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We formalise the basics of the double-pushout approach to graph transformation in the proof assistant
Isabelle/HOL and provide associated machine-checked proofs. Specifically, we formalise graphs,
graph morphisms and rules, and a definition of direct derivations based on deletion and gluing. We
then formalise graph pushouts and prove with Isabelle’s help that both deletions and gluings are
pushouts. We also prove that pushouts are unique up to isomorphism. The formalisation comprises
around 2000 lines of source text. Our motivation is to pave the way for rigorous, machine-checked
proofs in the theory of the double-pushout approach, and to lay the foundations for verifying graph
transformation systems and rule-based graph programs by interactive theorem proving.

1 Introduction

Software faults may lead to unexpected system’s behaviour with a significant loss of goods or even
personal harm. Documented examples of system failures range from medical devices [15] over space
launch vehicles [7] to hardware design [13]. To prevent software faults, formal methods such as static
analysis or program verification continue to attract a considerable amount of research.

Computing by rule-based graph transformation provides an intuitive and visual approach to specifica-
tion and programming. Here, the main formal concepts for ensuring correctness are model checking
[21, 25, 2, 20, 10] and proof-based verification [12, 14, 19, 24, 6, 23, 4, 28]. One of the oldest and
most established approaches to graph transformation is the double-pushout (DPO) approach, where rule
applications are defined by a pair of pushouts in the category of graphs [9]. Formal proofs in the DPO
approach come in two flavours, they either establish results in the DPO theory (such as the commutativity
of independent rule applications) or they show the correctness of concrete graph transformation systems
and graph programs.

While mainstream formal methods increasingly employ proof assistants such as Coq [3] or Isabelle
[16] to obtain rigorous, machine-checked proofs, to the best of our knowledge such tools have not yet
been used in the area of DPO graph transformation. In this paper, we report on first steps towards the
formalisation of the DPO theory in the Isabelle proof assistant. Specifically, we focus on linear rules with
injective matching and show how to formalise (labelled, directed) graphs, morphisms, and rules. (Note
that injective matching is more expressive than unrestricted matching because each rule can be replaced
by the set of its quotient rules, and selected quotients can be omitted [11]). We give an operational
definition of direct derivations based on deletion and gluing. We then formalise graph pushouts and
prove with Isabelle’s help that both deletion and gluing are pushouts. We also prove that pushouts are
unique up to isomorphism.

We stress that we do not intend to formalise an abstract theoretical framework such as adhesive categories
[9], nor do we aim at covering all kinds of graphs that one can find in the DPO literature such as infinite
graphs, hypergraphs, typed graphs, etc. Rather, we are interested in concrete constructions on graphs
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such as deletion and gluing, and how they relate to the double-pushout formulation. Our long-term
goal is to provide interactive and automatic proof support for formal reasoning on programs in a graph
transformation language such as GP 2 [5]. The underlying formalisation in Isabelle will inevitably have
to deal with the concrete graphs, labels, rules, etc., which are the ingredients of such programs.

To summarize, this paper makes the following contributions:

• We formalise in Isabelle the basics of the DPO approach with injective matching.

• We prove that the operational construction of direct derivations by deletion and gluing gives rise
to a double-pushout diagram.

• We prove that graph pushouts are unique up to isomorphism.

We believe that this is the first formalisation of DPO-based graph transformation in a theorem prover. The
formalisation and proofs were developed using the Isabelle 2021 proof assistant. The entire formalisation
comprises around 2000 lines of source text and can be accessed from GitHub1.

This paper is a revised version of [22]. Here, we generalise our formalisation to support gluing and dele-
tion with injective morphisms. Additionally, we follow Noschinski’s [17] approach by using dedicated
record types (for graphs and morphisms) and Isabelle’s locale mechanism.

The rest of the paper is structured as follows: Section 2 briefly reviews the theoretical background re-
quired in this research. Section 3 will provide selected examples of our formalisation using the proof
assistant Isabelle. Finally, in Section 4, the paper is summarised and future work is stated.

2 Graphs, Rules and Derivations

This section reviews basic terminology and results regarding graphs, rules, and derivations in the double-
pushout approach with injective matching; see for example [9, 11]. In Section 3, we formalise these
definitions and results in Isabelle.

Definition 1 (Label alphabet). A label alphabet L = (LV ,LE) consists of a set LV of node labels and
a set LE of edge labels.

We define directed and labelled graphs and allow parallel edges and loops. We do not consider variables
as labels.

Definition 2 (Graph). A graph G = (V,E,s, t, l,m) over the alphabet L is a system where V is the finite
set of nodes, E is the finite set of edges, s, t : E → V functions assigning the source and target to each
edge, l : V →LV and m : E→LE are functions assigning a label to each node and edge.

Next we review graph morphisms which are structure-preserving mappings between graphs. We describe
our Isabelle formalisation in Subsection 3.1.

