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Parameterized verification of coverability in broadcast networks with finite state processes has been

studied for different types of models and topologies. In this paper, we attempt to develop a theory of

broadcast networks in which the processes can be well-structured transition systems. The resulting

formalism is called well-structured broadcast networks. We give an algorithm to decide coverability

of well-structured broadcast networks when reconfiguration of links between nodes is allowed. Fur-

ther, for various types of communication topologies, we also prove the decidability of coverability in

the static case as well. We do this by showing that for these types of static communication topologies,

the broadcast network itself is a well-structured transition system, hence proving the decidability of

coverability in the broadcast network.

1 Introduction

Specification and verification of infinite-state systems is a challenging task. Over the last two decades,

various techniques have been proposed for checking safety and other properties of such systems, with one

of the most prominent among them being the concept of a well-structured transition system [17, 1]. A

well-structured transition system is a transition system equipped with a well-quasi ordering on its states.

Under some mild assumptions on the transition system, it is known that coverability in such systems is

decidable.

Parameterized verification comprises of studying networks formed of anonymous agents executing

the same code which interact with each other through some medium of communication, like broadcast,

rendez-vous and shared variables [16, 18, 7]. Its aim is to certify the correctness of all instances of the

model, independently of the (parameterized) number of agents. Such problems are usually phrased in

terms of infinite-state systems, to which technqiues from infinite-state verification theory can be applied.

Indeed, a lot of results on parameterized verification prove that the underlying infinite state space of

networks is a well-structured transition system. [10, 11, 8, 2]

Broadcast networks are a formalism introduced in [10], in which the agents can broadcast messages

simultaneously to all its neighbors. The number of agents and the communication topology are fixed

before the start of the execution. Parameterized verification of such systems involves checking whether

a specification holds irrespective of the number of agents or the communication topology. One of the

prominent specifications considered in literature for such systems is the problem of coverability: does

there exist an initial configuration from which at least one agent may reach a particular state. In [10],

the authors prove that the coverability problem for broadcast networks is undecidable even when the

agents are finite state processes. Also, undecidability has been proven for broadcast networks restricted

to bounded-diameter topologies [11] and decidability has been proven for bounded-path topologies [10],

bounded-diameter and degree topologies [11], and clique topologies. Further, when we allow reconfigu-

rations of links in the underlying communication topology, there exists a polynomial time algorithm to

decide coverability of broadcast networks comprising of finite-state processes [9]. This result perhaps

http://dx.doi.org/10.4204/EPTCS.277.10
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


134 Coverability of Well-Structured Broadcast Networks

seems surprising, since the reconfigurable case looks like a generalization of the static case. We note

that a similar dichotomy exists between the verification of perfect and lossy channel systems. There

has also been some work in extending the results of parameterized verification from the finite-state case

to probabilistic automata [5, 4] and timed automata [2]. With the theory of broadcast networks having

been explored for these various types of models, it seems natural to try to develop a theory of broadcast

networks with well-structured transition systems as the underlying processes.

In this paper we study the coverability problem for broadcast networks where each process can be a

labeled well-structured transition system. In such systems, the underlying process itself can have infinite

states. We call such systems well-structured broadcast networks. We prove that the coverability problem

is decidable for various classes of restricted topologies in this setting. In particular, we prove decidability

for the set of all clique topologies, the set of all path-bounded topologies and the set of all topologies with

bounded diameter and degree. We show that for these sets of topologies with well-structured transition

systems as processes, the underlying state space of networks is itself a well-structured transition system.

We also give an algorithm for deciding the coverability of a configuration for well-structured broadcast

networks when reconfiguration of edges is permitted between the interacting agents.

Acknowledgements: I am extremely grateful to Nathalie Bertrand and Nicolas Markey for useful

discussions on the topic and also for assisting in the preparation of this paper. I would also like to thank

Thejaswini K.S and Mirza Ahad Baig for comments on early drafts of this paper and the anonymous

reviewers for their valuable feedback.

2 Well-structured broadcast networks

In this section, we recall results about well-structured transition systems [17, 1] and use them to define

well-structured broadcast networks. We also introduce the reconfiguration semantics for such networks

as a way of modelling link changes that might occur in the underlying communication topology.

2.1 Well-structured transition systems

Definition 1. A well-quasi ordering (wqo) ≤ on a set X is a reflexive, transitive binary relation s.t. any

infinite sequence of elements x0,x1, · · · contains an increasing pair xi ≤ x j with i < j.

Definition 2. A labelled well-structured transition system (labelled WSTS) is a tuple T S = (S,Σ,S0,R,≤)
where

• S is a set of configurations

• Σ is a finite set of symbols called the alphabet

• R⊆ S×Σ×S is the transition relation

• S0 is the set of initial configurations

• ≤⊆ S×S is a well-quasi order between states such that:

– ≤ is compatible with R, i.e., if a ∈ Σ and s1 ≤ t1 and (s1,a,s2) ∈ R, then ∃ t2 s.t. (t1,a, t2) ∈ R

and s2 ≤ t2

Note that our definition of labelled WSTS is robust in the sense that if we restrict the WSTS to

transitions of a particular label, we still get a WSTS. A WSTS is called finitely branching if for each
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s ∈ S, there are only finitely many transitions of the form (s,a,s′) ∈ R. We will consider only finitely

branching WSTS in this paper.

