Incremental View Maintenance for Deductive Graph
Databases Using Generalized Discrimination Networks

Thomas Beyhl Holger Giese
Hasso Plattner Institute Hasso Plattner Institute
at the University of Potsdam at the University of Potsdam
Potsdam, Germany Potsdam, Germany
thomas.beyhl@hpi.de holger.giese@hpi.de

Nowadays, graph databases are employed when relationships between entities are in the scope of
database queries to avoid performance-critical join operations of relational databases. Graph queries
are used to query and modify graphs stored in graph databases. Graph queries employ graph pattern
matching that is NP-complete for subgraph isomorphism. Graph database views can be employed
that keep ready answers in terms of precalculated graph pattern matches for often stated and complex
graph queries to increase query performance. However, such graph database views must be kept
consistent with the graphs stored in the graph database.

In this paper, we describe how to use incremental graph pattern matching as technique for main-
taining graph database views. We present an incremental maintenance algorithm for graph database
views, which works for imperatively and declaratively specified graph queries. The evaluation shows
that our maintenance algorithm scales when the number of nodes and edges stored in the graph
database increases. Furthermore, our evaluation shows that our approach can outperform existing
approaches for the incremental maintenance of graph query results.

1 Introduction

Nowadays, graph databases are employed when relationships between entities are in the scope of graph
database queries, because graph databases can outperform relational databases, due to the fact that in
graph databases a traversal from one node to an adjacent node is a constant time operation [27], in
contrast to relational databases that require performance critical join-operations to traverse from one
node to an adjacent node. Graph database queries employ graph pattern matching that is NP-complete
for subgraph isomorphism [13]]. Thus, the graph query evaluation can be very time-consuming in worst-
case scenarios. One possibility to improve the performance of graph query evaluation is to employ
graph database views that keep ready precalculated answers for graph queries. These graph database
views store all matches for graph patterns implemented by graph queries. However, such graph database
views must be kept consistent with the graphs stored in the graph database. When graphs in the graph
database change, old matches that do no satisfy a certain graph pattern anymore must be removed from
the graph database view and new matches that satisfy a certain graph pattern must be added to the graph
database view. Otherwise, graph queries lead to different graph query results when they make use of
inconsistent graph database views. Furthermore, Harrison et al. [[16] state that “in a deductive database,
the task of maintaining materialized views is challenging, because views can be defined using negation
and recursion”. We refer to graphs stored in graph databases as base graphs and to graph database views
derived from base graphs as view graphs.

In this paper, we describe how to use incremental graph pattern matching as technique for maintain-
ing view graphs. The main contributions are a) an enumeration mechanism that enables to store graph

Alexander HeuBner, Aleks Kissinger, Anton Wijs (Eds.):
2nd Graphs as Models workshop (GaM 2016) © T. Beyhl & H. Giese
EPTCS 231, 2016, pp. 5771} doi{10.4204/EPTCS.231.5

http://dx.doi.org/10.4204/EPTCS.231.5

58 Incremental View Maintenance for Deductive Graph Databases

pattern matches in view graphs in a manner that graph pattern matches can be reused effectively and
can be maintained efficiently, b) an incremental maintenance algorithm for view graphs that works for
imperatively and declaratively specified graph queries and scales when the number of nodes and edges
in base graphs increases, and c¢) an evaluation which shows that our approach can outperform existing
approaches for incremental maintenance of view graphs.

Sec.[2]describes the state of the art in incremental graph pattern matching. Sec. [3]introduces the run-
ning example used throughout this paper. Sec. 4] describes our concept of view graphs. Sec. [5| describes
how view graphs are created and maintained using incremental graph pattern matching. Sec. [0 evaluates
the performance of our approach. Sec.[7|compares related work with our approach. Sec.[§|concludes our
paper and outlines future work.

2 State of the Art

In practice, discrimination networks are used to maintain large collections of working memory elements
that satisfy certain conditions. For example, discrimination networks are widely used in active database
management systems [[14], view maintenance for relational databases [[15] and incremental graph pattern
matching [2]. Several kinds of discrimination networks exist such as Rete networks [[11]], TREAT [21],
and Gator networks [[15]]. All kinds of discrimination networks consist of network nodes and edges that
constitute a directed acyclic network structure, but differ in the kinds of employed network nodes. In
general, a network node performs a condition test to check whether working memory elements (e. g.,
tuples of relational data or nodes of graph data) satisfy a certain condition and, afterwards, store which
working memory elements satisfy this condition. Network edges describe the exchange of working
memory elements, which satisfy or dissatisfy conditions, between network nodes. For graph pattern
matching, network nodes employ graph conditions [9] as condition tests and store graph pattern matches
that satisfy these graph conditions. Furthermore, successor network nodes reuse graph pattern matches
stored by predecessor network nodes for condition testing. Therefore, each network node enumerates
graph pattern matches that satisfy certain conditions. From database perspective, these enumerations are
considered as database views that keep ready graph pattern matches. When the graph data changes, the
changes are propagated through the network to update graph pattern matches stored by network nodes
by re-evaluating graph conditions only for changed, added, and deleted nodes and edges of base graphs.

The most generalized kind of discrimination network is the Gator network [15] that allows network
nodes with an arbitrary number of inputs. Rete networks [[11]] and TREAT networks [21] are extreme
examples of Gator networks due to the following restrictions. Rete networks are limited to network nodes
with at most two inputs. Furthermore, Rete networks must be either left- or right-associative [18] and
must not consist of re-convergent network nodes, otherwise the original Rete match algorithm produces
duplicated or missing matches [[18]. TREAT networks are restricted to network nodes with at most one
input and do not allow intermediate nodes. In TREAT, join conditions are computed on demand.

Bunke et al. [4] transferred the concepts of original Rete networks to the efficient implementation
of graph grammars by deriving the Rete network from the left-hand sides of graph grammar rules. Fur-
thermore, EMF-IncQuery [2] employs Rete networks for incremental graph pattern matching in several
application domains such as model queries over EMF models [1]], derivation of features in EMF models
[25]], live model transformations [24], and synchronization of view models [7]. However, current incre-
mental graph pattern matching approaches are limited to Rete networks and, thus, do not allow arbitrary
network structures although optimized generalized network structures such as Gator networks [[15] can
outperform Rete networks in time and space as described by Hanson et al. [[15] for relational databases.

T. Beyhl & H. Giese 59

To our best knowledge, no approach exists that employs Gator networks as most generalized kind of dis-
crimination network for incremental graph pattern matching and view maintenance of graph databases.
Discrimination networks do not support recursion due to their acyclic network structure.

In general, Rete and Gator networks have the same expressiveness for graph pattern matching. A
formal proof is left for future work. In contrast to current approaches for incremental graph pattern
matching, our approach employs Gator networks as generalized kind of discrimination network to enable
graph databases users to steer the tradeoff between memory consumption and time required to update the
state of the discrimination network. Computing optimal network structures is left for future work.

