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Classical objectives in two-player zero-sum games played on graphs often deal with limit behav-
iors of infinite plays: e.g., mean-payoff and total-payoff in the quantitative setting, or parity in the
qualitative one (a canonical way to encode ω-regular properties). Those objectives offer powerful
abstraction mechanisms and often yield nice properties such as memoryless determinacy. However,
their very nature provides no guarantee on time bounds within which something good can be wit-
nessed. In this work, we consider two approaches toward inclusion of time bounds in parity games.
The first one, parity-response games, is based on the notion of finitary parity games [8] and parity
games with costs [16, 29]. The second one, window parity games, is inspired by window mean-
payoff games [5]. We compare the two approaches and show that while they prove to be equivalent
in some contexts, window parity games offer a more tractable alternative when the time bound is
given as a parameter (P-c. vs. PSPACE-c.). In particular, it provides a conservative approximation
of parity games computable in polynomial time. Furthermore, we extend both approaches to the
multi-dimension setting. We give the full picture for both types of games with regard to complexity
and memory bounds.

1 Introduction

Games on graphs. Two-player games played on directed graphs constitute an important framework for
the synthesis of a suitable controller for a reactive system faced to an uncontrollable environment [25]. In
this setting, vertices of the graph represent states of the system and edges represent transitions between
those states. We consider turn-based two-player games: each vertex either belongs to the system (the
first player, denoted by P1) or the environment (the second player, denoted by P2). A game is played by
moving an imaginary pebble from vertex to vertex according to existing transitions: the owner of a vertex
decides where to move the pebble. The outcome of the game is an infinite sequence of vertices called
play. The choices of both players depend on their respective strategy which can use an arbitrary amount
of memory in full generality. In the classical setting, P1 tries to achieve an objective (describing a set of
winning plays) while P2 tries to prevent him from succeeding: hence, our games are zero-sum. As all
the objectives considered in this paper define Borel sets, Martin’s theorem [24] guarantees determinacy.

Parity games. Two-player games with ω-regular objectives have been studied extensively in the litera-
ture. See for example [27, 17] for an introduction. A canonical way to represent games with ω-regular
conditions is the class of parity games: vertices are assigned a non-negative integer priority (or color),
and the objective asks that among the vertices that are seen infinitely often along a play, the minimal pri-
ority be even. Parity games have been under close scrutiny for a long time both due to their importance
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(e.g., they subsume modal µ-calculus model checking [14]) and their intriguing complexity: they belong
to the class of problems in UP∩coUP [20] and despite many efforts (e.g., [30, 21, 22, 26]), whether they
belong to P is still an open question. Furthermore, parity games enjoy memoryless determinacy [12, 30].
Multi-dimension parity games were studied in [9]: in such games, n-dimension vectors of priorities are
associated to each vertex, and the objective is to satisfy the conjunction of all the one-dimension parity
objectives. The complexity of solving those games is higher: deciding if P1 (resp. P2) has a winning
strategy is coNP-complete (resp. NP-complete) and exponential memory is needed for P1 whereas P2
remains memoryless [11, 18].
Time bounds. In its classical formulation, the parity objective essentially requires that for each odd
priority seen infinitely often, a smaller even priority should also be seen infinitely often. An odd priority
can be seen as a stimulus that must be answered by seeing a smaller even priority. The parity objective
has fundamental qualities. The simplicity of its definition abstracts timing issues like “how much time
has elapsed between a stimulus and its answer” and is key to memoryless determinacy. It makes it robust
to slight changes in the model which could impact more precise formulations (e.g., counting the number
of steps between a stimulus and its answer critically depends on the granularity of the game graph).

Nonetheless, it has been recently argued that in a large number of practical applications, timing does
matter (e.g., [8, 23, 5]). Indeed, in general it does not suffice to know that a “good behavior” will
eventually happen, and one wants to ensure that it can actually be witnessed within a time frame which is
acceptable with regard to the modeled reactive system. For example, consider a computer server having
to grant requests to clients. A classical parity objective can encode that requests should eventually be
granted. However, it is clear that in a desired controller, requests should not be placed on hold for an
arbitrarily long time. In order to accomodate such requirements, various attempts to associate classical
game objectives with time bounds have been recently studied. For example, window mean-payoff and
window total-payoff games provide a framework to reason about quantitative games (e.g., modeling
quantities such as energy consumption) with time bounds [5]. In the qualitative setting, finitary parity
games [8, 6] and parity games with costs [16, 29] provide a similar framework for parity games.
Two approaches. While window games and finitary parity games (resp. parity games with costs) share
the goal of allowing precise specification of time bounds, their inner mechanisms differ. The aim of our
work is three-fold: (i) apply the window mechanism to parity games, (ii) provide a thorough com-
parison with the existing framework of finitary parity games and parity games with costs, (iii) extend
both approaches to the multi-dimension setting (which was left unexplored up to now). Since all
those related papers do not use a uniform terminology, we here use the following taxonomy for the two
approaches.

• Window parity (WP). Intuitively, the direct fixed WP objective considers a window of size
bounded by λ ∈ N0 (given as a parameter) sliding over an infinite play and declare this play
winning if in all positions, the window is such that the minimal priority within it is even. For
direct bounded WP, the size of the window is not fixed as a parameter but a play is winning if
there exists a bound λ for which the condition holds. We also consider the fixed WP and bounded
WP objectives which are essentially prefix-independent variants of the previous ones. All those
objectives are based on the window mechanism introduced in [5] and our work presents the first
implementation of this mechanism for parity games.

