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The reachability problem in cooperating systems is known tobe PSPACE-complete. We show here
that this problem remains PSPACE-complete when we restrictthe communication structure between
the subsystems in various ways. For this purpose we introduce two basic and incomparable sub-
classes of cooperating systems that occur often in practiceand provide respective reductions. The
subclasses we consider consist of cooperating systems the communication structure of which forms
a line respectively a star.

1 Introduction

Cooperating systems are systems that consist of subsystemswhich cooperate by aglue-code. The reach-
able state space of such systems can be exponentially large in the number of subsystems what is re-
ferred to as thestate space explosion problem. Moreover, there are PSPACE-completeness results for the
reachability problem in various formalisms that model cooperating systems, e.g., see [18] for interaction
systems, [13] for results in 1-conservative Petri nets and [7] for results in 1-save Petri nets. Clearly,
all methods that rely on the exploration of the reachable state space of cooperating systems suffer from
these results. Particularly formal verification techniques as LTL or CTL model checking have a runtime
that is exponential in the number of subsystems. There are various ways to cope with this problem. One
approach is to identify subclasses for which an analysis canbe achieved in polynomial time. Hence,
the question arises whether there are relevant subclasses of cooperating systems where the reachability
problem is decidable in polynomial time. Popular decision problems that are complete in NP or even
in PSPACE are decidable in polynomial or linear time in certain subclasses of instances. Maybe the
most popular example is the Boolean satisfiability problem where 3SAT is NP-complete, 2SAT is decid-
able in polynomial time and HORNSAT (the problem of decidingwhether a given set of propositional
Horn clauses is satisfiable) is even decidable in linear time. Similarly, the quantified 3SAT problem is
PSPACE-complete, whereas the quantified 2SAT problem is also decidable in polynomial time (see [8]
for descriptions and more examples).

There are various starting points to specify subclasses of cooperating systems.

1. Restrictions regarding the behavior of the subsystems.

2. The degree of synchronization among the subsystems as systems with a very high degree of syn-
chronization tend to display a smaller reachable state space.

3. The glue-code, i.e., the structure of the interaction among the subsystems.
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2 Reachability in Cooperating Systems

Here, our concern lies on the latter.
As a formal model we consider here interaction systems [10],a very general formalism for modeling

cooperating systems that allows for multiway interactionsbetween subsystems. The results in this paper
can be easily applied to other formalisms that model cooperating systems. This can be achieved by either
adapting the results, e.g., the formalism of interface automata [1] comes close to interaction systems, or
by using a mapping among formalisms, e.g., a mapping betweeninteraction systems and 1-save Petri
nets can be found in [17].

Deciding the reachability problem in general interaction systems is PSPACE-complete [18]. Here we
strengthen this result by showing that the reachability problem remains PSPACE-complete in subclasses
consisting of interaction systems the communication structure of which forms a star or a linear sequence
of components. As star structures appear in practice in, e.g., client/server systems as banking or booking
systems and linear structures appear in, e.g., pipeline systems as instruction pipelines or general queue
based algorithms, it is important to know that even for such “simply” structured systems there is no
general efficient analysis method. Our results justify investigations that search for sufficient conditions
that can check and guarantee reachability in polynomial time. Also approaches that guarantee correctness
by construction, i.e., modeling rules that ensure certain system properties, and are based on structural
restrictions become justified by our results. See for example [16, 11, 14, 15, 12, 6, 4] for approaches that
treat these topics.

The paper is organized as follows. Section 2 contains the definitions. In Section 3 we introduce a
reduction from the acceptance problem in linear bounded Turing machines to the reachability problem
in linear interaction systems. A reduction from the reachability problem in general interaction systems
to star-like interaction systems is introduced in Section 4. Section 5 concludes this paper.

2 Interaction Systems

Interaction systems have been proposed by Sifakis and Gössler in [10] to model cooperating systems.
The model was studied, e.g., in [16, 3, 5, 20, 9]. An interaction system consists of components which
cooperate through so called interactions. An interaction specifies a multiway cooperation among com-
ponents by connecting different interfaces (called ports)of different components. The model is defined
in two layers. The first layer, the interaction model, specifies the components, their interfaces and the
communication between them. The second layer, the interaction system, describes the behavior of the
components by labeled transition systems. In contrast to [10] we allow an interaction to be contained in
another interaction and do not consider complete interactions.