3 Running Example

In our running example, we search for graph pattern matches that describe employed software design
patterns [[12] in abstract syntax graphs (ASGs) of source code to analyze the evolution of software archi-
tectures. We aim for an incremental maintenance of these graph pattern matches for employed software
design patterns when ASGs change. High-level graph properties such as the Composite design pattern
can be recovered by detecting low-level graph properties such as generalizations and associations [22].
We employ graph pattern matching to detect such graph properties in terms of graph pattern matches
in ASGs. Fig. [lal shows the Composite design pattern as UML class model. First, the Composite class
must be a specialization of the Component class. Second, the Composite class must own an associa-
tion with the Component class as target. Fig.|[l1b|shows in a dependency graph that Generalizations and
Associations have to be detected to recover Composite design patterns. Generalizations depend on Gen-
eralizations, because multiple generalizations can constitute a multi-level generalization. We distinguish
Associations into BoundedAssociations and UnboundedAssociations, which employ data structures of
immutable and mutable length to implement associations, respectively.

Fig. [I| shows the graph patterns used to detect Generalizations, BoundedAssociations, Unbound-
edAssociations, and Composite design patterns. The Generalization graph pattern (cf. Fig.[lc) describes
that a subclass points via a namespace and classifier reference to a superclass. The BoundedAssoci-
ation graph pattern (cf. Fig. describes that a field consists of an array dimension and points via
a namespace and classifier reference to a classifier of elements stored in an array data structure. The
UnboundedAssociation graph pattern (cf. Fig. describes that a field points via a namespace and
classifier reference to a classifier that is an instance of a list data structure and, additionally, points via
a qualified type argument, namespace and classifier reference to a classifier of elements stored in a list
data structure. The Composite graph pattern (cf. Fig. [If) describes that a Generalization between a sub-
class and superclass exists (cf. dashed polygon) and that a field of a subclass is a BoundedAssociation
that points via a namespace and classifier reference to a superclass of the generalization that describes
the kind of the elements owned by the association (cf. dotted polygon). Note, the BoundedAssociation
graph pattern can be replaced by the UnboundedAssociation graph pattern.

4 Views for Deductive Graph Databases

View graphs must store matches for graph patterns that are defined by graph database users. Thus, the
question arises what exactly are view graphs and how to specify their content. View graphs must store
graph pattern matches in a manner that a) graph pattern matches are stored memory-efficient and b) nodes
with certain roles in graph pattern matches can be accessed effectively. Sec. |.T|describes our notion of
view graphs. Sec. describes how our approach enables graph database users to define the content of
view graphs. We present an exhaustive description in our technical report [3]].

60 Incremental View Maintenance for Deductive Graph Databases

subClass : Class

<<abstract>> | x oitv;/jars Design <<depends>> extends
Component - attern A ™
Operation() foreach child in children: <<depends>>__qenends>> : Nam;s;?aceCIassmer
child.Operation() <<depends>> <<depends>> Observer eterence
children — = l classifier-
RemoveFrom
// e <cdepends>> Reference References
)/ : ClassifierReference
—F <<depends>> <<depends>> target
Leaf Composite | Sounded Ornbounded arge!
Operation() Operatior\()d Association Association superClass : Class
(a) Composite design pattern [12] (b) Dependency graph of graph properties (c) Generalization
. . Bounded __AD """
field : Field Generalization ~ Association: L= rrayoimension | .
typeReference .

|

dimensions ittt S 1dimensions‘:
field - Field : NameRsr;aceCIassmer | subClass : Class 'T@rn'—béTl : Field |
typeReference e erlel?aes e listClassifier.instanceOf(java.util List') extends l roo

|
|
|
|
- — I type-
: NamespaceClassifier References 1. ot - — | : Namespace
; — argel listClassifier P
Reference : ClassifierReference SN I'| ClassifierReference
: ConcreteC :
|
|
|
|
|
|
|

1

Reference
classifier- typeArguments

C ifier-
lReferences

: : Namespace

:|_ClassifierReference
classifier-
Reference

Reference

T QualifiedType elementType:
Argument | ConcreteClassifier
target typeReferenceL References target
elementType: : NamespaceClassifier
ConcreteClassifier Reference .)
(d) BoundedAssociation (e) UnboundedAssociation (f) Composite
Figure 1: Overview of running example with graph patterns

]

4.1 Introduction of View Graphs

Base graphs and view graphs are typed graphs that must be conform to a type graph. Base graphs are
graphs stored by graph databases to represent domain knowledge. View graphs are graphs that store
typed nodes and edges which together mark matches of graph patterns. The node types in view graphs
describe the kinds of graph pattern matches that are marked. The edge types in view graphs describe
the roles of nodes in marked graph pattern matches. The edge types enable graph database users to
effectively access nodes of graph pattern matches without the need to match them again to determine
their role in graph pattern matches. Furthermore, each node that participates in a graph pattern match is
either referenced by an edge or scope. When base graphs change in a way that nodes of view graphs do
not mark valid graph pattern matches anymore, edges and scopes enable an efficient look-up of nodes in
view graphs that must be revised. This look-up is performed by traversing edges and scopes in backward
direction from changed nodes of base graphs to nodes of view graphs that own these edges and scopes.
According to our running example, Fig. [2a] shows an excerpt of a type graph as UML class model
that describes which kinds of nodes and edges exist in base graphs and view graphs. For example, the
type graph describes that nodes of type Class, Interface and Field exist in base graphs as denoted by the
white classes and that nodes of type Generalization, Association, and Composite exist in view graphs as
denoted by gray classes. The type graph describes which edge types are used in view graphs to describe
the roles of nodes in graph pattern matches. For example, the Generalization node type owns the SubRole
and SuperRole edge types to describe that Class nodes are marked as super- and subclasses in matches of
the Generalization graph pattern. Fig.[2b/shows a view graph as UML object model that is an instance of
the type graph in Fig. Solid rectangles denote typed nodes of base graphs. Solid lines denote edges
between nodes of base graphs. Dashed rounded rectangles denote typed nodes in view graphs, which
represent graph pattern matches. Dashed lines denote typed edges in view graphs, which describe the
roles of nodes in marked graph pattern matches. Dotted lines denote scopes, which are edges that mark
nodes without explicit roles in graph pattern matches. Fig.[2b|shows a Generalization node that marks a
graph pattern match for the generalization graph pattern. The SubRole and SuperRole edges owned by
the Generalization node describe that the container class acts as subclass and the component class acts
as superclass. The Generalization node references the namespace and classifier reference via scopes,
because both nodes belong to the graph pattern match as well. Fig. [2b| depicts a BoundedAssociation

T. Beyhl & H. Giese 61

Container | €xtends [~ NamespaceClassifier | classifier- : Classifier
DesignPattern [<}——— : C':SS Heference‘. Reference‘ L Reference
/\

/\
composite : : Component Component

N : Rol e ization: Y rRol target
\ SubRole a generalization : - SuperRole argef
Generalization) Association .
Composite Field
------- = 2R 5

Component Composite Reference members _ _ Composite _ _ , : Class

|
: \ _ Generalization _, \
|
1

_l SuperRole] Target | /"~ Tassociation: : Target ’
- L . " O B, 4 L T o~ A S ’

1 Class | 1 A : ArrayDimension |« \ BoundAssociation_ /'.- target
LowerGen T B

SubRole : Reference _ -

ZF UpperGen %7 ﬂ K dimensions _ ¥ el
MultiLevel Concrete Unbound type- : NamespaceClassifier classifier- : Classifier
| jzation Interface |'[>| Classiier | iation | chidren : Feld [Rgference Reference Reference | Reference

(a) Base and view type graph as UML class model ~ (b) Marked graph pattern matches as UML object model

Bound
Association

Figure 2: View reference graph (left) and instantiated view graph (right)

node that marks a graph pattern match for the bounded association graph pattern. The Reference and
Target edges owned by the BoundedAssociation node describe that the children field acts as reference
and the component class acts as target type of the reference. The BoundedAssociation node owns scopes
that reference the array dimension, namespace, and classifier reference, because they belong to the graph
pattern match as well. Fig.[2b|shows a Composite node that marks a graph pattern match for the Com-
posite graph pattern. The Component and Composite edges owned by the Composite node describe that
the component class acts as component and the container class acts as composite of the detected Com-
posite design pattern. The Generalization and Association edges owned by the Composite node mark
the reused matches of the Generalization and Association graph patterns.