• Parity-response (PR). The direct fixed PR objective asks that along a play, any odd priority be
followed by a smaller even priority in at most λ ∈ N0 (given as a parameter) steps. As for the WP
setting, we also consider the direct bounded PR objective where a play is winning if there exists a
bound λ such that the condition holds, along with the respective prefix-independent variants: the
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one-dimension multi-dimension

complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

Fixed WP P-c. polynomial

EXPTIME-c.

exponential
Fixed PR PSPACE-c. exponential ≤ exponential

Bounded WP
P-c. memoryless infinite exponential infinite

Bounded PR

Table 1: Complexity of deciding the winner and memory required for winning strategies in window
parity (WP) and parity-response (PR) games. All results hold for both the prefix-independent and the
direct (Dir) variants of all the objectives, except for the memory of P2 in the direct bounded cases:
in one-dimension games, linear memory is both sufficient and necessary (for both WP and PR) and in
multi-dimension games, exponential memory is both sufficient and necessary. All bounds are tight unless
specified by the ≤ symbol. New results are in bold.

fixed PR and the bounded PR objectives. The bounded PR objective was studied for one-dimension
games (under the name finitary parity) in [8]: deciding the winner is in P and memoryless strate-
gies suffice for P1 while P2 needs infinite memory. The fixed PR objective for one-dimension
games was very recently proved to be PSPACE-complete, with exponential memory bounds for
both players [29] (this work is presented in the more general context of parity games with costs).
Our work provides the first study of the parity-response approach in multi-dimension games.

Our contributions. Given the number of variants studied, we give an overview of our results in Table 1.
Our main contributions are as follows.

1. We prove that bounded WP and bounded PR objectives coincide, even in multi-dimension games
(Proposition 3).

2. We establish that bounded WP (and thus bounded PR) games are P-hard in one-dimension (Theo-
rem 6, P-membership follows from [8]) and that they are EXPTIME-complete in multi-dimension
(Theorem 9). The EXPTIME-membership follows from a reduction to a variant of request-
response games [28] presented in [8] under the name of finitary Streett games. The EXPTIME-
hardness is proved via a reduction from the membership problem in alternating polynomial-space
Turing machines.

3. We show that in multi-dimension bounded WP (and thus bounded PR) games, exponential memory
is both sufficient and necessary for P1 while infinite memory is needed for P2 (Theorem 9).

4. We prove that one-dimension fixed WP games provide a conservative approximation of parity
games (Proposition 3) computable in polynomial time (Theorem 8). This is in contrast to the
PSPACE-completeness of fixed PR games [29] (actually, the proof in [29] is for a more general
model but already holds for fixed PR games).

5. While fixed PR games are PSPACE-complete, we establish two polynomial-time algorithms (The-
orem 7) to solve fixed-parameter sub-cases: (i) the bound λ is fixed, or (ii) the number of priorities
is fixed.

6. In multi-dimension, we prove that both fixed PR (Theorem 11) and fixed WP (Theorem 12) games
are EXPTIME-complete. Membership relies on different techniques and algorithms for each case
while hardness is based on the same reduction as for the bounded variants.
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7. In one-dimension games, we also establish that for fixed WP, polynomial memory is both suffi-
cient and necessary for both players, whereas exponential memory is required for fixed PR [29].
In multi-dimension games, we prove that for both fixed PR and fixed WP, exponential memory is
both sufficient and necessary for both players. The upper bounds follow from the EXPTIME algo-
rithms mentioned above whereas the lower bounds in one-dimension are shown thanks to appro-
priate families of games and in multi-dimension are obtained through reduction from generalized
reachability games [15].

8. We establish the existence of values of λ such that the fixed objectives become equivalent to the
bounded ones, both in one-dimension (Theorem 6) and in multi-dimension (Theorem 9).

While all the aforementioned results are for the prefix-independent variants of our objectives, we also
obtain closely related complexities and memory bounds for the direct ones (Table 1). We obtain our
results using a variety of techniques, sometimes inspired by [8, 5]. Our focus is on giving the full
picture for the two approaches toward including time bounds in parity games: window parity and parity-
response. We sum up the key comparison points in the next paragraph.

Comparison. The parity-response and window parity approaches turn out to be equivalent in the
bounded context, i.e., when the question is the existence of a bound λ ∈ N0 for which the correspond-
ing fixed objective holds. Hence, the focus of the comparison is the fixed variants. Observe that those
variants are of interest for applications where the time bound is part of the specification: parameter λ

grants flexibility in the specification as it can be adjusted to specific requirements of the application. Let
us review the complexities of the fixed PR and fixed WP objectives.

In one-dimension games, fixed PR is PSPACE-complete whereas fixed WP provides a framework
with similar flavor that enjoys increased tractability: it is P-complete. Hence, fixed WP does provide
a polynomial-time conservative approximation of parity games (Proposition 3). Interestingly, the fixed
WP objective also permits to approximate the fixed PR one in both directions, and in polynomial time:
we prove in Proposition 3 that the fixed PR objective for time bound λ can be framed by the fixed WP
objective for two well-chosen values of the time bound λ ′ and λ ′′.

In multi-dimension, both fixed PR and fixed WP games are EXPTIME-complete. Still, while the fixed
PR algorithm requires exponential time in both the number of dimensions and the number of priorities
(which can be as large as the game graph), solving the fixed WP case only requires exponential time in
the number of dimensions. This distinction may have impact on practical applications where, usually,
the size of the model (the game graph) can be very large while the specification (hence the number of
dimensions) is comparatively small. Note that for both objectives, the multi-dimension algorithms are
pseudo-polynomial in the time bound λ , hence also exponential in the length of its binary encoding.