Definition 3 (Graph morphism). A graph morphism f : G→ H is a pair of mappings f = ( fV : VG →
VH , fE : EG→ EH), such that for all e ∈ EG and v ∈VG:

1. fV (sG(e)) = sH( fE(e)) (sources are preserved)

2. fV (tG(e)) = tH( fE(e)) (targets are preserved)

3. lG(v) = lH( fV (v)) (node labels are preserved)

1https://github.com/UoYCS-plasma/DPO-Formalisation
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4. mG(e) = mH( fE(e)) (edge labels are preserved)

We also define some special forms of morphisms.

Definition 4 (Special morphisms and isomorphic graphs). A morphism f is injective (surjective, bijec-

tive) if fV and fE are injective (surjective, bijective). Morphism f is an inclusion if for all v ∈ VG and
e ∈ VE , fV (v) = v and fE(e) = e. A bijective morphism is an isomorphism. In this case, G and H are
isomorphic, which is denoted by G∼= H .

The composition of two morphisms yields a well-defined morphism, which we prove in Subsection 3.1.

Definition 5 (Morphism composition). Let f : F → G and g : G→ H be graph morphisms. The mor-

phism composition g◦ f : F → H is defined by g◦ f = (gV ◦ fV ,gE ◦ fE).

In DPO-based graph transformation, rules are the atomic units of computation. We describe the formali-
sation of rules in Subsection 3.5.

Definition 6 (Rule). A rule (L← K→ R) consists of graphs L,K and R over L together with inclusions
K→ L and K→ R.

The addition of graph components along a common subgraph is called gluing. We present our Isabelle
formalisation in Subsection 3.3. The gluing construction below uses the disjoint union of sets A and
B defined by A + B = (A×{1}) ∪ (B×{2}). It comes with injective functions iA : A → A + B and
iB : B→ A+B such that iA(A)∪ iB(B) = A+B and iA∩ iB = /0.

To keep the rest of this section readable, we tacitly assume that the injections iA and iB are inclusions.
Only in section 3 we will be dealing explicitly with the injections. We prove the correspondence between
the gluing construction and pushouts in Subsection 3.3.

Lemma 1 (Gluing [8]). Let b : K→ R and d : K→ D be injective graph morphisms. Then the following

defines a graph H (see Fig. 1a), the gluing of D and R according to d:

1. VH =VD +(VR−bV (VK))

2. EH = ED +(ER−bE(EK))

3. sH(e) =











sD(e) if e ∈ ED

dV (b
−1
V (sR(e))) if e ∈ ER−bE(EK) and sR(e) ∈ bV (VK)

sR(e) otherwise

4. tH analogous to sH

5. lH =

{

lD(v) if v ∈VD

lR(v) otherwise

6. mH analogous to lH

Moreover, the morphism D→ H is an inclusion and the injective morphism h is defined for all items x in

R by h(x) = if x ∈ R−b(K) then x else d(x).

The dangling condition ensures that deletion results in a well-defined graph.

Definition 7 (Dangling condition). Let b′ : K → L be an injective graph morphism. An injective graph
morphism g : L→ G satisfies the dangling condition if no edge in EG− gE(EL) is incident to a node in
gV (VL−b′V (VK)).

The following deletion of graph components is formalised in Subsection 3.4.
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Figure 3: Direct derivation

Lemma 2 (Deletion [8]). Let b′ : K→ L and g : L→ G injective graph morphisms and let g satisfy the

dangling condition (see Fig. 1b). Then the following defines a graph D, the deletion of L and G according

to d.

1. VD =VG−gV (VL−b′V (VK)) and ED = EG−gE(EL−b′E(EK)) induce the inclusion D→ G, and

2. there is an injective graph morphism d : K→ D, defined by d(x) = g(b′(x)) for all items x in K.

The following definition introduces the concept of pushouts in the category of graphs.

Definition 8 (Pushout). Given graph morphisms b : A→ B and c : A→C, a graph D together with graph
morphisms f : B→D and g : C→D is a pushout of A→ B and A→C if the following holds (see Fig. 2):

1. Commutativity: f ◦b = g◦ c

2. Universal property: For all graph morphisms p : B→ H and t : C→ H such that p◦b = t ◦c, there
is a unique morphism u : D→ H such that u◦ f = p and u◦g = t.

The formalisation of pushouts and the proof that pushouts are unique up to isomorphism is presented in
Subsection 3.2.

Theorem 1 (Uniqueness of pushouts [1]). Let A→ B and A→C together with D induce a pushout as

depicted in Fig. 2. A graph H together with morphisms B→H and C→H is a pushout of b and c if and

only if there is an isomorphism u : D→ H such that u◦ f = p and u◦g = t.

Theorem 2 (Gluings are pushouts [8]). Let b : K→ R and d : K→D be injective graph morphisms, and

H be the gluing of D and R according to d, as defined in Lemma 1. Then, the square in Fig. 1a is a pushout

diagram where D→H is an inclusion and h is defined by h(x) = if x ∈ R−b(K) then x else c(d(x)). We

call H the pushout object.
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The deletion construction of Lemma 2 and the following theorem are formalised and proved in Subsec-
tion 3.4.