Definition 1 Let K be a set ofcomponentsand{Ai}i∈K a family of pairwise disjunct sets ofportsof the
components in K. In the following we assume that K= {1,2, . . . ,n}. An interaction α is a nonempty set
of ports from different components, i.e.,α ⊆

⋃
i∈K Ai and for all i∈ K |α ∩Ai| ≤ 1 holds.

An interactionαi = {ai1,ai2, . . . ,aik} with ai j ∈ Ai j ( j ∈ {1,2, . . . ,k}) denotes a possible cooperation
among the components i1, . . . , ik via their respective ports. A set Int of interactions is called interaction
set (for K), if each port appears in at least one interaction in Int, i.e.,

⋃
i∈K Ai =

⋃
α∈Int α . The tuple

IM = (K,{Ai}i∈K , Int) is calledinteraction modelif Int is an interaction set for K.

Example 1 Let r > 0 be a natural number and K= {S,c1,c2, . . . ,cr} a set of components. S models a
server with a set of ports AS= {connect,disconnect} where connect models the connection of a client
to this server and disconnect models the disconnection. For1≤ i ≤ r component ci models a client with
a set of ports Aci = {connecti ,disconnecti}. connecti models the connection of client i to the server and
disconnecti the disconnection.
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For 1 ≤ i ≤ r the interaction connectS ci = {connect,connecti} models a connection from client i
to the server and the interaction disconnectS ci = {disconnect,disconnecti } models the disconnection.
Let

Int = {connectS ci ,disconnectS ci |1≤ i ≤ r}

be a set of interactions. Note that Int is an interaction set for K, i.e., IM= (K,{Ai}i∈K , Int) is a well
defined interaction model.

Definition 2 Let IM = (K,{Ai}i∈K , Int) be an interaction model. Sys= (IM ,{Ti}i∈K) is calledinterac-
tion systemwhere Ti = (Qi,Ai ,→i ,q0

i ) for i ∈ K is a labeled transition systems that models the behavior
of component i∈ K. Qi is a finite state space,→i⊆ Qi ×Ai ×Qi a transition relation and q0i ∈ Qi an

initial state. We refer to Ti for i ∈ K as thelocal behaviorof component i and we denote qi
ai−→iq′i instead

of (qi ,ai ,q′i) ∈→i.

We say a state qi ∈ Qi enablesai if there is q′i ∈ Qi with qi
ai−→iq′i . We denote the set of enabled ports

of a state qi ∈ Qi by en(qi). This is, en(qi) = {ai ∈ Ai|∃q′i∈Qi
qi

ai−→iq′i}.

Example 2 Let IM = (K,{Ai}i∈K , Int) be the interaction model from example 1. Figure 1 depicts possi-
ble local behavior Ti for i ∈ K. This is, the tuple Sys= (IM ,{Ti}i∈K) is a well defined interaction system.
We mark initial states by an incoming arrow.

connectidisconnecti

(a) Tci , 1≤ i ≤ r

connectdisconnect

(b) Ts

Figure 1: Local behavior of the components in a simple client/server model.

The behavior of an interaction system is defined as follows.

Definition 3 Let Sys= (IM ,{Ti}i∈K) be an interaction system where the interaction model is given by
IM = (K,{Ai}i∈K , Int). Theglobal behaviorof Sys is the transition system T= (Q, Int,→,q0) where

• the Cartesian product Q= ∏i∈K Qi is theglobal state spacewhich we assume to be order inde-
pendent,

• q0 = (q0
1, . . . ,q

0
n) is theglobal initial stateand

• →⊆ Q× Int×Q is theglobal transition relationwith q
α
−→q′ if for all i ∈ K:

– qi
ai−→iq′i if α ∩Ai = {ai} and

– qi = q′i if α ∩Ai = /0.

A state q∈ Q is called aglobal state. Globally, a transition q
α
−→q′ can be performed if each port inα

can be performed in the state of the local behavior of its respective component.

Definition 4 Let Sys be an interaction system and T= (Q, Int,→,q0) the associated global transition
system. A global state q∈ Q is calledreachableiff there is a path in T that leads from the initial state q0

to q. Given an interaction system Sys and a global state q, thereachability problemconsists of deciding
whether or not q is reachable in the global behavior of Sys.



