.

Theorem 7 For every generalized weighted rational expression E∈ GRE(K,A) we can construct, in
linear time, a weighted LDL formulaϕE ∈ LDL(K,A) with ‖ϕE‖= ‖E‖.

Proof. [Sketch] We proceed by induction on the structure of generalized weighted rational expressions
in GRE(K,A). For this, we define for everyE ∈ GRE(K,A) the weightedLDL formulaϕE ∈ LDL(K,A)
as follows.

- If E = kε with k∈ K, thenϕE = k⊗
∧

a∈A¬pa.

- If E = kawith k∈ K,a∈ A, thenϕE = 〈(k⊗ pa)?〉Last.

- If E = E1+E2, thenϕE = ϕE1 ⊕ϕE2.

- If E = E1 ·E2, thenϕE = 〈ϕE1?·ϕE2?〉 true.

- If E = E+
1 , thenϕE =

〈
(ϕE1?)

⊕〉 true.

- If E = E1⊙E2, thenϕE = 〈ϕE1?〉ϕE2. �

The next theorem shows that also the converse result holds. More precisely, we show that for every
ϕ ∈ LDL(K,A) we can construct a generalized weighted rational expression Eϕ ∈ GRE(K,A) such that∥∥Eϕ

∥∥ = ‖ϕ‖. For this, we first translate everyLDL formula into a rational expression using Theorem
3. The complexity of an inductive translation would be non-elementary since for every occurrence of a
negation symbol we need an exponential complementation construction. However, one can follow the
translation of [22, 21] with a doubly exponential construction. We shall need the following lemma.

Lemma 8 Let E be a rational expression over A and L(E) the language defined by E. Then, there is an
E′ ∈ RE(K,A) such that‖E′‖(w) = 1 if w ∈ L(E) and‖E′‖(w) = 0 otherwise, for every w∈ A∗.

Proof. [Sketch] We consider a deterministic automaton for the rational expressionE and construct a
weighted automaton overA andK, with weights 0 and 1. �
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Theorem 9 For every weighted LDL formulaϕ ∈ LDL(K,A) we can construct a generalized weighted
rational expression Eϕ ∈ GRE(K,A) such that

∥∥Eϕ
∥∥= ‖ϕ‖.

Proof. We proceed by induction on the structure ofLDL(K,A) formulasϕ . If ϕ = ψ is anLDL formula,
then by Theorem 3 it is expressively equivalent to a rationalexpressionEψ . Then, by Lemma 8, we can
assume thatEψ is a weighted rational expression inRE(K,A), hence inGRE(K,A), whose semantics
gets values 0 and 1 and we get

∥∥Eψ
∥∥= ‖ψ‖. Next, assume thatϕ = k∈ K. It is straightforward that the

generalized weighted rational expressionEϕ = kε + kε · (1A)+, where 1A= ∑a∈Aa, satisfies our claim.
If ϕ = ϕ1⊕ϕ2 or ϕ = ϕ1⊗ϕ2, then we get our result by the induction hypothesis and the closure of
generalized weighted rational expressions under sum and Hadamard product, respectively. Now assume
thatϕ = 〈φ〉ϕ ′. By the induction hypothesis there areEφ ,Eϕ ′ ∈ GRE(K,A) such that

∥∥Eφ
∥∥ = ‖φ‖ and∥∥Eϕ ′

∥∥= ‖ϕ ′‖. We letEϕ = Eφ ⊙ (1A ·Eϕ ′) and we get
∥∥Eϕ

∥∥(w) =
∥∥Eφ

∥∥(w) ·
∥∥1A ·Eϕ ′

∥∥(w)
=
∥∥Eφ

∥∥(w) · ‖1A‖(w(0)) ·
∥∥Eϕ ′

∥∥(w≥1)

=
∥∥Eφ

∥∥(w) ·
∥∥Eϕ ′

∥∥(w≥1)

= ‖φ‖(w) ·
∥∥ϕ ′
∥∥(w≥1)

