
Adriano Peron and Carla Piazza (Eds.):
Proceedings of the Fifth International Symposium on
Games, Automata, Logics and Formal Verification (GandALF 2014)
EPTCS 161, 2014, pp. 175–188, doi:10.4204/EPTCS.161.16

c© Osada et al
This work is licensed under the
Creative Commons Attribution License.

Hourglass Automata

Yuki Osada, Tim French, Mark Reynolds, and Harry Smallbone
The University of Western Australia.

yuki.osada@research.uwa.edu.au, {tim.french,mark.reynolds}@uwa.edu.au, 21306592@student.uwa.edu.au

In this paper, we define the class of hourglass automata, which are timed automata with bounded
clocks that can be made to progress backwards as well as forwards at a constant rate. We then
introduce a new clock update for timed automata that allows hourglass automata to be expressed.
This allows us to show that language emptiness remains decidable with this update when the number
of clocks is two or less. This is done by showing that we can construct a finite untimed graph using
clock regions from any timed automaton that use this new update.

1 Introduction

Hybrid systems, as defined by Alur et al. [6], consist of finite automata where the transitions between
states are guarded by a set of variables that change over time. Timed automata are a subset of hybrid sys-
tems that have been studied extensively due to their usefulness in industrial modelling. Timed automata
as shown in Alur and Dill [3] model time using a finite set of monotonically increasing real-valued
clocks. The clocks can be used in guards in automaton transitions and have a number of operations
associated with them. They can be reset to 0 independently of each other. Cassez and Larsen [7] also
define a class of timed automata, stopwatch automata, which allows the clocks to be stopped and started,
resulting in an expressive power equal to linear hybrid automata. Stopping time generally causes unde-
cidability, but Bérard et al. [11] show it is possible to introduce a restricted form of stopping time with
the interrupt timed automata, where clock levels are used to allow values that a clock can be compared
to be determined during execution.

Alur and Dill prove the emptiness problem for timed automata with integer clock guards to be decid-
able. By creating a clock region automaton, state reachability is PSPACE-complete, leading to formal
method applications such as UPPAAL [8]. UPPAAL is a model-checking tool that uses symbolic repre-
sentations of integer clocks to verify timed automata models.

The decidability of language emptiness for several types of timed automata updates have been looked
at Bouyer et al. [9]. They show that the updates x := c, x := y are decidable, and x := x+ 1, x := y+ c
are decidable for 3 or more clocks only when no diagonal constraints are used. This shows that we can
change decidability results by removing diagonal constraints. Further, Brihaye et al. [10] show that under
bounded time horizons, reachability of linear hybrid automata can be improved.

We introduce a new update operation to the clocks x := cx− x over the bounded time range [0,cx],
which allow clocks to simulate the behaviour of going backwards while actually moving forwards within
a bounded time range. The motivation for this operation can be explained simply in terms of the hourglass
problem.

The hourglass problem [4] describes a situation of some finite set of hourglasses which must be used
in conjunction to measure a period T. The clocks have co-prime maximum times with T, and can increase
or decrease in a range [0,c]. Once a clock reaches the bounds of its range, it stops progressing until a flip
is made. We define a flip to be a change in the clock’s rate of change from increasing to decreasing or

http://dx.doi.org/10.4204/EPTCS.161.16
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

176 Hourglass Automata

vice versa. Additionally, clocks may only have comparisons to its range bounds. To solve the problem
we have two optimisation concerns: firstly, the total amount of time passed in the system, and secondly,
the number of flips used to measure T.

Consider an example of timing an egg. The egg must be boiled for exactly 15 minutes with only a
7- and an 11-hourglass timers. This hourglass problem has a number of different solutions, including
for example in the two clock problem solving the Bezout identity ax− by = 1, where 1 is the greatest
common divisor of the co-prime clocks. Applying this solution to the example gives 11x−7y = 1, with
solution x = 2, y = 3 as the number of flips for each hourglass, leading to a total of 36 minutes with 5
flips to boil the egg.

The hourglass problem is partially reducible to a timed automaton. By modelling the problem using
UPPAAL without the ability to flip the clocks, we obtain a solution of 22 minutes. In this solution, the
7 and 11 clock are both started at t = 0: at 7 minutes, the egg is set to boiling with 4 minutes remaining
on the 11-clock. The 11-clock is reset at t = 11 and the egg continues to be boiled for the following
11 minutes to give 4+ 11 = 15. However, there is a solution that is even faster than those that can be
discovered using timed automata. The optimum solution starts with the egg boiling at t = 0 for both
clocks. At t = 7, the 7-clock is reset and times 4 minutes until t = 11. Now we use the new operation to
flip the hourglass such that it times from 4 to 0, giving a total time of 15 minutes with 2 hourglass flips.
This solution cannot be found using monotonically increasing clocks. Introducing the new operation has
useful applications in UPPAAL and, by extension, industrial model-checking.

2 Applications

The hourglass analogy is interesting from a problem solving aspect, but it is also very relevant in the
context of industrial applications of hybrid automata. There are some key features of hourglass automata
to characterize the problems we are interested in:

• Hourglasses can represent time only up to a fixed maximum time. Once the sand runs out of the
hourglass the state of the clock cannot change1.

• Hourglasses cannot be compared directly to one another. Typically there is no way to tell whether
one hourglass has more time remaining than another, (other than course estimations based on
appearance).

• Hourglasses can be flipped. Flipping an hourglass results in time running backwards, or an accu-
mulated resource running out.

These properties can be found in numerous modelling tasks, particularly those associated with material
flow networks. One can imagine that an hourglass represents a silo storing some commodity. A complex
process can allow that commodity to accumulate for a time and then to be consumed. Direct applications
of this include transportation network with various accumulation points (such as stockpiles or silos at a
port). Silos have a fixed maximum, their current content cannot be easily determined, and the time to
empty a silo is proportional to (or at least related to) the time taken to fill the silo. We are also interested
in modelling more complex systems such as trucks moving minerals about a mine site. Trucks can act as
mobile silos, but also a fragment of the process, such as the trucks fuel tank, is analogous to an hourglass.
In many of these cases, we would expect the time to fill a silo, or truck, or fuel tank, to be proportional
(though not equal) to the time to empty it. In this paper, we only consider clocks which allow time

1This is reminiscent of the normalisation process used in [3].