We call a set of configurations I ⊆ S, upward-closed if x ∈ I and y ≥ x implies y ∈ I. To any subset

I ⊆ S, we define ↑ I = {x : ∃ y ∈ I, x ≥ y}. In particular a set I is upward-closed iff I =↑ I. A basis for

an upward-closed set I, is a set Ib s.t. I =↑ Ib. It is known that for a wqo, every upward-closed set has a

finite basis.

Given a set of configurations I, denote by pre(I) the set {s′ ∈ S : (s′,a,s) ∈ R, for some a ∈ Σ,s ∈
I}. For i > 0, let prei(I) := {s′ ∈ S : (s′,a,s) ∈ R, for some a ∈ Σ,s ∈ prei−1(I)} and let pre∗(I) :=

∪i∈N prei(I). We will write s→ s′ to mean that s ∈ pre(s′) and s
∗
−→ s′ to mean that s ∈ pre∗(s′). A

labelled WSTS is said to have effective pre-basis if given a finite basis for the upward-closed set I, we

can compute a basis for the set pre(I).

The coverability problem for labelled WSTS is the following: Given a configuration s, decide if

∃ s′,s0 s.t. s0 ∈ S0 and s′ ≥ s and s0
∗
−→ s′.

From [1, 17] it is known that

Theorem 3. Coverability is decidable for labelled WSTS with effective pre-basis and a decidable wqo.

The idea behind the proof is as follows: Given a configuration s, we compute the following sequence

of upward-closed sets U0 =↑ s and Ui+1 = pre(Ui). This sequence will eventually saturate to some Um

which will give us a finite basis for pre∗(U0). Checking whether s can be covered now amounts to

checking if there is at least one initial configuraion in ↑Um.

Common examples of labelled WSTS include: Any finite state system, vector addition systems with

states (VASS), Petri nets with reset arcs, Petri nets with transfer arcs and lossy counter machines.

A labelled WSTS might be an infinite state system and so it is infeasible to describe the entire set

of configurations in an explicit way. Usually, a labelled WSTS T S = (S,Σ,S0,R,≤) is given by means

of a finite description P = (Q,Σ,Q0,∆, · · · ). The finite description may have additional structure like

counters, causal relations etc. The structure of the transition relation ∆ depends on the type of labelled

WSTS that it describes.

Example 4. Let (Q,Σ,Q0,∆,V ) be a vector addition system with states (VASS) where Q is a finite set

of states, Σ is a finite alphabet, Q0 is a set of initial states, V is a finite set of vectors over Zd (for some

d) and ∆ is of the form ∆ ⊆ Q×Σ×V ×Q. This describes a labelled WSTS (S,Σ,S0,R) where S is

the set of all configurations, i.e., S = {(p,u) : (p,u) ∈ Q×N
d}, S0 = {(p,u) : (p,u) ∈ Q0× 0d}. The

transition relation R is defined in the following manner: ((p,u),a,(q,w)) ∈ R iff ∃ v ∈V,(p,a,v,q) ∈ ∆

s.t. u+ v ≥ 0 and w = u+ v. In this case we see that each transition ((p,u),a,(q,w)) ∈ R is described

by a transition (p,a,v,q) ∈ ∆.

For the rest of this paper we will assume that every labelled WSTS T S will be given by means of a

finite description P.

2.2 Well-structured broadcast networks

In this section, we define well-structured broadcast networks and also introduce the reconfiguration

semantics.

Throughout the paper, we fix a finite alphabet Σ. Let the set of symbols {!!a : a ∈ Σ} be denoted by

Σb and let the set of symbols {??a : a ∈ Σ} be denoted by Σr.

Definition 5. A process is a labelled well-structured transition system T S = (S,Σb∪Σr,S0,R,≤).
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A well-structured broadcast network consists of several copies of a single process T S. Each config-

uration of such a network is an undirected graph in which each node is labelled by a configuration s ∈ S.

Intuitively, the labels !!a and ??a correspond to broadcasting and receiving messages according to the

topology specified by the underlying graph. Formally,

Definition 6. An S-graph is a graph G = (V,E,L) where L is a labelling function L : V → S.

An S-graph represents an undirected graph in which each node v ∈V is executing the same process

T S and is currently in the configuration L(v).
We now use the notion of a process to define a transition system called the well-structured broadcast

network.

Definition 7. Given a process T S = (S,Σb∪Σr,S0,R,≤), a well-structured broadcast network is a tuple

BN(TS) = (Θ,Θ0,→), where

• Θ is the set of all finite S-graphs

• Θ0 is the set of all finite S0-graphs and

• → is defined as follows: If θ = (V,E,L) and θ
′ = (V,E ′,L′), then θ

a
−→ θ

′ if

Broadcast: E = E ′ and ∃ v ∈V s.t.