=
∥∥〈φ〉ϕ ′

∥∥(w)

for everyw∈ A∗, hence
∥∥Eϕ

∥∥= ‖ϕ‖.
If ϕ = 〈ϕ1?〉ϕ2 or ϕ = 〈ρ1⊕ρ2〉ϕ ′ or ϕ = 〈ρ1 ·ρ2〉ϕ ′, then our claim holds true by the induction hy-
pothesis and the closure of the classGRE(K,A) under Hadamard product, sum, and Cauchy product,
respectively. Finally, letϕ = 〈ρ⊕〉ϕ ′ and assume that‖ϕ‖ is defined and there are generalized weighted
rational expressionsE1,E2 such that‖E1‖ = ‖〈ρ〉 true‖, which is proper, and‖E2‖ = ‖〈ρ〉ϕ ′‖. Then,
we letEϕ = E+

1 ·E2+E2 and for everyw∈ A∗ we get
∥∥Eϕ

∥∥(w) =
∥∥E+

1 ·E2+E2
∥∥(w)

= ∑
w=uv,u6=ε

(∥∥E+
1

∥∥(u) · ‖E2‖(v)
)
+‖E2‖(w)

= ∑
w=uv,u6=ε

(
‖E1‖

+ (u) · ‖E2‖(v)
)
+‖E2‖(w)

= ∑
w=uv,u6=ε

(
‖〈ρ〉true‖+ (u) ·

∥∥〈ρ〉ϕ ′
∥∥(v)

)
+
∥∥〈ρ〉ϕ ′

∥∥(w)

= ∑
w=uv,u6=ε

∑
m≥1

(
‖〈ρ〉 true‖m(u) ·

∥∥〈ρ〉ϕ ′
∥∥(v)

)
+
∥∥〈ρ〉ϕ ′

∥∥(w)

= ∑
n≥2

∥∥〈ρn〉ϕ ′
∥∥(w)+

∥∥〈ρ〉ϕ ′
∥∥(w)

= ∑
n≥1

∥∥〈ρn〉ϕ ′
∥∥(w)

=
∥∥〈ρ⊕

〉
ϕ ′
∥∥(w),

i.e.,
∥∥Eϕ

∥∥= ‖〈ρ⊕〉ϕ ′‖ which concludes our proof. �

By Theorems 7 and 9 we get our first main result.

Theorem 10 Let K be a semiring and A an alphabet. Then a series s∈ K 〈〈A∗〉〉 is LDL-definable iff it
is g-rational.
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By Theorem 10 and the discussion following Theorem 1, we immediately obtain the following con-
sequence.

Corollary 11 Let K be a commutative semiring and A an alphabet. A series s∈ K 〈〈A∗〉〉 is LDL-
definable iff it is recognizable.

The next proposition describes a doubly exponential translation of a weightedLDL formula to an
expressively equivalent weighted automaton.

Proposition 12 Let K be a commutative semiring and A an alphabet. For every weighted LDL formula
ϕ we can construct, in doubly exponential time, a weighted automatonAϕ such that

∥∥Aϕ
∥∥= ‖ϕ‖.

Proof. If ϕ is anLDL formula, then by [22, 21] we get a deterministic finite automaton accepting the
language ofϕ which trivially can be considered as a weighted automaton with weights 0 and 1. Then,
by applying structural induction onϕ we prove our claim by well-known constructions on weighted
automata (cf. [12]). More precisely, for the closure under sum we take the disjoint union of two weighted
automata and for Hadamard product the product automaton. For the closure under Cauchy product
we firstly construct the corresponding normalized weightedautomata with one initial and final state
respectively, and then identify the final state of the first automaton with the initial state of the second
automaton. Finally for the plus-iteration, we get firstly the normalized weighted automaton and extend
it with a copy of it. Then, we identify the final state of the original automaton with the copy states
corresponding to the initial state and final state. The new automaton has the same initial state and
the merging one as its final state. Since the translation of anLDL formula to a deterministic finite
automaton is doubly exponential [22, 21] and the aforementioned constructions on weighted automata are
polynomial, we obtain a doubly exponential translation of weightedLDL formulas to weighted automata.
�

The construction of the weighted automaton, as described inthe above proposition, is not possible
for any semiring, since, as is known [4], there are non-commutative semiringsK and g-rational series
s∈ K 〈〈A∗〉〉 which are not recognizable. On the other hand, it is well-known [11] that the equivalence of
weighted automata is decidable whenever the weight structure is a computable field. More interestingly
the complexity of checking the equivalence is cubic. Therefore, we get the third main result of our paper.