Finally, let us compare window parity games with window mean-payoff (WMP) games [5]. First, one
could naturally wonder if WP games could be solved by encoding them into WMP games, following
a reduction similar in spirit to the one developed by Jurdzinski for classical parity games [20]. This is
indeed possible, but leads to increased complexities in comparison to the ad hoc analysis developed in
this work. For example, multi-dimension fixed WP games would require exponential time in the number
of priorities too. Second, observe that fixed WP games can be solved in polynomial time whatever
the bound λ ∈ N0 whereas fixed WMP games require pseudo-polynomial time, i.e., also polynomial in
the bound λ . Finally, multi-dimension bounded WMP games are known to be non-primitive-recursive-
hard and their decidability is still open [5]. On the contrary, multi-dimension bounded WP games are
EXPTIME-complete. This suggests that the colossal complexity of bounded WMP games is a result of
the quantitative nature of mean-payoff mixed with windows, and not an inherent drawback of the window
mechanism.
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Other related work. In addition to the aforementioned articles, we mention two papers where logical
formalisms dealing with time bounds are studied. In [23], Kupferman et al. introduced Prompt-LTL,
which is strongly linked with the finitary conditions discussed above. In [1], Baier et al. also studied
an extension of LTL that can express properties based on the window mechanism of [5]. The study of
logical fragments corresponding to WP games is an interesting question left open for future work.

Outline. Section 2 presents the needed definitions and known results about classical objectives. Section 3
introduces the different objectives studied in this paper and establishes the links between them. Section 4
and Section 5 respectively present our results for one-dimension and multi-dimension games. Full proofs
and detailed results, as well as additional discussion of related topics, can be found in the full version of
this paper on arXiv [3].

2 Preliminaries

Game structures. We consider zero-sum turn-based games played by two players, P1 and P2, on a
finite directed graph. A game structure is a tuple G = (V1,V2,E) where (i) (V,E) is a finite directed
graph, with V =V1∪V2 the set of vertices and E ⊆V ×V the set of edges such that for each v ∈V , there
exists (v,v′) ∈ E for some v′ ∈V (no deadlock), (ii) (V1,V2) forms a partition of V such that Vi is the set
of vertices controlled by player Pi with i ∈ {1,2}.

A play of G is an infinite sequence of vertices π = v0v1 . . .∈V ω such that (vk,vk+1)∈ E for all k ∈N.
We denote by Plays(G) the set of plays in G. Histories of G are finite sequences ρ = v0 . . .vk ∈V ∗ defined
in the same way. Given a play π = v0v1 . . ., the history vk . . .vk+l is denoted by π[k,k+ l]; in particular,
vk = π[k]. We also use notation π[k,∞] for the suffix vkvk+1 . . . of π .

Strategies. A strategy σi for Pi is a function σi : V ∗Vi → V assigning to each history ρv ∈ V ∗Vi a
vertex v′ = σi(ρv) such that (v,v′) ∈ E. It is finite-memory if it can be encoded by a deterministic Moore
machine. The size of the strategy is the size of its Moore machine. It is memoryless if σi(ρv) = σi(ρ

′v)
for all histories ρv,ρ ′v ending with the same vertex v, that is, if σi is a function σi : Vi→V .

Given a strategy σi of Pi, we say that a play π = v0v1 . . . of G is consistent with σi if vk+1 =
σi(v0 . . .vk) for all k ∈ N such that vk ∈ Vi. Consistency is naturally extended to histories in a similar
fashion. Given an initial vertex v0, and a strategy σi of each player Pi, we have a unique play consistent
with both strategies. This play is called the outcome of the game and is denoted by Out(v0,σ1,σ2).

Objectives and winning sets. Let G = (V1,V2,E) be a game structure. An objective for P1 is a set
of plays Ω ⊆ Plays(G). A play π is winning for P1 if π ∈ Ω, and losing otherwise (i.e., winning for
P2). We thus consider zero-sum games such that the objective of player P2 is Ω = Plays(G)\Ω. In the
following, we always take the point of view of P1 by assuming that Ω is his objective, and we denote
by (G,Ω) the corresponding game. Given an initial vertex v0 of a game (G,Ω), a strategy σ1 for P1 is
winning from v0 if Out(v0,σ1,σ2) ∈ Ω for all strategies σ2 of P2. Vertex v0 is also called winning for
P1 and the winning set WinG

1 (Ω) is the set of all his winning vertices. Similarly the winning vertices
of P2 are those from which P2 can ensure to satisfy his objective Ω against all strategies of P1, and
WinG

2 (Ω) is his winning set. If WinG
1 (Ω)∪WinG

2 (Ω) = V , we say that the game is determined. It is
known that every turn-based game with a Borel objective is determined [24]. This in particular applies
to the objectives studied in this paper.

Decision problem. Given a game (G,Ω) and an initial vertex v0, we want to decide whether P1 has a
winning strategy from v0 for the objective Ω or not (in which case, P2 has one for Ω). We want to study
the complexity class of this decision problem as well as the memory requirements of winning strategies
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of both players. In this paper, we focus on several variants of the parity objective and we consider two
settings: the one-dimension case with one objective Ω and the multi-dimension case with the intersection
of several objectives ∩n

m=1Ωm.
Parity objective. Let G be a game structure. Let π be a play, we define Inf(π) as the set of vertices seen
infinitely often in π . Formally, Inf(π) = {v ∈V | ∀k ≥ 0, ∃ l ≥ k, π[l] = v}.

