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The operational semantics of a programming language is said to be small-step if each transition step
is an atomic computation step in the language. A semantics with this property faithfully corresponds
to the implementation of the language. The previous semantics of the graph programming language
GP 2 is not fully small-step because the loop and branching commands are defined in big-step style.
In this paper, we present a truly small-step operational semantics for GP 2 which, in particular, accu-
rately models diverging computations. To obtain small-step definitions of all commands, we equip
the transition relation with a stack of host graphs and associated operations. We prove that the new
semantics is non-blocking in that every computation either diverges or eventually produces a result
graph or the failure state. We also show the finite nondeterminism property, viz. that each con-
figuration has only a finite number of direct successors. The previous semantics of GP 2 is neither
non-blocking nor does it have the finite nondeterminism property. We also show that, for a program
and a graph that terminate, both semantics are equivalent, and that the old semantics can be simulated
with the new one.

1 Introduction

GP 2 is a nondeterministic programming language based on graph transformation rules. The previous
semantics of GP 2 is defined by both small-step and big-step inference rules [17]. An operational seman-
tics is small-step if atomic computation steps in the language correspond to transition steps, meaning
that the language can be implemented by translating the transition steps into corresponding code. In
this paper, we present a truly small-step operational semantics for GP 2 which, in particular, accurately
models diverging computations.

While the previous semantics (Figure 3) has small-step elements, the branching and loop constructs
are not small-step. This can lead to the semantic transition sequence blocking or getting stuck [14], i.e.
reaching a configuration which is neither a graph nor the failure state, such that no inference rule is
applicable.

To illustrate this situation, consider the program P = try (r1!) then skip else skip, with
the rule r1 : 1 ⇒ 1 , applied to the host graph . The statement r1! means that the rule r1 is
called until it is no longer applicable. The try statement attempts to evaluate r1!but will neither branch
to the then nor the else part because the loop r1! diverges on . In the previous semantics, try
statements are handled with the following inference rules :

[try′1]
〈C, G〉 + H

〈try C then P else Q, G〉 〈P, H〉 [try′2]
〈C, G〉 + fail

〈try C then P else Q, G〉 〈Q, G〉
The premises of these inference rules are that the conditional part C of a try statement applied

to host graph G results in either a graph H or failure, which determines whether P or Q is called. If
〈C,G〉 diverges (does not terminate) however, neither rule applies. Since there are no other try rules,
the transition sequence gets stuck.

The new semantics we introduce in this paper handles try statements with the following rules:
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[try1] 〈try C then P else Q, S〉 → 〈TRY(C,P,Q), push(top(S), S)〉

[try2]
〈C, S〉 → 〈C′, S′〉

〈TRY(C,P,Q), S〉 → 〈TRY(C′,P,Q), S′〉 [try3]
〈C, S〉 → S′

〈TRY(C,P,Q), S〉 → 〈P, pop2(S′)〉

[try4]
〈C, S〉 → fail

〈TRY(C,P,Q), S〉 → 〈Q, pop(S)〉
Here S and S′ are stacks of graphs. The rule [try1] duplicates the top of the stack, and the TRY

construct signals that the copy operation has happened. Repeated applications of the inference rule [try2]
model the evaluation of the condition in a small-step fashion. If the condition loops, [try2] can be applied
indefinitely, and we get an infinite transition sequence.

Intuitively, P should loop, which is what happens in the implementation of GP 2. In the previous
semantics however, P gets stuck because r1! diverges, which means that we cannot apply either of the
inference rules [try′1] or [try′2] to resolve the try statement.

The previous semantics tries to remedy this issue in the semantic function which associates to a
program P and host graph G the set [P]G of all possible outcomes of the execution of P on G. These
outcomes can be a graph, the element fail, or ⊥ which represents an infinite transition sequence. The
previous semantic function uses ⊥ as an outcome if the transition sequence gets stuck. However, there
are problems with this approach.

