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I consider the question of which dependencies are safe for a Team Semantics-based logic FO(D), in

the sense that they do not increase its expressive power over sentences when added to it. I show that

some dependencies, like totality, non-constancy and non-emptiness, are safe for all logics FO(D),
and that other dependencies, like constancy, are not safe for FO(D) for some choices of D despite

being strongly first order (that is, safe for FO( /0)). I furthermore show that the possibility operator

⋄φ , which holds in a team if and only if φ holds in some nonempty subteam, can be added to any

logic FO(D) without increasing its expressive power over sentences.

1 Introduction

Team Semantics [16] generalizes Tarskian Semantics for First Order Logic by allowing formulas to be

satisfied or not satisfied with respect to sets of assignments (called teams), rather than with respect to

single assignments. First Order Logic with Team Semantics is easily shown to be equivalent to First

Order Logic with Tarskian Semantics, in the sense that a first order formula is satisfied by a set of

assignments in Team Semantics if and only if it is satisfied by all assignments in the set with respect to

Tarskian Semantics.

The richer nature of the satisfaction relation of Team Semantics, however, makes it possible to extend

First Order Logic in novel ways, such as by introducing new operators or quantifiers [1, 4, 6, 23] or

new types of atomic formulas which specify dependencies between different assignments contained in

a team. Examples of important logics obtained in the latter way are Dependence Logic [22], Inclusion

Logic [5], and Independence Logic [11]. Despite the semantics of the atoms which these logics add to

the language of First Order Logic being first order (when understood as conditions over the relations

corresponding to teams), these logics are strictly more expressive than First Order Logic. This, in brief,

is due to the second order existential quantifications implicit in the Team Semantics rules for disjunction

and existential quantification. Thus, exploring the properties of fragments of such logics (as done for

instance in [2, 3, 10, 12, 21]) provides an interesting avenue to the study of the properties and relations

between fragments of Second Order Logic.

This work is a contribution towards the more systematic study of the properties of first order definable

dependency atoms and of the logics they generate. Building on the work of [7, 9], which dealt with the

case of dependencies which are strongly first order in that they do not increase the expressive power of

First Order Logic if added to it, we will find some preliminary answers to the following

Question: Let D = {D1,D2, . . .} be a set of first order definable dependencies. Can we characterize

the sets of dependencies E = {E1,E2, . . .} which are safe for D , in the sense that every sentence of
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FO(D ,E ) is equivalent to some sentence of FO(D)?

To the author’s knowledge, this notion of safety – which is the natural generalization of the notion

of strongly first order dependency of [7, 9] – has not been considered so far in the literature; and, as

we will see, known results and currently open problems regarding the expressive power of logics with

Team Semantics can be reframed in terms of it, and information concerning the safety of dependencies

(or operators, if we generalize the notion of dependency to operators in the obvious way) can be highly

useful to prove relationships between logics with Team Semantics. However, as we will also see, safety

is a delicate notion: in particular, dependencies which are strongly first order (that is, safe for the empty

set of dependencies) are not necessarily safe for all sets of dependencies.

These results will show that this notion of safety is a subtle one, deserving of further investigation.

Additionally, by means of these answers we will see that the possibility operator ⋄φ , which holds in a

team if φ holds in some nonempty subteam of it, can be added to any logic FO(D) without increasing its

expressive power.

2 Preliminaries

2.1 Team Semantics

In this section we will briefly recall the notation used in this work, the definition of Team Semantics, and

some basic results that will be used in the rest of this work. Through all of this work, we will always

assume that all our (first order) models M have at least two elements in their domain M and that we have

countable sets of variable symbols {xi,yi,zi,wi, . . . : i ∈ N} and of relation symbols R,S, . . . of all arities.

We will write x, y, v and so on to describe tuples of variable symbols; and likewise, we will write m, a,

b and so forth to describe tuples of elements of a model. For any tuple a of elements, |a| will represent

the length of a; and likewise, |v| represents the length of the tuple of variables v. Given any set A, we

will furthermore write P(A) for the powerset {B : B ⊆ A} of A.

Variable assignments and substitutions are defined in the usual way:

Definition 1 (Variable Assignments, Substitution, Restriction, Composition with Functions) Let M

be a first order model with domain M and let V be a set of variables. Then an assignment over M with

domain Dom(s) =V is a function s : V → M. We will write ε for the unique assignment with domain /0.

For any variable v (which may or may not be in V already) and any element m ∈ M, we write s[m/v] for

the variable assignment with domain V ∪{v} such that

s[m/v](x) =

{

m if x = v;

s(x) otherwise

for all variable symbols x ∈V ∪{v}.

For every assignment s, every tuple m=m1 . . .mn of elements and every tuple v= v1 . . .vn of variables

with |v|= |m|, we will write s[m/v] as an abbreviation for s[m1/v1][m2/v2] . . . [mn/vn].

For all sets of variables V ⊆ Dom(s), we furthermore write s|V for the restriction of the assignment s

to the variables of V , that is, for the unique assignment s′ with domain V such that s′(v) = s(v) for all

v ∈V .