Theorem 3 (Deletions are pushouts [8]). Let K → L and g : L→ G be injective graph morphisms and

let g satisfy the dangling condition and the subgraph D of G as defined in Lemma 2. Then, the square in

Fig. 1b is a pushout diagram where g is an inclusion and d(x) = g(b′(x)) for all items x in K. We call D

the pushout complement.

The following definition of rule application is formalised in Subsection 3.5.

Definition 9 (Direct derivation). Let r = (L← K → R) be a rule and g : L→ G be an injective graph
morphism satisfying the dangling condition. Then G directly derives (see Fig. 3) M by r and g, denoted
by G⇒r,g M, if H ∼= M, where H is constructed from G by:

1. (Deletion) D is the subgraph G−g(L−b′(K)).

2. d : K→ D is the restriction of g to K and D.

3. (Gluing) H is the gluing H = D+(R−b(K)).

The following corollary follows directly by Theorem 2 and Theorem 3.

Corollary 1 (Direct derivation are double-pushouts ). Given a direct derivation G⇒r,g M, squares (1)

and (2) in Figure 3 are pushouts.

The next section provides a general introduction to the Isabelle proof assistant and highlights selected
parts of our formalisation.

3 DPO Formalisation in Isabelle/HOL

Isabelle is a generic, interactive theorem prover based on the so-called LCF approach. It is based on a
small (meta-logical) proof kernel, which is responsible for checking all proofs. This concept provides
high confidence in the prover’s soundness. Isabelle/HOL refers to the higher-order logic instantiation
which is considered to be the most established calculus within the Isabelle distribution [18].

In Isabelle, type variables are denoted by a leading apostrophe. A term f of type ′a is denoted by f :: ′a.
The function type from ′a to ′b is written f :: ′a⇒ ′b. The inference rule notation [[ A1; A2 ]] =⇒ C with
premises A1 and A2 and conclusion C is a shorthand (with the ; (semicolon) as a logical and) for the
implication A1 =⇒ A2 =⇒ C. Its natural representation is given by:

A1 A2

C

Isabelle meta-logical universal quantifier
∧

corresponds to HOL’s ∀ and the meta implication =⇒ to
−→. The meta logic is used to expressed inference rules and cannot appear in HOL formulae.

Our formalisation is based on Isabelle’s locale mechanism, a technique for writing parametric specifi-
cations. Furthermore, we use intelligible semi-automated reasoning (Isar) which is Isabelle’s language
of writing structured proofs [27]. In contrast to apply-scripts, which execute deduction rules in a linear
manner, Isar follows a structured approach resulting in increased readability and maintainability [16].

A general introduction to Isabelle/HOL can be found in [16]. The main components of our formalisation
and their interdependencies are depicted in Fig.4. The simple arrow (→) can be read as "depends on", i.e.,
the definition of morphisms depends on the definition of graphs allowing the inheritance of properties.
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Graph
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GluingDeletion Pushout

Uniqueness

Direct Derivation

Figure 4: Overview of component dependencies (→) and major theorems (⇒)

The blue arrow =⇒ highlights main theorems proven in this study, viz. that the gluing and deletion
constructions correspond to pushouts and that pushout objects are unique up to isomorphism.

The upcoming subsection introduces the basic building blocks of our formalisation: Graphs and graph
morphisms.

3.1 Graphs and Morphisms

Our definition of graphs (Def. 2) is different from Strecker’s [23] where a graph is a set of nodes together
with a binary relation of nodes. A consequence of Strecker’s definition is the absence of parallel edges
and edge labels. We follow Noschinski’s graph library [17] approach in the sense, that we use a record

data structure to represent a graph and enforce the well-formedness by using the locale mechanism. We
extend Noschinski’s data structure to carry node and edge labelling functions.

The usage of type variables for node and edge identifiers ( ′v and ′e), and labels ( ′l and ′m) allows us to
reason about an arbitrary representation. Common examples include natural numbers (nat) and strings
(string).

We define graphs using the record keyword as follows:

record ( ′v, ′e, ′l, ′m) pre-graph =
nodes :: ′v set

edges :: ′e set

source :: ′e⇒ ′v

target :: ′e⇒ ′v

node-label :: ′v⇒ ′l

edge-label :: ′e⇒ ′m

With the abbreviation command, term abbreviations are introduced. The (built-in) axiomatized term
undefined:: ′a is used to refer to a fixed but arbitrary term of type ′a.

Following this, we can define an abbreviation G, representing the empty graph (pre-graph) structure as
follows:

abbreviation G where

‹G ≡ (|nodes = {}, edges = {}, source=undefined, target=undefined

,node-label=undefined, edge-label=undefined|)›
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We introduce a notation for working with the pre-graph structure, closely following Definition 2, using
Isabelle’s notation keyword. Throughout the formalization, we use V- and E- to refer to the set of nodes
and edges, s- and t- to refer to source and target functions, and l- and m- refer to the node-label an edge-
label functions. This allows us, for example, to write VG instead of nodes G to refer to the set of nodes
of a graph G.