1. (L(v), !!a,L′(v)) ∈ R

2. (L(u),??a,L′(u)) ∈ R for every node u connected to v

3. L′(w) = L(w) for every other node w

Whenever the process T S is clear from the context, we refer to the broadcast network only by BN.

The well-structured broadcast network can be thought of as follows: We have a graph in which each

vertex runs a copy of the process T S and the current label of the vertex v denotes the configuration of the

process at v. At each time step, a process in some vertex v chooses to broadcast a message !!a and it is

received (??a) by all its neighbors u.

Notice that this formulation of broadcast networks does not permit changes in links in the underly-

ing topology. To model such changes, we use the notion of reconfigurations. A reconfigurable well-

structured broadcast network is a well-structured broadcast network in which along with Broadcast

moves, we also allow transitions of the following kind: θ = (V,E,L)→ θ
′ = (V,E ′,L′) if

Reconfiguration: L = L′ and E ′ ⊆V ×V \{(v,v) : v ∈V}

Any reconfiguration corresponds to a non-deterministic change in the underlying network topology

of the processes. We denote the resulting transition system by RBN(TS).
Given a well-structured broadcast network BN, the coverability problem, given a configuration s,

is to decide if there exists an initial graph such that by a series of transitions, we can reach a network

topology in which at least one agent attains a configuration s′ which covers s. More formally, we consider

the following problem: Given a configuration s ∈ T S, decide if there exist θ ∈ Θ,θ0 ∈ Θ0 and s′ ≥ s s.t.

θ0
∗
−→ θ and s′ is the label of some process in θ . Notice that this is not the same as asking if s is coverable

in T S.

Example 8. Consider a finite automaton with just two states q,q′ s.t. q
??a
−−→ q′. This trivially describes

a labelled WSTS and coverability in this case is just reachability. Notice that the state q′ can never be

reached in the BN described by this automaton. But when we treat this just as a labelled transition system

without the broadcast network semantics, it is clear that q′ can be reached from q in the transition system

T S. To distinguish this, we refer to these two cases distinctly as coverability in BN and coverability in

T S.
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It is known that the coverability problem for well-structured broadcast networks BN(TS) is undecid-

able. Indeed, it is undecidable even when T S is a finite state transition system [10]. As a first step for

overcoming the undecidability, we look at RBN(TS), i.e., the reconfigurable well-structured broadcast

network associated with a process T S.

3 Coverability problem for reconfiguration semantics

In this section, we prove that the coverability problem for the reconfiguration semantics is decidable. In

particular, we present an algorithm which when given a process T S and a configuration s, returns true iff

the configuration s can be covered in RBN(TS).

Let P = (Q,Σb ∪Σr,Q0,∆, · · · ) be a finite specification of the process T S. We assume that for each

transition t ∈ ∆, we are able to compute all minimal configurations ct(1),ct(2), · · · ,ct(l) ∈ T S s.t. t is

enabled at ct(i) for each i in the transition system T S. (This set is always finite, since the underlying

order is a wqo). Let ct = {ct(1), · · · ,ct(l)}. Notice that this computation concerns only the semantics

of the transition system T S and not that of RBN. For many systems such a computation will be fairly

straightforward.

Example 9. 1. If P describes a finite state system, then for any transition t we can search through

the space of all configurations in T S and compute the ones at which t is enabled.

2. In a VASS, given a transition t = (p,a,v,q), it is clear that the configuration (p,u) where ui =
max(0,−vi) is the minimal configuration at which t is enabled.

3. Since transfer arcs and reset arcs in Petri nets have the same precondition as normal transitions,

it follows that computation of minimal configurations in these cases is similar to VASS [15].

A broadcast transition is a transition in ∆ labelled by letters from Σb. Similarly, a receive transition

is one labelled by letters from Σr. Further for each letter a ∈ Σ, we define Ba to be the set of all broadcast

transitions labelled by !!a. Similarly, we define Ra to be the set of all receive transitions labelled by ??a.

Let Rec = ∪aRa. In the sequel, given some finite specification P′, we denote by T S(P′) the transition

system that P′ describes and we denote by RBN(P′) the reconfigurable broadcast network that T S(P′)
describes.

The coverability algorithm for RBN is given in Algorithm 1. The algorithm proceeds as follows: As

a first step, from the original process P we remove all transitions in Rec, to get a modified process P′.

At each iteration of the main loop, for each letter a and for each transition t in Ba, we check if atleast

one configuration from the set ct can be covered in the current process P′. Intuitively, this means that

some agent in the network can reach a configuration, from which it would be capable of broadcasting

the letter a. At this point, we update the process P′ by adding all the receive transitions labelled by a.