Consider the program P = try Loop then skip else skip, where Loop = {r1,r2}!, r1 is
as previously defined, and r2 : ⇒ /0. The command {r1,r2} is a rule set call, meaning that rules
r1 and r2 are selected nondeterministically. When P is executed on the host graph , an application of
r2 causes the loop to terminate since it removes the marked node which is necessary for either rule to
be applicable. Hence r1 may be applied a number of times, and then r2 is applied once. But it should
also be possible that r2 is never called, resulting in a diverging computation. Hence the set of outcomes
we want is {⊥, /0, , , , . . .}. According to the previous semantics, however, the execution of
P on cannot get stuck since Loop can always transition to a graph; and by the rules [try′1] and [try′2],
the execution cannot diverge either. So ⊥ 6∈ [P] = { /0, , , , . . .}. Now, the new semantics
indeed corresponds exactly to our intuition of the operational behaviour of GP 2 programs. Moreover,
we conjecture that the implementation is sound with respect to the new semantics, in that the behaviour
of the implementation is covered by the new semantics.

This may also lead to two programs being semantically equivalent, even though they should not be.
Programs P and P′ are semantically equivalent if [P] = [P′], i.e. they have the same outcomes for all host
graphs. Consider the program P = try ({r3,r2}!) then skip else skip, where r3 : 1 ⇒ 1 .
It can diverge but is semantically equivalent to Q = try r2 then skip else skip since the previous
semantics cannot detect that divergence. For instance, [P] = [Q] = { /0}, but [P] should include ⊥.

The aforementioned issues can also happen with if statements, which work similarly to try state-
ments, except that the changes the condition made to the host graph are reversed, even if the evaluation
of the condition succeeds. Nested loops such as Loop! can get stuck as well since their inference rules
also assume that the loop body either results in a graph or fails.

Diverging computations not being modelled properly entails an undesirable property, namely infi-
nite nondeterminism, i.e. there can be infinitely many configurations reachable in a single transition
step. Consider the program P = try Loop then skip else skip, where Loop = {r1,r2}!, and
the rules are as previously defined. We have [Loop] = { /0, , , , . . . ,⊥}. In a transition se-
quence starting with 〈P, 〉, since the try statement is resolved within a single step, it only takes one
step to transition to either of the graphs in the set { /0, , , , . . .}, of which there are infinitely
many.
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The semantics we introduce in this paper is truly small-step and as such, it accurately models looping
computations with diverging transition sequences. When starting with a valid GP 2 program, it cannot
get stuck, which is a property we call non-blocking. As a consequence of the small-step approach, we
get finite nondeterminism, meaning we can only reach a finite number of configurations within a single
transition step.

In Section 2, we give a brief overview of the rule-based graph programming language GP 2 along
with the previous semantics. We propose the new semantics in Section 3 and give examples of transition
sequences. In Section 4 we prove several properties of the new semantics, including non-blocking as well
as finite nondeterminism, and define the semantic function along with semantic equivalence. In Section
5, we compare the new and previous semantics by showing the new semantic function is an extension of
the previous one, and that they are equivalent excluding divergence.

2 The Graph Programming Language GP 2

This section provides a brief introduction to GP 2 [16], a nondeterministic graph programming language
based on transformation rules. We show the abstract syntax of GP 2 programs below, and refer to [3] for
the full syntax. The language is implemented by a compiler generating C code [4].

GP 2 programs transform input graphs into output graphs, where graphs are labelled and directed and
may contain parallel edges and loops.

The principal programming construct in GP 2 are conditional graph transformation rules labelled
with expressions. For example, Figure 1 shows a program recognising graphs that contain cycles and
the declaration of its rules. The rule delete which has three formal parameters, a left-hand graph and
a right-hand graph which are specified graphically, and a textual condition starting with the keyword
where. The small numbers attached to nodes are identifiers, all other text in the graphs are labels.

