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The reachability problem in cooperating systems is knowlnetd® SPACE-complete. We show here
that this problem remains PSPACE-complete when we regfigatommunication structure between
the subsystems in various ways. For this purpose we intetiuo basic and incomparable sub-
classes of cooperating systems that occur often in praatideprovide respective reductions. The
subclasses we consider consist of cooperating systemsithegnication structure of which forms
a line respectively a star.

1 Introduction

Cooperating systems are systems that consist of subsysthitis cooperate by glue-code The reach-
able state space of such systems can be exponentially larde inumber of subsystems what is re-
ferred to as thetate space explosion probleioreover, there are PSPACE-completeness results for the
reachability problem in various formalisms that model caragping systems, e.g., s€el[18] for interaction
systems, [[13] for results in 1-conservative Petri nets afjddr results in 1-save Petri nets. Clearly,
all methods that rely on the exploration of the reachablte stpace of cooperating systems suffer from
these results. Particularly formal verification technijas LTL or CTL model checking have a runtime
that is exponential in the number of subsystems. There aigugaways to cope with this problem. One
approach is to identify subclasses for which an analysisbeaachieved in polynomial time. Hence,
the question arises whether there are relevant subclasesmerating systems where the reachability
problem is decidable in polynomial time. Popular decisioobfems that are complete in NP or even
in PSPACE are decidable in polynomial or linear time in darubclasses of instances. Maybe the
most popular example is the Boolean satisfiability problemerg 3SAT is NP-complete, 2SAT is decid-
able in polynomial time and HORNSAT (the problem of decidimigether a given set of propositional
Horn clauses is satisfiable) is even decidable in linear.tiBimilarly, the quantified 3SAT problem is
PSPACE-complete, whereas the quantified 2SAT problem gsd@sidable in polynomial time (seel [8]
for descriptions and more examples).

There are various starting points to specify subclassesagarating systems.

1. Restrictions regarding the behavior of the subsystems.

2. The degree of synchronization among the subsystems &srsysiith a very high degree of syn-
chronization tend to display a smaller reachable stateespac

3. The glue-code, i.e., the structure of the interactionragrtbe subsystems.
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2 Reachability in Cooperating Systems

Here, our concern lies on the latter.

As a formal model we consider here interaction systems HOgry general formalism for modeling
cooperating systems that allows for multiway interactibasveen subsystems. The results in this paper
can be easily applied to other formalisms that model codipgraystems. This can be achieved by either
adapting the results, e.g., the formalism of interface raata [1] comes close to interaction systems, or
by using a mapping among formalisms, e.g., a mapping betivgéeraction systems and 1-save Petri
nets can be found in [17].

Deciding the reachability problem in general interactigstems is PSPACE-complete [18]. Here we
strengthen this result by showing that the reachabilityplenm remains PSPACE-complete in subclasses
consisting of interaction systems the communication strecof which forms a star or a linear sequence
of components. As star structures appear in practice in,@ignt/server systems as banking or booking
systems and linear structures appear in, e.g., pipelinteragsas instruction pipelines or general queue
based algorithms, it is important to know that even for susimply” structured systems there is no
general efficient analysis method. Our results justify gtigmtions that search for sufficient conditions
that can check and guarantee reachability in polynomiad tiklso approaches that guarantee correctness
by construction, i.e., modeling rules that ensure certgstesn properties, and are based on structural
restrictions become justified by our results. See for exarfi®,[11] 14, 15, 12]6] 4] for approaches that
treat these topics.

The paper is organized as follows. Secfidn 2 contains thaitlefis. In Sectio 3 we introduce a
reduction from the acceptance problem in linear boundethgunachines to the reachability problem
in linear interaction systems. A reduction from the readiglproblem in general interaction systems
to star-like interaction systems is introduced in SedtioSdctiori 5 concludes this paper.

2 Interaction Systems

Interaction systems have been proposed by Sifakis andl€édsq10] to model cooperating systems.
The model was studied, e.g., in [16,3/5] 20, 9]. An intecacBystem consists of components which
cooperate through so called interactions. An interactjgecsies a multiway cooperation among com-
ponents by connecting different interfaces (called patsjifferent components. The model is defined
in two layers. The first layer, the interaction model, spesithe components, their interfaces and the
communication between them. The second layer, the interasystem, describes the behavior of the
components by labeled transition systems. In contrastdpvjg allow an interaction to be contained in
another interaction and do not consider complete intemasti

Definition 1 Let K be a set ofomponentsand {A; }ick a family of pairwise disjunct sets pbrtsof the
components in K. In the following we assume thatK1,2,...,n}. Aninteraction a is a nonempty set
of ports from different components, i.a.C Uik Ai and for all i € K |a N Aj| < 1 holds.