Theorem 13 Let K be a computable field and A an alphabet. Then, for everyϕ ,ϕ ′ ∈ LDL(K,A) the
equality‖ϕ‖= ‖ϕ ′‖ is decidable in doubly exponential time.

Corollary 14 Let K be a computable field, A an alphabet, and k∈ K. Then, for everyϕ ∈ LDL(K,A)
the equality‖ϕ‖= k̃ is decidable in doubly exponential time.

Remark 15 If K is an idempotent commutative semiring, then for every weighted LDL formulaϕ we can
construct a weighted automatonAϕ such that

∥∥Aϕ
∥∥= ‖ϕ‖ in exponential time. Indeed, ifϕ is an LDL

formula, then by [22, 21] in exponential time we get a nondeterministic finite automaton accepting the
language ofϕ , which, since K is idempotent, can be considered as a weighted automaton with weights
0 and1. Then proceed as before. In particular, if K is a bounded distributive lattice, the equivalence of
two weighted automata over A and K and hence of two weighted LDL(K,A) formulas is again decidable
[33].
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4 Weighted linear dynamic logic on infinite words

In this section we interpret weightedLDL formulas over infinite words. For this, we need our semiring to
be equipped with infinite sums and products. More precisely,we assume that the semiringK is equipped,
for every index setI , with an infinitary sum operation∑I : KI → K such that for every family(ki | i ∈ I)
of elements ofK andk∈ K we have

∑
i∈ /0

ki = 0, ∑
i∈{ j}

ki = k j , ∑
i∈{ j,l}

ki = k j +kl for j 6= l ,

∑
j∈J

(
∑
i∈I j

ki

)
=∑

i∈I

ki , if
⋃

j∈J I j = I andI j ∩ I j ′ = /0 for j 6= j ′,

∑
i∈I

(k ·ki) = k ·
(
∑
i∈I

ki

)
, ∑

i∈I

(ki ·k) =
(
∑
i∈I

ki

)
·k.

Then the semiringK together with the operations∑I is calledcomplete[16, 24].
A complete semiring is said to betotally complete[17], if it is endowed with a countably infinite

product operation satisfying for every sequence(ki | i ≥ 0) of elements ofK the subsequent conditions:

∏
i≥0

1= 1, ∏
i≥0

ki = ∏
i≥0

k′i , k0 ·∏
i≥0

ki+1 =∏
i≥0

ki , ∏
j≥1

∑
i∈I j

ki = ∑
(i1,i2,...)∈I1×I2×...

∏
j≥1

ki j ,

where in the second equationk′0 = k0 · . . . · kn1,k
′
1 = kn1+1 · . . . · kn2, . . . for any increasing sequence 0<

n1 < n2 < .. . , and in the last equationI1, I2, . . . are arbitrary index sets.
Furthermore, we will call a totally complete semiringK totally commutative completeif it satisfies

the equation:

∏
i≥0

(
ki ·k

′
i

)
=

(

∏
i≥0

ki

)
·

(

∏
i≥0

k′i

)
.

Obviously a totally commutative complete semiring is commutative. We refer the reader to [11, 16, 24]
for examples of complete semirings. Throughout this section we assumeK to be a totally complete
semiring. An infinitary series(or simply series) over Aω and K is a mappings : Aω → K. We de-
note byK 〈〈Aω〉〉 the class of all series overAω andK. The sum, the products with scalars, and the
Hadamard product of series inK 〈〈Aω〉〉 are defined elementwise as for series on finite words. The

structure
(

K 〈〈Aω〉〉 ,+,⊙, 0̃, 1̃
)

of infinitary series overA andK is a totally complete semiring. Next

let s∈ K 〈〈A∗〉〉 andr ∈ K 〈〈Aω〉〉). TheCauchy product s· r ∈ K 〈〈Aω〉〉) is determined by(s· r)(w) =
∑w=uv,u∈A∗ s(u)r(v) for every w ∈ Aω . Finally, theω-iteration sω ∈ K 〈〈Aω〉〉 of a proper series s∈
K 〈〈A∗〉〉 is defined bysω(w) = ∑w=w0w1... ∏i≥0s(wi).