Main = delete!; {edge, loop}

delete(a,x,y:list) edge(a,x,y:list) loop(a,x:list)

x y ⇒ x y

1 2 1 2

a
x y ⇒ x y

1 2 1 2

a a
x ⇒ x
1 1

a a

where indeg(1)=0

Figure 1: GP 2 program recognising cyclic graphs

GP 2 labels consist of an expression and an optional mark (explained below). Expressions are of type
int, char, string, atom or list, where atom is the union of int and string, and list is the type
of a (possibly empty) list of atoms. Lists of length one are equated with their entries and hence every
expression can be considered as a list.

The concatenation of two lists x and y is written x:y, the empty list is denoted by empty. Character
strings are enclosed in double quotes. Composite arithmetic expressions such as n * n must not occur in
the left-hand graph, and all variables occurring in the right-hand graph or the condition must also occur
in the left-hand graph.

Besides carrying list expressions, nodes and edges can be marked. For example, one of the nodes
in rule r1 in the introduction is marked by a grey shading. Marks are convenient to highlight items in
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Program ::= Declaration { Declaration }
Declaration ::= MainDecl | ProcedureDecl | RuleDecl
MainDecl ::= Main ‘=’ CommandSeq
ProcedureDecl ::= ProcedureID ‘=’ [ ‘[’ LocalDecl ‘]’ ] CommandSeq
LocalDecl ::= ( RuleDecl | ProcedureDecl ) { LocalDecl }
CommandSeq ::= Command {‘;’Command}
Command ::= Block

| if Block then Block [ else Block ]
| try Block [ then Block ] [ else Block ]

Block ::= ‘(’ CommandSeq ‘)’ [‘!’]
| SimpleCommand
| Block or Block

SimpleCommand ::= RuleSetCall [‘!’]
| ProcedureCall [‘!’]
| break
| skip
| fail

RuleSetCall ::= RuleID | ‘{’ [ RuleID { ‘,’ RuleID } ] ‘}’
ProcedureCall ::= ProcedureID

Figure 2: GP 2 Program Syntax

input or output graphs, and to record visited items during a graph traversal. For instance, a graph can
be checked for connectedness by propagating marks along edges as long as possible and subsequently
testing whether any unmarked nodes remain. Note that conventional graph algorithms are often described
by using marks as a visual aid [7].

Additionally, nodes in rules and host graphs can be rooted. If such a node appears in the left-hand
side of a rule, it can only be matched with a root node in the host graph. Their use restricts matching to
the neighbourhoods of root nodes, which can greatly increase efficiency [6].

We do not elaborate any further on features such as marks or roots because the GP 2 semantics does
not depend on them.

Rules operate on host graphs which are labelled with constant values (lists containing integer and
string constants). Applying a rule L⇒ R to a host graph G works roughly as follows: (1) Replace the
variables in L and R with constant values and evaluate the expressions in L and R, to obtain an instantiated
rule L̂⇒ R̂. (2) Choose a subgraph S of G isomorphic to L̂ such that the dangling condition and the rule’s
application condition are satisfied (see below). (3) Replace S with R̂ as follows: numbered nodes stay in
place (possibly relabelled), edges and unnumbered nodes of L̂ are deleted, and edges and unnumbered
nodes of R̂ are inserted.

In this construction, the dangling condition requires that nodes in S corresponding to unnumbered
nodes in L̂ (which should be deleted) must not be incident with edges outside S. The rule’s application
condition is evaluated after variables have been replaced with the corresponding values of L̂, and node
identifiers of L with the corresponding identifiers of S. For example, the term indeg(1)=0 in the con-
dition of delete in Figure 1 forbids the node g(1) to have incoming edges, where g(1) is the node in S
corresponding to 1.
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[call′1]
G⇒R H
〈R, G〉 H [call′2]