Osada et al 177

to change at rates of 1 or −1 (i.e. silos fill up and empty at the same rate) to establish the theory. In
future work we will investigate systems without this restriction. This extension would be similar to the
multi-rate automata considered in [5].

3 Hourglass Automata

3.1 Preliminaries

Timed automata are finite automata coupled with a finite set of real-valued variables, called clocks, which
all increase at unit rate at all locations. Each of these clocks may be reset to zero immediately after a
transition, and these transitions can have clock constraints associated to them. The clock constraints on
transitions are called guards, and unless the constraints in the guard are met, the transition cannot be
taken. Similarly, constraints on locations are called invariants, and the constraint must be met to stay
in that location. The location invariants and transition guards may only consist of comparisons between
clock values and non-negative integer constants. We restrict it to integer values since any rational constant
can be multiplied by a large enough value that they all become integers.

A clock valuation is a map from clock variables to non-negative real-values. States in timed automata
are written as location and clock valuation pairs, (s,v). Since there can be an infinite number of clock
valuations, we can have an infinite number of states in timed automata. There are two types of state
transitions in a timed automaton:

• a delay transition (s,v)→d (s,v+ t) for some t ≥ 0, where v+ t is the clock valuation v with all
clock values incremented by t.

• an action transition (s,v)→a (s′,v′) for some action a, where s′ is a location directly connected to
s in the automaton and v′ is the valuation v after the transition updates are applied.

The only clock update available in the standard timed automata is the reset operation, x := 0.
For every clock x ∈ X , we will let cx be the largest integer constant that x is compared against in the

clock constraints. Once x exceeds cx, the valuation of x can be considered to be ∞ as its value would
be indistinguishable from any value above cx. While the values are still distinguishable, we can split the
fractional and integral components as comparisons in clock constraints are all with integers. So for some
t ∈ R+, let f r(t) be the fractional component of t, and btc be the integral component of t. This gives us
t = btc+ f r(t).

Hourglass automata are extensions of timed automata that can have clocks that go backwards as well
as forwards, and these clocks are bound to the range [0,cx]. Additionally, the guards and invariants in
a hourglass automata are limited to comparing a clock x to its bounds: 0 and cx. Comparing clocks or
comparing clocks to other constants does not make sense for hourglasses. Additionally, clocks in an
hourglass automata can potentially be stopped to simulate the process of placing an hourglass on its side.

3.2 Syntax

We first introduce clocks that behave like hourglasses with clocks that are bound to a range.

DEFINITION 1 An hourglass clock x is a clock that can have a value in [0,cx], and rate of change in
{−1,0,1}. The value of a clock cannot exceed cx nor go below 0, so the clock stops progressing past
those points.

We will now define the main feature of hourglasses, which is their ability to be flipped, and have the
clock progress backwards.

178 Hourglass Automata

DEFINITION 2 A flip of a clock is an operation that multiplies the rate of change of the real-value of the
clock by −1. All clocks initially have a rate of change of 1, so the flip operation alternates the rate of
change between 1 and −1.

Another feature of hourglasses is that time can be stopped by placing them on their side.

DEFINITION 3 Hourglass clocks can be stopped, and then started again. This simulates the process of
placing a hourglass on its side, and later placing them back upright again. We will call the operation that
switches the clock’s state between these two as toggling the clock.

The rate of change of a clock can be tracked by extending the definition of a timed automata state
to include d ∈ D : X → {−1,1} that maps clocks x ∈ X to a value in the set {−1,1}, which encodes the
direction time is progressing for a clock. This multiples the number of states by 2|X |, where |X | is the
number of clocks in the system. We can further extend this to record the stopped clocks by mapping
clocks to a value in {−1,−0,0,1}, resulting in a 4|X | multiplier. The −0 is needed to store the direction
time should progress when toggled back on. Additionally, flipping a clock when stopped, should swap
the direction that time progresses in when the clock is started again.

With the above two definitions, we can now define our hourglass automata.

DEFINITION 4 An hourglass automaton is a 7-tuple A = (∑,S,Si,S f ,X , I,T) such that:

• ∑ is a finite set of actions,

• S is a finite set of locations,

• Si ⊂ S is a set of initial locations,

• S f ⊂ S is a set of final locations,

• X is a finite set of hourglass clocks,

• I : S→ C(X) is a mapping from locations to clock constraints (the location invariants), where
a clock constraint φ ∈ C(X) maps a clock x ∈ X to a constraint such that φ(x) = v(x) ≺ c or
φ(x) = c≺ v(x) or φ = φ1∧φ2, where ,c∈ {0,cx},≺∈ {<,≤},φ1,φ2 ∈C(X), and v : X→R maps
clocks to their clock valuation.

• T ⊆ S×∑×C(X)× 2X × 2X × S is a set of transitions, where the 6-tuple 〈s,a,φ ,µ f lip,µtoggle,s′〉
is a transition from location s to location s′ with the label a. This transition is enabled when the
constraint φ is met, and taking this transition will flip a set of clocks µ f lip ⊆ X , and toggle the
progress of time in a set of clocks µtoggle ⊆ X . Note that the standard clock reset x := 0 is not
available in hourglass automata.

3.3 Timed and Untimed Languages

The initial states of an automaton are the elements of Si× v0, where v0(x) = 0 for all x ∈ X . The final
states of an automaton are states that are in the final locations. A run of a timed automaton is a sequence
of timed moves, which represents a delay transition followed by an action transition, from an initial state.
A finite run is said to be accepting if the run ends in a final state. For every finite run, we have a finite
timed word that is a sequence of timed moves that represent the run. We then say that the timed language
accepted by a timed automaton is the set of timed words that are accepting runs.

The language emptiness problem is the problem of determining whether the language accepted by
an automaton is empty or not. If there is a finite number of states, then this problem is reduced to a graph
problem, where we check whether there exists a path from an initial state node to a final state node. This

Osada et al 179

makes the problem decidable. In timed automata, there can be an infinite number of states of the form
(s,v) ∈ S×V , where |S| is finite but |V | can be infinite. Alur and Dill [1,3] proved the decidability of the
language emptiness problem on timed automata by showing that they can construct a Büchi automaton
from a timed automaton, and this Büchi automaton accepts exactly the set of untimed words that are
equivalent to the timed words accepted by the timed automaton. Instead of exact clock valuations, these
untimed words use equivalence classes of clock valuations, called clock regions.