Given a priority function p : V → {0,1, . . . ,d} that maps every vertex to an integer priority where d
is even and d ≤ |V |+1 (w.l.o.g.), the parity objective Parity(p) asks that of the vertices that are visited
infinitely often, the smallest priority be even. Formally, the parity objective is defined as Parity(p) =
{π ∈ Plays(G) | minv∈Inf(π) p(v) is even}. As smallest even priorities have a specific role in parity ob-
jectives, we define a partial order � on priorities as follows. For c,c′ ∈ {0, . . . ,d}, we have c� c′ if and
only if c is even and c≤ c′. In this case we say that c is �-smaller than c′. State-of-the-art results about
parity games were already discussed in Section 1.
Other useful objectives. We recall some useful results for several classical objectives. Let G be a game
structure and U ⊆ V be a set of vertices. A reachability objective Reach(U) asks to visit a vertex of U
at least once, whereas a safety objective Safe(U) asks to visit no vertex of V \U . Deciding the winner in
reachability games and safety games is known to be P-complete with an algorithm in time O(|V |+ |E|),
and memoryless winning strategies suffice for both objectives and both players [2, 17, 19]. A Büchi
objective Buchi(U) asks to visit a vertex of U infinitely often, whereas a co-Büchi objective CoBuchi(U)
asks to visit no vertex of V \U infinitely often. Deciding the winner in Büchi games and co-Büchi games
is also P-complete with an algorithm in time O(|V |2), and memoryless strategies also suffice for both
objectives and both players [7, 13, 17].

3 Adding time bounds to parity games

In this section, we introduce the two approaches discussed in this paper: window parity (WP) and parity-
response (PR) games.
Window parity and parity-response objectives. The intuition for both approaches is as follows. The
parity-response objective asks that every priority be followed by a �-smaller priority in a bounded num-
ber of steps. In a window parity game, a window with a bounded size is sliding along the play, and one
asks to find a �-smallest1 priority inside this window, and this for all positions along the play. We derive
four variants for each of these objectives, according to whether the bound is given as a parameter or not
(fixed or bounded variant), and whether the objective must be satisfied directly or eventually (direct or
undirect variant). The undirect variants are thus prefix-independent.2 Formally:
Definition 1. Given a game structure G = (V1,V2,E), a priority function p : V → {0,1, . . . ,d}, and a
bound λ ∈ N0, we define the eight following objectives:

DirFixPR(λ , p) = {π ∈ Plays(G) | ∀ j ≥ 0, ∃ l < λ , p(π[ j+ l])� p(π[ j])},
DirFixWP(λ , p) = {π ∈ Plays(G) | ∀ j ≥ 0, ∃ l < λ , ∀k ≤ l, p(π[ j+ l])� p(π[ j+ k])},

and given X ∈ {PR,WP},

FixX(λ , p) = {π ∈ Plays(G) | ∃ i≥ 0, π[i,∞] ∈ DirFixX(λ , p)},
DirBndX(p) = {π ∈ Plays(G) | ∃λ ∈ N0, π ∈ DirFixX(λ , p)},

BndX(p) = {π ∈ Plays(G) | ∃ i≥ 0, π[i,∞] ∈ DirBndX(p)}.
1Notice the difference: smallest vs. smaller.
2An objective Ω is prefix-independent if for any play π = ρπ ′, it holds that π ∈Ω ⇐⇒ π ′ ∈Ω.
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v0 v1 v2 v3

3 1 2 0

Figure 1: A simple example of one-player-
game: all vertices belong to P1.

v0 v1 v2

1 2 0

Figure 2: A game where P1 wins for parity but
loses for all variants of objectives WP and PR.

Thus, in the direct fixed parity-response objective DirFixPR(λ , p), for all positions j≥ 0, the priority
p(π[ j]) must be followed by a �-smaller priority p(π[ j+ l]) within at most λ − 1 steps. The undirect
fixed variant FixPR(λ , p) asks this objective to be satisfied eventually (i.e., for all positions j ≥ i, for
some i). The direct bounded variant DirBndPR(p) (resp. the undirect bounded variant BndPR(p)) asks
for the existence of a bound λ for which DirFixPR(λ , p) (resp. FixPR(λ , p)) is satisfied.

For window parity objectives, we call λ the window size. Given a play π = v0v1 . . ., a λ -window at
position j is a window of size λ placed along π from position j to j+λ − 1. The direct fixed window
parity objective DirFixWP(λ , p) asks that for all j ≥ 0, inside the λ -window at position j, one can find
a priority p(π[ j+ l]) with l ≤ λ −1 that is the �-smallest one in π[ j, j+ l]. When the window size λ is
clear from the context, we drop the prefix λ and simply talk about windows instead of λ -windows.
Example 2. We illustrate the definitions on a simple example where all vertices belong to P1 (Figure 1).
In this example and in the sequel, the priority p(v) is always put under vertex v, and circle (resp. square)
vertices all belong to P1 (resp. P2). In the game of Figure 1, there is a unique play from the initial
vertex v0 equal to π = (v0v1v2v3)

ω . On the one hand, we have that π ∈DirFixPR(λ , p) for λ = 3. Indeed,
the odd priority 3 (resp. 1) is followed by the even priority 2 (resp. 0) in exactly λ −1 = 2 steps, whereas
the even priority 2 (resp. 0) is “followed” by itself in 0 steps. Similarly, π also belongs to the three
variants FixPR(λ , p), DirBndPR(p) and BndPR(p). On the other hand, π 6∈ DirFixWP(3, p). Indeed,
in the 3-window at position 0, there is no l ∈ {0,1,2} such that p(vl) is the �-smallest priority in π[0, l]
because p(v0) and p(v1) are odd, and p(v2) is even but p(v2) = 2 6� 1 = p(v1). However, one can check
that π ∈ DirFixWP(4, p), and it also belongs to FixWP(4, p), DirBndWP(p) and BndWP(p). /

Relationship between objectives. We now detail the inclusions and equalities between the various
objectives introduced in Definition 1 as well as with the parity objective.