For any function f : M → M and any assignment s over M, we will write f(s) for the unique assign-

ment with the same domain of s such that f(s)(v) = f(s(v)) for all v ∈ Dom(s).
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Given an expression φ , we will write FV(φ) for the set of all variables occurring free (that is, not in

the scope of a quantifier for them) in φ ; and given a tuple t of terms of our language, we will write var(t)
for the set of all variables occurring in t.

Let us now recall the definition of Team Semantics for First Order Logic:

Definition 2 (Team) Let V be a finite set of variables, and let M be a first order model with domain M.

Then a team X over M with domain Dom(X) =V is a set of assignments s : V → M.

Definition 3 (From Teams to Relations) Let X be a team over a first order model M, and let v =
v1 . . .vk be a tuple (possibly with repetitions) of variables vi ∈ Dom(X). Then we write X(v) for the

k-ary relation given by

X(v) = {s(v1v2 . . .vn) : s ∈ X}

where s(v1v2 . . .vn) is a shorthand for the n-tuple (s(v1),s(v2), . . . ,s(vn)).

Definition 4 (Team Supplementation) Let X be a team over some first order model M, let k ∈ N, and

let v ∈ Var
k be a tuple of k distinct variables (which may or may not occur already in Dom(X)).Then, for

all functions H : X → P(Dom(X)k)\{ /0}, we define X [H/v] as the team with domain Dom(X)∪ v given

by

X [H/v] = {s[m/v] : s ∈ X ,m ∈ H(s)}.

In other words, a supplementation function H for the team X selects, for each assignment s ∈ X , a

nonempty set H(X) of possible values for the variables v, and X [H/v] is obtained from X by assigning

these possible values to the variables v.

The duplication operator, which will be now described, corresponds then to the special case of sup-

plementation for which H(s) = Mk for all s ∈ X :

Definition 5 (Team Duplication) Let X be a team over some first order model M, let k ∈ N, and let

v ∈ Var
k be once more a tuple of k distinct variables. Then the duplication X [M/v] of X along v is the

team

X [M/v] = {s[m/v] : s ∈ X ,m ∈ Mk}.

Team Semantics was originally developed by Hodges in [16] in order to provide a compositional

semantics equivalent to the imperfect-information, game-theoretic semantics of Independence-Friendly

Logic [13, 14, 15]; but for our purposes it will be useful to first present it for First Order Logic proper.

For simplicity, we will assume that all expressions are in Negation Normal Form:

Definition 6 (Team Semantics for First Order Logic) Let M be a first order model with domain M,

let φ(x) be a first order formula in negation normal form with free variables contained in x, and let X

be a team over M with domain Dom(X)⊇ x.1 Then we say that the team X satisfies φ(x) in M, and we

write M |=X φ , if this can be derived via the following rules:

TS-lit: For all first order literals α , M |=X α if and only if, for all assignments s∈X, M |=s α according

to the usual Tarskian Semantics;

TS-∨: For all formulas ψ1 and ψ2, M |=X ψ1 ∨ψ2 if and only if there exist teams Y and Z such that

X = Y ∪Z, M |=Y ψ1 and M |=Z ψ2;

TS-∧: For all formulas ψ1 and ψ2, M |=X ψ1 ∧ψ2 if and only if M |=X ψ1 and M |=X ψ2;

TS-∃: For all variables v and formulas ψ , M |=X ∃vψ if and only if there exists some H : X →P(M)\{ /0}
such that M |=X [H/v] ψ;

1We use this slight abuse of notation to mean that every variable xi occurring in the tuple x = x1 . . .xn belongs to Dom(X).
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TS-∀: For all variables v and formulas ψ , M |=X ∀vψ if and only if M |=X [M/v] ψ .

If φ is a sentence (i.e. has no free variables), we say that φ is true in M according to Team Seman-

tics, and we write M |= φ , if and only if M |={ε} φ , where {ε} is the team containing only the empty

assignment.

It is worth remarking that the above semantics for the language of first order logic involves second

order existential quantifications in the rules TS-∨ and TS-∃. This is a crucial fact for understanding

the expressive power of logics based on Team Semantics, and it is furthermore the reason why Team

Semantics constitutes a viable tool for describing and studying fragments of existential second order

logic. Nonetheless, as the following well known result shows, there exists a very strict relationship

between the satisfaction conditions of first order formulas in Team Semantics and in the usual Tarskian

Semantics:

Proposition 7 Let M be a first order model, let φ be a first order formula over the signature of M, and

let X be a team over M with domain containing all the free variables of φ . Then M |=X φ if and only if

for all s ∈ X, M |=s φ according to the usual Tarskian Semantics.

It is a straightforward consequence of Proposition 7 that truth in Tarskian Semantics and in Team Se-

mantics coincide:

Corollary 8 Let M be a first order model and let φ be a first order sentence. Then M |= φ according to

Team Semantics if and only if M |= φ according to the usual Tarskian Semantics.

2.2 The [R : t] operator, dependencies, and a normal form

As we saw in the previous section, there is a very strict connection between Tarskian Semantics and

Team Semantics for First Order Logic: not only these two semantics agree with respect to the truth of

sentences, but the satisfaction conditions of a first order formula φ with respect to Team Semantics can be

obtained in a very straightforward way from the satisfaction conditions of the same formula with respect

to Tarskian Semantics.