Whenever in the future, an agent wants to take a transition labelled by ??a, it can do so now, because

we can make another agent reach a configuration capable of broadcasting a, and then reconfigure the

network, so that both these agents share an edge. This is where the reconfiguration semantics of the

network plays a prominent role in checking the coverability of a configuration. We keep doing this until

no more transitions can be added, at which point we check if the required configuration is coverable in

the resulting process obtained.

Notice that at any point in the algorithm, the transition system T S(P′) will always be a well-structured

transition system. Indeed at the beginning of the code, T S(P′) is exactly the transition system obtained

by removing all transitions labelled by Σr from T S(P) and since T S(P) was a WSTS, T S(P′) will also
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Algorithm 1 Coverability algorithm for reconfiguration semantics

1: Input: A finite specification P = (Q,Σb∪Σr,Q0,∆, · · · ) and a configuration s ∈ T S(P)
2: Output: Whether s is coverable in the transition system RBN

3:

4: P′ := P[∆← ∆\Rec] ⊲ Remove all receive transitions from P to get P′

5: SubAl p := Σ

6: repeat

7: AddT := /0

8: for all a ∈ SubAl p do ⊲ Look for symbols that can be broadcast in T S(P′)
9: for all t ∈ Ba do

10: if ∃i s.t. ct(i) is coverable in T S(P′) then

11: AddT := AddT ∪Ra ⊲ And store the receive transitions in AddT

12: SubAl p := SubAl p\{a}
13: end if

14: end for

15: end for

16:

17: P′ := P′[∆← ∆∪AddT ] ⊲ Add all transitions from the set AddT to P′

18: until AddT = /0

19:

20: if s is coverable in T S(P′) then

21: return true

22: else

23: return false

24: end if

remain a WSTS. Similarly, at each update of the T S(P′), we add all transitions of the form ??a for some

symbol a ∈ Σ. Hence, the new transition system T S(P′) continues to be a WSTS.

The coverability tests in lines 10 and 20 refer to coverability in the transition system T S(P′). Also

notice that whenever the algorithm increases the cardinality of the set AddT , it decreases the size of

SubAl p by 1. Since, the transitions added to AddT are labelled by symbols from SubAl p and since

SubAl p is finite, it follows that eventually we can add no more transitions to AddT . Therefore, line 18

of the algorithm will eventually become true and so the algorithm always terminates.

Let AddT0 = ∪a∈ΣBa and for i > 0, let AddTi be the contents of the set AddT at the end of the ith

iteration of the while loop. Further, let P′0 = P[∆← ∆ \Rec] and P′i = P′i−1[∆← ∆∪AddTi] for i > 0,

i.e., P′i denotes the description P′ obtained at the end of the ith iteration of the while loop. Let the total

number of iterations of the while loop be w. Hence we have a sequence of processes P′0,P
′
1, · · · ,P

′
w.

In the sequel, we will use the notation s
t
−→ s′ to denote the fact that the transition t is enabled at s ∈ S

and s′ is the corresponding configuration reached upon executing t from s.

The correctness of this algorithm follows by a series of lemmas.

Lemma 10. If a configuration s is reachable in T S(P′i ) for some i, then s can be reached in the original

reconfigurable broadcast network RBN(P).

Proof. Let s be a configuration which is reachable in the transition system T S(P′i ). Further wlog, let i be

the first index s.t. s is reachable in T S(P′i ). We will prove by induction on i that the configuration s is
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reachable in the broadcast network RBN(P) as well.

Suppose i= 0. Since s is reachable in T S(P′0), there exists a path LP= s0
t0−→ s1

t1−→ s2 · · · sn−1
tn−→ sn = s

in the transition system T S(P′0). We prove the claim for i = 0 by a second induction on n. For the base

case of n = 0, it is clear that s0 is an initial configuration and so s0 can be trivially reached in RBN(P).
Suppose n > 0. By our second induction hypothesis, the configuration sn−1 is reachable in RBN(P), i.e.,

there exist a reachable graph θ and a node v ∈ θ s.t. L(v) = sn−1. Since LP is a path in T S(P′0), the

transition tn has to be a broadcast transition labelled by some letter !!a. Hence the node v can broadcast

!!a and move into the configuration sn = s.

Suppose i > 0. Again since s is reachable in T S(P′i ), there exists a path LP= s0
t0−→ s1

t1−→ s2 · · ·sn−1
tn−→

sn = s in T S(P′i ). We prove the claim by a second induction on n. For the base case of n = 0, again it

is clear that s0 is an initial configuration and so it is reachable in RBN(P). Suppose n > 0. Similar

to the above argument, by our second induction hypothesis, there exists a path in RBN(P) of the form

θ0 → θ1 · · · → θm and a node v ∈ θm s.t. L(v) = sn−1. We now consider two cases: Suppose tn is a

broadcast transition labelled by !!a. It is then clear that v can broadcast !!a to reach the configuration

sn = s.