Proposition 3. Let G = (V1,V2,E) be a game structure and p be a priority function. Let λ ∈ N0.

1. For all X ∈ {FixPR(λ , p),FixWP(λ , p),BndPR(p),BndWP(p)}, DirX ⊆ X.

2. For all X ∈ {PR,WP}, (Dir)FixX(λ , p) ⊆ (Dir)BndX(p).

3. For all λ ′ > λ , for all X ∈ {FixPR,FixWP}, (Dir)X(λ , p)⊆ (Dir)X(λ ′, p).

4. (Dir)FixWP(λ , p)⊆ (Dir)FixPR(λ , p).

5. (Dir)FixPR(λ , p)⊆ (Dir)FixWP(d
2 ·λ , p).

6. (Dir)BndPR(p) = (Dir)BndWP(p).

7. (Dir)BndWP(p)⊆ Parity(p).

We give here an intuitive explanation of Item 5, as it is the most interesting one technically. As-
sume we have a play π ∈ DirFixPR(λ , p), like the one depicted in Figure 3. Since it satisfies objective
DirFixPR(λ , p), we know that each odd priority is followed by a smaller even priority in at most (λ −1)
steps. We argue that it belongs to DirFixWP(d

2 ·λ , p), i.e., that for any position j≥ 0, the (d
2 ·λ )-window

at position j sees a �-smallest priority in some position j+ l with l < d
2 ·λ . The key idea is depicted
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. . . . . .
c1 c′1

. . .

c3 c′3
c2 c′2 c4 c′k

≤ λ −1 ≤ λ −1

≤ λ −1

Figure 3: Illustration of inclusion (Dir)FixPR(λ , p)⊆ (Dir)FixWP(d
2 ·λ , p).

in Figure 3. Let c1 be an odd priority. It must be followed by a �-smaller priority c′1 in at most (λ −1)
steps. If c′1 is the minimal priority encountered from c1 to c′1, then we are done. Assume it is not, then
there exists c2 between c1 and c′1 such that c2 is odd and c′1 6� c2. But again, c2 must be followed by
c′2 � c2 in at most (λ −1) steps. Repeating this argument, we obtain that c1 is followed by a priority c′k
in strictly less than d

2 ·λ steps3 (as there are d
2 odd priorities and each of them is answered in (λ − 1)

steps) such that c′k is even and smaller than all priorities encountered from c1 to c′k. Therefore, c′k is the
�-smallest priority in π[ j, j+ l] for some l < d

2 ·λ . Since this argument can be repeated for any position
j ≥ 0, we obtain that the play satisfies DirFixWP(d

2 ·λ , p) as claimed.
From the inclusions Ω ⊆ Ω′ of Proposition 3, we immediately derive the inclusions WinG

1 (Ω) ⊆
WinG

1 (Ω
′). It yields two interesting observations mentioned in Section 1. Notice that the inclusions of

Proposition 3 are strict in general. This is also the case when one replaces the objectives by the winning
sets of P1 for these objectives. We briefly sketch the most interesting case here.

Example 4. Consider the game in Figure 2. The initial vertex v0 is winning for the parity objective but
is losing for all variants of objectives WP and PR: P2 has the possibility to use the self-loop on v1 to
delay for an arbitrarily long time the visit of the�-smaller priority 0 after seeing priority 1, and can do so
repeatedly using the other loop, thus defeating both direct and undirect variants of the objectives, as P1
is never able to ensure a bound on the window size needed to see a �-smallest priority. To win for the
undirect bounded variants, P2 must use infinite memory and play in rounds, increasing the time spent
looping in v1 at each round, thus preventing the existence of a bound. /

We close this section by establishing that for the sub-case of games with priorities in {0,1,2}, WP
and PR objectives coincide.

Lemma 5. Let G be a game structure and p : V → {0,1,2} be a priority function. For all λ ∈ N0, we
have that (Dir)FixPR(λ , p) = (Dir)FixWP(λ , p).

4 One-dimension games

We begin our study of WP and PR objectives with one-dimension games: in this setting, there is a unique
priority function p and the objective Ω is a single objective (Dir)FixX or (Dir)BndX for X ∈ {PR,WP}.
Bounded variants. Recall that by Proposition 3, the bounded variants are equivalent. Furthermore, it is
already known that games with objective (Dir)BndPR(p) are solvable in polynomial time [8]. The next
theorem sums up the complexity landscape for bounded variants and enrich it by proving P-hardness
for the associated decision problems. The result is obtained via a reduction from reachability games. In
terms of memory requirements, P1 can play without memory whereas Example 4 already illustrated that
P2 requires infinite memory in general. The linear memory bound for P2 and the direct variant was
established in [16].

3Actually, d
2 · (λ −1)+1 but we use the simpler bound d

2 ·λ from now on for the sake of readability.
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Theorem 6. Let G = (V1,V2,E) be a game structure, v0 be an initial vertex, p be a priority function, and
Ω be the objective DirBndPR(p) or DirBndWP(p) (resp. BndPR(p) or BndWP(p)).