4 Hourglass-Flip Expressible Update for Timed Automata

We showed earlier that the states in a hourglass timed automaton can be represented by the addition of
an extra map d to represent each clock’s direction (and whether they are stopped or not), so we now
introduce a new clock update that allows us to keep a positive time progression like in the standard timed
automata.

LEMMA 5 The update x := c− x, where x ∈ X and c ∈ Z≤cx , with the reset operation x := 0 on timed
automata is capable of expressing the flip operation with bounded clocks from the hourglass automata.

Proof. The hourglass automata only allows comparisons of clocks to the constants 0 and cx, so we only
care about how much time there is until the clock value reaches these two end points.
Let 0≤ x≤ cx, then a1 = cx− x is the time left before x = cx when time is moving forwards, and b1 = x
is the time left before x = 0 when time is moving backwards.

If we now apply the update x := cx− x, let a2, b2 be a1, b1 after we apply this update:
a2 = cx− (cx− x),b2 = (cx− x)
=⇒ a2 = x, b2 = cx− x
=⇒ a2 = b1, b2 = a1
∴ this update swaps the time until an end point is reached, which is exactly what the flip operation does
in the hourglass automata. Also, we remain in the 0≤ x ≤ cx bound as expected (cx− x = cx− [0,cx] =
[0,cx]).

This means we can let cx be our only bound, and restrict time to progressing forwards. We also need
to update the d map when we flip a clock x: d(x) :=−d(x).

We do not compare the clock value to anything above cx, so we can just let the clock become greater
than cx. When a clock x is at its bounds and stopped progressing, the expected result of a flip on x is to
let it start moving again towards the other bound, which would be cx away. We can simulate this with a
clock reset x := 0 and state change d(x) := −d(x), then let the clock progress towards cx. For this, we
just have to check if v(x)≥ cx, and execute the above steps in place of the x := cx− x update.

∴ We can represent the hourglass automata’s bounded clock and flip operation with timed automata,
using the standard clock reset operation and the new update operation.

We will use timed automata extended with the x := cx−x update to show that the language emptiness
problem on hourglass automata is decidable for two clocks or less. To prove decidability of the language
emptiness problem on the hourglass automata, we will construct a finite untimed automaton that accepts
untimed words that are equivalent to the timed words that are accepted by the corresponding timed
automaton using the x := cx− x update. A finite untimed automata would have a finite number of states,
so language emptiness would be decidable.

180 Hourglass Automata

4.1 Clock Regions

In the standard timed automata, a finite untimed automata can be constructed using clock regions, which
represent sets of clock valuations. From the reasoning given by Alur, Courcoubetis, and Dill [2], we can
assume all comparisons will be between clocks and integers. Thus for every clock x ∈ X , we only care
about its current integer value. The ordering of the fractional components is the other piece of information
that is important so we know the order in which the integral components increase. This allowed the
partition of the clock valuation space into equivalence classes. We will use a similar approach.

The original three constraints for two clock valuations, v and v′, to be equivalent (v∼= v′) are:

1. For all x ∈ X either v(x)≥ cx and v′(x)≥ cx, or bv(x)c= bv′(x)c

2. For all x,y ∈ X such that v(x)≤ cx and v(y)≤ cy,
f r(v(x))≤ f r(v(y)) if and only if f r(v′(x))≤ f r(v′(y))

3. For all x ∈ X such that v(x)≤ cx, f r(v(x)) = 0 if and only if f r(v′(x)) = 0

With the new update, x := cx− x, we add one more constraint:

4. For all x,y ∈ X such that v(x)≤ cx and v(y)≤ cy,
f r(v(x))+ f r(v(y))≤ 1 if and only if f r(v′(x))+ f r(v′(y))≤ 1 and
f r(v(x))+ f r(v(y))≥ 1 if and only if f r(v′(x))+ f r(v′(y))≥ 1.

LEMMA 6 The fractional component constraints in 2 is mapped to the fractional component constraints
in 4 and vice versa when the update v′(x) := cx− v(x) is made and the valuation of the clock isn’t an
integer. This means constraint 4 is required to preserve information when the flip operation is made.

Proof. From constraint 2 to constraint 4:
Let x,y ∈ X , v(x)≤ cx, v(x) /∈ Z, v(y)≤ cy, and f r(v(x))≤ f r(v(y)).

Applying the update v′(x) := cx− v(x) gives us:
f r(v′(x))≤ f r(v(y)) ⇐⇒ f r(cx− v(x))≤ f r(v(y)) ⇐⇒ 1− f r(v(x)− cx)≤ f r(v(y)) ⇐⇒
1− f r(v(x))≤ f r(v(y)) ⇐⇒ 1≤ f r(v(x))+ f r(v(y)) ⇐⇒ f r(v(x))+ f r(v(y))≥ 1
∴ f r(v(x))≤ f r(v(y))→ f r(v(x))+ f r(v(y))≥ 1

Similarly, f r(v(y))≤ f r(v(x)) updates to f r(v(x))+ f r(v(y))≤ 1.

From constraint 4 to constraint 2:
Let x,y ∈ X such that v(x)≤ cx, v(x) /∈ Z, v(y)≤ cy, and f r(v(x))+ f r(v(y))≤ 1.

Applying the update v′(x) := cx− v(x) gives us:
f r(v′(x))+ f r(v(y))≤ 1 ⇐⇒ f r(cx− v(x))+ f r(v(y))≤ 1 ⇐⇒ f r(v(y))≤ 1− f r(cx− v(x)) ⇐⇒
f r(v(y))≤ f r(v(x)− cx) ⇐⇒ f r(v(y))≤ f r(v(x))
∴ f r(v(x))+ f r(v(y))≤ 1→ f r(v(y))≤ f r(v(x))

Similarly, f r(v(x))+ f r(v(y))≥ 1 updates to f r(v(x))≤ f r(v(y)).

Note that if v(x) ∈ Z, then f r(cx− v(x)) = 0, so the fractional constraints do not change and it is still
consistent.

With only the original three constraints, ∼= is known to be an equivalence relation.

LEMMA 7 ∼= remains an equivalence relation with this new constraint.