An interactiona; = {&,,a,,...,a,} with &, € A, (j € {1,2,...,k}) denotes a possible cooperation
among the components i. ., ik via their respective ports. A set Int of interactions is edilinteraction
set (for K), if each port appears in at least one interaction in Int, ,ilgjcx A = Ugeine @- The tuple
IM = (K,{Ai}iek, Int) is calledinteraction modelif Int is an interaction set for K.

Example 1 Let r > 0 be a natural number and K= {S c3,Cy,...,C } a set of components. S models a
server with a set of ports &= {connectdisconnec} where connect models the connection of a client
to this server and disconnect models the disconnection1Ror < r component cmodels a client with

a set of ports A = {connegt, disconnegt. connegtmodels the connection of client i to the server and
disconnegtthe disconnection.
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For 1 <i <r the interaction connect.c; = {connectconnect} models a connection from client i
to the server and the interaction disconné&kt; = {disconnectdisconnegt models the disconnection.
Let

Int = {connectS ¢;,disconnectS ¢l <i<r}

be a set of interactions. Note that Int is an interaction setK, i.e., IM= (K, {A }ick,Int) is a well
defined interaction model.

Definition 2 Let IM = (K, {Ai }ick,Int) be an interaction model. Sys(IM,{Ti}ick) is calledinterac-
tion systemwhere T= (Qi,Ai,—>i,qi°) fori € K is a labeled transition systems that models the behavior
of component € K. Q is a finite state space:C Qi x A x Q; a transition relation and € Q an

initial state. We refer toTior i € K as thelocal behaviorof component i and we denoteiqiq{ instead
of (ai, &, of) €—i. |
We say a stateje Q; enablesg; if there is ¢ € Q; with qiﬁqi’. We denote the set of enabled ports
of a state g€ Qi by er(qj). This is, eiiqj) = {a& € AilFqeq a0}
Example 2 Let IM = (K, {Ai }ick, Int) be the interaction model from example 1. Figure 1 depictsipos

ble local behavior iTfor i € K. This is, the tuple Sys (IM, {Ti }ick ) is a well defined interaction system.
We mark initial states by an incoming arrow.

disconnegt connegt disconnec connect

@ T, 1<i<r (b) Ts

Figure 1: Local behavior of the components in a simple digsmyer model.

The behavior of an interaction system is defined as follows.

Definition 3 Let Sys= (IM,{Ti}ick) be an interaction system where the interaction model isrgive
IM = (K, {A}ick, Int). Theglobal behaviorof Sys is the transition system=T(Q, Int, —, ) where

e the Cartesian product @ [ick Qi is theglobal state spacevhich we assume to be order inde-
pendent,

e ¥ =(q?,...,q) is theglobal initial stateand

e —C QxInt x Q is theglobal transition relationwith 2 if for all i € K:
- giq ifanA ={a}and
- g=qgifanA =0.

A state ge Q is called aglobal state Globally, a transition qa—>q’ can be performed if each port im
can be performed in the state of the local behavior of itseetipe component.

Definition 4 Let Sys be an interaction system and=TQ, Int, —,q°) the associated global transition
system. A global stateqQ is calledreachableiff there is a path in T that leads from the initial stat& q
to g. Given an interaction system Sys and a global state gethghability problemconsists of deciding
whether or not q is reachable in the global behavior of Sys.
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In order to define subclasses of interaction systems we sitahjtectural constraints with respect
to the communication structure between components, ue.¢anstraints are defined on the interaction
model and are independent from the behavior of the compsnéifite communication structure is de-
fined by an undirected graph the nodes of which are compotigaitsre connected by an edge if these
components are able to interact.

Definition 5 Let IM = (K, {A }ick, Int) be an interaction model witfK| = n. Theinteraction graph
G = (K,E) of IM is an undirected graph witki, j} € E (i # ) iff there is an interactiona € Int with
anA #0anda NA;j #0, i.e., if there is an interaction in which both componentstip@ate.