Next, we recallweightedω-rational expressions over A and Kwhich are defined by the grammar
E ::=E+E | F ·E | Fω whereF is any weighted rational expression. We denote byω-RE(K,A) the class
of all such weightedω-rational expressions overA andK. Similarly we define the class ofgeneralized
weightedω-rational expressions over A and Kwhich is given by the grammarE ::= E+E | F ·E | Fω |
E⊙E, whereF is any generalized weighted rational expression. We shall denote byω-GRE(K,A) the
class of generalized weightedω-rational expressions overA andK. The semanticsof a (generalized)
weightedω-rational expressionE is a series‖E‖ ∈K 〈〈Aω〉〉 which is defined inductively by‖E+E′‖=
‖E‖+‖E′‖ , ‖F ·E‖= ‖F‖·‖E‖ , ‖Fω‖= ‖F‖ω (if ‖F‖ is proper; otherwise undefined),‖E⊙E′‖=
‖E‖⊙ ‖E′‖. A seriess∈ K 〈〈Aω〉〉 is called ω-rational (resp. g-ω-rational) if there is a weighted
(resp. generalized weighted)ω-rational expressionE such thats= ‖E‖. The subsequent result states the
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coincidence ofω-rational andω-recognizable series, i.e., infinitary series accepted by weighted automata
over infinite words. For the theory on weighted automata overinfinite words we refer the reader to [18, 9].

Theorem 16 [18] Let K be a totally complete semiring and A an alphabet. Then a series s∈ K 〈〈Aω〉〉
is ω-rational iff it is ω-recognizable.

It is well-known (cf. [9]) that if the semiringK is totally commutative complete, then the class of
ω-recognizable series overA andK is closed under Hadamard product. Consequently, ifK is totally
commutative complete, then a seriess∈ K 〈〈Aω〉〉 is g-ω-rational iff it is ω-recognizable.

We shall need to extend the syntax ofLDL formulas and weightedLDL formulas as follows.

Definition 17 [38] The syntax of formulasξ of the LDL over A, interpreted over infinite words, is given
by the grammar

ξ ::= true | pa | ¬ξ | ξ ∧ ξ | 〈η〉ξ
η ::= φ | ξ ? | η +η | θ ;η | θω

where pa ∈ P, φ denotes a propositional formula over the atomic propositions in P, andθ denotes an
expression as in Definition 2.

For everyLDL formula ξ andw∈ Aω we define the satisfaction relationw |= ξ , inductively on the
structure ofξ , as follows:

- w |= true,

- w |= pa iff w(0) = a,

- w |= ¬ξ iff w 6|= ξ ,
- w |= ξ1∧ ξ2 iff w |= ξ1 andw |= ξ2,

- w |= 〈φ〉ξ iff w |= φ andw≥1 |= ξ ,
- w |= 〈ξ1?〉ξ2 iff w |= ξ1 andw |= ξ2,

- w |= 〈η1+η2〉ξ iff w |= 〈η1〉ξ or w |= 〈η2〉ξ ,
- w |= 〈θ ;η〉ξ iff w= uv with u∈ A∗, u |= 〈θ〉 true, andv |= 〈η〉ξ ,
- w |= 〈θω 〉ξ iff ξ = true, w= w0w1 . . ., andwi |= 〈θ〉 true for everyi ≥ 0.

For anLDL formulaξ , we letLω(ξ ) = {w∈ Aω | w |= ξ}, the infinitary language defined byξ . An
infinitary languageL ∈ Aω is calledLDL-ω-definable if there is anLDL formulaξ such thatL = Lω(ξ ).
The coincidence ofω-rational andLDL-ω-definable languages was stated in [38].

Theorem 18 [38] A language L⊆ Aω is LDL-ω-definable iff L isω-rational.