There is, however, an important asymmetry in First Order Logic between Tarskian Semantics and

Team Semantics. Every first order definable property of tuples of elements corresponds trivially to the

satisfaction condition (in Tarskian Semantics) of some first order formula. However, not all first order

definable properties of teams (interpreted as relations) correspond to the satisfaction conditions (in Team

Semantics) of first order formulas, as the following easy consequence of Proposition 7 shows:

Corollary 9 There is no first order formula φ(v), with v as its only free variable, such that for all first

order models M and teams X with v ∈ Dom(X) it holds that M |=X φ(v) if and only if |X(v)| = |{s(v) :

s ∈ X}| ≥ 2 (that is, if and only if the variable v takes at least two distinct values in X).

Thus, the property of unary relations describable as “containing at least two elements”, which is eas-

ily seen to be first order definable via the sentence Φ(U) = ∃pq(U p∧Uq∧ p 6= q), does not correspond

to the satisfaction conditions (according to Team Semantics) of any first order formula.

A straightforward way to ensure that all first order definable properties of relations correspond to the

satisfaction conditions of formulas would be to add the following rule to our semantics:

TS-[:]: For all signatures Σ, all models M having signature Σ, all k ∈ N, all k-ary relation symbols

R (which may or may not occur already in Σ), all tuples t = t1 . . . tk of terms, and all first order

formulas φ in the signature Σ∪{R},

M |=X [R : t]φ if and only if M[X(t)/R] |=X φ
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where M[X(t)/R] is the expansion of M to the signature Σ ∪ {R} such that its interpretation

RM[X(t)/R] of R is simply X(t).

Much of the study of Team Semantics so far has focused on the classification of logics obtained by adding

expressions of the form [R : t]φ to First Order Logic, φ belongs to some class of first order sentences over

the signature {R}.2

Definition 10 ((First Order) Dependencies) Let k ∈N. A k-ary first order dependency D is a first order

sentence D(R) over the signature {R}, where R is a k-ary relation symbol.3

Definition 11 (FO(D)) Let D = {D1 . . .Dn} be a family of first order dependencies. Then FO(D) is

obtained by adding to First Order Logic (with Team Semantics) all dependency atoms of the form

[R : t]Di(R) for all i = 1 . . .n, where t is a tuple of terms the same arity ar(Di) of Di, R is a relational

symbol of the same arity, and we write Dit as a shorthand for [R : t]Di(R).

We conclude this section with some simple results that are easily shown to hold for the full FO([:])
and for all its fragments (including all FO(D)), and with a normal form for all sentences in FO(D) for

any set D of dependencies:

Definition 12 (Properties of Formulas and Dependencies) Let φ(v) be any formula of FO[:]. Then we

say that φ

• is Downwards Closed if M |=X φ ,Y ⊆ X ⇒M |=Y φ for all suitable models M and teams X ,Y ;

• is Upwards Closed if M |=X φ ,Y ⊇ X ⇒M |=Y φ for all suitable models M and teams X ,Y ;

• is Union Closed if M |=Xi
φ∀i ∈ I ⇒M |=∪iXi

φ for all suitable models M and families of teams

(all with the same domain) (Xi)i∈I;

• has the Empty Team Property if M |= /0 φ .

We say that a dependency D (that is, a first order sentence D(R) over the signature {R}) has any such

property if all the formulas Dt (that is, [R : t]D(R)) have it.

Three of these four properties are preserved by the connectives of our language, as it can be proved by

straightforward induction:

Proposition 13 Let D = {D1,D2, . . .} be a family of dependencies which are all Downwards Closed

[are all Union Closed, have all the Empty Team Property]. Then every formula of FO(D) is Downwards

Closed [is Union Closed, has the Empty Team Property].

The property of union closure, on the other hand, is clearly not preserved in the same way as it is violated

already by first order literals. However, this property is nonetheless useful for the classification of the

expressive power of logics with Team Semantics.

Definition 14 (Team Restriction) Let X be a team over a model M, and let V ⊆ Dom(X). Then X|V is

the restriction of X to the domain V , that is, the team X|V = {s|V : s ∈ X}.

Proposition 15 (Locality) Let M be any first order model, let φ ∈ FO([:]) be a formula over the signa-

ture of M, and let X be a team over M such that the set FV(φ) of the free variables of φ is contained in

Dom(X). Then M |=X φ if and only if M |=X|FV(φ )
φ .

2Exceptions to this are given for instance by the study of logics which add to Team Semantics generalised quantifiers [1, 4],

or a contradictory negation [23].
3This is a special case of the more general – and not necessarily first order – notion of dependency used in [7], which comes

from [19].
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The following result is the generalization to FO([:]) of Proposition 19 of [10], and the proof is entirely

analogous:

Proposition 16 The following equivalences hold for all ψ1,ψ2 ∈ FO([:]) and all variables v occurring

free in ψ1 but not in ψ2 and for all two variables p and q, different from each other and from v, which

occur in neither ψ1 nor ψ2;

1. (∃vψ1)∨ψ2 ≡ ∃v(ψ1 ∨ψ2);

2. (∃vψ1)∧ψ2 ≡ ∃v(ψ1 ∧ψ2);

