A Comparison of BDD-Based Parity Game Solvers

Lisette Sanchez
Wieger Wesselink
Tim A.C. Willemse

Parity games are two player games with omega-winning conditions, played on finite graphs. Such games play an important role in verification, satisfiability and synthesis. It is therefore important to identify algorithms that can efficiently deal with large games that arise from such applications. In this paper, we describe our experiments with BDD-based implementations of four parity game solving algorithms, viz. Zielonka's recursive algorithm, the more recent Priority Promotion algorithm, the Fixpoint-Iteration algorithm and the automata based APT algorithm. We compare their performance on several types of random games and on a number of cases taken from the Keiren benchmark set.

In Andrea Orlandini and Martin Zimmermann: Proceedings Ninth International Symposium on Games, Automata, Logics, and Formal Verification (GandALF 2018), Saarbrücken, Germany, 26-28th September 2018, Electronic Proceedings in Theoretical Computer Science 277, pp. 103–117.
Published: 7th September 2018.

ArXived at: https://dx.doi.org/10.4204/EPTCS.277.8 bibtex PDF
References in reconstructed bibtex, XML and HTML format (approximated).
Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org