An interaction model IM is calledtar-like iff G is a star, i.e., exactly one node is of degree h
and all other nodes are of degrde IM is calledlinear iff G is connected, two nodes are of degfee
and any other node is of degr@e An interaction system Sys is called star-like respegtiligkar if the
interaction model of Sys is star-like respectively linear.

Remark 1 Note that star-like and linear interaction systems with algé of interactions imply that for
alaelint |a| <2

A star-like or linear interaction system can be seen as aesyswith a simple hierarchical com-
munication structure, e.g., the simple client/server eaysin Examplé&]1l. Of course, such systems can
be far more complex and thus exhibit a highly branched concation structure. This is, a PSPACE-
completeness result for deciding the reachability probilethe subclass of star-like or linear interaction
systems implies the PSPACE-completeness of decidingableafgility problem in systems with a hier-
archical communication structure.

As deciding the reachability problem in general interantgystems is in PSPACE it follows that the
same holds for the classes of linear and star-like systems.

Example 3 The interaction graph G of the interaction model B¥(K, {A;}ick, Int) from Examplé il
is depicted in Figur€12. The interaction graph is a star,,ild is star-like and thus, every interaction
system, particularly Sys in Example 2, that contains |Mas-Bke.

o] [e] [&]

Figure 2: Interaction grap@ for the interaction moddM in Example_1.

Example 4 This example illustrates a linear interaction system. Wesaer a simple communication
pipeline consisting of n stations. Station one initiatesgpag a message to station two, station two
passes the message to station three and so on. If the messags at station n then station n passes
an acknowledge message, on the same way, back to station one.

Let IM = (K, {A}ick,Int) be the interaction model with componentsKs;,s,,...,s} forn > 2
where $ models station i forll <i <n. A station swith 1 < i < n can receive a message (reg),
pass the message forward (semy), receive an acknowledge (r&x) and pass the acknowledge forward
(sendg;). Station g can only send the initial message and receive the acknowladd station gcan
only receive a message and send an acknowledge. This isoitheaps of the components are defined as
follows.

A, = {sendmy,reca;}
As = {recm,sendm,reca,senda}, 1<i<n
As, = {rec.my,sendan}
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The interaction set Int is given by the following interaoso

sendmessage = {sendm,recmi},1<i<n
sendacknowledge {senda,reca_1}, 1<i<n

Let Sys= (IM,{T }ick ) be the interaction system with local behavior depicted guFe[3.

senda rec.m
rec.ay sendmy senda, rec.my
rec.a; sendm
(@) Ty, (b) Ts,1<i<n (c) T,

Figure 3: Local behavior of the components in a simple conioation pipeline.

The interaction graph G of IM is depicted in Figure 4. G formbree of components. Thus, IM is a
linear interaction model and Sys is a linear interactiontsys.

Figure 4: Interaction grap@ for the interaction moddM in Example 4.

3 PSPACE-completeness of Reachability in Linear Systems

In the following we give a reduction from the accepting pseshlin linear bounded Turing machines to
the reachability problem in linear interaction systems. &k the following syntax for a Turing machine
but we refrain from repeating the well known semantics (830 details).

Definition 6 A 4-tuple M= (I',XZ,P,9) is calleddeterministic Turing maching DTM) where
e [ is afinite set ofape symbols
e > CT is a set ofinput symbolswith a distinguishedlank symbolb e '\ Z,
¢ P is afinite set o$tates including aninitial state p® and twohalt statesp’ and g and
e J is thetransition functionwith & : (P\ {p",pN}) x I = Px T x {—1,+1}.

We consider a both-sided infinite tape with cells labelednbggers. Given an input& >* written
on the cells labeled. through |x| we assume M to be initially in the initial stat€ pnd the tape head
pointing at celll. For a string x€ Z* with |x| = n we denote the ith letter in x by for 1 <i < n.

A DTM M is calledinear boundedf no computation on M uses more thas f tape cells, where n is
the length of the input string. @onfiguration of a bounded DTM M is denoted Bg; o, ..., ¥, .., Vh+1)
where M is in state py; is the tape symbol in cell < j < n-+1and the tape head is on cell i.