As the pre-graph record does not introduce any constraints, not only well-formed graphs can be rep-
resented but also ill-formed graphs such as a graph with edges but no nodes. The well-formedness is
enforced via the graph locale. Here, the fixes keyword is used to declare parameters while the assumes

keyword is used to state premises which hold within the locale context. The graph locale is defined as
follows:

locale graph =
fixes G :: ( ′v, ′e, ′l, ′m) pre-graph

assumes

finite-nodes: finite VG and

finite-edges: finite EG and

source-integrity: e ∈ EG =⇒ sG e ∈ VG and

target-integrity: e ∈ EG =⇒ tG e ∈ VG

In this formalisation, the premises are:

• The set of nodes (finite-nodes) and edges (finite-edges) are finite,

• and the source (source-integrity) and target (target-integrity) functions map each edge to a node
within the graph.

We do not have to state explicit premises for both, node and edge, labelling functions as they are defined
for the entire universe of the corresponding type ( ′v and ′e).

We can prove, the pre-graph structure G is indeed a graph according to our locale definition by using the
interpretation command as follows:

interpretation graph G

by unfold-locales simp-all

The unfold-locales tactic applies all introduction rules generated by the locale command to the current
proof goal. The introduction rule for the graph locale is given by:

finite VG finite EG

∧

e.
e ∈ EG

sG e ∈ VG

∧

e.
e ∈ EG

tG e ∈ VG

graph G

To prove our graph structure (|nodes = /0, edges = /0, source = undefined, target = undefined, node-label

= undefined, edge-label = undefined|)::( ′a, ′b, ′c, ′d) pre-graph fulfills the graph premises, we have to
prove, the set of nodes (edges) is finite and the source (target) integrity. Isabelle’s simplifier is able to
discharge these goals automatically.

Our definition of graph morphisms (cf. Def. 3) follows a similar pattern. We define the graph morphism
data structure (( ′v1,

′v2,
′e1,

′e2) pre-graph) with a dedicated function for the nodes and edges:

record ( ′v1,
′v2,
′e1,
′e2) pre-morph =

node-map :: ′v1⇒
′v2

edge-map :: ′e1 ⇒
′e2
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Note that, a graph morphism maps the graph structure ( ′v1,
′e1,

′c, ′d) pre-graph to ( ′v2,
′e2,

′c, ′d)
pre-graph, i.e., the node and edge types change. Again, a common notation -V and -E for a morphism
record is introduced using the notation keyword.

The locale morphism inherits properties from the graph locale via the import mechanism. With this,
a morphism carries its domain (G: graph G) and its codomain (H: graph H) and all properties (i.e.,
all graph, specialized for the particular instance), are inherited. The pre-morph record type is used to
introduce a locale parameter f, which contains the corresponding node and edge mappings.

The morphism properties are enforced by the following axioms:

• Range restriction,
e ∈ EG

fE e ∈ EH

and
v ∈ VG

fV v ∈ VH

• Source and target preservation,
e ∈ EG

fV (sG e) = sH (fE e)
and

e ∈ EG

fV (tG e) = tH (fE e)

• Label preservation,
v ∈ VG

lG v = lH (fV v)
and

e ∈ EG

mG e = mH (fE e)

The morphism locale definition is given by:

locale morphism =
G: graph G +
H: graph H for

G :: ( ′v1,
′e1,
′l, ′m) pre-graph and

H :: ( ′v2,
′e2,
′l, ′m) pre-graph +

fixes

f :: ( ′v1,
′v2,
′e1,
′e2) pre-morph

assumes

morph-edge-range: e ∈ EG =⇒ fE e ∈ EH and

morph-node-range: v ∈ VG =⇒ fV v ∈ VH and

source-preserve : e ∈ EG =⇒ fV (sG e) = sH (fE e) and

target-preserve : e ∈ EG =⇒ fV (tG e) = tH (fE e) and

label-preserve : v ∈ VG =⇒ lG v = lH (fV v) and

mark-preserve : e ∈ EG =⇒ mG e = mH (fE e)

With this, we define the composition of graph morphisms (cf. Def. 5) including the infix notation ◦→ as
the pairwise compositions:

definition morph-comp

:: ( ′v2,
′v3,
′e2,
′e3) pre-morph ⇒ ( ′v1,

′v2,
′e1,
′e2) pre-morph ⇒( ′v1,

′v3,
′e1,
′e3) pre-morph (infixl ◦→ 55) where

g ◦→ f = (|node-map = gV ◦ fV , edge-map = gE ◦ fE |)

The proposition, from morphism G H f and morphism H K g we can conclude morphism G K (g ◦→ f )
is expressed using the Isar language as follows:

lemma

assumes f : ‹morphism G H f › and g: ‹morphism H K g›
shows ‹morphism G K (g ◦→ f )›