3. (∀vψ1)∨ψ2 ≡ ∃pq∀v((p = q∧ψ1)∨ (p 6= q∧ψ2));

4. (∀vψ1)∧ψ2 ≡ ∀v(ψ1 ∧ψ2)

It follows from the above equivalences that all logics FO(D), for all choices of D , admit the following

Prenex Normal Form, which is analogous of the one proved in Theorem 15 of [10]:

Theorem 17 Let D be any family of dependencies, and let φ be a formula of FO(D). Then φ is logically

equivalent to some formula φ ′ ∈ FO(D) of the form Q1v1 . . .Qnvnψ , where each Qi is ∃ or ∀ and ψ is

quantifier-free. Furthermore, ψ contains the same number of dependency atoms that φ does, and the

number of universal quantifiers among Q1 . . .Qn is the same as the number of universal quantifiers in φ

(although there may be more existential quantifiers in Q1 . . .Qn than in ψ).

Theorem 23 at the end of this section will show how this normal form may be further refined.

Definition 18 (Team Conditioning) Let X be a team over a model M and let θ(v) be a first order

formula with free variables in Dom(X). Then X ↾ θ is the subteam of X containing only the assignments

which satisfy θ (in the Tarskian Semantics sense), that is,

X ↾ θ = {s ∈ X : M |=s θ}

Definition 19 (θ →֒ φ ) Let θ be a first order formula with free variables in x and let φ be a FO([:])
formula. Then we define θ →֒ φ as (¬θ)∨ (θ ∧ φ), where ¬θ is the first order negation normal form

expression equivalent to the negation of θ .

In general, in Team Semantics θ →֒ φ is not logically equivalent to the typical interpretation ¬θ ∨ φ of

the implication θ → φ .4 In [7, 9] the same operator was written as φ ↾ θ ; here, however, we prefer to

use the →֒ notation as in the first occurrence of an operator of this type in the literature5 [18] and as in

recent literature in the area of Team Semantics (e.g. [20]), in order to emphasize the “implication-like”

qualities of this connective.

Proposition 20 For all first order formulas θ and all formulas φ ∈ FO([:]), M |=X θ →֒ φ if and only if

M |=X↾θ φ .

As long as we are working with models with at least two elements it is possible to use the →֒ operator

to get rid of the second order quantification implicit in the Team Semantics rule for disjunctions, at the

cost of adding further existential quantifiers:

4It is so if φ is downwards closed.
5The →֒ operator of [18] had a more general semantics in order to deal with non first-order in the antecedent – in short,

according to [18] M |=X θ →֒ θ if and only if M |=Y θ for all maximal Y ⊆ X which satisfy θ . If θ is first order, it follows

easily from Proposition 7 that this is equivalent to definition given above.
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Lemma 21 Let ψ1 and ψ2 be two formulas of FO([:]), and let q1, q2 be two variables not occurring in

either ψ1 or ψ2. Then ψ1 ∨ψ2 is logically equivalent to ∃q1q2((q1 = q2 →֒ ψ1)∧ (q1 6= q2 →֒ ψ2)) over

models with at least two elements.

Furthermore, the →֒ operator commutes with the other operators:

Lemma 22 For all formulas θ ,θ1,θ2 ∈ FO and ψ ,ψ1,ψ2 ∈ FO([:]),

• θ1 →֒ (θ2 →֒ ψ)≡ (θ1 ∧θ2) →֒ ψ .

• θ →֒ (ψ1 ∧ψ2)≡ (θ →֒ ψ1)∧ (θ →֒ ψ2);

• If the variable y does not occur in θ then θ →֒ (∃yψ)≡ ∃y(θ →֒ ψ);

• If the variable y does not occur in θ then θ →֒ (∀yψ)≡ ∀y(θ →֒ ψ).

Using the above results it is possible to prove the existence of the following normal form:

Theorem 23 (Normal Form for FO(D)) Let D = {D1,D2, . . .} be any set of dependencies and let φ be

a sentence of FO(D). Then φ is logically equivalent to some sentence φ ′ of the form

∀x1∃y1 . . .∀xn∃yn(
∧

k

(θk(yn) →֒ Dik tk)∧ψ(x,y)).

where the θk and ψ are quantifier-free and contain no dependency atoms, and where furthermore each

possible instance Dit of every dependence atom Di ∈ D appears the same number of times in φ and in

φ ′ and there are as many universal quantifiers in φ ′ as in φ

Proof:

First, let us rename variables so that no variable is bound in two different places in φ and no variable

occurs both bound and free in φ .6 Then let us bring φ in prenex normal form Q1v1 . . .Qnvnψ for ψ

quantifier free, as per Theorem 17.

Then let us get rid of disjunctions by Lemma 21, replacing each subformula ψ1∨ψ2 with ∃q1q2(q1 =
q2 →֒ ψ1)∧ (q1 6= q2 →֒ ψ2) for two new variables q1 and q2 (different for each disjunction). Then let

us bring the newly introduced existential quantifiers outside of subexpressions too, using the transforma-

tions of Proposition 16 and Lemma 22 as required. Finally, again using the transformations of Lemma

22, let us bring conjunctions outside the consequents of →֒ operators and merge multiple occurrences of

→֒ of the form θ1 →֒ (θ2 →֒ ψ) as (θ1 ∧θ2) →֒ ψ .