4 Reachability in Cooperating Systems

In order to define subclasses of interaction systems we studyarchitectural constraints with respect
to the communication structure between components, i.e., our constraints are defined on the interaction
model and are independent from the behavior of the components. The communication structure is de-
fined by an undirected graph the nodes of which are componentsthat are connected by an edge if these
components are able to interact.

Definition 5 Let IM = (K,{Ai}i∈K , Int) be an interaction model with|K| = n. Theinteraction graph
G= (K,E) of IM is an undirected graph with{i, j} ∈ E (i 6= j) iff there is an interactionα ∈ Int with
α ∩Ai 6= /0 andα ∩A j 6= /0, i.e., if there is an interaction in which both components participate.

An interaction model IM is calledstar-like iff G is a star, i.e., exactly one node is of degree n− 1
and all other nodes are of degree1. IM is called linear iff G is connected, two nodes are of degree1
and any other node is of degree2. An interaction system Sys is called star-like respectively linear if the
interaction model of Sys is star-like respectively linear.

Remark 1 Note that star-like and linear interaction systems with a set Int of interactions imply that for
all α ∈ Int |α | ≤ 2.

A star-like or linear interaction system can be seen as a system with a simple hierarchical com-
munication structure, e.g., the simple client/server system in Example 1. Of course, such systems can
be far more complex and thus exhibit a highly branched communication structure. This is, a PSPACE-
completeness result for deciding the reachability problemin the subclass of star-like or linear interaction
systems implies the PSPACE-completeness of deciding the reachability problem in systems with a hier-
archical communication structure.

As deciding the reachability problem in general interaction systems is in PSPACE it follows that the
same holds for the classes of linear and star-like systems.

Example 3 The interaction graph G of the interaction model IM= (K,{Ai}i∈K , Int) from Example 1
is depicted in Figure 2. The interaction graph is a star, i.e., IM is star-like and thus, every interaction
system, particularly Sys in Example 2, that contains IM is star-like.

S

c1 c2 c3 . . . cr

Figure 2: Interaction graphG for the interaction modelIM in Example 1.

Example 4 This example illustrates a linear interaction system. We consider a simple communication
pipeline consisting of n stations. Station one initiates passing a message to station two, station two
passes the message to station three and so on. If the message arrives at station n then station n passes
an acknowledge message, on the same way, back to station one.

Let IM = (K,{Ai}i∈K , Int) be the interaction model with components K= {s1,s2, . . . ,sn} for n≥ 2
where si models station i for1 ≤ i ≤ n. A station si with 1 < i < n can receive a message (recmi),
pass the message forward (sendmi), receive an acknowledge (recai) and pass the acknowledge forward
(sendai). Station s1 can only send the initial message and receive the acknowledge and station sn can
only receive a message and send an acknowledge. This is, the port sets of the components are defined as
follows.

As1 = {sendm1, rec a1}
Asi = {rec mi ,sendmi, rec ai ,sendai}, 1< i < n
Asn = {rec mn,sendan}
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The interaction set Int is given by the following interactions.

sendmessagei = {sendmi, rec mi+1}, 1≤ i < n
sendacknowledgei = {sendai , rec ai−1}, 1< i ≤ n

Let Sys= (IM ,{Ti}i∈K) be the interaction system with local behavior depicted in Figure 3.

sendm1rec a1

(a) Ts1

rec mi

sendmi
rec ai

sendai

(b) Tsi , 1< i < n

rec mnsendan

(c) Tsn

Figure 3: Local behavior of the components in a simple communication pipeline.

The interaction graph G of IM is depicted in Figure 4. G forms aline of components. Thus, IM is a
linear interaction model and Sys is a linear interaction system.

s1 s2 s3 sn

Figure 4: Interaction graphG for the interaction modelIM in Example 4.

3 PSPACE-completeness of Reachability in Linear Systems

In the following we give a reduction from the accepting problem in linear bounded Turing machines to
the reachability problem in linear interaction systems. Weuse the following syntax for a Turing machine
but we refrain from repeating the well known semantics (see [8] for details).

Definition 6 A 4-tuple M= (Γ,Σ,P,δ ) is calleddeterministic Turing machine(DTM) where

• Γ is a finite set oftape symbols,

• Σ ⊆ Γ is a set ofinput symbolswith a distinguishedblank symbolb∈ Γ\Σ,

• P is a finite set ofstates, including aninitial state p0 and twohalt statespY and pN and

• δ is thetransition function with δ : (P\{pY, pN})×Γ → P×Γ×{−1,+1}.