Each premise, indicated by the assumes keyword, is (optionally) associated with a name f and g, respec-
tively. The conclusion is indicated by the shows statement. We enter the proof by the proof command
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followed by an optional proof method. In this particular case, we use the intro-locales method, which
applies the introduction rules of locales.

proof intro-locales

Isabelle generates the following subgoals to discharge the lemma:

1. graph G

2. graph K

3. morphism-axioms G K (g ◦→ f )

The first two subgoals follow directly from the locale definition of morphisms. The proof of graph G is
give by supplying the corresponding fact:

show ‹graph G› by (fact morphism.axioms[OF f ])

The morphism.axioms definition is generated by the locale approach covering the stated locale assump-
tions. The OF command is used to apply one theorem to another. The subgoal graph K follows anal-
ogously. To prove the morphism axioms (morphism-axioms), the morphism-axioms.intro introduction
rule (generated by Isabelle) is used. Its definition is as follows:

∧

e.
e ∈ EG

g ◦→ fE e ∈ EK

∧

v.
v ∈ VG

g ◦→ fV v ∈ VK

∧

e.
e ∈ EG

g ◦→ fV (sG e) = sK (g ◦→ fE e)
∧

e.
e ∈ EG

g ◦→ fV (tG e) = tK (g ◦→ fE e)

∧

v.
v ∈ VG

lG v = lK (g ◦→ fV v)

∧

e.
e ∈ EG

mG e = mK (g ◦→ fE e)

morphism-axioms G K (g ◦→ f )

Both, the constant (morphism-axioms) rule and the introduction rule, are generated by the locale mecha-
nism.

show ‹morphism-axioms G K (g ◦→ f )›
proof

The proof command, without an explicit proof method will use the standard method. This method uses
a heuristic to apply certain proof rules. In this particular case, the introduction rule is used which results
the following subgoals:

1.
∧

e. e ∈ EG =⇒ g ◦→ fE e ∈ EK
2.

∧

v. v ∈ VG =⇒ g ◦→ fV v ∈ VK

3.
∧

e. e ∈ EG =⇒ g ◦→ fV (sG e) = sK (g ◦→ fE e)

4.
∧

e. e ∈ EG =⇒ g ◦→ fV (tG e) = tK (g ◦→ fE e)

5.
∧

v. v ∈ VG =⇒ lG v = lK (g ◦→ fV v)

6.
∧

e. e ∈ EG =⇒ mG e = mK (g ◦→ fE e)

Exemplary, we show that the composition g ◦→ f maps an edge from G to an edge from K. This subgoal
arises from the morph-edge-range axiom.

show ‹g ◦→ fE e ∈ EK› if ‹e ∈ EG› for e

by (simp add: morph-comp-def morphism.morph-edge-range[OF g] morphism.morph-edge-range[OF f ] that)

To prove this goal, we unfold the definition of (◦→) by telling the simplifier to consider the morphism
composition definition (morph-comp-def ) fact. With the fact that both, the morph-edge-range axiom
hold for g and f, and built-in facts on function composition, the simplifier is able to discharge the goal.
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Proving that the composition preserves the sources follows similarly. We unfold the composition defi-
nition and supply the morph-edge-range and source-preserve, specialized for each morphism f and g to
the simplifier:

show ‹g ◦→ fV (sG e) = sK (g ◦→ fE e)› if ‹e ∈ EG› for e

by (simp add: morph-comp-def

morphism.morph-edge-range[OF f ]
morphism.morph-edge-range[OF g]
morphism.source-preserve[OF f ]
morphism.source-preserve[OF g] that)

Isabelle’s simplifier is able to discharge the proof obligation with the supplied facts. The other subgoals
follow analogously.

Based on the morphism locale, we formalise injective graph morphisms (cf. Def. 4) in a separate locale
as follows:

locale injective-morphism = morphism +
assumes

inj-nodes: inj-on fV VG and

inj-edges: inj-on fE EG

The locale axioms (inj-nodes and inj-edges) are used to restrict the node and edge mappings to be in-
jective over the corresponding domain using Isabelle’s built-in inj-on predicate. Furthermore, we define
surjective and bijective morphisms in a similar way.

3.2 Pushouts

This subsection formalises pushouts in Isabelle and proves their uniqueness up to isomorphism (cf. The-
orem 1). The pushout characterisation comprises four commuting morphisms (A→ B, A→C, B→ D,
and C → D) which satisfy the universal property (cf. Def. 8). The commuting property is expressed
using the node node-commutativity and edge edge-commutativity proposition and the composition of
morphisms. Our formalisation is given by:

locale pushout-diagram =
b: morphism A B b +
c: morphism A C c +
f : morphism B D f +
g: morphism C D g for A B C and D :: ‹( ′g, ′h, ′k, ′l) pre-graph› and b c f g +

assumes

node-commutativity: ‹v ∈ VA =⇒ f ◦→ bV v = g ◦→ cV v› and

edge-commutativity: ‹e ∈ EA =⇒ f ◦→ bE e = g ◦→ cE e› and

universal-property: ‹[[
graph (D ′ :: ( ′g, ′h, ′k, ′l) pre-graph);
morphism B D ′ x;
morphism C D ′ y;
∀v ∈ VA. x ◦→ bV v = y ◦→ cV v;
∀e ∈ EA. x ◦→ bE e = y ◦→ cE e]]
=⇒ Ex1M (λ u. morphism D D ′ u ∧