The final result will be an expression of the form Q1v1 . . .Qnvn∃y
∧

j(θ j(y) →֒ α j(v,y)), where all

α j are either occurrences Dt of dependency atoms D ∈ D or first order literals α and where the θ j are

quantifier-free conjunctions of first order literals with variables in y. This is easily seen to be the same as

the required form, where we combined all θ j →֒ α j for first order α j into ψ . It is clear furthermore that

no additional universal quantifiers or dependency atoms are introduced by this transformation.

�

2.3 Strongly First Order Dependencies

Because of the higher order quantification hidden in the Team Semantics rules for disjunction and exis-

tential quantification, even comparatively simple first order dependencies such inclusion atoms [5] x ⊆
y := [R : xy]∀uv(Ruv →∃wRwu) or functional dependence atoms [22] =(x;y) := [R : xy]∀uv1v2(Ruv1∧
Ruv2 → v1 = v2) bring the expressive power of the logic well beyond that of First Order Logic.

A dependency, or set of dependencies, is said to be strongly first order if this is not the case:

6We do not discuss in detail here the effect of renaming variables in logics with Team Semantics, and remark only that there

is no substantial difference between such logics and first order logic in this respect.
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Definition 24 (Strongly First Order Dependencies) Let D = {D1,D2, . . .} be a set of dependencies.

We say that D is strongly first order if and only if every sentence of FO(D) is logically equivalent to

some sentence of First Order Logic FO.

It is important to emphasize here that the above definition asks merely that every sentence of FO(D)
is equivalent to some sentence of FO. As we saw in Corollary 9, not all first order properties of teams cor-

respond to the satisfaction conditions of first order formulas in Team Semantics; but nonetheless, some

of those properties may be added as dependencies to First Order Logic without increasing the expressive

power of its sentences. We can ask then the following

Question: Are there non-trivial choices of D which are strongly first order?

This is a question of some importance not only because of its relevance to the classification of exten-

sions of First Order Logic via Team Semantics but also because knowing which families of dependen-

cies do not make the resulting logics computationally untreatable is essential for studying applications

of Team Semantics in e.g. Database Theory (see for example [17]).

A positive answer to the above question was found in [7], in which the following result was found:

Theorem 25 Let D↑ be the family of all upwards closed dependencies7 and let =(·) be the family of all

constancy dependencies

=(·) := ∀xy(Rx∧Ry → x = y)

of all arities.8 Then D↑∪=(·) is strongly first order.

In [9] it was furthermore shown that all unary first-order dependencies are definable in FO(D↑,=(·)),9

and hence do not increase the expressive power of First Order Logic if added to it.

It is still unknown, however, whether the above result is a characterization of all strongly first order

families of dependencies. In other words, the following problem is still open:

Open Conjecture: Let D be a strongly first order family of dependencies. Then every D∈D is definable

in FO(=(·),D↑).

3 Safe Dependencies

By definition, a class D of dependencies is strongly first order if and only if FO(D) is no more expressive

than FO over sentences. In many cases, this is perhaps too restrictive a notion: indeed, it may be that

instead we have already a family D of dependencies whose expressive power is suitable for our needs

(for instance, as in the case of inclusion dependencies, that captures the PTIME complexity class over

finite ordered structures) and we may be interested in characterizing the families E that do not further

increase it if added to the language. This justifies the following, more general notion:

Definition 26 Let D = {D1 . . .Dn} be a set of dependencies. Another set of dependencies E is safe for

D if any sentence of FO(E ,D) is equivalent to some sentence of FO(D).

7That is, as per Definition 12, all D(R) ∈ D must be such that (M,R) |= D(R),R ⊆ S ⇒ (M,S) |= D(S); or equivalently, in

terms of Team Semantics, all D ∈ D are such that M |=X Dt,X ⊆ Y ⇒M |=Y Dt.
8It is straightforward, however, to see that constancy dependencies of arity one suffice to define the others: for instance,

=(xy)≡=(x)∧=(y).
9In this work we will commit a minor notational abuse here and write FO(D↑,=(·)) instead of FO(D↑∪=(·)) and so forth.
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It is obvious that strongly first orderness is a special case of safety:

Proposition 27 A family D of dependencies is strongly first order if and only if it is safe for the empty

set of dependencies /0.

Furthermore, it is trivial to see that definable dependencies are always safe:

Proposition 28 (Definable Dependencies are safe) Let D and E be two families of dependencies such

that for all E ∈ E there exists some formula ψE(v) ∈ FO(D) such that M |=X Ev ⇔M |=X ψE(v) for

all models M, tuples v of distinct variables of length equal to the arity of E, and teams X over M with

domain v. Then E is safe for D .