We consider a both-sided infinite tape with cells labeled by integers. Given an input x∈ Σ∗ written
on the cells labeled1 through |x| we assume M to be initially in the initial state p0 and the tape head
pointing at cell1. For a string x∈ Σ∗ with |x| = n we denote the ith letter in x by xi for 1≤ i ≤ n.

A DTM M is calledlinear boundedif no computation on M uses more than n+1 tape cells, where n is
the length of the input string. Aconfigurationof a bounded DTM M is denoted by(p;γ0, . . . ,γi , . . . ,γn+1)
where M is in state p,γ j is the tape symbol in cell0≤ j ≤ n+1 and the tape head is on cell i.

Definition 7 The problemlinear space acceptance(LSA) has as input a linear bounded DTM M and a
finite string x over the input alphabet of M. The question is whether M accepts x, i.e., does M halt in the
state pY. It is well known that LSA is PSPACE-complete [8].
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The idea for our reduction is to model the cells of a DTMM by components of an interaction system
SysM and the transition function ofM by interactions such that a path in the global behavior ofSysM
corresponds to an execution ofM. In order to calculate the next configuration ofM we need the current
tape head position, the current tape symbol in the respective cell and the current state ofM. We model
all these informations in each cell, i.e., in order to model the calculation of the next configuration we
need interactions between the component that models the cell with the tape head and the respective
components that model the neighboring cells.

Let M = (Γ,Σ,P,δ ) be a linear bounded DTM andx ∈ Σ∗ an input with |x| = n. Let SysM =
(IMM,{Ti}i∈K) be an interaction system with interaction modelIM = (K,{Ai}i∈K , Int) such thatK =
{0, . . . ,n+1}.

The set of portsAi for a componenti ∈ K with 1≤ i ≤ n is given by

Ai = {(p,γ)1
i ,(p,γ)2

i |p∈ P\{pY, pN},γ ∈ Γ}.

(p,γ)1
i models that the tape head moves away from celli whereγ is the current tape symbol in this cell

andM is in statep. Analogously,(p,γ)2
i models that the tape head moves onto celli whereγ is written

andM is in statep.
Because ofM being linear bounded, we know thatδ does not move the tape head from cell 0 to the

left respectively from celln+1 to the right. Thus, we can omit ports inA0 andAn+1 that model a head
movement from or onto cell−1 andn+2. A0 is given by

A0 = {(p,γ)1
0|p∈ P\{pY, pN},γ ∈ Γ,¬∃p′,γ ′δ (p,γ) = (p′,γ ′,−1)}∪

{(p,γ)2
0|p∈ P\{pY, pN},γ ∈ Γ,¬∃p′,γ ′δ (p,γ) = (p′,γ ′,1)}.

An+1 is defined analogously. The set of interactions is given by

Int = {{(p,γ)1
i ,(p,γ)2

i+T}|∃p′,γ ′δ (p,γ) = (p′,γ ′,T),0≤ i +T ≤ n+1}.

For i ∈ K let Ti = (Qi ,Ai,→i ,q0
i ) be the local behavior of componenti with Qi = {(p,γ)|p ∈ P∪

{s},γ ∈ Γ} wheres is an auxiliary symbol that is not included inP. (p,γ) ∈ Qi with p 6= s models that
the tape head is currently on celli and the current tape symbol in this cell isγ . (s,γ) models thatγ is the
content of celli and the tape head is not on this cell. The local initial statesare derived from the initial
word on the tape, i.e.,q0

0 = (s,b), q0
1 = (p0,x1), q0

i = (s,xi) for 2≤ i ≤ n andq0
n+1 = (s,b). For i ∈ K let

→i be the union of the following transitions.

a) For allγ ,γ ′ ∈ Γ and p∈ P\{pY, pN} let (p,γ)
(p,γ)1

i−−−→i (s,γ ′) if there arep′ ∈ P andT ∈ {−1,1}
such thatδ (p,γ) = (p′,γ ′,T).

b) For all γ , γ̃ ∈ Γ, p ∈ P\ {pY, pN} and p′ ∈ P let (s, γ̃)
(p,γ)2

i−−−→i (p′, γ̃) if there areγ ′ ∈ Γ andT ∈
{−1,1} such thatδ (p,γ) = (p′,γ ′,T).