(∀v ∈ VB. u ◦→ fV v = xV v) ∧

(∀e ∈ EB. u ◦→ fE e = xE e) ∧

(∀v ∈ VC. u ◦→ gV v = yV v) ∧



R. Söldner and D. Plump 69

(∀e ∈ EC. u ◦→ gE e = yE e))
D›

In Isabelle, unbound variables are implicitly bound using the (meta) universal quantifier. For a given P,
the proposition P x is interpreted as

∧

x. P x. Additionally, we restrict the universal quantified pre-graph

record to match the pushout object (graph D) type. This prevents a warning generated by Isabelle’s locale
mechanism of newly introduced type-parameter. We discuss this implication in Section 4.

Compared to our initial version of this paper [22], the usage of total functions increased the complexity
of the pushout-diagram definition. The universal-property, stating the existence of a unique morphisms
(cf. Definition 8), cannot use the built-in unique existence operator (Ex1). The proof of this operator
would result in a goal to prove equality of the morphism u from D to D ′. As function equality (i.e. u

= u ′) requires equality across the universe of values of the domain (using the built-in simplification rule
fun-eq-iff, which is defined as (u = u ′) = (∀x. u x = u ′ x)). In our formalisation, equality over the entire
domain is not true. We discuss this implication in Section 4.

Our solution quantifies over the set of values (i.e., the set of nodes and edges of the source graph).
Therefore, we introduce the abbreviation

Ex1M ≡
λ P E. ∃x. P x ∧ (∀y. P y −→ (∀e∈EE. yE e = xE e) ∧ (∀v∈VE. yV v = xV v))

which is a lambda term capturing the predicate P and the source graph E to quantify over the correspond-
ing sets.

To prove the uniqueness of the pushout object, we assume the pushout-diagram of A→B, A→C, B→D,
and C→D, then the graph D ′ together with two morphisms f ′ : B→D′ and g′ : C→D′ is a pushout if and
only if there exists a bijection u between D and D ′ such that the triangles commute (∀x ∈ B.u◦ f x = f ′x

and ∀x ∈D.u◦gx = g′x).

We formalise this theorem in Isabelle as follows:

theorem uniqueness-po:
fixes D ′ :: ‹( ′g, ′h, ′k, ′l) pre-graph›
assumes

D ′: ‹graph D ′› and

f ′: ‹morphism B D ′ f ′› and

g ′: ‹morphism C D ′ g ′›
shows ‹pushout-diagram A B C D ′ b c f ′ g ′

←→ (∃u. bijective-morphism D D ′ u

∧ (∀v ∈ VB. u ◦→ fV v = f ′V v) ∧ (∀e ∈ EB. u ◦→ fE e = f ′E e)

∧ (∀v ∈ VC. u ◦→ gV v = g ′V v) ∧ (∀e ∈ EC. u ◦→ gE e = g ′E e))›
proof

The (implicitly) applied proof method standard applies the built-in introduction rule iffI, which is used
for if and only if proofs, resulting in the following two subgoals:

1. pushout-diagram A B C D ′ b c f ′ g ′=⇒
∃u. bijective-morphism D D ′ u ∧

(∀v∈VB. u ◦→ fV v = f ′V v) ∧

(∀e∈EB. u ◦→ fE e = f ′E e) ∧

(∀v∈VC. u ◦→ gV v = g ′V v) ∧ (∀e∈EC. u ◦→ gE e = g ′E e)

2. ∃u. bijective-morphism D D ′ u ∧
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(∀v∈VB. u ◦→ fV v = f ′V v) ∧

(∀e∈EB. u ◦→ fE e = f ′E e) ∧

(∀v∈VC. u ◦→ gV v = g ′V v) ∧ (∀e∈EC. u ◦→ gE e = g ′E e) =⇒

pushout-diagram A B C D ′ b c f ′ g ′

The proofs of both subgoals are omitted, but can be found on the GitHub repository for this formalisation.
In the upcoming section, we will describe our formalisation of the gluing construction.

3.3 Gluings are Pushouts

The locale gluing is used as an environment with required preconditions, i.e., two injective morphisms
as described in Lemma 1. Our definition is as follows:

locale gluing =
d: injective-morphism K D d +
r: injective-morphism K R b

for K D R d b

Within the locales context, we first define the gluing construction (graph D together with injective mor-
phisms h and c) as depicted in Fig. 1a. Subsequently, we prove pushout correspondence (cf. Theorem 2)
by interpretation of the pushout-diagram locale. Note that, while the interpretation command is used for
temporal instantiations (limited to the current context block), the sublocale command is used to create
persistent links between locales (see [26]). We use this technique to prove Corollary 1.