Osada et al 181

Proof. We show that the three properties of an equivalence relation are maintained.
Reflexive: This is trivially true.
Symmetric:

Let v,v′ ∈V , and ∀x,y ∈ X such that v(x)≤ cx and v(y)≤ cy.
Either v(x) = cx∧ v′(x) = cx or bv(x)c= bv′(x)c, so v′(x)≤ cx (similarly for y).
∴ v∼= v′ =⇒ v′ ∼= v.
Transitive:

Let v,v′,v′′ ∈V , and: ∀x,y ∈ X such that v(x)≤ cx, v′(x)≤ cx, v(y)≤ cy and v′(y)≤ cy.
Either v(x) = cx∧ v′(x) = cx∧ v′′(x) = cx or bv(x)c = bv′(x)c = bv′′(x)c, so v′′(x) ≤ cx (similarly for y).
=⇒ ∀x,y ∈ X such that v(x)≤ cx and v(y)≤ cy

f (v(x))+ f r(v(y))≤ 1 ⇐⇒ f (v′(x))+ f r(v′(y))≤ 1 ⇐⇒ f (v′′(x))+ f r(v′′(y))≤ 1
f (v(x))+ f r(v(y))≥ 1 ⇐⇒ f (v′(x))+ f r(v′(y))≥ 1 ⇐⇒ f (v′′(x))+ f r(v′′(y))≥ 1
∴ v∼= v′∧ v′ ∼= v′′ =⇒ v∼= v′′.

The other constraints are unaffected, so ∼= still defines an equivalence relation.

This means we have a partitioning of all possible clock valuations. Each equivalence class of ∼= is
called a region.

LEMMA 8 The number of regions induced by ∼= is bounded by:
∏x∈X(2 · (cx +1)) · |X |! ·2|X |−1 · (|X |+1)|X | · (|X |+1)|X |

Proof. A region can be described with five arrays:

1. For each clock x ∈ X , the interval in which x lies. Possible options for some clock x are:
{[0,0],(0,1), [1,1], ...,(cx−1,cx), [cx,cx],(cx,∞)}
The number of possible ways to construct this array is ∏x∈X(2 · (cx +1)).

2. A permutation of Xv≤cx , β : X →{1,2, ..., |Xv≤cx |}, giving the ≤ ordering of the fractional compo-
nents of the clocks with valuations that are still distinguishable.
The number of possible ways to construct this array is |Xv≤cx |!.

3. A boolean array of whether the fractional component of a clock is equal to the fractional compo-
nent of the succeeding clock in the above permutation.
The number of possible ways to construct this array is 2|Xv≤cx |−1.

4. For each clock x∈Xv≤cx , the greatest integer i∈N≤|Xv≤cx | such that f r(v(x))+ f r(v(xi))< 1, where
β (xi) = i or v(x0) = 0 if no such i exists.
The number of possible ways to construct this array is (|Xv≤cx |+1)|Xv≤cx |.

5. For each clock x∈Xv≤cx , the greatest integer i∈N≤|Xv≤cx | such that f r(v(x))+ f r(v(xi))≤ 1, where
β (xi) = i or v(x0) = 0 if no such i exists.
The number of possible ways to construct this array is (|Xv≤cx |+1)|Xv≤cx |.

LEMMA 9 Every equivalence class of∼= can be represented by some five-tuple 〈α,β ,γ,ζ ,η〉, containing
the arrays above.

Proof. Let v,v′ ∈V .
α consists of intervals of the form [a,a] or (a,a+1) for a ∈ N<cx , [cx,cx], and (cx,∞).

• α(x) = [a,a] ⇐⇒ bv(x)c= a,bv′(x)c= a, f r(v(x)) = 0, f r(v′(x)) = 0
⇐⇒ bv(x)c= bv′(x)c, f r(v(x)) = 0∧ f r(v′(x)) = 0

182 Hourglass Automata

• α(x) = (a,a) ⇐⇒ bv(x)c= a,bv′(x)c= a, f r(v(x)) 6= 0, f r(v′(x)) 6= 0
⇐⇒ bv(x)c= bv′(x)c, f r(v(x)) 6= 0∧ f r(v′(x)) 6= 0

• α(x) = [cx,cx] ⇐⇒ v(x)≥ cx,v′(x)≥ cx, f r(v(x)) = 0, f r(v′(x)) = 0
⇐⇒ v(x)≥ cx∧ v′(x)≥ cx, f r(v(x)) = 0∧ f r(v′(x)) = 0

• α(x) = (cx,∞) ⇐⇒ v(x)> cx,v′(x)> cx

⇐⇒ v(x)> cx∧ v′(x)> cx

∴ α satisfies constraints 1 and 3.
β and γ give us an≤ ordering of the fractional components of the clocks with valuations that are still

distinguishable while giving us all sub-strings where the fractional components are equal.

• β (x) = β (y)
⇐⇒ v(x)≤ cx∧ v(y)≤ cy∧ v′(x)≤ cx∧ v′(y)≤ cy∧ f r(v(x)) = f r(v(y))∧ f r(v′(x)) = f r(v′(y))

• β (x)< β (y)∧ (∧a∈{a∈X |β (x)≤β (a)≤β (y)}(γ(a)))
⇐⇒ v(x)≤ cx∧ v(y)≤ cy∧ v′(x)≤ cx∧ v′(y)≤ cy∧ f r(v(x)) = f r(v(y))∧ f r(v′(x)) = f r(v′(y))

• β (x)< β (y)∧¬(∧a∈{a∈X |β (x)≤β (a)≤β (y)}(γ(a))) ⇐⇒ f r(v(x))< f r(v(y)), f r(v′(x))< f r(v′(y))
⇐⇒ v(x)≤ cx∧ v(y)≤ cy∧ v′(x)≤ cx∧ v′(y)≤ cy∧ f r(v(x))< f r(v(y))∧ f r(v′(x))< f r(v′(y))

∴ β and γ satisfy constraint 2.
ζ and η with β give us for each clock, the set of clocks that can be added so that sum is less than

zero, equal to zero, and greater than zero.

• β (y)≤ ζ (x) ⇐⇒ v(x)≤ cx∧ v′(x)≤ cx∧ v(y)≤ cy∧ v′(y)≤ cy∧ f r(v(x))+ f r(v(y))< 1

• η(x)< β (y) ⇐⇒ v(x)≤ cx∧ v′(x)≤ cx∧ v(y)≤ cy∧ v′(y)≤ cy∧ f r(v(x))+ f r(v(y))> 1

• ζ (x)< β (y)≤ η(x) ⇐⇒ v(x)≤ cx∧v′(x)≤ cx∧v(y)≤ cy∧v′(y)≤ cy∧ f r(v(x))+ f r(v(y)) = 1

∴ ζ and η with β satisfy constraint 4.