Next we introduce the syntax of the weightedLDL formulas interpreted over infinite words.

Definition 19 The syntax of formulasζ of theweightedLDL over A andK, interpreted over infinite
words, is given by the grammar

ζ ::= k | ξ | ζ ⊕ζ | ζ ⊗ζ | 〈π〉ζ
π ::= φ | ζ? | π ⊕π | ρ ·π | ρϖ

where k∈ K, pa ∈ P, φ denotes a propositional formula over the atomic propositions in P,ξ denotes an
LDL formula as in Definition 17, andρ an expression as in Definition 4.
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We denote byLDLω(K,A) the set of all weightedLDL formulasζ overA andK. We represent the
semantics‖ζ‖ω of formulasζ ∈ LDLω(K,A) as series inK 〈〈Aω〉〉. For the semantics ofLDL formulas
ξ interpreted over infinite words, we use the satisfaction relation |= as defined above.

Definition 20 Let ζ ∈ LDLω(K,A). Thesemanticsof ζ is a series‖ζ‖ω ∈ K 〈〈Aω〉〉. For every w∈ Aω

the value‖ζ‖ω (w) is defined inductively as follows:
‖k‖ω (w) = k, ‖ζ1⊕ζ2‖ω (w) = ‖ζ1‖ω (w)+‖ζ2‖ω (w),

‖ξ‖ω (w) =

{
1 if w |= ξ
0 otherwise

, ‖ζ1⊗ζ2‖ω (w) = ‖ζ1‖ω (w) · ‖ζ2‖ω (w),

‖〈φ〉ζ‖ω (w) = ‖φ‖ω (w) · ‖ζ‖ω (w≥1), ‖〈ζ1?〉ζ2‖ω (w) = ‖ζ1‖ω (w) · ‖ζ2‖ω (w),

‖〈π1⊕π2〉ζ‖ω (w) = ‖〈π1〉ζ‖ω (w)+‖〈π2〉ζ‖ω (w),
‖〈ρ ·π〉ζ‖ω (w) = ∑

w=uv,u∈A∗
(‖〈ρ〉 true‖ (u) · ‖〈π〉ζ‖ω (v)) ,

‖〈ρϖ〉ζ‖ω (w) =

{
∑

w=w0w1...
∏
i≥0

‖〈ρ〉true‖ (wi) if ζ = true

0 otherwise
,

where for the definition of‖〈ρϖ〉ζ‖ω (w) we assume that‖〈ρ〉true‖ is proper.

A seriess∈ K 〈〈Aω〉〉 is calledLDL-ω-definableif there is a formulaζ ∈ LDLω(K,A) such that
s= ‖ζ‖ω . For K = B and anyL ⊆ Aω , clearly L is LDL-ω-definable iff 1L ∈ B〈〈Aω〉〉 is LDL-ω-
definable, and therefore our weightedLDL generalizesLDL over infinite words.

Example 21 Let (N∪{∞},+, ·,0,1) be the totally complete semiring of extended natural numbers, A=
{a,b}, and k∈ N\{0}. We consider the LDL formulaψ1 =

〈
((〈pb?〉Last)?)⊕

〉
true∨ (¬pa∧¬pb), the

weighted LDL formulaψ2 = 〈(k⊗ pa)?〉Last, and we let

ζ =
〈(
(ψ1?·ψ2?·ψ1?·ψ2?)⊕⊕ (¬pa∧¬pb)?

)
· ((〈pb?〉Last)?)ϖ〉 true.

By a standard computation we can show that for every w∈Aω we get‖ζ‖ω (w)= k|w|a whenever|w|a <∞
and it is even, and‖ζ‖ω (w) = 0 otherwise. Furthermore, since the infinitary language L= {w∈ Aω |
w contains an even number of a′s} is notω-star-free (cf. [32]), with a similar argument as in Example
6, we can show that the series‖ζ‖ω is not ω-definable by any weighted FO logic sentence (resp. LTL
formula) (cf. Section 5 and [28, 30]) over the extended naturals.

The next theorem states that every generalized weightedω-rational expression can be translated to
a weightedLDL formula in linear time. The proof is done by induction on the structure of generalized
weightedω-rational expressions, as in the proof of Theorem 7.