4.2 Definition of View Graphs

Our approach enables to specify view modules that encapsulate graph transformation rules, which search
and mark graph pattern matches by creating nodes and edges in view graphs. Each view module owns
input connectors that describe which kinds of nodes are required by the hidden graph transformation rule.
Each view module owns an output connector to describe which kind of node is created in view graphs by
the hidden graph transformation rule to mark graph pattern matches. Our approach is independent from
graph transformation languages, because view modules hide graph transformation rules.

Fig.[3|shows a generalized discrimination network that consists of the view modules Generalization,
BoundedAssociation, UnboundedAssociation, and Composite. The Generalization view module de-
scribes that Class nodes and TypeReference (super type of NamespaceClassifierReference and Classifier-
Reference) nodes are required to produce nodes that mark matches of the Generalization graph pattern.
The view modules BoundedAssociation and UnboundedAssociation create nodes of type Association
that mark matches of the BoundedAssociation and UnboundedAssociation graph pattern. The Compos-
ite view module requires nodes of type Generalization and Association to create nodes in view graphs
that mark matches of the Composite graph pattern.

Fig. 3] shows view modules that implement graph transformation rules for creating and maintain-
ing view graphs that enumerate matches for generalizations, association, and composite graph patterns.
When a graph transformation rule finds a graph pattern match, it marks the match by creating a node of
a certain node type, edges of certain edge types, and scopes in view graphs to mark which nodes sat-
isfy the graph pattern. Fig. [3]depicts graph pattern nodes as solid and dashed rectangles. Fig. 3] depicts
graph pattern edges as solid and dashed lines. Solid rectangles and lines refer to nodes and edges in
base graphs. Dashed rectangles and lines refer to nodes and edges in view graphs. Graph pattern nodes
and edges can consist of create modifiers that are depicted as “++” (adapted from story diagrams [10]).
These create modifiers describe which nodes and edges are created in view graphs when matches for
graph patterns are found. Nodes and edges without create modifier depict the left-hand side of the graph
transformation rule. Nodes and edges with and without create modifier depict the right-hand side of the
graph transformation rule.

62

Generalization

Incremental View Maintenance for Deductive Graph Databases

IJn generalizations : Generalization
147

i composites : Composite
Composite -

v

: NamespaceClassifier
Reference

subClass : Class
extends o ’

classifierReferences

N

SuperRole

: L]
++ superClass : Class

e target
: ClassifierReference

@

classes : Class

BoundAssociation

references : TypeReferences

: Component ™
superClass : Class |« = =5 ---+
|

-l

Al ly
1Af

J

t generalizations : Generalization

|JA-|associanons : BoundAssociation
1A}

associations : UnboundAssociation,

3 — —
associations : Association

UnboundAssociation

p

dimensions

field : Field

typeReferen

: NamespaceClassifier
Reference

: ClassifierReference

: ArrayDimension <

classifierReference .

<

:Reference I "~~~ .
= : BoundAssociation !
++ 1 |

B B
T e 1
++

ce
AT

]

++): Target
|

|

Y

: ConcreteClassifier

target

-
(TlistClassifier.instanceOf('java.util. List) =

=+

: Reference

field : Field |«
typeReference ey N
: NamespaceClassifier et
Reference ++,.77
classifierReferences [EE

: ClassifierReference Target

typeArguments

Targ
++

++
H ++. .*_*

B

v A
listClassifier R
: ConcreteClassifier

et —
-| : ConcreteClassifier

: ClassifierReference

classifier
References

: NamespaceClassifier
Reference

IE’I

classes dimensions
: Class : ArrayDimension

fields
: Field

classifiers
: Classifiers

fields
: Field

classifiers
: Classifiers

references
: TypeReferences

arguments
: Qualified TypeArgument

Figure 3: Generalized discrimination network of view modules

The graph patterns described in Fig. [T| define the left-hand side of the graph transformation rules de-
picted by Fig.[3] The right-hand side of the depicted graph transformation rules describe which kinds of
node and edges are created to mark graph pattern matches. The graph transformation rules mark all nodes
of graph pattern matches. Nodes with special roles in the graph pattern match are marked by edges with
certain edge types (cf. dashed lines). Nodes without special roles in graph pattern matched are marked
by scopes (cf. dotted lines). For example, the Generalization view module marks with SuperRole and
SubRole edges which class acts as super- and subclass. The BoundedAssociation and UnboundedAsso-
ciation view modules marks with Reference and Target edges which field acts as reference and which
classifier is the target of the reference. The Composite view module reuses nodes that mark matches for
the Generalization and Association graph patterns. The Composite view module marks with Composite,
Component, Generalization, and Association edges which class acts as composite and component and
which generalization and association graph pattern matches are reused.

4.2.1 Mapping Graph Conditions

Fig.] shows a schematic mapping of graph conditions [9] to our network of view modules. If ¢ is a
graph condition, then also —c is a graph condition. Furthermore, if ¢; is a graph condition, then V¢; and
Ac; with index set i € I are graph conditions.

Atomic Graph Condition Atomic graph conditions (cf. Fig. are mapped to single view modules that
only receive nodes of base graphs. Atomic graph conditions enable to express basic conditions on graphs,
e. g., the existence of certain nodes and edges. According to our running example, the Generalization,
BoundedAssociation, and UnboundedAssociation view modules implement atomic graph conditions.
Conjunction View modules with more than one input connector that receive nodes of view graphs im-
plement conjunctions (cf. Fig. @b). According to our running example, the Composite view module
implements a conjunction of graph conditions for generalizations and associations.

Disjunction View modules with an input connector, which receives nodes from more than one predeces-
sor view module, implement disjunctions (cf. Fig. Ac)). The input connector must specify the node super
type of required nodes of view graphs. According to our running example, the Composite view module
implements a disjunction of graph conditions for unbounded and bounded associations. Therefore, the
Composite view module consists of an input connector with Association node type.

Simple NAC We refer to the term simple negative application conditions (NAC), when all negated graph

T. Beyhl & H. Giese 63

C :=not(C4) and C,
=not(W « X « Y) and (Y « 2)

C:=CqandCy C:=Cq0rCy L.c
4 .

++ :C :-f'—-

T vV

C :=not(X < Y) and (Y < 2) ;;‘g—.