Definition 7 The problenlinear space acceptanc@.SA) has as input a linear bounded DTM M and a
finite string x over the input alphabet of M. The question igtlibr M accepts x, i.e., does M halt in the
state g It is well known that LSA is PSPACE-compléte [8].
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The idea for our reduction is to model the cells of a DMy components of an interaction system
Sys and the transition function d¥1 by interactions such that a path in the global behavioBys,
corresponds to an execution idf. In order to calculate the next configurationMfwe need the current
tape head position, the current tape symbol in the resgecéil and the current state bf. We model
all these informations in each cell, i.e., in order to modiel talculation of the next configuration we
need interactions between the component that models thevitelthe tape head and the respective
components that model the neighboring cells.

Let M = (I',Z,P,d) be a linear bounded DTM and € Z* an input with|x| = n. Let Sysy =
(IMm, {Ti }iek ) be an interaction system with interaction motll = (K, {A }ick, Int) such thatk =
{0,...,n+1}.

The set of portgy for a component € K with 1 <i < nis given by

A ={(py (p.yflpeP\{p",pN},yer}.

(p,y)! models that the tape head moves away fromiostherey is the current tape symbol in this cell
andM is in statep. Analogously,(p, y)? models that the tape head moves onto celherey is written
andM is in statep.

Because oM being linear bounded, we know thatdoes not move the tape head from cell O to the
left respectively from celh+ 1 to the right. Thus, we can omit ports &g andA,. 1 that model a head
movement from or onto celt1 andn—+ 2. Ag is given by

Ao = {(p.y)slpeP\{p". PN}, yer,-3y,8(p,y) = (p.vV,-1)}U
{(p.y)3lpe P\ {p", PN}y e, =3y, 8(p,y) = (.Y, 1)}.

An.1 is defined analogously. The set of interactions is given by

Int = {{(p, V)i, (P.Y)Z7HIpyS(p,y) = (P,Y,T),0<i+T <n+1}

Fori € K let Ti = (Qi,Ai,—i,q°) be the local behavior of componenwith Q; = {(p,y)|p € PU
{s},y € '} wheresis an auxiliary symbol that is not included h (p,y) € Q; with p # s models that
the tape head is currently on celind the current tape symbol in this cellis(s, y) models thay is the
content of celli and the tape head is not on this cell. The local initial statesderived from the initial
word on the tape, i.eqd = (s,b), o = (p°x!), @® = (s,X') for 2<i <nandg?, ; = (s b). Fori e K let
—i be the union of the following transitions.

1
a) Forally,y el andpe P\ {p",p"} let (p,y) Mi (s,y) if there arep’ € PandT € {-1,1}

such tha®(p,y) = (p/,Y,T).

2
b) Forally,ycr, pcP\{p",pV} andp <P let (s y) Mi (p,y) if there arey € T andT ¢

{—1,1} such thatd(p,y) = (p,Y,T).

The transitions described in a) model the impacd @i celli if the tape head is on this cell. Lt
be in statep and the tape head on celieadingy, i.e.,T; is in the statdp, y). If d(p,y) = (p/,¥,T) then
y is written and the tape head moves to a neighboring cell]Tj.eoves to the statés, y'). On the other
hand, the transitions described in b) model a head movernmémtelli. Let y be the current tape symbol
on celli, i.e.,Tj is in state(s, y) before the head moves. After the movemenMethange its state tp/,

i.e.,Ti moves to the statgp, ).
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Remark 2 Sys, satisfies the conditions of an interaction system: every @goa component occurs in
at least one interaction. Letd K, (p,y)t € Ay and &(p,y) = (¢,y,T) then0<i+T <n+1 and
{(p, )} (p,y)2r} €Int. For (p,y)? € AisO<i—T <n+Land{(p,y)t1,(p,y)?} € Int.

Sys has a linear communication structure because every compdn€ i < n only interacts with
its neighboring components-il and i+ 1.

Remark 3 The reduction is polynomial in the size of an underlying DTM=NIT, Z, P, ), since|Int| <
|P|-|l'and forallic K |Aj| <2-|P|-|l'and|Qi| < (|P|+1)-|T|.

Theorem 1 Let M= (I',%,P, §) be a linear bounded DTM, & Z* with |x| = n an input for M and Sys
the associated linear interaction system. M accepts x ifbaa state g= (qo, . . .,0n+1) is reachable in
Sys such that there isd {0,...,n+ 1} with g = (p", y) for a tape symboy c I

Proof 1 We prove this theorem by giving an isomorphism, with resjoetcansitions in Syg and transi-
tions among configurations in M, between global states afi Sysl configurations of M. The statement
of the theorem then follows by induction as the isomorphispsnthe initial configuration of M to the
initial state of Syg.