The transitions described in a) model the impact ofδ on cell i if the tape head is on this cell. LetM
be in statep and the tape head on celli readingγ , i.e.,Ti is in the state(p,γ). If δ (p,γ) = (p′,γ ′,T) then
γ ′ is written and the tape head moves to a neighboring cell, i.e., Ti moves to the state(s,γ ′). On the other
hand, the transitions described in b) model a head movement onto cell i. Let γ̃ be the current tape symbol
on cell i, i.e.,Ti is in state(s, γ̃) before the head moves. After the movement letM change its state top′,
i.e.,Ti moves to the state(p′, γ̃).
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Remark 2 SysM satisfies the conditions of an interaction system: every port of a component occurs in
at least one interaction. Let i∈ K, (p,γ)1

i ∈ Ai and δ (p,γ) = (p′,γ ′,T) then 0 ≤ i +T ≤ n+ 1 and
{(p,γ)1

i ,(p,γ)2
i+T} ∈ Int. For (p,γ)2

i ∈ Ai is 0≤ i −T ≤ n+1 and{(p,γ)1
i−T ,(p,γ)2

i } ∈ Int.
SysM has a linear communication structure because every component 1≤ i ≤ n only interacts with

its neighboring components i−1 and i+1.

Remark 3 The reduction is polynomial in the size of an underlying DTM M= (Γ,Σ,P,δ ), since|Int| ≤
|P| · |Γ| and for all i∈ K |Ai| ≤ 2· |P| · |Γ| and |Qi | ≤ (|P|+1) · |Γ|.

Theorem 1 Let M= (Γ,Σ,P,δ ) be a linear bounded DTM, x∈ Σ∗ with |x|= n an input for M and SysM
the associated linear interaction system. M accepts x iff a global state q= (q0, . . . ,qn+1) is reachable in
Sys such that there is i∈ {0, . . . ,n+1} with qi = (pY,γ) for a tape symbolγ ∈ Γ.

Proof 1 We prove this theorem by giving an isomorphism, with respectto transitions in SysM and transi-
tions among configurations in M, between global states of SysM and configurations of M. The statement
of the theorem then follows by induction as the isomorphism maps the initial configuration of M to the
initial state of SysM .

Let R be the set of configurations of M. We map(p;γ0, . . . ,γi , . . . ,γn+1) ∈ R to a global state q=
(q0, . . . ,qn+1) such that qi = (p,γi) and qj = (s,γ j ) for j 6= i. Let Q′ be the set of global states that
correspond to the configurations in R. It is clear that this mapping is a bijection between R and Q′.

Let (p;γ0, . . . ,γi , . . . ,γn+1) ∈ R and q= (q0, . . . ,qn+1) ∈ Q′ be the associated state in SysM . Let
δ (p,γi)= (p′,γ ′i ,T), i.e., the next configuration in M is(p′;γ0, . . . ,γ ′i ,γi+1, . . . ,γn+1)∈R if T= 1 (the case
T = −1 is treated analogously). The only enabled port in componenti is (p,γi)

1
i , then the only enabled

interaction in q is{(p,γi)
1
i ,(p,γi)

2
i+T}. Thus, component i reaches the state(s,γ ′i ) and component i+T

the state(p′,γi+T). The resulting global state q′ corresponds to the respective configuration in M. The
fact that the inverse of the mapping is also a homomorphism can be shown analogously.

Remark 4 An instance of the reachability problem is an interaction system Sys and a global state q. The
interaction system SysM for a linear bounded DTM M and an input x can be extended such that a distin-
guished global state is reached if M halts on x. This can be achieved by a technique that is used in [19]
for tree-like interaction systems. The idea is to invoke, starting from the component that reached(pY,γ),
that each component shall reach a distinguished state. Thisinvocation can be propagated through neigh-
boring components.