(a) Atomic condition (b) Conjunction (c) Disjunction (d) Simple NAC (e) Complex NAC
Figure 4: Schematic mapping of graph conditions to a discrimination network of view modules

composites
: Composite

(a]

Extractinterface [extractinterfaces : Extractinterface .
Composite

associations

generalizations
: 1ToNAssocation]Al

: Generalization

: Class j ******* L +
TTTTTE T Extractinterface P

" multiLevelGens : MultiLevelGeneralization

| ! g
v v
>|< o _> method modifier
SubRole : Class members _|_:Method [modifiers” | _: Public

SubRole ++ | MultiLevel

1
| Il

-
e [w}]} ! Generalization 1

byl implementations classes methods Mo | L= ;r —-———-- !

 Interfacelmplementation : Class : Method : Public | . Sub LowerGeD/ ++ ++\\.AUpperGen - Super :

g | (oub e A ______ -

lmerface_ implementations 1 Role 1 o | I T I Role !

Implementation : Interfacelmplementation | r === : Generalization | 1 : Generalization ~-—} !

{A} | 1 L p— Lmm e | :

,,,,,,,, | | . ~ /! |
___:SubRole__ _ I Interface- L_ _:SuperRole __ _ ¥ v : SuperRole N pad SubRole v ¥
! 1_Implementation ++ ! subClass | middleClass superClass

y TF i mplementation |
v . ++ IS 12 : Class : Class : Class

F+
s . N iy —
implements 0 e target generalizations : Generalization
: NamespaceClassifier classifierReferences . generalizations : Generalization
: ClassifierReference (Al
S -

Generalization
classifiers : ConcreteClassifiers references : TypeReferences E
(a) Complex NAC for Extract Interface (b) Recursive definition of Multi-Level Generalization
Figure 5: Complex NAC and recursion

classes : Class—{m] (W} feferences : TypeReferences

patterns nodes are directly connected to non-negated graph pattern nodes, i. e., positive application con-
ditions (PACs). Our approach maps simple NACs to negated graph pattern nodes that refer to base graphs
within graph transformation rules of view modules (cf. Fig. d).

Complex NAC We refer to the term complex NAC, when at least one negated graph pattern node is not
directly connected to a PAC. Our approach splits up complex NACs in two view modules (cf. Fig. fie).
The first view module searches for graph pattern matches for the negated part of the graph condition
without negation. For example, instead of searching for graph pattern matches that satisfy graph con-
dition —c, the first view module searches for graph pattern matches that satisfy graph condition ¢ and
creates nodes in view graphs that mark theses graph pattern matches, accordingly. Then, the second view
module checks that no node in view graphs exists that satisfies graph condition c. Fig.[5ashows an exam-
ple for mapping complex NACs to view modules. Fig.[5alshows two view modules that implement graph
patterns for Interfacelmplementation and Extractinterface. The Interfacelmplementation view module
marks graph pattern matches for classes that implement an interface. The ExtractInterface view module
marks graph pattern matches for classes that own public methods, but do not implement interfaces. The
latter is denoted by the crossed out Interfacelmplementation node and SubRole edge.

4.2.2 Recursion

Recursion is mapped to cyclic dependencies of view modules, e. g., to search for graph patterns that
employ path expressions. These cycles can consist of multiple view modules. In general, one view
module that does not belong to the cycle itself describes the recursion start, while view modules within

64 Incremental View Maintenance for Deductive Graph Databases

<<foreach>> end_© end ©® <<foreach>>
.\ .\ <<foreach>> Dunbound node of base graph

Elbound node of base graph
™ " unbound node of view graph

(__:n bound node of view graph
> edge or scope of view graph
—— edge of base graph
>< negation

++ create modifier

-- delete modifier

<<foreach>>

(a) Create mode (b) Update mode (c) Delete mode (d) Legend
Figure 6: Schematic graph transformation rules for execution modes of view modules

the cycle describe the recursion step. According to our running example, the Composite view module has
to consider multi-level generalizations as well to also detect variants of the Composite design pattern that
employ multiple inheritance levels. Fig.[5b|shows a recursive definition to find graph patterns matches
for multi-level generalizations. The Generalization view module (cf. Fig. [3) describes the recursion
start. The MultiLevelGeneralization view module in Fig. [5b|describes the recursion step, because nodes
of view graphs that mark graph pattern matches for multi-level generalizations can lead to additional
matches for multi-level generalizations. Therefore, the MultiLevelGeneralization view module consists
of a dependency between its own output and input connector (cf. bold line in Fig. [5b). Fig. 2a] shows
that the MultiLevelGeneralization node type is a specialization of the Generalization node type and,
additionally, owns the LowerGen and UpperGen edge types that describe which reused nodes of type
Generalization act as lower and upper generalization. Note that lower and upper generalizations can be
multi-level generalizations as well. Fig. [5b|shows the implementation of the MultiLevelGeneralization
view module that checks whether two (multi-level) generalizations exist that have a class in common,
which acts as superclass in one generalization and as subclass in another generalization. If yes, the Multi-
LevelGeneralization view module creates a node that marks both Generalization nodes and the super- and
subclass of the detected multi-level generalization.

5 Incremental Maintenance of Graph Database Views

In this section, we describe our maintenance algorithm for nodes of view graphs. Our incremental main-
tenance algorithm consists of maintenance phases that compute the search space for the execution of view
modules. Each maintenance phase executes view module in analogous modes to a) create nodes of view
graphs for new graph pattern matches, b) update existing nodes of view graphs that already mark graph
pattern matches, and c) delete nodes of view graphs that do not mark graph pattern matches anymore.
We describe our incremental maintenance algorithm bottom-up. Sec.[5.Tdescribes the view module exe-
cution modes. Sec.[5.2]describes how the search space for view modules is computed. Sec.[5.3|describes
the maintenance phases that execute view modules with the computed search space.

5.1 View Module Execution Modes

A view module can be executed in three different modes called Update, Delete, and Create. In Create
mode, view modules search for graph pattern matches, mark these matches with the help of nodes and
edges in view graphs, and return created nodes of view graphs. In Update mode, view modules check
whether nodes of view graphs still mark matches for satisfied graph patterns, set nodes of view graphs
obsolete, if they do not mark matches for satisfied graph patterns anymore, and return revised nodes of
view graphs. In Delete mode, view modules delete nodes of view graphs that were set obsolete during
Update mode or consist of dangling edges due to deleted nodes of base graphs and view graphs.

Fig. [6] shows graph transformation rules hidden by view modules in terms of schematic story dia-
grams [10] to describe the behavior of view modules in each mode. Each view module that initially

T. Beyhl & H. Giese 65

created a node of view graphs is responsible for its maintenance. Nodes of view graphs know which
view module created them and view modules know which nodes of view graphs they created.

Create Mode In Create mode, view modules receive nodes of base graphs and view graphs according to
their input connectors. These nodes are bound in the graph transformation rule as depicted by Fig. [6a] If
these nodes satisfy the left-hand side of the graph transformation rule and the found graph pattern match
is not already marked by a node of the same type in view graphs as depicted by the negated nodes, edges,
and scopes, the graph transformation rule creates a node, edges, and scopes in view graphs that mark all
nodes of the found graph pattern match as depicted by the node, edges, and scopes with create modifier.
Thus, view modules mark graph pattern matches at most once.

Update Mode In Update mode, view modules receive nodes of view graphs that must be revised to
check whether they still mark matches for satisfied graph patterns. These nodes are bound in the graph
transformation rule as depicted by Fig. If these nodes of view graphs do not mark matches for
satisfied graph patterns anymore, the graph transformation rule sets these nodes obsolete as depicted by
the failure edge and removal of all edges that are used to mark the graph pattern match. Otherwise, the
node, edges, and scopes of view graphs are preserved.