Let R be the set of configurations of M. We ni@py,...,¥,.--,¥+1) € R to a global state g
(Qo, ---,0n+1) such that g= (p,y) and g = (s,y;) for j #i. Let Q be the set of global states that
correspond to the configurations in R. It is clear that thisgpiag is a bijection between R and.Q

Let (P;Yo,---» Y-, ¥a+1) € R and g= (qo,...,0n+1) € Q be the associated state in Hys Let
3(p,y) = (p,¥,T), i.e., the next configuration in M {g'; Yo, ..., ¥, ¥i+1,---,¥hi1) € Rif T =1 (the case
T = —1is treated analogously). The only enabled port in compoh&ntp, y)?, then the only enabled
interaction in q is{(p, y)}, (p, )2 1 }. Thus, component i reaches the stétg/) and component+ T
the state(p', y.1). The resulting global state’ gorresponds to the respective configuration in M. The
fact that the inverse of the mapping is also a homomorphismbeashown analogously.

Remark 4 An instance of the reachability problem is an interactiosteyn Sys and a global state . The
interaction system Sysfor a linear bounded DTM M and an input x can be extended suahatldistin-
guished global state is reached if M halts on x. This can béeaeld by a technique that is used in [19]
for tree-like interaction systems. The idea is to invokaxtistg from the component that reachéal’, y),
that each component shall reach a distinguished state. iffigation can be propagated through neigh-
boring components.

4 PSPACE-completeness of Reachability in Star-Like Systesn

Here we show that deciding the reachability problem in ttesslof star-like interaction systems is
PSPACE-complete by providing a reduction from a generaradtion systemSysto a star-like sys-
temsSys$. The idea of the reduction is to construct a “control commthec that forms the center of
the star structure i8ys and is surrounded by the componentsSgk An interaction inSysis modeled
by multiple interactions ir8y$. The execution of an interaction 8ysthen corresponds to the execution
of a sequence of interactions 8y$ that is coordinated bgc and achieved in two steps. Letbe an
interaction inSys

a) In a first stepcc interacts with each component that participatesrimnd checks whether the
respective port irx is enabled without changing the local states of the compsnéithis check
fails thenccreturns to its initial state.
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b) If the check succeeds theo interacts with each respective component on the ports, ine., a
global transition irSysthat is labeled byr is simulated.

Let Q = ick Qi be the global state space $§sthen we have a global state spaggx g Qi for Sys
with the property thag € Q is reachable irBysiff a stateq' is reachable irBys such thaty equalsq
up to the local state of the componat Since reachability in general interaction systems is REPA
complete, the consequence of this transformation is thé&\ERompleteness of reachability in star-like
interaction systems.

Let Sys= (IM,{Ti}ick ) be an interaction system with interaction motidl = (K, {A; }ick, Int) and
Sy$= (IM',{T/}iex’) be an interaction system with interaction motMl= (K’, { Al }icx, Int’).

LetK’=Ku{cc}, whereccis a control component that coordinates sequences of atina inlnt’
that correspond to interactions int. Fori € K let Al = AjU {a%, &% |a; € Ai}. a° respectivelya;©«
models that componeiis in a local state that enables respectively does not eftablgorta; € A;. The
set of portsA.. of componentcis given by

Acc = {ai aiz™ ai¢,li=1,...,na € A}U{ac|a € Int}.
Leti € K andg € A a port ini thena_l & models that componenturrently enables; anda_POk models
thatg; is currently not enabled by auf,re models that componenperforms a transition labeled lay.
For an interactior € Int the portac. models the initiation of a process that checks whethierenabled
by the respective components and, if applicable, coordintitat all ports i interact one after another.
The set of interactionmt’ is given by

It = {{a,ai%}, {a " ai>}, {a,ai®}|a e A,i=1,....nfUu{{ac}a € Int}.
The local behavior of € K is given byT, = (Q;, A/, —/,°) with

—i= =i U{(a,a,q)|a € Qi Aa € en(gi)} U{(ar,a°%q)lg € QiAa ¢ en(g)}

T/ extendsT; such that for each pog € A; there is a loop on each stajec Q; that is labeled bﬁ?k
if gi enablesy; and bya;"k otherwise. These transitions are used to check whethert @aoch port of an
interactiona € Int is enabled in a global state 8fy$ without changing the local state of the respective
components.