Are all dependencies (or families of dependencies) which are safe for some D definable in it? In

general, this cannot be true: as we saw in Corollary 9, non-constancy dependencies

NC(v) := [R : v]∃xy(Rx∧Ry∧x 6= y)

are not definable in FO = FO( /0), but since they are upwards closed we know by Theorem 25 that they

are strongly first order (and, therefore, safe for /0). Or, to mention another example, all families of

dependence atoms are safe for the functional dependence atoms of Dependence Logic: indeed, Depen-

dence Logic is equivalent to full Existential Second Order Logic Σ1
1 on the level of sentences [22], and

it is straightforward to see that FO(D) is contained in Σ1
1 for all choices of D . However, for instance,

the above-mentioned non-constancy atoms are certainly not definable in Dependence Logic because of

Proposition 13, since functional dependencies are downwards closed while they are not.

Classes of dependencies for which safety and definability coincide may be called closed:

Definition 29 (Closed Classes of Dependencies) Let D be a class of dependencies. Then D is closed if

and only if every E which is safe for D contains only dependencies which are definable in FO(D).

A class D of dependencies, in other words, is closed if all dependencies that may be added to

FO(D) without increasing its expressive power are already expressible in terms of FO(D). The class

of all first order dependencies is trivially closed; and, for instance, it follows easily from known re-

sults [5] that, since all those dependencies are definable in terms of independence atoms [11] y⊥xz :=
[R : xyz]∀uv1w1v2w2(Ruv1w1∧Ruv2w2 → Ruv1w2) and nonemptiness atoms NE(x) := [V : x]∃uVu, any

family containing these two types of dependencies is closed. On the other hand, the family D↓ of all

downwards closed dependencies is not closed in the sense of the above definition, since inclusion atoms

and independence atoms are safe for it despite not being downwards closed (and, therefore, not being

definable in terms of downwards closed atoms).

The problem of characterizing other, weaker closed classes of dependencies is entirely open, and a

complete solution of it would go a long way in providing a classification of the extensions of first order

logic via first order dependencies. In particular, the conjecture mentioned in Section 2.3 has the follow-

ing, equivalent formulation:

Open Conjecture (equivalent formulation): Let D↑ be the class of all upwards closed dependencies

and let =(·) be the class of all constancy dependencies. Then D↑∪=(·) is closed.

Answering this conjecture, and more in general characterizing the closed families of dependencies,

is left to future work. In the rest of this work, a few preliminary results will be presented that provide

some information about the properties of the notion of safety.
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4 The Safety of Totality, Inconstancy, Nonemptiness and Possibility

A natural question to consider to begin exploring the properties of safety is the following: are there

dependencies which are safe for all families of dependencies D? As we will see, the answer is positive,

as shown by the totality atoms All(x) = [R : x]∀vRv.

Lemma 30 Let φ be a FO(All,D) sentence of the form ∀x1∃y1 . . .∀xn∃yn((θ(yn) →֒ All(t))∧χ(x,y)),
where θ is first order and t is a tuple of terms with variables in xy = x1 . . .xny1 . . .yn.

Then φ is logically equivalent to the expression

∀z∃x′1y′1 . . .x
′
ny′n

(

θ(y′n)∧ t′ = z∧∀pqx1∃y1 . . .∀xn∃yn

(

∧

i

(p = q∧
∧

j≤i

x j = x′j) →֒ yi = y′i

)

∧ χ(x,y)

)

where z is a new tuple of variables of the same arity as t, all x′i and y′i are tuples of new, pairwise distinct

variables of the same arities of the corresponding xi, yi, and t′ is obtained from the tuple of terms t by

replacing each variable in xi or yi with the corresponding variable in x′i or y′i, for all i.

Using the normal form of Theorem 23, it is now straightforward to show that totality is safe for all

families of dependencies:

Theorem 31 (Totality is safe for all D) Let D be any set of dependencies, and let φ ∈ FO(All,D) be

a sentence. Then φ is equivalent to some φ ′ in FO(D).

Proof:

By Theorem 23, we can assume that φ ∈ FO(All,D) is of the form

∀x1∃y1 . . .∀xn∃yn(
∧

k

(θk(yn) →֒ All(tk))∧ψ(x,y))

where NE does not occur in ψ . Then we get rid of the totality atoms one at a time, using the above

lemma and renormalizing. As the normalization procedure of Theorem 23 does not introduce further

dependency atoms, the procedure will eventually terminate in a sentence without totality atoms. Thus, φ

is equivalent to some sentence φ ′ ∈ FO(D).
�

From the safety of totality it follows at once that all dependencies that are definable in FO(All) are

also safe. For instance:

Corollary 32 The non-constancy dependencies NC(R) := ∃x∃y(Rx∧Ry∧x 6= y), for which M |=X NC(v)
if and only if v takes at least two values in X, are safe for all D . So are the nonemptiness dependencies

NE(R) := ∃vRv, for which M |=X NE(v) if and only if |X(v)|> 0.

Proof:

Observe that NC(v)≡ ∀w(w 6= v →֒ All(w)) and that NE(v)≡ (v = v)∧∀wAll(w).10

�

Furthermore, additional operators can be shown to be definable in terms of totality (and, hence, not

to add to the expressive power of any logic FO(D). For instance, consider the following connective:

10The v = v condition is only to make it so that the two expressions have the same free variables. The choice of v has no

other effect on the satisfaction conditions of NE(v), and one could instead treat NE := ∀wAllw as a “0-ary” dependency.
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Definition 33 (Possibility Operator) For any family of dependencies D , let FO(D ,⋄) be the logic ob-

tained by adding to the language of FO(D) a new unary operator ⋄ such that, for all models M, teams

X and formulas ψ with free variables in Dom(X),

TS-⋄: M |=X ⋄ψ if and only if there exists some Y ⊆ X, Y 6= /0, such that M |=Y ψ .