4 PSPACE-completeness of Reachability in Star-Like Systems

Here we show that deciding the reachability problem in the class of star-like interaction systems is
PSPACE-complete by providing a reduction from a general interaction systemsSysto a star-like sys-
temsSys′. The idea of the reduction is to construct a “control component” cc that forms the center of
the star structure inSys′ and is surrounded by the components ofSys. An interaction inSysis modeled
by multiple interactions inSys′. The execution of an interaction inSysthen corresponds to the execution
of a sequence of interactions inSys′ that is coordinated bycc and achieved in two steps. Letα be an
interaction inSys.

a) In a first stepcc interacts with each component that participates inα and checks whether the
respective port inα is enabled without changing the local states of the components. If this check
fails thencc returns to its initial state.
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b) If the check succeeds thencc interacts with each respective component on the ports inα , i.e., a
global transition inSysthat is labeled byα is simulated.

Let Q= ∏i∈K Qi be the global state space ofSysthen we have a global state space∏i∈K∪{cc} Qi for Sys′

with the property thatq ∈ Q is reachable inSysiff a stateq′ is reachable inSys′ such thatq′ equalsq
up to the local state of the componentcc. Since reachability in general interaction systems is PSPACE-
complete, the consequence of this transformation is the PSPACE-completeness of reachability in star-like
interaction systems.

Let Sys= (IM ,{Ti}i∈K) be an interaction system with interaction modelIM = (K,{Ai}i∈K , Int) and
Sys′ = (IM ′,{T ′

i }i∈K′) be an interaction system with interaction modelIM = (K′,{A′
i}i∈K′ , Int ′).

Let K′ = K∪{cc}, wherecc is a control component that coordinates sequences of interactions inInt ′

that correspond to interactions inInt. For i ∈ K let A′
i = Ai ∪{aok

i ,a¬ok
i |ai ∈ Ai}. aok

i respectivelya¬ok
i

models that componenti is in a local state that enables respectively does not enablethe portai ∈ Ai. The
set of portsAcc of componentcc is given by

Acc = {a iok
cc,a i¬ok

cc ,a icc
f ire|i = 1, . . . ,n,ai ∈ Ai}∪{αcc|α ∈ Int}.

Let i ∈ K andai ∈ Ai a port ini thena iok
cc models that componenti currently enablesai anda i¬ok

cc models
thatai is currently not enabled byi. a icc

f ire models that componenti performs a transition labeled byai .
For an interactionα ∈ Int the portαcc models the initiation of a process that checks whetherα is enabled
by the respective components and, if applicable, coordinates that all ports inα interact one after another.

The set of interactionsInt ′ is given by

Int ′ = {{aok
i ,a iok

cc},{a¬ok
i ,a i¬ok

cc },{ai ,a i f ire
cc }|ai ∈ Ai, i = 1, . . . ,n}∪{{αcc}|α ∈ Int}.

The local behavior ofi ∈ K is given byT ′
i = (Qi,A′

i ,→
′
i,q

0
i ) with

→′
i= →i ∪{(qi ,aok

i ,qi)|qi ∈ Qi ∧ai ∈ en(qi)}∪{(qi ,a¬ok
i ,qi)|qi ∈ Qi ∧ai /∈ en(qi)}.

T ′
i extendsTi such that for each portai ∈ Ai there is a loop on each stateqi ∈ Qi that is labeled byaok

i
if qi enablesai and bya¬ok

i otherwise. These transitions are used to check whether or not each port of an
interactionα ∈ Int is enabled in a global state ofSys′ without changing the local state of the respective
components.

Let α j = {a j1, . . . ,a j
|α j |

} ∈ Int. Figure 5 depicts the part of the local behaviorTcc = (Qcc,Acc,→cc

,q0
cc) of componentcc that coordinates a test that checks whether each port inα j is enabled inSys′ and,

if applicable, enables ports that can interact with each port in α j . q0
cc is marked by an incoming arrow.

α j
cc

a j1ok
cc

a j2ok
cc

a j|α j |
ok
cc

a j1¬ok
cc

a j2¬ok
cc

a j3¬ok
cc

a j|α j |
¬ok
cc

a j1
f ire
cc

a j2
f ire
cc

a j|α j |
f ire
cc

αk
cc, k 6= j

Figure 5: Parts of the behavior of componentcc.
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Remark 5 Each port of Sys′ occurs in at least one interaction, i.e., Sys′ satisfies the conditions of an
interaction system. It is clear that Sys′ is star-like because each component that originated from Sys
interacts only with the control component cc.