The gluing graph D can be constructed using the disjoint union of the node (edge) set (cf. Lemma 1).
In our formalisation, we use the built-in sum type ′a + ′b type, it comes with the two injective functions
Inl:: ′a⇒ ′a + ′b and Inr:: ′b⇒ ′a + ′b which correspond to the iA and iB, see Section 2. The image of a
set A under a function f is denoted by f ‘ A (backtick operator).

The node set is constructed by using the image of the nodes of D under the injection Inl united with the
image of the nodes R without b ‘ K under the injection Inr:

abbreviation V where ‹V ≡ Inl ‘ VD ∪ Inr ‘ (VR − bV ‘ VK)›

The edge set follows analogously. We use the fun command to state the source (target) function, as well
as the labelling functions. It will try proving certain properties (e.g., termination) of the function under
investigation automatically. In case the automation fails, the user has to prove these properties by hand.

In our cases, Isabelle is able to discharge all generated proof obligations automatically.

For the definition of the source (target) function, the general idea is a case analysis on the edge origin by
pattern matching on Inl e and Inr e constructors. The source function is defined by:

fun s where

s (Inl e) = Inl (sD e)
|s (Inr e) = (if e ∈ (ER − bE ‘ EK) ∧ (sR e ∈ bV ‘ VK)
then Inl (dV ((inv-into VK bV ) (sR e))) else Inr (sR e))

In the Inl e case, by definition of the edge set, the edge e belongs to the graph D. As a result, we use the
source function of D. Compared to Section 2, where we assume iA (iB) are inclusions (to keep the section
readable), we now have to be more explicit. In the Inr e case, the inverse of b is given by the built-in
inv-into function.

The target function is analogous. Both labelling functions (for nodes and edges) are defined by case
analysis of the origin. Exemplary, the node labelling function l is given by:
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fun l where

l (Inl v) = lD v

| l (Inr v) = lR v

The edge labelling function is defined analogously. We follow by proving that these elements indeed
form a graph (according to our locale graph) by interpretation. The proof is mechanic and follows by
case splitting on the sum type.

Further, we define the morphisms h : R→ H and c : D→ H . The morphism h is defined by a case
distinction of the node (edge) parameter. If the node (edge) v is in the set VR − bV ‘ VK we know it is
a newly created node (edge) and therefore has to be lifted using the Inr injection. Otherwise, the node
(edge) is already in the graph D. Due to the injective b (compared to inclusion), we use the inverse of b

followed by d. Finally, the node (edge) is lifted into the sum type by using the Inl injection.

Our definition is as follows:

abbreviation h where

‹h ≡ (|node-map = λ v. if v ∈ VR − bV ‘ VK then Inr v else Inl (dV ((inv-into VK bV ) v)),
edge-map = λ e. if e ∈ ER − bE ‘ EK then Inr e else Inl (dE ((inv-into EK bE) e))|)›

The morphism c is defined by the node (edge) injection Inl:

abbreviation c where ‹c ≡ (|node-map = Inl, edge-map = Inl|)›

Each time, we prove that our construction fulfills the injective-morphism axioms by interpretation. The
proofs can be found on GitHub (interpretation inj-h and inj-c). Finally, we are able to prove the pushout
correspondence by instantiating (using the sublocale command) of the pushout-diagram locale with the
corresponding parameters:

sublocale po: pushout-diagram K R D H b d h c

Here, po is used to refer to pushout-diagram instance. The proof is around 170 lines of text.

In the upcoming subsection, we describe our formalisation of the deletion construction.

3.4 Deletions are Pushouts

The deletion locale is also used as an environment with the required preconditions as stated in Lemma 2.
The dangling condition (cf. Def. 7) is expressed using separate rules for the source (dang-src) and target
(dang-trg) mapping as follows:

e ∈ E

sG e /∈ gV ‘ (VL − b ′V ‘ VK)

e ∈ E

tG e /∈ gV ‘ (VL − b ′V ‘ VK)

These locale assumptions are introduced in the assumes section as follows:

locale deletion =
g: injective-morphism L G g +
l: injective-morphism K L b ′

for K G L g b ′+
assumes

dang-src: ‹e ∈ EG − gE ‘ (EL − b ′E ‘ EK) =⇒ sG e /∈ gV ‘ (VL − b ′V ‘ VK)› and

dang-trg: ‹e ∈ EG − gE ‘ (EL − b ′E ‘ EK) =⇒ tG e /∈ gV ‘ (VL − b ′V ‘ VK)›
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The construction of the graph D removes all nodes (edges) from G which belong to a subgraph L (without
the image of b under K) under the morphism g. The construction of the node set is given by:

abbreviation V where ‹V ≡ VG − gV ‘ (VL − b ′V ‘ VK)›

The edge set follows analogously. The graph D (pre-graph record) is constructed by updating graph
G with a restricted set of nodes and edges. We use the record update syntax G(|nodes:=V,edges:=E|),
which replaces the set of nodes (edges) by V (E). The other graph elements (i.e., s, t, l, and m) do not have
to be changed, as we quantify over the corresponding node (edge) set and therefore limit our reasoning
to the valid subset of nodes (edges).