Otherwise, tn is a receive transition labelled by some letter ??a. Since tn ∈ T S(P′i ) it must have been

added to the set AddTj for some j ≤ i. But notice that we add a new receive transition labelled by ??a in

the jth iteration iff there exists a transition t ∈ Ba and a minimal configuration ct(k) s.t. ct(k) is coverable

in the transition system T S(P′i−1). Therefore, by definition of coverability ∃ s′ ≥ ct(k) s.t. s′ is reachable

in T S(P′i−1). By our primary induction hypothesis, s′ is reachable in RBN(P). So let θ
′
0→ θ

′
1 · · · → θ

′
l be

a path in RBN(P) and let v′ ∈ θ
′
l s.t. L(v′) = s′. Notice that by the property of compatibility, there is a

broadcast transition labelled by !!a which is enabled at s′.

Now consider the initial graphs θ0 and θ
′
0. Execute the first run from θ0 so that it reaches the graph

configuration θm. Now, execute the second run from the initial graph θ
′
0 so that it reaches the graph

configuration θ
′
l . This can be done since these two executions are independent of each other. Now add a

link between v and v′ and broadcast the message !!a from v′. Hence v will receive the message ??a and

will move into the configuration sn = s.

Lemma 11. If s is reachable in the reconfigurable broadcast network RBN(P), then s is reachable in

T S(P′w).

Proof. Suppose s is reachable in the reconfigurable broadcast network RBN(P). Therefore, there exists

an intital path LP = θ0→ θ1→ ···θn−1→ θn and a node v s.t. Lθn
(v) = s. We will prove the claim by

induction on n. The claim is clear for the base case of n = 0.

Suppose n > 0. Consider the configuration of v in the graph θn−1, i.e., the configuration Lθn−1
(v) and

let it be denoted by s′. If s′ = s, then by the induction hypothesis we are done. Suppose s′ 6= s. Therefore,

there should be a transition from s′ to s, i.e., ∃ t s.t. s′
t
−→ s. We now have two cases:

• Suppose t is a broadcast transition labelled by !!a. By induction hypothesis, s′ is reachable in

T S(P′w). Since all broadcast transitions are present in P′w, it follows that s is reachable in T S(P′w)
as well.

• Suppose t is a receive transition labelled by ??a. Hence the node v in θn−1 received a message

??a and so there should have been a node u ∈ θn−1 in configuration s′u s.t. u broadcast a message

!!a to reach some configuration su in the graph θn. By induction hypothesis, s′u is reachable in

the transition system T S(P′w). Hence there exists at least one transition with the broadcast label

!!a which is enabled in T S(P′w). This means that there exists at least one minimal configuration
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c ∈ T S(P′w) s.t. a broadcast transition labelled by !!a is enabled at c and c is coverable. Hence

for the letter a, line 10 of the algorithm will eventually become true and so the transition t would

have been added to P′w. This means that the transition s′
t
−→ s is present in T S(P′w). By induction

hypothesis, s′ is reachable in T S(P′w) and so s is reachable as well.

Hence, we have

Theorem 12. Coverability in reconfigurable well-structured broadcast networks is decidable.

Proof. Notice that the algorithm returns its answer based on whether the given configuration s is cover-

able in T S(P′w) or not.

Suppose s is coverable in T S(P′w). Therefore, ∃ s′ ≥ s s.t. s′ is reachable in T S(P′w) and so by Lemma

10, s′ is reachable in RBN(P). Therefore s is coverable in RBN(P). The other side of the proof follows

by a similar argument involving Lemma 11.

Notice that the main bottleneck in the running time of this algorithm are the coverability tests to the

transition system T S(P′).

Finally, introducing arbitrary reconfigurations in the model might not seem too realistic. But in fact,

w.r.t coverability, this model is equivalent to:

1. Static topology with intermittent nodes, i.e., a topology in which there are no reconfigurations but

nodes can crash and restart in the same control state in which it crashed. [12]

2. Static topology with message loss, i.e., a topology in which there are no reconfigurations but

messages may get lost arbitrarily. [12]

3. Asynchronous broadcast network with a bag model. [13]

4. Asynchronous broadcast network with a lossy FIFO queue. [13]

5. Globally constrained runs, i.e., a run in which the number of reconfigurations allowed in between

two broadcasts can be atmost k ≥ 1. [3]

6. Locally constrained runs, i.e., a run in which the number of reconfigurations each node is allowed

to make in between two broadcasts can be atmost k ≥ 1. [3]

The proofs given in these papers are for the case when the processes are finite state systems. But

these claims can be proved for the infinite state case as well, by noticing that the corresponding proofs

go through even in the case of infinite state systems. Intuitively, this is because the equivalence proofs

only manipulate the graph topology of the underlying model.

4 Coverability problem for restricted topologies

We have mentioned that the coverability problem in general for well-structured broadcast networks is

undecidable [10]. In the previous section, we gave an algorithm to decide coverability of reconfigurable

well-structured broadcast networks. In this section, we investigate coverability in well-structured broad-

cast networks without reconfigurations, but the set of all underlying graphs that we will consider will

be restricted. In particular, we prove decidability results for three different classes of restricted topolo-

gies, namely bounded path topologies, clique topologies and bounded diameter and degree topologies.
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All these results could be seen as extensions of results that have been proved for finite state processes

[11, 10].