G 6⇒R
〈R, G〉 fail

[seq′1]
〈P, G〉 〈P′, H〉

〈P;Q, G〉 〈P′;Q, H〉 [seq′2]
〈P, G〉 H

〈P;Q, G〉 〈Q, H〉

[seq′3]
〈P, G〉 fail
〈P;Q, G〉 fail

[if′1]
〈C, G〉 + H

〈if C then P else Q, G〉 〈P, G〉 [if′2]
〈C, G〉 + fail

〈if C then P else Q, G〉 〈Q, G〉

[try′1]
〈C, G〉 + H

〈try C then P else Q, G〉 〈P, H〉 [try′2]
〈C, G〉 + fail

〈try C then P else Q, G〉 〈Q, G〉

[alap′1]
〈P, G〉 + H

〈P! , G〉 〈P! , H〉 [alap′2]
〈P, G〉 + fail
〈P! , G〉 G

[alap′3]
〈P, G〉 ∗ 〈break,H〉
〈P! , G〉 H [break′] 〈break;P, G〉 〈break, G〉

(a) Inference rules for core commands

[or′1] 〈Por Q, G〉 〈P, G〉 [or′2] 〈Por Q, G〉 〈Q, G〉

[skip′] 〈skip, G〉 G [fail′] 〈fail, G〉 fail

[if′3] 〈if C then P, G〉 〈if C then P else skip, G〉

[try′3] 〈try C then P, G〉 〈try C then P else skip, G〉

[try′4] 〈try C else P, G〉 〈try C then skip else P, G〉

[try′5] 〈try C, G〉 〈try C then skip else skip, G〉

(b) Inference rules for derived commands

Figure 3: Previous GP 2 Semantics
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Formally, GP 2 is based on a form of attributed graph transformation according to the so-called
double-pushout approach [11, 9]. The grammar in Figure 2 gives the abstract syntax of GP 2 programs.
A program consists of declarations of conditional rules and procedures, and exactly one declaration of a
main command sequence. The category RuleID refers to declarations of conditional rules in RuleDecl
(whose syntax is omitted). Procedures must be non-recursive, they can be seen as macros with local
declarations.

The call of a rule set {r1, . . . ,rn} nondeterministically applies one of the rules whose left-hand graph
matches a subgraph of the host graph such that the dangling condition and the rule’s application condition
are satisfied. The call fails if none of the rules is applicable to the host graph.

The command if C then P else Q is executed on a host graph G by first executing C on G. If
this results in a graph, P is executed on the original graph G; otherwise, if C fails, Q is executed on G.
The try command has a similar effect, except that P is executed on the result of C’s execution in case C
succeeds.

The loop command P! executes the body P repeatedly until it fails. When this is the case, P! termi-
nates with the graph on which the body was entered for the last time. The break command inside a loop
terminates that loop with the current graph and transfers control to the command following the loop.

A program P or Q non-deterministically chooses to execute either P or Q, which can be simulated
by a rule-set call and the other commands [16]. The commands skip and fail can also be expressed by
the other commands: skip is equivalent to an application of the rule /0⇒ /0 (where /0 is the empty graph)
and fail is equivalent to an application of {} (the empty rule set).

Like Plotkin’s structural operational semantics [15], the previous GP 2 semantics is given by infer-
ence rules. The rules in Figure 3 define the transition relation over the following set:

(ComSeq×G ) × ((ComSeq×G ) ∪ G ∪ {fail}).

Here G is the set of all GP 2 host graphs and ComSeq is the set of command sequences as defined in
the syntax (Figure 2), where we assume that procedure IDs have been eliminated by macro expansion.
This means that procedure IDs have been replaced with their defining command sequence, and name
clashes arising from local declarations have been resolved by renaming.

The element fail represents the program resulting in a failure state. The inference rules contain
universally quantified variables, namely host graphs G and H, command sequences in ComSeq C, P, P′,
and Q, and rule set call R. The transitive closure of  is denoted by  +, and the reflexive transitive
closure by ∗.