Letal = {ajl,...,ajw} € Int. Figure[5 depicts the part of the local behavigg = (Qcc, Acc, —>cc

,02.) of componentcthat coordinates a test that checks whether each port is enabled irSy$ and,
if applicable, enables ports that can interact with eachipar!. g%, is marked by an incoming arrow.

age K# |

i ok i ok
a'J\aJ\cc a‘”“”cc

Figure 5: Parts of the behavior of componeat
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Remark 5 Each port of Sysoccurs in at least one interaction, i.e., Sgatisfies the conditions of an
interaction system. It is clear that Qyis star-like because each component that originated from Sy
interacts only with the control component cc.

Furthermore, the size of Syis polynomial in the size of Sy'| = |[K|+1, |Int’| = |Int|+ Tick 3- | Al
and forie K holds|A/| =3 |A| and| —{ | = | —i | +|Qi| - |Ai]. For cce K’ holds|Acc| = [Int]| + Yiek 3
‘AI‘- ‘Qcc‘ =1+ Zaelntz' ‘a‘ and’ —rcc ’ = Zcxelnt(3' ’a’ + 1)-
Theorem 2 Let Sys be an interaction system with components K andil8ysssociated star-like in-

teraction system. A global state g is reachable in Sys iffobal state §is reachable in Syssuch that
g =q fori e K and 4, = 2.

Proof 2 Let q be a state in the global behavior T of Sys ande the state in the global behavior
T’ of SySwhere gq= ¢ fori € K and d; = qgc_, i.e., component cc is in its initial state. Consider
al={a,... ,aj‘a”} € Int such that each portin/ is enabled in g, i.e., all local states,d = j1,. .-, jjai|

in g enable the ports % and a and do not enable ;#%. d enables the interactiofad}. If this
interaction is performed then the only possible sequendetefactions results in a stat§ with § = ¢
fori € K and .. = o2 Let there be a port im! that is not enabled in g, e.g., with | € {1 djaif}
does not enable;ahen ¢ does enable 2@ and not &. If {ad:} performed in gthen the only possible
sequence of interactions in $ysads back to state’qFor the global initial states ¢of Sys and %1’ of
Syé holds that § = o for i € K and ¢’ is the initial state of the local behavior of component cce Th
“if” part follows by induction over paths in the global behav of Sys. The “and only if” part follows
analogously.

5 Conclusion and Related Work

We investigated complexity issues for classes of inteacsystems that are relevant in various appli-
cations. One with a linear the other with a star-like comroation pattern. We showed that even for
these simply structured systems deciding the reachabitiiplem is PSPACE-complete. These results
strengthen PSPACE-completeness results of the readigidblem in general interaction systerns|[18].
The formalism of interaction systems is very basic, and twrgesults are easily applicable to other for-
malisms that model cooperating systems. Our results yustdhniques that are based on a sufficient
condition and establish reachability or reachability dejmnt system properties in subclasses of coop-
erating systems that are defined by a restricted commumiicatiucture that forms a star or a line or in
respective superclasses, which are sketched in the foltpwi

[4] examined a process algebra based on an architecturatigtesn language calle®PADL and
considers deadlock-freedom in systems with a tree-likensomication pattern (a proper superclass of
systems with a star-like or linear pattern). The technigubased on a compatibility condition that is
tested among pairs of cooperating subsystems, i.e., theasita behavior of two subsystems is weak
bisimilar to the behavior of one of the components. An effitiechnique based on a sufficient con-
ditions for establishing deadlock-freedom in interactsystems with a star-like communication pattern
is introduced in[[14] where, similar t01[4], a compatibiligpndition based on branching bisimilarity is
tested. A sufficient condition for establishing deadlostetlom for the subclass of tree-like interaction
systems is described in [16] where a condition is tested emgichable state spaces of pairs of interact-
ing components. In [15] the condition in [16] is extendedrsti@at deadlock-freedom can be established
in a proper superclass of tree-like interaction systemsinid&er et al. proposed inl[2, 11] a technique to
construct so calledbservablebehavior of a cooperating system with an acyclic commuiungtattern
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which can be used to establish certain system properti¢slefribes a general communication graph
for CSP models and shows how tree structures can be comstriogtmerging several process€om-
municating Sequential Processar® introduced in[12] where a directed communication stinechased
on input/output communication is considered. It is arguet tommunicating processes, if a directed
input/output communication structure forms a rooted tce@, not deadlock.
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