Delete Mode In Delete mode, view modules receive nodes of view graphs that are obsolete. These nodes
are bound in the graph transformation rule as depicted by Fig. The graph transformation rule deletes
nodes and their edges from view graphs, if they do not consist of edges or scopes anymore (cf. activity on
top) or consist of dandling edges or scopes that do not mark a node anymore (cf. activity at the bottom).

5.2 Computation of View Module Input

Base and view graph changes are used to derive suspicious, obsolete, and missing nodes of view graphs.
Suspicious Nodes Nodes of view graphs are suspicious when they are connected to at least one modified
node of base graphs, are connected to another suspicious node of view graphs, or view modules created
new nodes in view graphs that dissatisfy complex NACs. A node is modified when an attribute value of
the node changed or two nodes are modified when an edge is added or deleted that connects both nodes.
Our approach uses modified nodes of base graphs to look up connected suspicious nodes of view graphs.
Furthermore, when view modules create new nodes in view graphs, complex NACs implemented by
dependent view modules may become dissatisfied. Therefore, our approach employs a reachability test
to collect suspicious nodes of view graphs, when view modules create new nodes. The reachability test
collects nodes of view graphs that are directly or indirectly reachable from created nodes in view graphs.
The reachability test only traverses nodes, if they have the same node (sub-)type as input connectors
of view modules that dependent on the view module that created new nodes. For example, when the
Interfacelmplementation view module (cf. Fig. creates a new node of type Interfacelmplementation
in view graphs, the reachability test looks up all reachable nodes of type Extractlnterface by traversing
nodes of type Class, Method, and Public (cf. Fig.[5a). In Update mode, view modules use suspicious
nodes of view graphs to check whether they still mark matches for satisfied graph patterns.

Obsolete Nodes A node of view graphs is obsolete when the node consists of at least one dangling edge
or scope that is not connected to a node anymore. Our approach uses deleted nodes of base graphs to look
up nodes of view graphs that became obsolete. In Delete mode, view modules delete obsolete nodes.
Missing Nodes A missing node of view graphs is a node that currently does not exist in view graphs,
although it must exist due to changes of base graphs that result in new graph pattern matches. Our
approach employs a reachability test that collects nodes of base graphs and view graphs that may result
in new graph pattern matches. The reachability test collects all nodes that are directly or indirectly
reachable from a) created and modified nodes of base graphs or b) are marked by created / were marked
by deleted nodes of view graphs. The reachability test only collects nodes, if they have the same node
(sub-)type as input connectors of the view module. For example, when a node of type Class is added to

66 Incremental View Maintenance for Deductive Graph Databases

procedure UPDATE(suspiciousNodes)
obsoletes := 0
for node in suspiciousNodes do
module := node.module
module.update(node)
if node is obsolete then for node in obsoleteNodes do
obsoletes := obsoletes U {node } module := node.module
else module.delete(node)
dependents := node.dependents
obsoletes := obsoletes U UPDATE(dependents)
end if
end for
return obsoletes
end procedure

(a) Update phase

procedure DELETE(obsoleteNodes)
changed := 0

dependents := node.dependents
changed := changed U DELETE(dependents)
end for
return changed
end procedure

(b) Delete phase

changed := changed U { previously marked nodes }

procedure CREATE(changedNodes)
suspicious := 0
result := 0
while hasNextModule(result) do /lhandles recursion
module := nextModule(result) /lhandles recursion
candidates := reachabilityMissing(changedNodes,module)
result := module.create(candidates)
dependents := module.dependents
suspicious := suspicious U reachabilitySuspicious(result,dependents)
end while
return suspicious
end procedure

(c) Create phase

Figure 8: Execution of view module during maintenance phases

base graphs, the reachability test for the Generalization view module (cf. Fig.[3)) collects all nodes of type
Class and TypeReference that are reachable from the added node. We assume that view modules employ
graph patterns that are connected graphs and edges between nodes can be traversed bidirectionally.

5.3 Maintenance Phases

procedure MAINTAIN(events)
suspicious := 0
repeat
suspicious:= suspicious U suspiciousNodes(events)
obsoletes := UPDATE(suspicious)
obsoletes := obsoletes U obsoletesNodes(events)
changed := DELETE(obsoletes)
changed := changed U changedNodes(events)
suspicious := CREATE(changed)
events := 0
until suspicious = 0
end procedure

Figure 7: Order of maintenance phases

Our maintenance algorithm employs the subsequent mainte-
nance phases Update, Delete, and Create to maintain suspi-
cious, obsolete, and missing nodes of view graphs. Fig.
shows the order of the maintenance phases. The algorithm
passes suspicious nodes of view graphs to the Update phase,
obsolete nodes of view graphs to the Delete phase, and added
/ modified nodes of base and view graphs to the Create phase.
If the Create phase returns new suspicious nodes of view
graphs, the algorithm executes an additional cycle of Update,
Delete, and Create phases to revise these suspicious nodes.
Update Phase Fig. [8a| shows pseudo code for the Update phase. For each suspicious node of view
graphs, the algorithm looks up the responsible view module, passes the suspicious node to the view
module, and executes the view module in Update mode. If the view module sets the node obsolete, the
node is added to the set of obsolete nodes. Otherwise, all nodes that depend on the updated node are
updated as well. Finally, the Update phase returns all collected obsolete nodes.

Delete Phase Fig. [8b| shows pseudo code for the Delete phase. For each obsolete node of view graphs,
the algorithm looks up the responsible view module, passes the obsolete node to the view module, and
executes the view module in Delete mode. The view module returns all nodes that were previously
marked by the deleted obsolete node. The algorithm considers the returned nodes as changed and collects
them. Afterwards, all nodes that depend on the deleted node are removed as well. Finally, the algorithm
returns all nodes that were previously marked by the deleted obsolete nodes of view graphs.

Create Phase Fig. [8c| shows pseudo code for the Create phase. The algorithm iterates the network of
view modules with respect to recursion cycles. The algorithm executes each view module in Create
mode and passes candidate nodes, which may lead to new graph pattern matches (cf. Sec. [5.2), to
view modules. The view module returns all created nodes of view graphs that mark new graph pattern
matches. The algorithm uses the created nodes to determine nodes of view graphs that become suspicious
(cf. Sec.[5.2). These suspicious nodes are collected and returned at the end of the Create phase.

5.3.1 Positive and Negative Application Conditions

Graph conditions must be mapped to our view modules as described in Sec. {.2.1]
PACs Created and modified nodes of base and view graphs may satisfy PACs. Deleted and modified
nodes of base and view graphs may dissatisfy PACs. The Update phase derives suspicious nodes of

T. Beyhl & H. Giese 67

view graphs from modified nodes (cf. Sec. and sets these suspicious nodes obsolete, if required.
The Delete phase deletes obsolete nodes of view graphs that were set obsolete by the previous Update
phase or are obsolete due to deleted nodes of base and view graphs. The Create phase uses created and
modified nodes of base graphs as well as nodes of view graphs created and deleted by predecessor view
modules to compute the candidate nodes for view modules. Thus, our algorithm supports PACs.