Corollary 34 For all families of dependencies D , every sentence of FO(D ,⋄) is equivalent to some

sentence of FO(D).

Proof:

Observe that ⋄ψ is logically equivalent to (NE∧ ψ)∨⊤. Therefore, every sentence of FO(D ,⋄) is

equivalent to some sentence of FO(D ,NE); but by Corollary 32 this is equivalent to some sentence in

FO(D ,All), and by Theorem 31, every such sentence is equivalent to some sentence of FO(D) as re-

quired.

�

Results like these ones contribute to the study of Team Semantics not only in the sense that they

provide information regarding e.g. the properties of totality, inconstancy and nonemptiness atoms or

possibility operators in this context, but also and more importantly because they allow us to use such

atoms and operators freely as tools for investigating the expressive power of any other logic FO(D). For

example:

Corollary 35 Let ⊆k represent the collection of all k-ary inclusion atoms x ⊆ y := [R : xy]∀uv(Ruv →
∃wRwu) for |x| = |y| = k, and let |k represent the k-ary exclusion atoms x|y := [R : xy]∀uvu′v′((Ruv∧
Ru′v′) → (u 6= v′ ∧ v 6= u′)) (also with |x| = |y| = k). Then every sentence of FO(⊆k) is equivalent to

some sentence of FO(|k).

Proof:

Observe that x ⊆ y is logically equivalent to ∃zw(x|z ∧ (w = y ∨ w = z)∧ All(w))).11 Thus every

sentence of FO(⊆k) is equivalent to some sentence of FO(|k,All), which – by the safety of totality – is

equivalent to some sentence of FO(|k).
�

This fact could have also been extracted from a careful analysis of known – and delicate – equivalences

between these logics and fragments of Σ1
1.12 However, the advantage of this approach is that we could

obtain our result directly, without having to rely on characterizations of these fragments in terms of Σ1
1

(which were available for these specific, well-studied logics, but may not be so for other FO(D).).

5 The Unsafety of Constancy

As we saw in the previous section, three typical strongly first order dependencies – that is, totality,

nonconstancy and nonemptiness – are safe for all families of dependencies. A reasonable hypothesis

to make at this point would be that the same is true of all strongly first order dependencies. This is

11This can be verified by expanding its satisfaction conditions. The intuition behind the above expression is the following:

w must take all possible values, but can take only values which are in y or are not in x. So if X satisfies the formula then

X(x)∪X(y) = Mk, that is X(x)⊆ X(y).
12More specifically, it is known from [10] that FO(⊆k)≤ ESO f (k-ary); as it is shown in the arXiv version of [5], FO(|k) is

contained in FO(=(· · · ; ·)k), where =(· · · ; ·)k represents k-ary functional dependencies =(x;y) := [R : xy]∀uvv′(Ruv∧Ruv′ →
v = v′), where |x|= k – more specifically, x|y is equivalent to ∀z∃pq(=(z; p)∧=(z;q)∧ (p = q →֒ z 6= x)∧ (p 6= q →֒ z 6= y);
and it is known from [2] that FO(=(· · · ; ·)k) = ESO f (k-ary).
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Figure 1: The undirected graphs An and Bn. There is no unary inclusion logic sentences which is true

for all An and is false for all Bn, and therefore non-connectedness is not definable in unary inclusion

logic. Note that there exist automorphisms sending any element (red) to any other element of the model,

no matter if in the same connected component (green) or in different components (blue).

not however the case, as constancy atoms are strongly first order but are not safe for all families of

dependencies. Indeed, as we will see, graph non-connectedness is definable in terms of constancy and

unary inclusion atoms, but not in terms of unary inclusion atoms alone. In keeping with the existing

literature on the subject, we will use =(x) for the atom expressing that x takes a constant value in the

team (that is, for [U : x]∀vw(Uv∧Uw→ v= w)) and x ⊆ y for the atom expressing that all possible values

of x are also possible values for y (that is, [U : x][V : y]∀v(Uv →V v), or equivalently [R : xy]∀uv(Ruv →
∃wRwu)). We will use the symbols =(·) and ⊆1 for representing these two types of dependencies.

Then it is straightforward to see that (as mentioned already in [5]) non-connectedness is definable in

FO(=(·),⊆1):

Proposition 36 The FO(=(·),⊆1) sentence ∃xy(=(y)∧∀z(Exz →֒ z ⊆ x)∧ x 6= y) is true in a model

G= (G,E) if and only if it is not connected.

However, as we will now show, unary inclusion atoms alone do not suffice to define non-connectedness.

In particular, for any n ∈N, let the graphs An and Bn be constituted respectively by two cycles of length

2n+1 and by a single cycle of length 2n+2, as shown in Figure 1.

Then, as we will now see, it is not possible to find a FO(⊆1) sentence that is true in all An and false

in all Bn. This can be proved by means of an Ehrenfeucht-Fraı̈ssé game defined along the lines of the

one for Dependence Logic of [22]; but in what follows, a different – and simpler – proof will be shown.