1. Deciding the winner in (G,Ω) from v0 is P-complete with an algorithm in O(|V | · |E|) (respectively
O(|V |2 · |E|)) time, memoryless strategies are sufficient for P1, and linear-memory strategies are
necessary and sufficient for P2 (respectively infinite memory is necessary for P2).

2. ∀λ ≥ |V |, ∀λ ′ ≥ d
2 · |V |, the winning sets for the objectives BndPR(p), FixPR(λ , p), BndWP(p),

and FixWP(λ ′, p) are all equal. The same equalities hold for the direct variants (Dir).
The fixed variants are more interesting: the PR and WP approaches yield different results in this

setting. We start with the PR one, for which we provide two polynomial-time algorithms for fixed-
parameter sub-cases, hence significantly reducing the complexity of the problem (which is PSPACE-
complete in the general case).
Fixed parity-response objectives. Deciding the winner in (Dir)FixPR games was very recently proved
to be PSPACE-complete [29]. As mentioned in Section 1, the proof was actually provided for a more
general model, but already holds for both FixPR and DirFixPR games. Observe that the PSPACE-
hardness only holds for time bounds λ < |V | since we know by Theorem 6, Item 2, that for larger values,
the objectives are equivalent to the bounded variants, hence the corresponding decision problems lie in P.
We focus on the case λ < |V |: we show in the next theorem that when we fix either the largest priority d
or the bound λ , the complexity collapses to P. We briefly sketch the corresponding algorithms here.

First, consider the case where d is fixed. We reduce the FixPR(λ , p) (resp. DirFixPR(λ , p)) game to
a co-Büchi (resp. safety) game on an extended graph where we keep track of additional information in
the vertices. Namely, we keep a vector that represents, for each odd priority c, the number of steps since
seeing c without seeing any �-smaller priority iboundsn the meantime. When this number reaches λ for
any odd priority, we visit a special “bad vertex” and then reset the counters in the vector and resume the
game. Essentially, winning for FixPR(λ , p) (resp. DirFixPR(λ , p)) boils down to eventually (resp. com-
pletely) avoiding those bad vertices, hence to a co-Büchi (resp. safety) game. This extended game has
size O(|V | ·λ d

2 ) and can be solved in polynomial time since λ < |V | and d is fixed.
Second, consider the case where λ is fixed. We also reduce the FixPR(λ , p) (resp. DirFixPR(λ , p))

game to a co-Büchi (resp. safety) game, but with a different extended graph. Specifically, we here keep
track of the last λ vertices seen in the original game, and we want to avoid vertices of the extended graph
that correspond to histories where an odd priority c is not followed by a priority c′ � c within (λ − 1)
steps. Again, this can be expressed as either a co-Büchi or a safety objective depending on whether we
are interested in the undirect or the direct variant respectively. The extended game has size O(|V |λ )
hence can be solved in polynomial time since λ is fixed.
Theorem 7. Let G = (V1,V2,E) be a game structure, v0 be an initial vertex, p : V → {0, . . . ,d} be a
priority function, and Ω be the objective DirFixPR(λ , p) (resp. FixPR(λ , p)) for some λ < |V |. If either
d is fixed or λ is fixed, deciding the winner in (G,Ω) from v0 is in P. More precisely, if d is fixed, deciding
the winner can be done in O((|V |+ |E|) ·λ d

2 ) (resp. O(|V |2 ·λ d)) time, and if λ is fixed, deciding the
winner can be done in O((|V |+ |E|) · |V |λ−1) (resp. O(|V |2λ )). In both cases, polynomial-memory
strategies are sufficient for both players, and memory is necessary even in one-player games.

Fixed window parity objectives. Whereas (Dir)FixPR games are PSPACE-complete, we now establish
that (Dir)FixWP games are P-complete. Observe that if λ ≥ d

2 · |V |, the problem boils down to solving
the bounded variant thanks to Theorem 6. Hence, we focus on the case where λ < d

2 · |V |.
Our algorithm is inspired by the approach developed for window mean-payoff games in [5]. It can

be sketched as follows. As for the fixed-parameter algorithms for (Dir)FixPR games presented in The-
orem 7, we want to reduce the FixWP and DirFixWP games to co-Büchi and safety games respectively,
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where P1 wants to avoid “bad vertices” representing a violation of the condition at stake. Here, such a
violation represents a λ -bad window, i.e., a window for which no even minimum priority is found before
λ steps. Detecting such λ -bad windows can be achieved by considering an extended game structure
where we encode additional information for the minimum priority of the current window and the number
of steps in this window. A “bad vertex” is visited whenever we reach the end of a λ -window with an odd
minimum priority. If an even minimum is found, it is also a minimum for the windows at intermediate
positions and the step counter is reset. The extended game has size O(|V | · d · λ ), hence polynomial
size since λ < d

2 · |V |. Therefore, we can solve it in polynomial time. This is in contrast to window
mean-payoff games where the fixed variant requires pseudo-polynomial time in general [5].

Upper bounds on the memory are obtained by construction of our reduction and we prove polynomial
lower bounds in the extended version of this paper [3].

Theorem 8. Let G = (V1,V2,E) be a game structure, v0 be an initial vertex, p be a priority function, and
Ω be the objective DirFixWP(λ , p) (resp. FixWP(λ , p)) for some λ < |V |. Then deciding the winner
in (G,Ω) from v0 is P-complete with an algorithm in O((|V |+ |E|) ·d ·λ ) (resp. O(|V |2 ·d2 ·λ 2)) time.
Polynomial-memory strategies are both sufficient and necessary for both players.