In general, the execution of a program on a host graph may result in another graph, fail, or diverge.
Also, executions can get stuck in that they reach a non-terminal configuration (neither a graph nor fail) to
which no inference rule is applicable. Let G be the set of all host graphs and G ⊕ = G ∪{⊥, fail}. These
outcomes are described by the semantic function [ ] : ComSeq→ (G → 2G⊕) which, for a command
sequence P and a host graph G, is defined as

[P]G = {X ∈ G ∪{fail}|〈P,G〉 + X} ∪ {⊥|P can diverge or get stuck from G}.

By divergence we mean non-termination, that is the existence of an infinite transition sequence start-
ing in 〈P,G〉.
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3 The Small-Step Semantics

In this section, we introduce an improved semantics defined by inference rules, and give examples of
transition sequences.

Due to additional constructs, the new semantics needs to distinguish between command sequences
that are valid GP 2 programs, and command sequences that are intermediary. The former are members of
CommandSeq from the syntax in Figure 2, and are called command sequences. They have to satisfy the
context conditions specified in Appendix A.6 of Bak’s thesis [3]. The following condition is particularly
relevant to this paper: “A break must be enclosed within a loop. If a break is in the condition of a
branching statement1, the enclosing loop must be within the same condition.” This constraint is not
specific to graph programs: Java, C, and Python have similar restrictions on the use of break statements.

We define extended command sequences (set ExtComSeq) to be command sequences with additional
auxiliary constructs ITE and TRY. They do not follow context conditions since we may want a break

outside of a loop in an intermediary transition step. The ITE and TRY statements serve to advance
the command sequence in the condition in a small-step fashion, as well as to maintain the stack of
host graphs. When we enter an ITE or TRY statement, the top of the stack (and current host graph) is
duplicated in order to keep a backup. When exiting these statements we either pop the top, modified
graph, or the second graph on the stack which is the unmodified backup copy depending on the outcome
of the condition. The stack structure is needed because if and try statements may be nested. Whenever
we enter an ITE or TRY construct, we push a graph, and whenever we exit one, we pop a graph. This
ensures that the stack always contains enough graphs to pop and that the current host graph is always on
top.

The rules in Figure 4 inductively define a transition relation→ over the following set:

(ExtComSeq×S ) × ((ExtComSeq×S ) ∪S ∪ {fail}),

where S is the set of all stacks of GP 2 host graphs (explained below). We call an element of the set
(ExtComSeq×S ) ∪S ∪ {fail} an extended configuration, whereas (CommandSeq×S ) ∪S ∪ {fail}
is the set of configurations. A configuration (or extended configuration) C is terminal if C = fail or C = S
for some graph stack S.

The set S is the set of all non-empty stacks of GP 2 host graphs where the top element is the
current host graph, and where the other elements are backup copies to revert to or discard after the
resolution of conditions of branching statements. Such a stack S = [G1,G2,G3, . . . ,Gn] is a finite ordered
list of GP 2 host graphs with unary operations top(S) = G1, pop(S) = [G2,G3, . . . ,Gn] and pop2(S) =
[G1,G3, . . . ,Gn], as well as the binary operation push(G,S) = [G,G1,G2, . . . ,Gn], where G is a GP 2 host
graph.

Most of the inference rules in Figure 4 have a horizontal bar. These rules consist of a premise above
the bar and a conclusion below. The conclusion defines a transition step provided that the premise holds.
A rule without a bar is called an axiom and can be applied to a configuration without any precondition.

There are several universally quantified meta-variables within the inference rules. P, P′, Q, Q′, C, and
C′ stand for extended command sequences in ExtComSeq, S stands for a graph stack in S , G represents
a host graph, and R represents a rule set. We denote the transitive closure of→ by→+, and the reflexive
transitive closure by→∗.