As a first step, we define the induced subgraph ordering between two configurations which will be

used extensively to prove decidability in all three classes of topologies:

Definition 13. Given two configurations θ1 = (V1,E1,L1),θ2 = (V2,E2,L2) ∈ Θ, define θ1 ⊑ θ2 iff there

exists an injection h : V1→V2 s.t. ∀u,v ∈V1,

• (u,v) ∈ E1 ⇐⇒ (h(u),h(v)) ∈ E2

• L1(u) ≤ L2(h(u))

In other words, the injection h should preserve edges among vertices and also the order of their

labeles w.r.t the well-quasi ordering.

4.1 Bounded path topologies

In this section, we prove that the coverability problem becomes decidable when we restrict to path

bounded graphs. We will assume throughtout that a number k is fixed.

In the sequel, given a configuration θ , we will denote its vertex set by V (θ). Similarly, E(θ) and

L(θ) will be used to denote the edge set and the label function of θ respectively.

Definition 14. A graph G is called k-path bounded if the longest simple path in G has length atmost k.

Notice that this is not the same as considering graphs of diameter k. (A distinction between the two

is the clique graph, whose diameter is 1, but whose longest simple path is n−1).

Given a process T S, we can now define k-bounded path broadcast networks by restricting the set of

configurations in BN(TS) to k-bounded path topologies, i.e we define a new transition system BNk(T S)=
(Θk,Θk

0,→), where Θ
k and Θ

k
0 consists only those configurations from Θ and Θ0 which are k-path

bounded. Notice that in this model, no reconfigurations are allowed between nodes.

We will employ the theory of well-structured transition systems to prove that the coverability problem

for k-bounded path broadcast networks is decidable. More specifically, as a first step, we prove the

following lemma.

Lemma 15. The set of all k-path bounded configurations with the induced subgraph ordering is a well-

quasi ordering.

Proof. Follows from Ding’s theorem [14].

As a next step, we prove that the induced subgraph ordering is compatible with BNk(P).

Lemma 16. For every θ1,θ2,θ
′
1 ∈ Θ

k s.t. θ1
a
−→ θ2 and θ1 ⊑ θ

′
1, there exits θ

′
2 ∈ Θ

k s.t. θ
′
1

a
−→ θ

′
2 and

θ2 ⊑ θ
′
2.

Proof. Let v be the vertex in θ1 which broadcasts the message !!a and let u1, · · · ,ul be the neighbors

of v which receive the message ??a. Since T S is well-structured and since L(θ1)(v) ≤ L(θ ′1)(h(v)), it

follows that there exists a transition t ′ labelled by !!a which is enabled at L(θ ′1)(h(v)). Similarly, since

L(θ1)(ui) ≤ L(θ ′1)(h(ui)), it follows that there exist transitions t ′i labelled by ??a which is enabled at

L(θ ′1)(h(ui)). Since h is an injection it follows that each h(ui) is a neighbor of h(v). Hence, we can

broadcast the message !!a from h(v) and receive the message ??a at h(u1), · · · ,h(ul) in the configuration

θ
′
1. Call the resulting configuration θ

′
2. It is clear that the same injection h : V (θ1) =V (θ2)→ V (θ ′1) =

V (θ ′2) satisfies the required conditions for an order between θ
′
1 and θ

′
2.
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As a final step, we prove that BNk has effective pre-basis.

Lemma 17. If S⊆ BNk is an upward closed set and has a finite basis, then we can effectively compute a

finite basis for pre(S).

Proof. Let B= {θ1, · · · ,θn} be a finite basis of the upward-closed set S. For each θi, we will construct a

finite number of graphs, whose overall union will be a basis for pre(S).
Let θ = θi = (V,E,L) and let G = (V,E). For every node v ∈ V and for every letter a ∈ Σb ∪Σr,

we can compute a basis for the upward closure of pre(↑ L(v)) in the transition system T S restricted to

transitions labelled only by a. Let this basis be denoted by Bv
a. Recall that for a transition t ∈ ∆, ct

denotes the set of minimal configurations in which t is enabled.

Consider all k-path bounded graphs H1,H2, · · · ,Hl s.t. G is an induced subgraph of each Hi and

|V (Hi)|= |V (G)|+1 , i.e., each Hi has one more vertex than G and contains G as an induced subgraph.

Using these k-path bounded graphs, we will compute new k-path bounded graphs which will form a basis

for pre(S).
Consider the following process of creating new labelled graphs from the graph G = (V,E).

1. Choose a vertex v ∈V and a letter a ∈ Σ. Let u1,u2, · · · ,up be the set of all neighbors of v in G.

2. Choose a configuration cv from Bv
!!a and configurations cui

from B
ui

??a (if they are non-empty) re-

spectively.