5 Multi-dimension games

We now consider multi-dimension games: in this setting, there are n priority functions p1, . . . , pn and the
objective Ω is the conjunction of identical objectives Ωm for each “dimension” (i.e., priority function).

5.1 Bounded variants

Recall that Proposition 3 established the equality of objectives (Dir)BndWP(p) and (Dir)BndPR(p)
in the one-dimension setting. This equality trivially carries over to the multi-dimension setting, i.e.,
we have that ∩n

m=1(Dir)BndWP(pm) = ∩n
m=1(Dir)BndPR(pm) since the individual objectives (one per

priority function) are equal. Hence, it suffices to obtain our results for either WP or PR objectives.

Overview. The next theorem presents an overview of our results. For a comparison of those results with
related models, see Section 1. We sketch the key points to prove the theorem in the following paragraphs.

Theorem 9. Let G = (V1,V2,E) be a game structure, v0 be an initial vertex, p1, . . . , pn be n priority
functions, and Ω be the objective ∩n

m=1DirBndPR(pm) or ∩n
m=1DirBndWP(pm) (resp. ∩n

m=1BndPR(pm)

or ∩n
m=1BndWP(pm)). Let b = |V | ·2n· d2 ·n · d

2 .

1. Deciding the winner in (G,Ω) from v0 is EXPTIME-complete with an algorithm in O(b2) (resp.
O(|V | ·b2)) time, and exponential-memory strategies are necessary and sufficient for both players
(resp. for P1 and infinite-memory is necessary for P2).

2. ∀λ ≥ b, ∀λ ′ ≥ b · d
2 , the winning sets for the following objectives are all equal: ∩n

m=1BndPR(pm),
∩n

m=1FixPR(λ , pm), ∩n
m=1BndWP(pm), and ∩n

m=1FixWP(λ ′, pm). The same equalities hold for
the direct variants (Dir).

Exponential-time algorithm and upper bounds on memory. To prove EXPTIME-membership, we
introduce related games from the literature. First, request-response games [28, 8]. Consider r sets of
vertices Rq1, . . . ,Rqr representing requests and r sets of vertices Rp1, . . . ,Rpr representing corresponding
responses (Rqi,Rpi⊆V for all i). The request-response objective, denoted by RR((Rqi,Rpi)

r
i=1), requires
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that for all i, whenever a vertex of Rqi is visited, then, later on, a vertex of Rpi is also visited.4 Observe
that by definition, this objective is direct, i.e., the condition must hold from the start, not only eventually.
Several variants of these games have been studied in the literature, under various names. Those variants
include direct bounded request-response games: the objective DirBndRR((Rqi,Rpi)

r
i=1) asks that there

exist a bound b ∈ N0 such that if a request is visited, then the corresponding response is visited within
b steps. Its undirect variant BndRR have also been considered. The results of interest for us are (i)
the EXPTIME-membership of all those variants, (ii) that exponential memory suffices for both players
in all variants except for P2 and BndRR where infinite memory is necessary, and (iii) that whatever
the game G, if P1 can win for any of those objectives, he can ensure that eventually all requests are
answered in at most b = |V | ·2r · r steps [28, 8].

We establish a polynomial-time reduction from multi-dimension DirBndWP and BndWP games (or
equivalently, DirBndPR and BndPR games) to DirBndRR and BndRR games respectively. The crux is to
model each odd priority in each dimension as a request whose corresponding response is the occurrence
of a�-smaller priority in the same dimension. Since we have d

2 odd priorities and n dimensions, we need
n · d

2 pairs of requests and responses. We thus obtain an exponential-time algorithm for multi-dimension
(Dir)BndWP and (Dir)BndPR games, along with exponential upper bounds on memory in all cases
except the one of P2 in BndPR and BndWP games.

Equalities between objectives. The key ingredient for the last item of Theorem 9 is the aforementioned
bound given in [8] for (Dir)BndRR games, and by extension, for (Dir)BndPR and (Dir)BndWP games
thanks to our reduction. The rest follows the same lines as in the one-dimension case, i.e., it builds upon
the inclusions and equalities presented in Proposition 3.

Lower bound on complexity. To prove the EXPTIME-hardness of objective (Dir)BndWP (and equiva-
lently, of objective (Dir)BndPR), we establish a reduction from the membership problem for alternating
polynomial-space Turing machines (APTMs) [4]. Our proof is adapted from the reduction presented
in [5, Lemma 23] in the related context of window mean-payoff games. Since technical details are sim-
ilar to [5, Lemma 23], we only include a high-level sketch of the reduction in the full version of this
paper [3]. The main change is the way we deal with windows: whereas weights were used for window
mean-payoff games, we need here to emulate the same actions with adapted priorities. Interestingly, our
proof also shows EXPTIME-hardness of the fixed variants, (Dir)FixWP and (Dir)FixPR. Furthermore,
the hardness already holds with only three priorities (d = 2).

Lower bounds on memory. The last missing pieces to the proof of Theorem 9 are the exponential lower
bounds on memory. Recall that for P2 in undirect bounded WP or PR games, we already proved that
infinite memory is necessary in Example 4. To cover all remaining cases and establish exponential lower
bounds matching the upper bounds obtained above, we prove a polynomial-time reduction from general-
ized reachability games [15] to multi-dimension (Dir)BndWP and (Dir)BndPR games. Given U1, . . . ,Un

a family of n subsets of V , a generalized reachability objective GenReach(U1, ...,Un) = ∩n
m=1Reach(Um)

asks to visit a vertex of Um at least once, for each m ∈ {1, . . . ,n}. Since GenReach games are known
to require exponential memory for both players [15], the reduction yields the desired lower bounds. A
similar reduction is presented for window mean-payoff games in [5]. Interestingly, the same technique
also works for multi-dimension (Dir)FixWP and (Dir)FixPR games.