Furthermore, the size of Sys′ is polynomial in the size of Sys.|K′|= |K|+1, |Int ′|= |Int|+∑i∈K 3· |Ai |
and for i∈ K holds|A′

i |= 3· |Ai | and| →′
i |= | →i |+ |Qi | · |Ai |. For cc∈ K′ holds|Acc|= |Int|+∑i∈K 3·

|Ai |, |Qcc|= 1+∑α∈Int 2· |α | and | →cc |= ∑α∈Int(3· |α |+1).

Theorem 2 Let Sys be an interaction system with components K and Sys′ the associated star-like in-
teraction system. A global state q is reachable in Sys iff a global state q′ is reachable in Sys′ such that
qi = q′i for i ∈ K and q′cc = q0

cc.

Proof 2 Let q be a state in the global behavior T of Sys and q′ be the state in the global behavior
T ′ of Sys′ where qi = q′i for i ∈ K and q′cc = q0

cc, i.e., component cc is in its initial state. Consider
α j = {a j1, . . . ,a j

|α j |
}∈ Int such that each port inα j is enabled in q, i.e., all local states q′

l , l = j1, . . . , j|α j |

in q′ enable the ports aok
l and al and do not enable a¬ok

l . q′ enables the interaction{α j
cc}. If this

interaction is performed then the only possible sequence ofinteractions results in a statẽq′ with q̃i = q̃′i
for i ∈ K andq̃′cc = q0

cc. Let there be a port inα j that is not enabled in q, e.g., ql with l ∈ { j1, . . . , j|α j |}

does not enable al then q′l does enable a¬ok
l and not aok

l . If {α j
cc} performed in q′ then the only possible

sequence of interactions in Sys′ leads back to state q′. For the global initial states q0 of Sys and q0
′
of

Sys′ holds that q0i = q0
i
′
for i ∈ K and q0

cc
′
is the initial state of the local behavior of component cc. The

“if” part follows by induction over paths in the global behavior of Sys. The “and only if” part follows
analogously.

5 Conclusion and Related Work

We investigated complexity issues for classes of interaction systems that are relevant in various appli-
cations. One with a linear the other with a star-like communication pattern. We showed that even for
these simply structured systems deciding the reachabilityproblem is PSPACE-complete. These results
strengthen PSPACE-completeness results of the reachability problem in general interaction systems [18].
The formalism of interaction systems is very basic, and thusour results are easily applicable to other for-
malisms that model cooperating systems. Our results justify techniques that are based on a sufficient
condition and establish reachability or reachability dependent system properties in subclasses of coop-
erating systems that are defined by a restricted communication structure that forms a star or a line or in
respective superclasses, which are sketched in the following.

[4] examined a process algebra based on an architectural description language calledPADL and
considers deadlock-freedom in systems with a tree-like communication pattern (a proper superclass of
systems with a star-like or linear pattern). The technique is based on a compatibility condition that is
tested among pairs of cooperating subsystems, i.e., the composite behavior of two subsystems is weak
bisimilar to the behavior of one of the components. An efficient technique based on a sufficient con-
ditions for establishing deadlock-freedom in interactionsystems with a star-like communication pattern
is introduced in [14] where, similar to [4], a compatibilitycondition based on branching bisimilarity is
tested. A sufficient condition for establishing deadlock-freedom for the subclass of tree-like interaction
systems is described in [16] where a condition is tested on the reachable state spaces of pairs of interact-
ing components. In [15] the condition in [16] is extended such that deadlock-freedom can be established
in a proper superclass of tree-like interaction systems. Hennicker et al. proposed in [2, 11] a technique to
construct so calledobservablebehavior of a cooperating system with an acyclic communication pattern
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which can be used to establish certain system properties. [6] describes a general communication graph
for CSP models and shows how tree structures can be constructed by merging several processes.Com-
municating Sequential Processesare introduced in [12] where a directed communication structure based
on input/output communication is considered. It is argued that communicating processes, if a directed
input/output communication structure forms a rooted tree,can not deadlock.
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[9] Gregor Gössler, Sussane Graf, Mila Majster-Cederbaum, M. Martens & Joseph Sifakis (2007):An Approach
to Modelling and Verification of Component Based Systems. In: Proceedings of the 33rd conference on Cur-
rent Trends in Theory and Practice of Computer Science, SOFSEM ’07, Springer-Verlag, Berlin, Heidelberg,
pp. 295–308, doi:10.1007/978-3-540-69507-3_24.
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