The inference rules inductively define the transition relation→. The rules [call1] and [call2] are base
cases. Their premises are GP 2 derivations. Which of the two premises is satisfied depends on whether

1By branching statement, we mean an if, try, ITE, or TRY statement.
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[call1]
top(S)⇒R G

〈R, S〉 → push(G,pop(S)) [call2]
top(S) 6⇒R
〈R, S〉 → fail

[seq1]
〈P, S〉 → 〈P′, S′〉

〈P;Q, S〉 → 〈P′;Q, S′〉 [seq2]
〈P, S〉 → S′

〈P;Q, S〉 → 〈Q, S′〉

[seq3]
〈P, S〉 → fail
〈P;Q, S〉 → fail [break] 〈break;P, S〉 → 〈break, S〉

[alap1] 〈P! , S〉 → 〈try P then P! else skip, S〉 [alap2] 〈TRY(break, P! , skip), S〉 → pop2(S)

[if1] 〈if C then P else Q, S〉 → 〈ITE(C,P,Q), push(top(S), S)〉

[try1] 〈try C then P else Q, S〉 → 〈TRY(C,P,Q), push(top(S), S)〉

[if2]
〈C, S〉 → 〈C′, S′〉

〈ITE(C,P,Q), S〉 → 〈ITE(C′,P,Q), S′〉 [try2]
〈C, S〉 → 〈C′, S′〉

〈TRY(C,P,Q), S〉 → 〈TRY(C′,P,Q), S′〉

[if3]
〈C, S〉 → S′

〈ITE(C,P,Q), S〉 → 〈P, pop(S′)〉 [try3]
〈C, S〉 → S′

〈TRY(C,P,Q), S〉 → 〈P, pop2(S′)〉

[if4]
〈C, S〉 → fail

〈ITE(C,P,Q), S〉 → 〈Q, pop(S)〉 [try4]
〈C, S〉 → fail

〈TRY(C,P,Q), S〉 → 〈Q, pop(S)〉

(a) Inference rules for core commands

[or1] 〈Por Q, S〉 → 〈P, S〉 [or2] 〈Por Q, S〉 → 〈Q, S〉

[skip] 〈skip, S〉 → S [fail] 〈fail, S〉 → fail

[if5] 〈if C then P, S〉 → 〈if C then P else skip, S〉

[try5] 〈try C then P, S〉 → 〈try C then P else skip, S〉

[try6] 〈try C else P, S〉 → 〈try C then skip else P, S〉

[try7] 〈try C, S〉 → 〈try C then skip else skip, S〉

(b) Inference rules for derived commands

Figure 4: Improved GP 2 Semantics
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top(S)⇒R G or top(S) 6⇒R, i.e. whether a rule in the rule set can be applied to the current host graph or
not. The if and try statements are modelled by the [ifi] and [tryi] rules.

Sequential composition of commands is covered by [seq1], [seq2], and [seq3], covering the cases of
whether the first command called on a host graph results in a configuration, a graph stack, or fail.

Loops are semantically described as a try statement in [alap1]. Calling a command sequence as long
as possible is modelled by trying to apply the command sequence, and if it succeeds, keep applying it
as long as possible. Breaking from a loop is handled by [break], which makes sure commands following
the break are discarded, and [alap2], which terminates the loop if there is an isolated break in the TRY
condition.

Figure 4a shows the inference rules for the core commands of GP 2, while Figure 4b gives the infer-
ence rules for derived commands such as or, skip, and fail, as well as some if and try statements
with omitted then and else clauses. These commands are referred to as derived commands because
they can be defined by the core commands (see [16] for the case of the previous semantics).

Let us look at a couple of examples of transition sequences in Figure 5, the first to illustrate loops,
and the second to illustrate if and try statements. For each transition, we note the applied inference
rule as a subscript. If the conclusion of [rule1] is used as a premise for [rule2], we denote it by [rule1]

[rule2]
.

Example 3.1. Consider the program P=r! and the rule r : 1 ⇒1 . Let us examine a transition
sequence of P applied to the graph , as seen in Figure 5a.