We define the injective morphisms d : K→ D by the composition of g after b ′:

abbreviation d where

‹d ≡ g ◦→ b ′›

The injective-morphism interpretation (inj-d) can be found on GitHub. The proof relies on the specialised
proposition of well-formed composition of graph morphisms (wf-morph-comp).

The morphism c′ : D→ G is an inclusion, which we define using the idM::( ′i, ′i, ′j, ′j) pre-morph as:

abbreviation c ′where ‹c ′≡ idM›

The idM record (defined in the DPO−Formal.Morphism theory) uses the built-in identity function (id:: ′i
⇒ ′i) for both, the node and edge mappings (i.e., (|node-map = id, edge-map = id|)).
Here, the injective-morphism interpretation can be solved by the simplifier using the simp-all proof
method.

Ultimately, we prove the pushout correspondence by interpretation of the pushout-diagram locale with
the corresponding parameters:

sublocale po: pushout-diagram K L D G b ′ d g c ′

The proof is around 350 lines of text and follows mainly by case analysis of the edge (node) origin. A
concise proof, relying on the gluing construction of D and L, failed due to Isabelle’s typechecker not
accepting our definition. Our gluing construction results in a pushout object with the type signature ( ′a
+ ′e, ′b + ′f , ′c, ′d) pre-graph. As a result, we cannot use the universal property for graph G (with
signature ( ′e, ′f , ′c, ′d) pre-graph) as these types mismatch. We will comment in Section 4 on this.

In the following subsection we introduce rules and the notation of direct derivations.

3.5 Rules and Derivations

Our formalisation of rules (cf. Def. 6) relies on the inclusion K→ L and K→ R which we represent in
the locale rule:

locale rule =
k: inclusion-morphism K L +
r: inclusion-morphism K R

for L K R

begin

As we have explicitly included the domain and codomain in our definition of morphisms, we inherit all
properties and Isabelle’s locale mechanism allows this dense definition.
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Using the notation we introduce the common syntactical representation L← K → R for L, K, and R of
type ( ′v, ′e, ′l, ′m) pre-graph on the rule predicate.

A direct derivation (cf. Def. 9) is defined in terms of existing constructs; the direct-derivation locale
imports from the rule and passes the pushout complement from the deletion locale (d.H) into the gluing

locale to construct pushout object g.h. We model this in Isabelle as follows:

locale direct-derivation =
r: rule L K R +
d: deletion K G L g idM +
g: gluing K d.D R g idM for G L K R g

Within the direct-derivation context, we prove that given a direct derivation G⇒r,g M, squares (1) and
(2) in Figure 3 are pushouts (cf. Corollary 1). We state this corollary as follows:

corollary

‹pushout-diagram K L d.D G idM d.d g d.c ′› and ‹pushout-diagram K R d.D g.H idM g g.h g.c›
using

d.po.pushout-diagram-axioms

g.po.pushout-diagram-axioms

by simp-all

Isabelle’s simplifier is able to discharge the proof obligations after supplying the corresponding facts. In
the upcoming section we state our conclusion and areas of future work.

4 Conclusion and Future Work

Formal verification increases the trustworthiness and reliability of software. In this paper, we present a
revised version of [22] on our formalisation of the double-pushout approach with injective matching over
(node and edge) labelled directed graphs, in the proof assistant Isabelle/HOL. The formalisation uses the
extensible locale mechanism, which allows us to combine theories and to structure our work. Compared
to earlier work in [22], we rely on total functions and follow Noschinski’s approach of representing
graphs and morphisms. With these changes, we reduced the required lines of text by 50 percent while
enhancing overall readability.

We first formalise graphs and morphisms and prove several properties, such as the well-definedness of
morphism composition. Direct derivations are introduced in terms of deletion and gluing. We prove
their correspondence to pushouts. In addition, we prove that pushouts are unique up to isomorphism.
Although, Isabelle is not able to discharge most of the generated proof obligations automatically, the
available proof methods support the discharging process.

Our formalisation of pushouts results in pushout objects of a to specific type, which prevents us from
constructing an elegant proof within the deletion context (as we highlight at the end of Subsection 3.4).
In the meantime, we have overcome this limitation by imposing the constraint that nodes and edges must
be natural numbers (only within the universal property). This is realised by a type synonym such as
type-synonym ( ′l, ′m) ngraph = (nat,nat, ′l, ′m) pre-graph. By restricting our locale type variables to
have an instance of the countable class, we could define functions to convert between the natural and
generic representation. If ′a is an instance of the countable class (denoted by ′a :: countable), there exists
an injective function, mapping each element of type ′a to an element of typ nat.
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Future developments will also include the proof of classical DPO results such as the Church-Rosser
theorem. We also plan the extension towards attributed DPO graph transformation. Our long-term goal
is the development of a practical Isabelle-based proof assistant for the verification of individual programs
in the graph programming language GP 2 [5].
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