Simple NACs Deleted and modified nodes of base graphs may satisfy simple NACs. Nodes in base
graphs that were connected to a deleted node of base graphs are considered as modified. Created and
modified nodes of base graphs are used to compute the candidate nodes for view modules in the Create
phase (cf. Sec.[5.2). Thus, the Create phase detects satisfied simple NACs. Created and modified nodes
of base graphs may dissatisfy simple NACs. When a node of base graphs is added via an edge to another
node of base graphs, both nodes are considered as modified. Modified nodes are used to derive suspicious
nodes in view graphs (cf. Sec.[5.2). Thus, the Update phase detects dissatisfied simple NACs.

Complex NACs Created nodes of view graphs may dissatisfy complex NACs and, thus, may make other
nodes of view graphs obsolete. When the Create phase creates new nodes in view graphs, our algorithm
looks up suspicious nodes of view graphs (cf. Sec.[5.2). If such suspicious nodes exist, an additional
Update, Delete, and Create sequence is employed to revise these suspicious nodes. Thus, dissatisfied
complex NACs are detected during the Update phase. Deleted nodes of view graphs may satisfy complex
NAC:S and, thus, cause missing nodes in view graphs. Nodes of base and view graphs that were connected
to deleted nodes of view graphs are used to compute the candidate nodes for view modules to find missing
nodes in view graphs (cf. Sec.[5.2)). Thus, satisfied complex NACs are detected in the Create phase.

5.3.2 Recursion

When the discrimination network is acyclic, a topological sorting is sufficient to execute view modules in
correct order. When the discrimination network consists of cyclic dependencies between view modules,
an execution plan is generated that considers these cyclic dependencies when sorting view modules for
execution. We refer to cyclic dependencies between view modules as recursion cycle. Recursion cycles
of view modules are executed until the fix point view module reaches a fix point. A fix point view module
is a view module that has at least one dependent view module that is not part of the recursion cycle or
is connected to the termination of the network. A fix point view module reached a fix point when it
did not update, delete, or create nodes of view graphs, because then dependent view modules within the
recursion cycle are not impacted by the output of the fix point view module anymore.

During Create phase, nodes created by a fix point module are passed to dependent view modules
within the recursion cycle, first. When the fix point view module reached its fix point, the nodes created
by the fix point view module are passed to dependent view modules that do not belong to the recursion
cycle. The recursion cycle terminates when the fix point view module has a fix point. During Create
phase, recursion cycles terminate when the number of nodes in base graphs has an upper bound, nodes
of view graphs mark at least one node in base graphs (i. e., nodes of view graphs that only mark nodes
of view graphs are not permitted), and view modules in the recursion cycle do not create and delete the
same kind of nodes in view graphs. Then, the number of nodes in view graphs has also an upper bound,
because each node of base graphs is marked by at most one node of the same type in view graphs due
to the NAC of the graph transformation rule in Create mode (cf. Fig.[6a). During Update and Delete
phase, the edges and scopes between nodes of view graphs are used to revise dependent suspicious nodes
and delete dependent obsolete nodes. Since the number of dependent nodes has an upper bound when
the Create phase terminated, the revision and deletion of dependent nodes in view graphs terminates.

68 Incremental View Maintenance for Deductive Graph Databases

Projects #Nodes in BG #Nodes in VG View Size (MB) Execution Time for 100 revisions | Speedup
Apache. .. Rev.l [Rev.100 [Rev.l [Rev.100 | Rev.l [Rev.100 Batch [Incremental
Ant 12442 22071 1725 2927 1,2 2,1 Oh9min 14 s 0O min 21 s 26,38
Xerces 133858 191246 20050 25636 13,3 16,7 15h 33 min44 s 17 min42 s 52,75
(a) Comparison of our batch and maintenance algorithms concerning execution time
Projects Emulated Rete ’ Our Approach Speedup
Apache... || Incremental [#Nodesin VG [View Size (MB) | Incremental [#Nodesin VG [View Size (MB)
Ant 49s 296 - 437 0,171 - 0,249 1,8s 5-20 0,005 - 0,020 2,7
Xerces 435s 1155-1764 0,657 - 1,003 1395 2 0,003 3,1

(b) Comparison of emulated Rete network and our approach concerning memory footprint and execution time
Table 1: Overview of evaluation results (BG: base graph; VG: view graph)

6 Evaluation

In this section, we evaluate the performance of our incremental maintenance algorithm and compare the
performance of ordinary Rete network structures [11l] with generalized Gator network structures [[15]]
for the incremental maintenance of view graphs. For evaluation purposes, we implemented a batch al-
gorithm as reference algorithm and our incremental maintenance algorithm using the Eclipse Modeling
Framework (EMF) and story diagrams [10] as operationalization of view modules. The batch mainte-
nance algorithm [3]] considers all nodes of view graphs created by a view module as suspicious, checks
for all nodes of view graphs created by a view module whether they are obsolete, and uses all nodes that
have a node (sub-)type as specified by input connectors of view modules to find missing nodes in view
graphs. According to our running example, we recover software design patterns in ASGs of Java source
code. We preprocessed the first 100 source code revisions of the Apache Ant and Xerces source code
repositories to derive EMF models. Both algorithms result in exactly the same nodes in view graphs.

First, we compared the performance of the batch and incremental algorithm. We performed a view
maintenance for each revision using either our batch or incremental algorithm. We used the history of
the source code repositories to merge applied modifications into the ASGs using EMFCompare. We
employed 49 view modules [3] to recover design patterns. We do not consider precision and recall of the
recovered design patterns, because they are the same for both algorithms. Table|lafshows the number of
nodes in base and view graphs for revision 1 and 100. For Ant 2,24% and for Xerces 0,82% of nodes
in base graphs changed between two revisions in average. The computed candidate sets had a size of
10,36% for Ant and 4,96% for Xerces in comparison to the number of nodes passed to view modules
during batch maintenance. In total, the incremental algorithm is approx. 26 times faster for Ant and
approx. 53 times faster for Xerces than the batch algorithm.

Second, we compared the performance of Rete and Gator network structures. The runtime perfor-
mance of a discrimination network depends on the network topology as stated by Varro et al. [30] for
incremental graph pattern matching using Rete networks and Hanson et al. [15] for maintaining material-
ized views of relational databases using Gator networks. For our experiment, we used the Gator network
presented in our running example and emulated an equivalent Rete network with 15 modules using our
approach. Finding an optimal network structure is a non-trivial task. We followed optimization criteria
from related work [2, [15130]] such as matching to-one reference early in the network and using few net-
work nodes to reduce memory footprint. We do not use the Rete based matcher [2] of EMF-IncQuery
[L] to measure the performance of the Rete network, because we aim for comparing concepts instead of
different technologies such as different employed graph pattern matchers. Table [Tb] shows in total the
time required for incremental maintenance, number of nodes in view graphs, and view graph size for the
first 100 revisions. Our approach is 2,7 times for Ant and 3,1 times for Xerces faster than the equivalent
emulated Rete network. Our approach requires 2,92% - 8,03% for Ant and 0,30% - 0,45% for Xerces
of memory in comparison to the equivalent emulated Rete network. The measurement proves that Gator
networks can outperform Rete networks in time and space also for incremental graph pattern matching.