∴ The number of clock regions is bounded by:
∏x∈X(2 · (cx +1)) · |X |! ·2|X |−1 · (|X |+1)|X | · (|X |+1)|X |

We next look at the elapsing of time, clock constraints, and clock updates.

LEMMA 10 Let v1 and v2 be two clock valuations, t be a non-negative integer, φ be a clock constraint,
and λ ,µ ⊆ X be a set of clocks. The following properties hold when the number of clocks is two or less:

1. v1 ∼= v2∧ t ∈ Z+ =⇒ v1 + t ∼= v2 + t

2. v1 ∼= v2 =⇒ ∀t1 ∈ R+∃t2 ∈ R+[v1 + t1 ∼= v2 + t2]

3. v1 ∼= v2 =⇒ v1 satisfies φ ⇐⇒ v2 satisfies φ

4. v1 ∼= v2 =⇒ v1[λ := 0]∼= v2[λ := 0]

5. v1 ∼= v2 =⇒ v1[µ := cµ −µ]∼= v2[µ := cµ −µ]

Proof. (1)
Let v1 ∼= v2, t ∈ Z+, then:
∀x,y ∈ X f r(v1(x))+ f r(v1(y))≤ 1 ⇐⇒ f r(v2(x))+ f r(v2(y))≤ 1 and

f r(v1(x))+ f r(v1(y))≥ 1 ⇐⇒ f r(v2(x))+ f r(v2(y))≥ 1
=⇒ ∀x,y ∈ X f r(v1(x)+ t)+ f r(v1(y)+ t)≤ 1 ⇐⇒ f r(v2(x)+ t)+ f r(v2(y)+ t)≤ 1 and

f r(v1(x)+ t)+ f r(v1(y)+ t)≥ 1 ⇐⇒ f r(v2(x)+ t)+ f r(v2(y)+ t)≥ 1
=⇒ v1 + t ∼= v2 + t

Osada et al 183

Proof. (2)
When t1 = 0: t2 = 0
When t1 ∈ Z+: t2 = t1 as above.
When 0 < t1 < 1: The existence of a t2 is not guaranteed when there are more than two clocks (See 11).
We limit it to two clocks X = {x,y} here, and v1 ∼= v2:

1. Either v1(x)≥ cx and v2(x)≥ cx, or bv1(x)c= bv2(x)c (similarly for y)

2. v1(x)≤ cx∧ v1(y)≤ cx =⇒ f r(v1(x))≤ f r(v1(y)) ⇐⇒ f r(v2(x))≤ f r(v2(y)) and
f r(v1(y))≤ f r(v1(x)) ⇐⇒ f r(v2(y))≤ f r(v2(x))

3. v1(x)≤ cx =⇒ (f r(v1(x)) = 0 ⇐⇒ f r(v2(x)) = 0) (similarly for y)

4. v1(x)≤ cx∧ v1(y)≤ cy =⇒ f r(v1(x))+ f r(v1(y))≤ 1 ⇐⇒ f r(v2(x))+ f r(v2(y))≤ 1 and
f r(v1(x))+ f r(v1(y))≥ 1 ⇐⇒ f r(v2(x))+ f r(v2(y))≥ 1

• Case v1(x)+ t1 > cx,v1(y)+ t1 > cy: t2 > cx− v1(x)∧ t2 > cy− v1(y) =⇒ t2 is not bounded from
above, and t2 = t1 +1 will result in v2(x)+ t2 > cx∧ v2(y)+ t2 > cy.

• Case v1(x)+ t1 > cx,v1(y)+ t1 ≤ cy: cx− v2(x)< t2∧ t2 ≤ cy− v2(y)
If cy− v2(y)≥ 1, then t2 = 1 will work since cx−1 < v2(x)≤ cx must be true.
If 0 < cy− v2(y)< 1 =⇒ bv2(y)c= cy−1 =⇒ bv1(y)c= cy−1 =⇒
f r(v1(y))< f r(v1(x)) =⇒ f r(v2(y))< f r(v2(x)) =⇒
t2 = 1− f r(v2(y)) will work since 1− f r(v2(x)) < t2 ≤ 1− f r(v2(y)) is the range t2 must be in
and this range is not empty.
cy− v2(y) = 0 cannot be true since that would mean v2(y) = cy ⇐⇒ v1(1) = cy ⇐⇒ t1 = 0,
which is a contradiction since 0 < t1 < 1.

• Case v1(x)+ t1 ≤ cx,v1(y)+ t1 > cy: We can find a t2 using the same reasoning as above.

• Case v1(x)+t1≤ cx,v1(y)+t1≤ cy, f r(v(y))≤ f r(v(x)): (The f r(v(x))≤ f r(v(y)) case is similar)

Let’s assume neither integral components change when t1 is added, then constraints 1 to 3 only require
that t2 doesn’t change either integral components as well.
The regions we get from the fourth constraint:

1. f r(v(x))+ f r(v(y))< 1∧ f r(v(y)) = 0

2. f r(v(x))+ f r(v(y))< 1

3. f r(v(x))+ f r(v(y)) = 1∧ f r(v(x)) 6= 0

4. f r(v(x))+ f r(v(y))> 1∧ f r(v(x)) 6= 0

From any point in these regions, you can reach a point in
the following region:

1→ 2 Let t2 = ε , where 0 < ε < 1− (f r(v(x))+ f r(v(y)))

2→ 3 Let t2 = 1− (f r(v(x))+ f r(v(y)))

3→ 4 Let t2 = ε , where ε > 0, bv(x)c= bv(x)+ εc,
bv(y)c= bv(y)+ εc

4→ 1 Let t2 = min(1− f r(v(x)),1− f r(v(y)))
Figure 1: The four region types

184 Hourglass Automata

After the fourth region, f r(v(x)) = 0 and the integral component of x is incremented before starting again
at the first region, but with x and y variable positions swapped. The transition from 4 to 1 also aligns
with the integral component increment and fractional component ordering change, so they are taken into
account.
When t1 > 1, t1 /∈ Z+:
Let t ′1 = t1−bt1c =⇒ 0 < t ′1 < 1, and
bt1c ∈ Z+ ⇐⇒ v1 + bt1c ∼= v2 + bt1c, so if we let v′1 = v1 + bt1c,v′2 = v2 + bt1c,
then we just need to find t ′2, where v′1 + t ′1 ∼= v′2 + t ′2.