Let us sketch the reduction from GenReach to multi-dimension FixWP games (the other cases are
similar). Intuitively, if the generalized reachability objective asks to visits n different target sets, we
will use n dimensions. We create a modified version of the game structure such that, at the start of the

4Note that a single response Rpi suffices to answer all pending requests Rqi, in the same spirit as for priorities in the
parity-response objective.
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game, we see priority 1 in all dimensions, and such that the only way to see priority 0 in dimension
m ∈ {1, . . . ,n} is to visit the m-th target set. We also modify the game by giving P2 the possibility to
force seeing 0 in all dimensions and restart the game by seeing 1’s again: this is necessary to ensure
that the prefix-independence of objective FixWP cannot help P1 to win without visiting all target sets.
Finally, we use the fact that if P1 has a winning strategy in a GenReach game with n targets, then he
has one that wins in strictly less than n · |V | steps (i.e., edges), to define an appropriate window size
λ = 2 · n · |V | for which the reduction to objective ∩n

m=1FixWP(λ , pm) on our modified game structure
holds. As in the reduction for EXPTIME-hardness, we only need three priorities here (d = 2).

For the reader’s interest, we complement this reduction with an example illustrating the need for
exponential memory for P1 in FixWP games (it also works for the other objectives).

v1

v1,L

v1,R

vn

vn,L

vn,R

u1

u1,L

u1,R

un

un,L

un,R

Figure 4: Family of multi-dimension games requiring exponential memory for P1 for objective FixWP
with λ = 3n.

Example 10. Consider the family of game structures depicted in Figure 4. This family is parameterized
by n∈N0 and is inspired by a similar one proposed in [10] for a different context (i.e., energy games). For
each of these games structures, the number of vertices is linear in n (|V |= 6n) and we define 2n priority
functions in the following way: for all i ∈ {1, . . . ,n} and for all m ∈ {1, . . . ,2n}, pm(vi) = pm(ui) = 2,

pm(vi,L) =

{
1 if m = 2i−1
2 otherwise

, pm(vi,R) =

{
1 if m = 2i
2 otherwise

,

pm(ui,L) =

{
0 if m = 2i−1
2 otherwise

, pm(ui,R) =

{
0 if m = 2i
2 otherwise

.

Let Ω = ∩2n
m=1FixWP(3n, pm) be the objective of P1. In order to prevent (3n)-bad windows, P1 has to

choose ui,L (resp. ui,R) whenever P2 chooses vi,L (resp. vi,R). Hence in order to prevent outcomes with
infinitely-many (3n)-bad windows, P1 must be able to record 2n different histories from v1 to u1. This
obviously requires exponential memory in n, hence in the size of the game. /

5.2 Fixed variants

As in one-dimension, some differences arise for the fixed variants. See Section 1 for a comparison.
Parity-response objectives. To establish an exponential-time algorithm for multi-dimension DirFixPR
(resp. FixPR) games, we reduce them to safety (resp. co-Büchi) games on an exponentially-larger game
structure. Our reduction is in the same spirit5 as the one for Theorem 7 for the case d fixed in one-
dimension. That is, the extended structure encodes for each odd priority in each dimension, the number of

5Note that the other algorithm suggested in Theorem 7 and exponential in λ is not interesting here, since λ can be expo-
nential before the fixed variant becomes equivalent to the bounded one (Theorem 9), hence this algorithm would take doubly-
exponential time.
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steps since seeing the odd priority without seeing a �-smaller priority in the meantime. The complexity
and memory lower bounds follow from the reductions sketched for the bounded variants.

Theorem 11. Let G = (V1,V2,E) be a game structure, v0 be an initial vertex, p1, . . . , pn be n priority
functions, and Ω be the objective∩n

m=1DirFixPR(λ , pm) (resp. ∩n
m=1FixPR(λ , pm)) for λ ∈N0. Deciding

the winner in (G,Ω) from v0 is EXPTIME-complete with an algorithm in O((|V |+ |E|) · λ d
2 ·n) (resp.

O(|V |2 ·λ d·n)) time. Exponential memory is both sufficient and necessary for both players.

Window parity objectives. To conclude our study of PR and WP objectives, it remains to establish
an exponential-time algorithm for multi-dimension DirFixWP (resp. FixWP) games. Again, we reduce
those games to safety (resp. co-Büchi) games on an exponentially-larger game structure. Our reduction
is here based on the one used in the one-dimension setting (Theorem 8). That is, the extended structure
encodes, for each dimension, the minimum priority of the current window, and the number of steps in
that window. The complexity and memory lower bounds follow from the reductions sketched for the
bounded variants.

Theorem 12. Let G = (V1,V2,E) be a game structure, v0 be an initial vertex, p1, . . . , pn be n priority
functions, and Ω be the objective ∩n

m=1DirFixWP(λ , pm) (resp. ∩n
m=1FixWP(λ , pm)) for λ ∈ N0. De-

ciding the winner in (G,Ω) from v0 is EXPTIME-complete with an algorithm in O((|V |+ |E|) · (d ·λ )n)
(resp. O(|V |2 · (d ·λ )2·n)) time. Exponential memory is both sufficient and necessary for both players.
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