T. Beyhl & H. Giese 69

7 Related Work

We describe discrimination networks in Sec. 2l No research exists that employs Gator networks [[15]]
for incremental graph pattern matching or view maintenance of graph databases, although the authors
showed that optimized Gator networks can outperform Rete networks for view maintenance of rela-
tional databases. No research exists, which shows that Gator networks can outperform Rete networks
for incremental graph pattern matching. In contrast to existing approaches for incremental graph pattern
matching, our approach supports Gator networks with general network structures, while Rete network
based approaches are limited to network nodes with at most two inputs. Thus, Rete networks require
more network nodes to maintain matches for certain graph patterns and, thus, have to store more in-
termediate graph pattern matches than Gator networks. Thus, Rete networks require more comparison
operations than Gator networks, when they update the state of the network. Thus, also for incremental
graph pattern matching Gator networks can outperform Rete networks in space and time. In contrast to
Rete and Gator networks, our approach supports cyclic network structures to enable recursion.

Database view maintenance is often performed incrementally. Relational databases employ an im-
pact analysis [[16]], derive incremental maintenance queries that transfer views into a consistent state [23],
or employ discrimination networks for view maintenance [15]. Object-oriented databases make use of
object-oriented concepts and map objects to tables. For view maintenance, object-oriented databases
re-write queries to make all tables explicit in view definitions to also consider inherited and inheriting
tables [19]. Graph databases such as GRAS [17], GRACE [29], and Neo4;j [26] do not provide concepts
to define and maintain graph database views. Zhuge et al. [32] introduce the notion of graph-structured
databases and employ delegate nodes that reference nodes in graphs to constitute views. We extended
their delegate concept by adding node types to delegate nodes and edge types to effectively refer to nodes
with certain roles in graph pattern matches. However, the authors limit their approach to tree-structured
data and employ selection paths and conditions (i. e., no graph patterns) to define views.

Graph indexing approaches focus on path-based indexing (e. g. APEX [6]) for fast evaluation of path
expressions and approaches that index frequent graph-structures for fast subgraph isomorphism tests
(e. g. glndex [31]). However, these approaches neither maintain graph pattern matches nor focus on the
maintenance of such indexes. Model search approaches aim for the efficient retrieval of model elements.
For example, Moogle [20] maps model search to text-based search. The maintenance of search indexes
is not in scope of these approaches and they do not index and maintain graph pattern matches.

VIATRAZ2? [2]] provides Rete network based matching for incremental model queries over EMF mod-
els in EMF-IncQuery [1]], the incremental derivation of features (attributes and references) in EMF mod-
els [25]], live model transformations to propagate changes of source models to target models [24], and the
incremental derivation of view models [7]]. In contrast to our approach, these approaches are limited to
Rete networks. Model constraint evaluation approaches rewrite constraints based on model changes [3]]
to reduce computational complexity when re-evaluating model constraints or employ model profilers to
keep track of model element that are traversed when evaluating model constraints to be aware of which
modified model elements demand a re-evaluation of model constraints [8]. In our previous work [28], we
maintain traceability links incrementally by employing localization rules to create and delete traceability
links without any explicit procedure for updating suspicious traceability links. In this paper, we extended
our previous approach to support general graph pattern matches of arbitrary domains by making use of
Gator networks and an explicit Update phase for suspicious graph pattern matches. Ordinary Rete and
Gator networks do not consist of an explicit Update phase and instead map updates to a sequence of
delete and create steps. We extended our previous approach to support NACs during maintenance.

70 Incremental View Maintenance for Deductive Graph Databases

8 Conclusion and Future Work

In this paper, we present an enumeration mechanism that enables to mark and maintain graph pattern
matches in graph data effectively and efficiently. We describe how our enumeration mechanism is used
to define views over graph data using view modules. These view modules hide graph transformation
rules and, therefore, the presented concepts can be easily transferred to arbitrary kinds of graph data and
graph databases. Our incremental maintenance algorithm keeps enumerations of graph pattern matches
consistent with graph pattern matches in graph data and supports complex NACs and recursion. Our
evaluation shows that our incremental algorithm scales when the size of the graph data increases and that
Gator networks can outperform Rete networks in time and space for incremental maintenance of graph
pattern matches. As future work, we prove that our approach is as expressive as nested graph conditions.

References

[1] Géabor Bergmann, Akos Horvéth, Istvan Réth, Daniel Varr6, Andras Balogh, Zoltan Balogh & Andras Okros
(2010): Incremental Evaluation of Model Queries over EMF Models. In: Model Driven Engineering Lan-
guages and Systems, LNCS 6394, Springer, pp. 76-90, doi:10.1007/978-3-642-16145-2_6.

[2] Gabor Bergmann, Andras Okrés, Istvan Réth, Ddniel Varré & Gergely Varr6 (2008): Incremental Pattern
Matching in the VIATRA Model Transformation System. In: Proceedings of the 3" International Workshop
on Graph and Model Transformations, GRaMoT ’08, ACM, pp. 25-32, doi:10.1145/1402947.1402953.

[3] Thomas Beyhl & Holger Giese (2015): Efficient and Scalable Graph View Maintenance for Deductive
Graph Databases based on Generalized Discrimination Networks. Technical Report, Hasso Plattner In-
stitute at the University of Potsdam. Available at http://nbn-resolving.de/urn:nbn:de:kobv:
517-opus4-79535.

[4] H. Bunke, T. Glauser & T.-H. Tran (1991): An efficient implementation of graph grammars based on the
RETE matching algorithm. In: Graph Grammars and Their Application to Computer Science, LNCS 532,
Springer, pp. 174-189, doi:10.1007/BFb0017389.

[5] Jordi Cabot & Ernest Teniente (2006): Incremental Evaluation of OCL Constraints. In: Advanced Informa-
tion Systems Engineering, Springer, pp. 81-95, doi:10.1007/11767138_7.

[6] Chin-Wan Chung, Jun-Ki Min & Kyuseok Shim (2002): APEX: An Adaptive Path Index for XML Data. In:
Proceedings of the International Conference on Management of Data, SIGMOD ’02, ACM, pp. 121-132,
doi:10.1145/564691.564706.

[7] Csaba Debreceni, Akos Horvath, Abel Hegediis, Zoltan Ujhelyi, Istvin Rath & Daéniel Varr6é (2014):
Query-driven Incremental Synchronization of View Models. 1In: Proceedings of the 2"¢ Workshop
on View-Based, Aspect-Oriented and Orthographic Software Modelling, VAO ’14, ACM, pp. 31-38,
doi:10.1145/2631675.2631677.

[8] Alexander Egyed (2006): Instant Consistency Checking for the UML. In: Proceedings of the 28" Interna-
tional Conference on Software Engineering, ACM, pp. 381-390, doi:10.1145/1134285.1134339.

[9] Hartmut Ehrig, Karsten Ehrig, Annegret Habel & Karl-Heinz Pennemann (2004): Constraints and Applica-
tion Conditions: From Graphs to High-Level Structures. In: International Conference on Graph Transforma-
tions, LNCS 3256, Springer, pp. 287-303, doi:10.1007/978-3-540-30203-2_21.

[10] Thorsten Fischer, Jorg Niere, Lars Torunski & Albert Ziindorf (2000): Story Diagrams: A New Graph Rewrite
Language Based on the Unified Modeling Language and Java. In: Theory and Application of Graph Trans-
formations, Springer, pp. 296-309, doii10.1007/978-3-540-46464-8_21.