Lemma 37 (Automorphisms in An and Bn) Let G = (G,E) be an undirected graph of the form An or

of the form Bn for some n ∈ N, and let p,q ∈ G be two nodes of this graph. Then there exists an

automorphism f : G → G of G such that f(p) = q.

Definition 38 (Flattening) Let φ ∈ FO(⊆1). Then its flattening φ f is the first order expression obtained

by replacing each inclusion atom x ⊆ y of φ with the always-true atom ⊤.

Lemma 39 For all models M, teams X, and formulas φ ∈ FO(⊆1), if M |=X φ then G |=X φ f .
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Definition 40 (Team Closure) Let X be a team over M, domain v1 . . .vn. Then Cl(X) = {f(s) : s ∈ X , f :

M → M automorphism} is the set of all assignments obtained by applying all automorphisms of M to

all assignments of X.

Lemma 41 For all models M and teams X over M, Cl(Cl(X)) = Cl(X). Furthermore, for all teams Y

and Z, Cl(Y ∪Z) = Cl(Y )∪Cl(Z).

Lemma 42 For all models M, all teams X and all first order formulas φ with free variables in the

domain of X, M |=X φ ⇔M |=Cl(X) φ .

The next lemma is less obvious, and shows that over models such as the An and Bn and for teams

closed under automorphisms FO(⊆1) is no more expressive than first order logic:

Lemma 43 Let M be a model such that for any two points m1,m2 ∈ M there exists an automorphism

f : M → M of M such that f(m1) = m2.

Then for all teams X over M such that X = Cl(X) and all formulas φ ∈ FO(⊆1) with free variables

in Dom(X) we have that M |=X φ ⇔M |=X φ f .

Proof:

The left to right direction is already taken care of by Lemma 39. The right to left direction is proved

via structural induction and presents no particular difficulties. We show in detail the case of inclusion

atoms, which is helpful for understanding why FO(⊆1) is no more expressive than FO over these types

of models.

As (v1 ⊆ v2)
f = ⊤, we need to prove that M |=X v1 ⊆ v2 whenever X is a team whose domain con-

tains the variables v1 and v2 and X = Cl(X). But this is the case. Indeed, suppose that s(v1) = m1 and

s(v2) = m2. Then by assumption, there is an automorphism f of M such that f(m2) = m1, and since

X = Cl(X) there exists some assignment s′ ∈ X such that s′(v) = f(s(v)) for all v ∈ Dom(s). This implies

in particular that s′(v2) = f(s(v2)) = f(m2) = m1 = s(v1); and thus, for any assignment s ∈ X there exists

some assignment s′ ∈ Cl(X) = X such that s′(v2) = s(v1). This shows that M |=X v1 ⊆ v2, as required.

�

Given the above lemma, the following consequence is immediate:

Proposition 44 Let G = (G,E) be a graph of the form An or of the form Bn, and let φ be a FO(⊆1)
sentence over its signature. Then G |= φ if and only if G |= φ f .

Proof:

By definition, G |= φ if and only if G |={ε} φ , where ε is the unique empty assignment. But {ε} is closed

by automorphisms, and therefore G |= φ if and only if G |= φ f .

�

However, it can be shown via a standard back-and-forth argument that there is no first order sentence

φ f that is true in all models of the form An and is false in all models of the form Bn. As a direct

consequence of this, of Proposition 36 and of Proposition 44 we then have that there exist FO(=(·),⊆1)
sentences that are not equivalent to any FO(⊆1) sentence, that is that

Theorem 45 Constancy atoms =(·) are not safe for FO(⊆1).
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6 Conclusions

In this work, the concept of safe dependencies has been introduced. This notion generalizes the pre-

viously considered notion of strongly first order dependencies, and – aside from being of independent

interest – it is a useful tool for the study of the expressivity (over sentences) of logics based on Team

Semantics: indeed, being able to fully characterize the dependencies which are safe for a given logic

is the same as fully characterizing the ways in which the language of this logic can be expanded (via

dependency atoms) without increasing its overall expressive power.

A natural point from which to begin the exploration of this notion was to examine the relationship

between this notion and the notion of strongly first order dependency itself; and, as we saw, the obvious

conjecture according to which a strongly first order dependency must be safe for all families of depen-

dencies does not hold. This shows that the notion of safety is a delicate one – one that, in particular, is

not preserved when additional dependencies are added to the language.13 The problem of characterizing

safe dependencies and closed dependency families is almost entirely open, and steps towards its solution

would do much to clarify the properties of logics based on Team Semantics.

We focused exclusively on logics obtained by adding new dependency atoms to the language of First

Order Logic (interpreted via Team Semantics). The problems considered here, however, could also be

studied as part of a more general theory of operators in Team Semantics, for a sufficiently powerful no-

tion of “operator” (possibly based on generalized quantifiers and/or on ideas from Transition Semantics

[8]). In this wider context, it seems likely that the questions and open conjectures discussed here would

be of even harder solution; but on the other hand, it is possible that the study of the expressive power

of families of operators (as opposed to dependencies) in Team Semantics would provide useful insights

also towards the solution of the questions discussed in this work.
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