3. Construct the labelled graph Gbe f ore = (V,E,L′) as follows:

(a) Label the vertex v with cv and label each ui with cui
respectively.

(b) Label the remaining vertices with the same labels that they had in θ .

4. Choose a broadcast transition tv enabled at cv labelled by !!a. Let cv
tv−→ c′v

5. Choose a receive transition tui
for each ui s.t. tui

is enabled at cui
and is labelled by ??a. Let

cui

tui−→ c′ui

6. Construct the labelled graph Ga f ter = (V,E,L′′) as follows:

(a) Label the vertex v with c′v and label each ui with c′ui
respectively.

(b) Label the remaining vertices with the same labels that they had in θ .

7. If Ga f ter lies in the set S, add Gbe f ore as a basis element for the set pre(S).

Now consider a similar process of creating new labelled graphs from the graph Hi for each i.

1. Fix an injection h : G→ Hi and fix a letter a ∈ Σ.

2. Let v be the vertex in Hi which is not in the image of G, i.e., v /∈ h(G) and let u1, · · · ,up be the set

of all neighbors of v in Hi.

3. Choose a broadcast transition t labelled by !!a and choose a configuration cv from the set ct . Let

cv
t
−→ c′v.

4. Choose a configuration cu j
from B

u j

??a for each u j.

5. Construct the labelled graph Hbe f ore from the unlabelled graph Hi as follows:

(a) Label the vertex v with cv and label each u j with cu j
.

(b) Label the remaining vertices with the same labels that their pre-images had in θ , i.e., L′(w) =
L(h−1(w)).
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6. Choose a receive transition tui
for each ui s.t. tui

is enabled at cui
and is labelled by ??a. Let

cui

tui−→ c′ui
.

7. Construct the labelled graph Ha f ter from the unlabelled graph Hi as follows:

(a) Label the vertex v with c′v and label each u j with c′u j
.

(b) Label the remaining vertices with the same labels that their pre-images had in θ , i.e., L′(w) =
L(h−1(w)).

8. If Ha f ter lies in the set S, add Hbe f ore as a basis element for the set pre(S).

It is clear that all the graphs that we are adding to our collection should be in pre(S). We will now

show that if G is a graph in pre(S), then there exists a graph G′ ≤ G which we would have added as a

basis element to the set pre(S) by the above procedure.

Let G ∈ pre(S). Therefore, there should exist a transition from G to some graph F ∈ S. Let this

transition be obtained by broadcasting !!a from the vertex v ∈ G and which in turn is received by all its

neighbors u1,u2, · · · ,up ∈ G. Let the labels of v in G and F be denoted by cv, c′v respectively and let

the labels of each ui in G and F be denoted by cui
and c′ui

respectively. Since F ∈ S, there exists a basis

element F ′ ∈ B s.t. F ′ ≤ F . Let h be the required injection from F ′ to F . We now have two cases:

• The node v is in the image of h: Wlog let u1,u2, · · · ,uw be the neighbors of v which are in the

image of h. In this case, consider the first part of the above procedure in which we constructed

labelled graphs out of F ′. Since v is in the image of h, consider the vertex h−1(v) and let its

configuration in F ′ be denoted by c′
h−1(v)

. Also, let the configurations of h−1(ui) in F ′ be denoted

by c′
h−1(ui)

. Since, there exists a broadcast transition from cv to c′v ≥ c′
h−1(v)

, it follows that the set

B
h−1(v)
!!a is non-empty. Similar reasoning enables us to conclude that each of the sets B

h−1(ui)
??a are

also non-empty for each i≤ w. Therefore, there exists configurations ch−1(v) ≤ cv from B
h−1(v)
!!a and

ch−1(ui) ≤ cui
from B

h−1(ui)
??a which we would have picked during our procedure. Hence, the graph

obtained out of F ′ by replacing c′
h−1(v)

with ch−1(v) and c′
h−1(ui)

with ch−1(ui) gives us a graph G′ ≤G

which would have been constructed by our procedure.

• The node v is not in the image of h: Wlog let u1, · · · ,uw be the neighbors of v which are in the

image of h. In this case, consider the graph Hk which is the same as F ′, except it contains one more

vertex called sp which is connected to exactly u1, · · · ,uw. Since there exists a broadcast transition t

labelled by !!a from cv, it follows that ct is non-empty and so we can pick a configuration csp ≤ cv

from ct which we use as a label for the vertex sp. Similar to the previous case, for the vertices

u1,u2, · · · ,uw, we can obtain configurations ch−1(ui) ≤ cui
from B

h−1(ui)
??a . Hence the graph obtained

out of Hk by replacing cv with csp and cui
with ch−1(ui) gives us a graph G′ ≤ G.

Theorem 18. Coverability in k-path bounded configurations is decidable.