Theorem 22 For every generalized weightedω-rational expression E∈ω-GRE(K,A)we can construct,
in linear time, a weighted LDL formulaζE ∈ LDLω(K,A) with ‖ζE‖ω = ‖E‖.

In the sequel, we show that also the converse result holds. For this, we need the subsequent lemma.

Lemma 23 Let E be anω-rational expression over A and L(E) the language defined by E. Then, there
is an E′ ∈ ω-RE(K,A) such that‖E′‖(w) = 1 if w ∈ L(E) and‖E′‖(w) = 0 otherwise, for every w∈Aω .

Theorem 24 For every weighted LDL formulaζ ∈ LDLω(K,A) we can construct a generalized weighted
ω-rational expression Eζ ∈ ω-GRE(K,A) such that

∥∥Eζ
∥∥= ‖ζ‖ω .
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Proof. [Sketch] By induction on the structure ofLDLω(K,A) formulasζ , using similar arguments as the
ones in the proof of Theorem 9. More precisely, ifζ = ξ is anLDL formula, then we use Lemma 23.
For the induction steps, we use the closure of generalized weightedω-rational expressions under sum,
Hadamard and Cauchy products, andω-iteration. �

By Theorems 22 and 24 we get the fourth main result of our paper.

Theorem 25 Let K be a totally complete semiring and A an alphabet. Then a series s∈ K 〈〈Aω〉〉 is
LDL-ω-definable iff it is g-ω-rational.

By Theorem 25 and the discussion following Theorem 16 we get the subsequent corollary.

Corollary 26 Let K be a totally commutative complete semiring and A an alphabet. A series s∈
K 〈〈Aω〉〉 is LDL-ω-definable iff it isω-recognizable.

Proposition 27 Let K be an idempotent totally commutative complete semiring and A an alphabet. For
every weighted LDL formulaζ we can construct, in exponential time, a weighted Büchi automatonAζ
such that

∥∥Aζ
∥∥= ‖ζ‖ω .

Proof. If ζ is anLDL formula, then it is anPLDL (parametric linear dynamic logic) formula and, by
[19] we get in exponential time a nondeterministic Büchi automaton accepting the language ofζ . This
automaton can be considered as a weighted Büchi automaton with weights 0 and 1. Then, by applying
structural induction onζ we prove our claim by standard constructions on weighted Büchi automata.
More precisely, for the closure under sum we take the disjoint union of two weighted Büchi automata.
For Hadamard product we use the well-known product construction for Büchi automata, showing the clo-
sure of the class ofω-recognizable languages under intersection [37], reasonably translated to weighted
setup. For the closure under Cauchy product we construct thecorresponding normalized weighted au-
tomaton and initial weight normalized weighted Büchi automaton, and then identify the final state of
the first automaton with the initial state of the second automaton. Finally, for theω-iteration, we again
get the normalized weighted automaton and identify its initial and final state. All the aforementioned
constructions are polynomial, and our proof is completed. �

In particular, ifK is a bounded distributive lattice, the equivalence of two weighted automata overA
andK on infinite words and hence of twoLDL(K,A) formulas is again decidable [10].

5 Comparison of weightedLDL to other weighted logics

In this last section we state the relation of our weightedLDL to weighted monadic second-order logic
(weightedMSOlogic for short), weighted linear temporal logic (weightedLTL for short) and weightedµ-
calculus. The relation ofLDL-definable series (resp. infinitary series) to weightedMSOlogic definable
series (resp. infinitary series) is immediately derived by [8, 9] and Corollary 11 (resp. by [9] and
Corollary 26). We get the following consequences.

Corollary 28 Let K be a commutative semiring and A an alphabet. A series s∈ K 〈〈A∗〉〉 is LDL-
definable iff it is definable by a restricted weighted MSO logic sentence over A and K.