Proof. (3) Let x,y ∈ X
v1 ∼= v2 and v1 satisfies φ , where φ compares clocks to integers:
∀x ∈ X ,ax,bx ∈ Z+

≤cx
,ax ≤ v(x)≤ bx

=⇒ ax,bx,ay,by ∈ Z+
≤cx

,ax ≤ v1(x)≤ bx∧ay ≤ v1(y)≤ by∧
bv1(x)c= bv2(x)c∧bv1(y)c= bv2(y)c∧
f r(v1(x)) = 0 ⇐⇒ f r(v2(x)) = 0∧ f r(v1(y)) = 0 ⇐⇒ f r(v2(y)) = 0
=⇒ ax ≤ v2(x)≤ bx∧ay ≤ v2(y)≤ by

=⇒ v2 satisfies φ , and it is unaffected by the new constraint.

Proof. (4) Let x,y ∈ X ,λ ⊆ X
v1 ∼= v2 =⇒
f r(v1(x))+ f r(v1(y))≤ 1 ⇐⇒ f r(v2(x))+ f r(v2(y))≤ 1∧
f r(v1(x))+ f r(v1(y))≥ 1 ⇐⇒ f r(v2(x))+ f r(v2(y))≥ 1

v1[λ := 0],(x ∈ λ ∨ y ∈ λ) =⇒ f r(v1(x))+ f r(v1(y))≤ 1
v2[λ := 0],(x ∈ λ ∨ y ∈ λ) =⇒ f r(v2(x))+ f r(v2(y))≤ 1
∴ v1[λ := 0],v2[λ := 0],(x ∈ λ ∨ y ∈ λ) =⇒ f r(v1(x))+ f r(v1(y))≤ 1, f r(v2(x))+ f r(v2(y))≤ 1
=⇒ v1[λ := 0]∼= v2[λ := 0] since the other constraints are already known to be satisfied.

Proof. (5) Let x ∈ µ,µ ⊆ X
If v(x)≥ cx, then the f lip operation is converted to a reset operation as explained in Section 4, so we

can assume v(x)< cx.
v1 ∼= v2 =⇒ bv1(x)c= bv2(x)c∧ (f r(v1(x)) = 0 ⇐⇒ f r(v2(x)) = 0)
f r(v1(x)) = 0 =⇒ bcx− v1(x)c= cx− v1(x) = cx−bv1(x)c, f r(cx− v1(x)) = 0
f r(v2(x)) = 0 =⇒ bcx− v2(x)c= cx− v2(x) = cx−bv2(x)c, f r(cx− v2(x)) = 0
f r(v1(x)) 6= 0 =⇒ bcx− v1(x)c= cx−dv1(x)e= cx− (bv1(x)c+1), f r(cx− v1(x)) 6= 0
f r(v2(x)) 6= 0 =⇒ bcx− v2(x)c= cx−dv2(x)e= cx− (bv2(x)c+1), f r(cx− v2(x)) 6= 0
∴ bcx−v1(x)c= bcx−v2(x)c∧(f r(cx−v1(x)) = 0 ⇐⇒ f r(cx−v2(x)) = 0) is true, so constraints 1 and
3 are maintained after the flip operation.

Let x,y ∈ X ,µ ⊆ X
From Lemma 6, we know that if x ∈ µ,y /∈ µ,v(x) /∈ Z or x,y ∈ µ,v(x) /∈ Z,v(y) ∈ Z:
f r(v(x))≤ f r(v(y))→ f r(v(x))+ f r(v(y))≥ 1,
f r(v(y))≤ f r(v(x))→ f r(v(x))+ f r(v(y))≤ 1,
f r(v(x))+ f r(v(y))≤ 1→ f r(v(y))≤ f r(v(x)),
f r(v(x))+ f r(v(y))≥ 1→ f r(v(x))≤ f r(v(y))
and x,y ∈ µ,v(x),v(y) /∈ Z =⇒
f r(v(x))≤ f r(v(y))→ f r(v(x))+ f r(v(y))≥ 1→ f r(v(y))+ f r(v(x))≥ 1→ f r(v(y))≤ f r(v(x)),

Osada et al 185

f r(v(y))≤ f r(v(x))→ f r(v(x))+ f r(v(y))≤ 1→ f r(v(y))+ f r(v(x))≤ 1→ f r(v(x))≤ f r(v(y)),
f r(v(x))+ f r(v(y))≤ 1→ f r(v(y))≤ f r(v(x))→ f r(v(x))≤ f r(v(y))→ f r(v(x))+ f r(v(y))≥ 1,
f r(v(x))+ f r(v(y))≥ 1→ f r(v(x))≤ f r(v(y))→ f r(v(y))≤ f r(v(x))→ f r(v(x))+ f r(v(y))≤ 1
and x ∈ µ,v(x) ∈ Z or x,y ∈ µ,v(x),v(y) ∈ Z =⇒ no fractional component constraints change with the
flip operation.
From the above mappings, we can see that all fractional component constraints are being mapped con-
sistently to a fractional component constraint.
∴ constraints 2 and 4 are maintained after the flip operation.

LEMMA 11 The progression of time is where this clock update faces undecidability issues when there
are more than two clocks. The condition v1 ∼= v2 =⇒ ∀t1 ∈R+∃t2 ∈R+[v1 + t1 ∼= v2 + t2] from above is
not met with three clocks.

Proof. We show an example with three clocks:
Let x,y,z ∈ X be the three clocks, and cx = 2,cy = 2,cz = 2,v1(x) = 0.4,v1(y) = 0.4,v1(z) = 0.8,v2(x) =
0.1,v2(y) = 0.1,v2(z) = 0.95
We show that v1 ∼= v2:

1. bv1(x)c= 0,bv2(x)c= 0 =⇒ bv1(x)c= bv2(x)c
bv1(y)c= 0,bv2(y)c= 0 =⇒ bv1(y)c= bv2(y)c
bv1(z)c= 0,bv2(z)c= 0 =⇒ bv1(z)c= bv2(z)c

2. f r(v1(x)) = 0.4, f r(v1(y)) = 0.4, f r(v2(x)) = 0.1, f r(v2(y)) = 0.1 =⇒
f r(v1(x))≤ f r(v1(y)) and f r(v2(x))≤ f r(v2(y))
Also true when we swap x and y.
f r(v1(x)) = 0.4, f r(v1(z)) = 0.8, f r(v2(x)) = 0.1, f r(v2(z)) = 0.95 =⇒
f r(v1(x))≤ f r(v1(z)) and f r(v2(x))≤ f r(v2(z))
When swapped, both constraints fail as expected.
f r(v1(y)) = 0.4, f r(v1(z)) = 0.8, f r(v2(y)) = 0.1, f r(v2(z)) = 0.95 =⇒
f r(v1(y))≤ f r(v1(z)) and f r(v2(x))≤ f r(v2(z))
When swapped, both constraints fail as expected.