Proof. Let s be the given configuration. Consider the graph G with only one vertex v whose label is

s. It is clear that the configuration s can be covered iff the graph G can be covered in the transition

system BPk under the induced subgraph ordering. But by the previous lemmas, we have shown that BPk

is a well-structured transition system under the induced subgraph ordering with an effective pre-basis.

Therefore, coverability in BPk is decidable and this concludes the proof.

Hence coverability in the broadcast semantics of k-path bounded topologies reduces to checking

coverability in another WSTS!



144 Coverability of Well-Structured Broadcast Networks

4.2 Clique topologies

We prove a similar result for the set of all clique topologies.

Lemma 19. The set of all clique configurations forms a well- quasi ordering under the induced subgraph

order.

Proof. Consider the poset (Pf (S),⊆≤) where Pf (S) is the set of all finite sub-multisets of S and S1 ≤ S2

iff there exists an injection h : S1→ S2 s.t. s≤ h(s),∀ s ∈ S1. It is well known that if (S,≤) is a wqo, then

(Pf (S),⊆≤) is also a wqo.

Let G,G′ be labelled clique configurations. It is clear that L(G) ⊆≤ L(G′) iff G ≤ G′ under the

induced subgraph ordering. But ⊆≤ is a wqo. Hence, it follows that the set of all clique configurations

forms a wqo under the induced subgraph ordering.

The compatibility property can be easily proved in an argument similar to the one given for k-path

bounded graphs. The computation of pre-basis can be realized as follows: The algorithm given in the

previous subsection, first selects a graph G from the given basis B and then considers all k-path bounded

graphs of size atmost |G|+ 1 which induce G as a subgraph, after which it proceeds to construct a pre-

basis from these k-path bounded graphs. We employ the same algorithm to construct a pre-basis for

the clique topology as well, except in the first step, we replace the construction of the set of all k-path

bounded graphs of size atmost |G|+ 1 which induce G, with the set of all clique graphs of size atmost

|G|+1 which induce G. The proof of this algorithm follows from a similar proof given for the previous

case. Hence we have,

Theorem 20. Coverability in clique configurations is decidable.

4.3 Graphs with bounded diameter and degree

It is known that the coverability problem for well-structured broadcast networks restricted to graphs of

bounded diameter is undecidable, even when the underlying transition system is of finite state space [11].

However we can regain decidability if along with bounded diameter, we also consider graphs of bounded

degree. To prove this, we use a non-trivial result of Hoffman and Singleton [19]. The result states for

a fixed diameter k and a degree d, the size of the largest (unlabelled) graph with diameter atmost k and

degree atmost d is M(k,d) = (k(k−1)d−2)/(k−2). Hence, for finite state processes this immediately

proves that the coverability problem is decidable. But we can extend it in a straightforward way to the

well-structured case as well. For a graph G = (V,E) of bounded diameter and degree, consider the set

Lab(G,S) = {G′ | G′ = (V,E,L);L : V → S}, i.e., Lab(G,S) is the set of all labelled graphs that can be

obtained by labelling the vertices in G using labels from S.

Lemma 21. For a fixed graph G of diameter k and degree d, the set Lab(G) is a well quasi ordering.

Proof. Suppose G has n vertices. Arbitrarily arrange the vertices in some order v1, · · · ,vn. Notice then

that each labelled graph G′ ∈ Lab(G,S) can be thought of as an element in Xn where G′ is mapped to

the n-tuple (L(v1),L(v2), · · · ,L(vn)). It is well known that if (X ,≤) is a wqo then (Xn,≤) is also a wqo

under the pairwise ordering. From this the lemma immediately follows.

For a fixed graph G, we can prove compatibility and effective pre-basis in a manner similar to the

other cases. Hence, we have

Theorem 22. Coverability problem for k-bounded diameter and d-bounded degree graphs is decidable.
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Proof. Let B = {b1, · · · ,bm} be a finite basis for the transition system T S and let s be the given configu-

ration for which coverability needs to be determined. Let G be a fixed graph on n vertices and consider

the set Bi = {(b j1 ,b j2 , · · · ,b ji−1
,s,b ji ,b ji+1

, · · · ,b jn) : each b jl ∈ B} and let B′ = ∪1≤i≤nBi. Clearly the set

B′ is finite.

The above properties imply that given a fixed graph G of bounded diameter and degree, it can be

decided if any configuration from B′ can be covered from G. But we know that the number of graphs

with diameter k and degree d is finite. Hence, we can check if at least one configuration from B′ can be

covered from any of these graphs and so the coverability problem is decidable for bounded diameter and

degree graphs.

5 Conclusion

In this paper, we have defined broadcast networks for well-structured processes and proved decidability

of coverability for various types of semantics. In particular, we have given an algorithm to determine

if a given configuration can be covered in any run under the reconfiguration semantics. We have also

studied decision procedures for various classes of restricted topologies which include the set of all path

bounded graphs, the set of all cliques, and the set of all graphs with bounded diameter and degree. A

notable ingredient in these decision procedures is the construction of another well-structured transition

system to decide coverability of configurations.
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