Corollary 29 Let K be a totally commutative complete semiring and A an alphabet. A series s∈
K 〈〈Aω〉〉 is LDL-ω-definable iff it is definable by a restricted weighted MSO logic sentence over A and
K interpreted over infinite words.
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WeightedLTL has been investigated over De Morgan algebras [25], arbitrary bounded lattices [15],
idempotent zero-divisor free totally commutative complete semirings [28, 30], with averaging modalities
[5], with discounting over the interval[0,1] [1, 2], and with discounting over the max-plus semiring
[28, 29]. Recently, a type of weightedLTL has been applied to robotics [26]. We need to recall first
the classicalLTL (cf. [3]). For every lettera ∈ A we consider an atomic propositionpa and we let
P = {pa | a ∈ A}. The syntax ofLTL formulas overA is given by the grammarφ ::= true | pa | ¬φ |
φ ∨ φ | ©φ | φUφ wherepa ∈ P. Let φ be anLTL formula overA. For everyw= a0 . . .an−1 ∈ A∗ and
0≤ i ≤ n−1 (resp.w= a0a1 . . . ∈ Aω andi ≥ 0) the satisfaction relationw, i |= φ is defined as usual (cf.
for instance [3, 7]) by induction on the structure ofφ .

The syntax of formulasϕ of theweighted LTL over A and Kis given by the grammar

ϕ ::= k | φ | ϕ ⊕ϕ | ϕ ⊗ϕ |©©©ϕ | ϕU ϕ |⊠ϕ

wherek∈ K, pa ∈ P, andφ is anLTL formula overA.
We denote byLTL(K,A) the class of all weightedLTL formulasϕ overA andK. Firstly, we represent

the semantics‖ϕ‖ of formulasϕ ∈ LTL(K,A) as series inK 〈〈A∗〉〉. For the semantics ofLTL formulas
φ we use the satisfaction relation as defined above.

Definition 30 Let ϕ ∈ LTL(K,A). Thesemanticsof ϕ is a series‖ϕ‖ ∈ K 〈〈A∗〉〉. For every w∈ A∗,
with |w|= n (n≥ 0), the value‖ϕ‖(w) is defined inductively as follows:

‖k‖(w) = k, ‖ϕ ⊕ψ‖(w) = ‖ϕ‖(w)+‖ψ‖(w),

‖φ‖(w) =
{

1 if w |= φ
0 otherwise

, ‖ϕ ⊗ψ‖(w) = ‖ϕ‖(w) · ‖ψ‖(w),

‖©©©ϕ‖(w) = ‖ϕ‖(w≥1), ‖⊠ϕ‖(w) = ∏
0≤i≤n−1

‖ϕ‖(w≥i),

‖ϕU ψ‖(w) = ∑
0≤i≤n−1

((

∏
0≤ j<i

‖ϕ‖(w≥ j)

)
· ‖ψ‖(w≥i)

)
.

A seriess∈ K 〈〈A∗〉〉 is calledLTL-definableif there is a formulaϕ ∈ LTL(K,A) such thats= ‖ϕ‖.

Example 31 We consider the semiring(N,+, ·,0,1) of natural numbers and the LTL formulasϕ = ⊠2
andψ = ⊠ϕ . Then, we can easily see that for every w∈ A∗, we get‖ϕ‖(w) = 2|w| and‖ψ‖(w) = 22|w| .
It is well known (cf. Ex. 3.4 in [8]) that the series‖ψ‖ is not recognizable, and hence by Corollary 11
not LDL-definable.

By Examples 6 and 31 we immediately obtain the following proposition.

Proposition 32 The classes of LDL-definable and LTL-definable series over the semiring of natural
numbers and an alphabet A are incomparable.

Next, we represent the semantics of formulas inLTL(K,A) as infinitary series inK 〈〈Aω〉〉.

Definition 33 Let K be a totally complete semiring andϕ ∈ LTL(K,A). Thesemantics ofϕ over in-
finite wordsis an infinitary series‖ϕ‖ω ∈ K 〈〈Aω〉〉. For every w∈ Aω the value‖ϕ‖ω (w) is defined
inductively as in the case of finite words except for the operators U and⊠:

‖ϕU ψ‖ω (w) = ∑
i≥0

((

∏
0≤ j<i

‖ϕ‖ω (w≥ j)

)
· ‖ψ‖ω (w≥i)

)
,

‖⊠ϕ‖ω (w) =∏
i≥0

‖ϕ‖ω (w≥i).