3. None have fractional components of zero.

4. f r(v1(x)) = 0.4, f r(v1(y)) = 0.4, f r(v2(x)) = 0.1, f r(v2(y)) = 0.1 =⇒
f r(v1(x))+ f r(v1(y))< 1 and f r(v2(x))+ f r(v2(y))< 1
Also true when we swap x and y.
f r(v1(x)) = 0.4, f r(v1(z)) = 0.8, f r(v2(x)) = 0.1, f r(v2(z)) = 0.95 =⇒
f r(v1(x))+ f r(v1(z))> 1 and f r(v2(x))+ f r(v2(z))> 1
Also true when we swap x and z.
f r(v1(y)) = 0.4, f r(v1(z)) = 0.8, f r(v2(y)) = 0.1, f r(v2(z)) = 0.95 =⇒
f r(v1(y))+ f r(v1(z))> 1 and f r(v2(y))+ f r(v2(z))> 1
Also true when we swap y and z.

∴ v1 ∼= v2, but if we choose t1 = 0.1 =⇒ (v1 + t1)(x) = 0.5,(v1 + t1)(y) = 0.5,(v1 + t1)(z) = 0.9:

1. b(v2 + t2)(x)c= 0,b(v2 + t2)(y)c= 0,b(v2 + t2)(z)c= 0 =⇒ t2 ≤ 0.9, t2 ≤ 0.9, t2 ≤ 0.05
t2 < 0.05

2. No fractional ordering will change unless there is an integral component change, so this has the
same restriction of t2 < 0.05.

186 Hourglass Automata

3. t2 < 0.05 for the same reason as above.

4. f r((v1 + t1)(x))+ f r((v1 + t1)(y)) = 1 =⇒ f r((v2 + t2)(x))+ f r((v2 + t2)(y)) = 1
f r((v1 + t1)(x))+ f r((v1 + t1)(z))> 1 =⇒ f r((v2 + t2)(x))+ f r((v2 + t2)(y))> 1
f r((v1 + t1)(y))+ f r((v1 + t1)(z))> 1 =⇒ f r((v2 + t2)(x))+ f r((v2 + t2)(y))> 1
=⇒ t2 = 0.4, t2 < 0.475, t2 < 0.475

We have two conflicting requirements where t2 < 0.05 but t2 = 0.4. This means the interval for z and the
ordering on the fractional components must change before the x+ y sum constraint can be fulfilled.
∴ There is no t2 such that v1 + t1 ∼= v2 + t2.

We now extend our equivalence relation ∼= over clock valuations to an equivalence relation over the
state space of timed automata by taking the cross product of the locations, clock valuations and the rate
of change map, and require that equivalent states have the same location, clock region and rate of change
map.
So let s,s′ ∈ S, v,v′ ∈V and d,d′ ∈ D, then (s, [v],d)∼= (s′, [v′],d′) ⇐⇒ s = s′∧ [v] = [v′]∧d = d′.
We will call this the region graph.

LEMMA 12 For every timed action in the timed automata, there exists a corresponding transition in the
region graph.

Proof. Let v1 ∼= v2∧ (s,v1)⇒a (s′,v′1). For simplicity, we will drop the encoding of the rate of change
map since they can also be encoded in s.
The transition 〈s,a,φ ,λ ,µ,s′〉 that changes the state from (s,v1) to (s′,v′1) corresponds to two transitions
of the timed automaton:

• a delay transition (s,v1)→t1 (s,v1 + t1) for some t1 ≥ 0, followed by

• an action transition (s,v1+t1)→a (s,v′1) : v1+t1 satisfies φ and v′1 = (v1+t1)[λ := 0,µ := cµ−µ].

Delay transition:
v1 ∼= v2 =⇒ ∀t1 ∈ R+∃t2 ∈ R+[v1 + t1 ∼= v2 + t2]
∴ ∃t2 : (s,v2)→t2 (s,v2 + t2) and (s,v1 + t1)∼= (s,v2 + t2)
Action transition:
(v1 + t1)∼= (v2 + t2)∧ (v1 + t1) satisfies φ =⇒ (v2 + t2) satisfies φ

(v1 + t1)∼= (v2 + t2) =⇒ (v1 + t1)[λ := 0]∼= (v2 + t2)[λ := 0]
(v1 + t1)[λ := 0]∼= (v2 + t2)[λ := 0] =⇒ (v1 + t1)[λ := 0,µ := cµ −µ]∼= (v2 + t2)[λ := 0,µ := cµ −µ]
∴ ∃v′2 = (v2 + t2)[λ := 0,µ := cµ −µ] : v′1 ∼= v′2∧ (s,v2)⇒a (s′,v′2)
∴ We have transitions in the region graph that correspond to transitions of the timed automaton, and the
behaviour is consistent.

Lastly, the initial states in the region graph have the form:
(si, [v],d), where si ∈ Si, and ∀x ∈ X ,v(x) = 0∧d(x) = 1

The final states in the region graph have the form:
(s f , [v],d), where s ∈ S f

LEMMA 13 The constructed region graph will accept exactly the set of words equivalent to the words
accepted by the corresponding timed automaton.

The proof for this will be the same as the proof given for the standard timed automata [3].

THEOREM 14 The language emptiness problem on hourglass automata with two or fewer clocks is
decidable.

Osada et al 187

5 Stopping Time

LEMMA 15 With two hourglass clocks, the stopping of time does not cause decidability issues.

Hourglass clocks are never compared to one another, and they are bounded to a range. This means
we only need to consider the progression of time.

In the 2-clock region diagram shown in Figure 1, we can see that a horizontal or vertical time pro-
gression can be made to work by introducing an extra constraint:
∀x∈X such that v(x)≤ cx f r(v(x))≤ 0.5 ⇐⇒ f r(v′(x))≤ 0.5 and f r(v(x))≥ 0.5 ⇐⇒ f r(v′(x))≥ 0.5.
This cuts the second and fourth region in Figure 1 into two halves. Proving that∼= remains an equivalence
relation with this extra condition requires few modifications to the original ones since this new condition
is an extended version of condition 4, but we let clocks x and y to be the same clock.