[11] Charles L. Forgy (1982): Rete: A Fast Algorithm for the Many Pattern/Many object Pattern Match Problem.
Artificial Intelligence 19(1), pp. 17-37, doi:10.1016/0004-3702(82)90020-0.

[12] Erich Gamma, Richard Helm, Ralph Johnson & John Vlissides (1994): Design Patterns — Elements of
Reusable Object-Oriented Software. Addison-Wesley.

http://dx.doi.org/10.1007/978-3-642-16145-2_6
http://dx.doi.org/10.1145/1402947.1402953
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-79535
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-79535
http://dx.doi.org/10.1007/BFb0017389
http://dx.doi.org/10.1007/11767138_7
http://dx.doi.org/10.1145/564691.564706
http://dx.doi.org/10.1145/2631675.2631677
http://dx.doi.org/10.1145/1134285.1134339
http://dx.doi.org/10.1007/978-3-540-30203-2_21
http://dx.doi.org/10.1007/978-3-540-46464-8_21
http://dx.doi.org/10.1016/0004-3702(82)90020-0

T. Beyhl & H. Giese 71

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]
[27]
(28]

[29]

[30]

[31]

[32]

Michael R. Garey & David S. Johnson (1979): Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman & Company.

Eric N. Hanson (1996): The Design and Implementation of the Ariel Active Database Rule System. Transac-
tions on Knowledge and Data Engineering 8(1), pp. 157-172, doi:10.1109/69.485644.

Eric N. Hanson, Sreenath Bodagala & Ullas Chadaga (2002): Trigger Condition Testing and View Mainte-
nance Using Optimized Discrimination Networks. Transactions on Knowledge and Data Engineering 14(2),
pp. 261-280, doi:10.1109/69.991716.

John V. Harrison & Suzanne W. Dietrich (1992): Maintenance of Materialized Views in a Deductive
Database: An Update Propagation Approach. In: Workshop on Deductive Databases, JICSLP, pp. 56-65.

Norbert Kiesel, Andy Schiirr & Bernhard Westfechtel (1993): GRAS, a graph-oriented database system for
(software) engineering applications. In: Proceeding of the 6" International Workshop on Computer-Aided
Software Engineering, IEEE, pp. 272-286, doii10.1109/CASE.1993.634829.

Ho Soo Lee & Marshall 1. Schor (1992): Match Algorithms for Generalized Rete Networks. Artificial Intel-
ligence 54(2), pp. 249-274, doii10.1016/0004-3702(92)90047-2.

Jixue Liu, Millist Vincent & Mukesh Mohania (2000): Maintaining Views in Object-Relational Databases.
In: Proceedings of the 9" International Conference on Information and Knowledge Management, CIKM 00,
ACM, pp. 102-109, doi:10.1145/354756.354807.

Daniel Lucrédio, Renata Fortes & Jon Whittle (2010): MOOGLE: a metamodel-based model search engine.
Software & Systems Modeling 11(2), pp. 183-208, doii10.1007/s10270-010-0167-7.

Daniel P. Miranker (1987): TREAT: A Better Match Algorithm for Al Production Systems. In: Proceedings
of the 6" National Conference on Artificial Intelligence, 1, AAAI Press, pp. 42-47.

Jorg Niere, Jorg Wadsack & Lothar Wendehals (2003): Handling large search space in pattern-based reverse
engineering. In: Proceedings of the 11" International Workshop on Program Comprehension, IEEE, pp.
274-279, doi:10.1109/WPC.2003.1199212,

Xiaolei Qian & Gio Wiederhold (1991): Incremental Recomputation of Active Relational Expressions. Trans-
actions on Knowledge and Data Engineering 3(3), pp. 337-341, doi:10.1109/69.91063.

Istvan Réth, Gadbor Bergmann, Andrés Okr6s & Déniel Varré (2008): Live Model Transformations Driven by
Incremental Pattern Matching. In: Proceedings of the 6" International Conference on Theory and Practice
of Model Transformations, Springer, pp. 107-121, doi:10.1007/978-3-540-69927-9_8.

Istvan Rath, Abel Hegediis & Daniel Varré (2012): Derived Features for EMF by Integrating Advanced
Model Queries. In: Proceedings of the 8" European Conference on Modelling Foundations and Applications,
ECMFA'’12, Springer, pp. 102-117, doij10.1007/978-3-642-31491-9_10.

Ian Robinson, Jim Webber & Emil Eifrem (2015): Graph Databases (Second Edition). O’Reilly Media.
Marko A. Rodriguez & Peter Neubauer (2010): The Graph Traversal Pattern. CoRR Journal 1004(1001).

Andreas Seibel, Stefan Neumann & Holger Giese (2010): Dynamic hierarchical mega models: compre-
hensive traceability and its efficient maintenance. Software & Systems Modeling 9(4), pp. 493-528,
doii10.1007/s10270-009-0146-z.

Srinath Srinivasa & Martin Maier (2005): LWI and Safari: A New Index Structure and Query Model for
Graph Databases. In: Proceedings of the 11" International Conference on Management of Data, Computer
Society of India.

Gergely Varré & Frederik Deckwerth (2013): A Rete Network Construction Algorithm for Incremental Pat-
tern Matching. In: Theory and Practice of Model Transformations, LNCS 7909, Springer, pp. 125-140,
doi:10.1007/978-3-642-38883-5_13.

Xifeng Yan, Philip S. Yu & Jiawei Han (2005): Graph Indexing Based on Discriminative Frequent Structure
Analysis. Transactions on Database Systems 30(4), pp. 960-993, doi:10.1145/1114244.1114248,

Yue Zhuge & H. Garcia-Molina (1998): Graph Structured Views and Their Incremental Mainte-
nance. In: Proceedings of the 14" International Conference on Data Engineering, 1IEEE, pp. 116125,
doi:10.1109/ICDE.1998.655767.

http://dx.doi.org/10.1109/69.485644
http://dx.doi.org/10.1109/69.991716
http://dx.doi.org/10.1109/CASE.1993.634829
http://dx.doi.org/10.1016/0004-3702(92)90047-2
http://dx.doi.org/10.1145/354756.354807
http://dx.doi.org/10.1007/s10270-010-0167-7
http://dx.doi.org/10.1109/WPC.2003.1199212
http://dx.doi.org/10.1109/69.91063
http://dx.doi.org/10.1007/978-3-540-69927-9_8
http://dx.doi.org/10.1007/978-3-642-31491-9_10
http://dx.doi.org/10.1007/s10270-009-0146-z
http://dx.doi.org/10.1007/978-3-642-38883-5_13
http://dx.doi.org/10.1145/1114244.1114248
http://dx.doi.org/10.1109/ICDE.1998.655767

	1 Introduction
	2 State of the Art
	3 Running Example
	4 Views for Deductive Graph Databases
	4.1 Introduction of View Graphs
	4.2 Definition of View Graphs
	4.2.1 Mapping Graph Conditions
	4.2.2 Recursion

	5 Incremental Maintenance of Graph Database Views
	5.1 View Module Execution Modes
	5.2 Computation of View Module Input
	5.3 Maintenance Phases
	5.3.1 Positive and Negative Application Conditions
	5.3.2 Recursion

	6 Evaluation
	7 Related Work
	8 Conclusion and Future Work