M. Droste & G. Rahonis 161

A seriess∈ K 〈〈Aω〉〉 is calledLTL-ω-definableif there is a formulaϕ ∈ LTL(K,A) such thats=
‖ϕ‖ω . In view of Proposition 32, we define a fragment of our weighted LTL, and show that the class of
series (resp. infinitary series) defined byLTL formulas in this fragment is in the class ofLDL-definable
(resp.LDL-ω-definable) ones. More precisely, anLTL-step formulais anLTL(K,A) formula of the form
⊕1≤i≤n(ki ⊗ϕi) whereki ∈ K andϕi is anLTL formula for every 1≤ i ≤ n. Then, we call a formula
ϕ ∈ LTL(K,A) restricted if whenever it contains a subformula of the form⊠ψ or ψU ξ , thenψ is an
LTL-step formula. We shall denote byrLTL(K,A) the set of all restrictedLTL(K,A) formulas. A series
s∈ K 〈〈A∗〉〉 (resp.s∈ K 〈〈Aω〉〉) is calledrLTL-definable(resp.rLTL-ω-definable) if there is a formula
ϕ ∈ rLTL(K,A) such thats= ‖ϕ‖ (resp. s= ‖ϕ‖ω ). By an inductive construction, we can show that
everyrLTL-definable (resp.rLTL-ω-definable) series is also definable (resp.ω-definable) by a restricted
weightedFO logic sentence in the sense of [8]. Therefore, by Corollaries 28 and 29, we get respectively,
the subsequent results.

Theorem 34 Let K be a commutative semiring and A an alphabet. If a series s∈ K 〈〈A∗〉〉 is rLTL-
definable, then it is LDL-definable.

Theorem 35 Let K be a totally commutative complete semiring and A an alphabet. If a series s∈
K 〈〈Aω〉〉 is rLTL-ω-definable, then it is LDL-ω-definable.

A weightedµ-calculus over a particular class of semirings was investigated in [31] (cf. also [27]).
More precisely, the author showed that the class of rational(resp. ω-rational) series over dc-semirings
with the Arden fixed point property (resp. with infinite products and the Arden fixed point property)
coincides with the class of series (resp. infinitary series)definable by the weighted conjunction-freeµ-
calculus. Therefore, by Corollaries 11, 26 and Theorem 4.5 in [31], we immediately obtain the following
theorem.

Theorem 36 Let K be a commutative (resp. totally commutative complete)dc-semiring with the Arden
fixed point property and A an alphabet. Then a series s∈ K 〈〈A∗〉〉 (resp. s∈ K 〈〈Aω〉〉) is LDL-definable
(resp. LDL-ω-definable) iff it is definable by a sentence of the weighted conjunction-freeµ-calculus over
A and K.

6 Conclusion

We introduced a weighted linear dynamic logic for finite (resp. infinite) words over arbitrary (resp. totally
complete) semirings and proved the expressive equivalenceof formulas of this logic with generalized
weighted rational (resp.ω-rational) expressions. In our proofs we used structural induction for both
directions. We proved also that the translation of any weighted LDL formula to a weighted automaton
can be done as well, by structural induction, using the corresponding translation of [22, 21] and well-
known constructions on weighted automata. More interestingly, for the applications, the time complexity
of the translation does not increase in the weighted setup. We recalled the weightedLTL and showed that
the class of series defined by weightedLTL and weightedLDL formulas are, in general, incomparable, in
contrast to the well known relation for classical logics. Wedefined a fragment of weightedLTL, which
is larger than the one in recent works [28, 30], and showed that LTL-definable (resp.LTL-ω-definable)
series in this fragment are alsoLDL-definable (resp.LDL-ω-definable). Recent applications require
weighted automata (resp. weighted automata with input infinite words) over more general structures
than semirings, for instance incorporating average or discounted computations of weights [6, 13, 14].
Therefore, it should be very interesting, especially for applications, to explore the expressive power of a
weightedLDL over more general weight structures.
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