The two properties to prove are:

1. v1 ∼= v2∧ t ∈ Z+ =⇒ v1 + t ∼= v2 + t

2. v1 ∼= v2 =⇒ ∀t1 ∈ R+∃t2 ∈ R+[v1 + t1 ∼= v2 + t2]

Proof. (1) This is unaffected from the proof given where no clocks are stopped.

Proof. (2) We can see from Figure 1 that when we cut the second and fourth regions, the region transi-
tions are fixed when we allow time to progress. Note that this does not work for three clocks since when
you have one stopped clock with one of the other two clocks having a higher fractional component and
the last clock having a lower fractional component than the stopped clock, you cannot determine whether
the lower will cross the stopped clock or the higher will reach the next integer first.

6 Conclusion and Future Work

In this paper, we introduced the hourglass automata and its ability to let clocks go backwards within some
bounded range. To be able to reason and study this class of automata, we first introduced an extension
to the standard timed automata which has a new update, x := c− x, where x is a clock, c ∈ N≤cx , and
cx is the greatest integer constant that clock x is compared against, and a rate of change map D : X →
{−1,−0,0,1} is added to the state space. We then showed that this extended timed automata is capable
of expressing the operations of the hourglass automata by showing a translation of the flip operation on
bounded clocks. As a result, this allowed us to examine the language emptiness problem for this class of
automata.

For the hourglass automata, we limited the clock update to the form x := cx−x since this was all that
was necessary. From there, we prove the decidability of the language emptiness problem on this class of
automata when two or fewer clocks are involved, using the same approach used for proving decidability
of the standard timed automata [3]. This result shows that for two hourglass clocks, we can reduce the
system to a finite graph.

The next step would be to investigate the possibility of having more than two clocks. The timed
automata that we currently have defined is capable of more than the hourglass automata definition, and
maintains a lot of information, which is not necessary, so it is possible that we could use another model
to represent the hourglass automata such that language emptiness verification is decidable with more
than two clocks. Some important notes here would be removing all unnecessary constraints that are
not the boundaries, and possibly introduce clock regions which are not square with edges on the integer
components. This may be possible since we don’t compare to integer constants other than the bounds.

188 Hourglass Automata

The ability for hourglasses to be placed on their side, allowing the stopping of clocks, will also be
an interesting area to investigate when more than two clocks are introduced. In general, the ability to
stop time allows timed automata to become as expressive as linear hybrid automata [7], thus introducing
undecidability issues, but there has been other classes of timed automata that have a limited ability to
stop time like the interrupt timed automata [11]. The interrupt timed automata would have some overlap
with the hourglass automata in what it can express.

Additionally, the decidability proof for the update given in this paper can apply for any c ∈ N≤cx as
long as c− x ≥ 0, otherwise the clock values become invalid, so this extended timed automata could be
developed further.

References
[1] R. Alur and D. Dill. Automata for modeling real-time systems. In International Colloquium on Automata,

Languages and Programming (ICALP), pages 322–335. Springer, 1990.doi:10.1007/BFb0032042
[2] R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking for real-time systems. In Proceedings of the

5th Annual Symposium on Logic in Computer Science, pages 414–425. IEEE Computer Society Press,
1990.doi:10.1109/LICS.1990.113766

[3] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–235,
1994.doi:10.1016/0304-3975(94)90010-8

[4] D. Wells. The Penguin Book of Curious and Interesting Puzzles. Penguin Books, 1992.
[5] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s Decidable About Hybrid Automata? In Pro-

ceedings of the Twenty-seventh Annual ACM Symposium on Theory of Computing (STOC), pages 373–382.
ACM, 1995.doi:10.1145/225058.225162

[6] R. Alur, C. Courcoubetis, I. N. Halbwachs, T. A. Henzinger, P. H. Ho, X. Nicollin, A. Olivero, J. Sifakis,
and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer Science, 138:3–34,
1995.doi:10.1016/0304-3975(94)00202-T

[7] F. Cassez, and K. G. Larsen. The Impressive Power of Stopwatches. In Proceedings of CONCUR 2000:
Concurrency Theory, pages 128–152. Springer, 2000.doi:10.1007/3-540-44618-4_12

[8] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. In International Journal on Software Tools
for Technology Transfer, 1(2):134–152. Springer, 1997.doi:10.1007/s100090050010

[9] P. Bouyer, C. Dufourd, E. Fleury and A. Petit. Updatable Timed Automata. Theoretical Computer Science,
321(2-3):291-345, 2004.doi:10.1016/j.tcs.2004.04.003

[10] T. Brihaye, L. Doyen, G. Geeraerts, J. Ouaknine, J.-F. Raskin, J. Worrell. On Reachability for Hybrid
Automata over Bounded Time. In International Colloquium on Automata, Languages and Programming
(ICALP), (2):416–427. Springer, 2011.doi:10.1007/978-3-642-22012-8_33

[11] B. Bérard, S. Haddad and M. Sassolas. Interrupt Timed Automata: verification and expressiveness. In Formal
Methods in System Design, 40(1):41–87. Springer, 2012.doi:10.1007/s10703-011-0140-2

[12] E. Asarin, V. Mysore, A. Pnueli, G. Schneider. Low dimensional hybrid systems - decid-
able, undecidable, don’t know. In Information and Computation, 211:138–159. Academic Press,
2012.doi:10.1016/j.ic.2011.11.006

http://dx.doi.org/10.1007/BFb0032042
http://dx.doi.org/10.1109/LICS.1990.113766
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1145/225058.225162
http://dx.doi.org/10.1016/0304-3975(94)00202-T
http://dx.doi.org/10.1007/3-540-44618-4_12
http://dx.doi.org/10.1007/s100090050010
http://dx.doi.org/10.1016/j.tcs.2004.04.003
http://dx.doi.org/10.1007/978-3-642-22012-8_33
http://dx.doi.org/10.1007/s10703-011-0140-2
http://dx.doi.org/10.1016/j.ic.2011.11.006

	1 Introduction
	2 Applications
	3 Hourglass Automata
	3.1 Preliminaries
	3.2 Syntax
	3.3 Timed and Untimed Languages

	4 Hourglass-Flip Expressible Update for Timed Automata
	4.1 Clock Regions

	5 Stopping Time
	6 Conclusion and Future Work