We start by applying [alap1] which turns the loop into a try statement. Unlike in the previous
semantics, we model a loop by trying to apply its body, and if it is successful, we call the loop again.

The inference rule [try1] transforms the try statement into the auxiliary TRY construct, which ad-
vances the program in a small-step fashion, unlike the previous semantics. There is a similar ITE con-
struct which models if statements. The top of the graph stack is duplicated since the changes made by
the condition of the try may be discarded.

We then apply r to the current host graph (top of the stack) so [call1] can be applied. This serves as
a premise for [try3], which ends the TRY statement, pops the second element of the stack, and moves on
to the then part which is the original loop.

We repeat this process until r is no longer applicable to the host graph. At this point, [call2] serves as
the premise for [try4] which exits the TRY statement. This time, the condition results in fail, so we move
on to the else part which is skip and the loop terminates.

Now consider program P’=try(if (r1;r1) then (r1;r1)) and the rule r1 : 1 ⇒1 . A
transition sequence of P’ applied to host graph can be found in Figure 5b.

Since the try statement does not have a then or else part, we first apply [try7], which adds skip as
both the then and else parts.

The inference rule [try1] turns the try statement into the auxiliary TRY statement and duplicates the
top of the stack. For most of the remaining transition sequence, we apply [try2] under various premises
to advance the condition.

Since the if has no else part, [if5] completes it with a skip. The if statement is then turned into
the auxiliary ITE statement, duplicating the top of the stack once again.

The rule r1 is applied to the host graph which advances the concatenation with [seq2], the ITE with
[if2], and the TRY with [try2]. Calling r1 a second time resolves the ITE, and the top of the stack is
popped since changes made by the conditions of if statements are reversed.

We keep applying the condition of the TRY, until we resolve it with [try3]. This time the second
graph on the stack is popped since changes made by the condition of a try that did not result in fail are
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〈r!, [ ]〉

→ [alap1] 〈try r then r! else skip, [ ]〉

→ [try1] 〈TRY (r, r!, skip), [ , ]〉

→ [call1]
[try3]

〈r!, [ ]〉

→ [alap1] 〈try r then r! else skip, [ ]〉

→ [try1] 〈TRY (r, r!, skip), [ , ]〉

→ [call1]
[try3]

〈r!, [ ]〉

→ [alap1] 〈try r then r! else skip, [ ]〉

→ [try1] 〈TRY (r, r!, skip), [ , ]〉

→ [call2]
[try4]

〈skip, [ ]〉

→ [skip] [ ]

(a) Transition sequence of program P applied to graph .

〈try(if(r1;r1) then(r1;r1)), [ ]〉

→[try7] 〈try (if (r1;r1) then (r1;r1)) then skip else skip, [ ]〉

→[try1] 〈TRY(if (r1;r1) then (r1;r1), skip, skip), [ , ]〉

→ [if5]
[try2]

〈TRY(if (r1;r1) then (r1;r1) else skip, skip, skip), [ , ]〉

→ [if1]
[try2]

〈TRY(ITE(r1;r1, r1;r1, skip), skip, skip), [ , , ]〉

→[call1]
[seq2]
[if2]
[try2]

〈TRY(ITE(r1, r1;r1, skip), skip, skip), [ , , ]〉

→[call1]
[if3]
[try2]

〈TRY(r1;r1, skip, skip), [ , ]〉

→[call1]
[try2]

〈TRY(r1, skip, skip), [ , ]〉

→[call1]
[try3]

〈skip, [ ]〉

→[skip] [ ]

(b) Transition sequence of program P’ applied to graph .

Figure 5: Examples of transition sequences
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preserved.

4 Properties of the Semantics

In this section, we show that the semantics is non-blocking, i.e. if a transition sequence ends in an
extended configuration, we can always apply an inference rule (Proposition 4.3). Note that we can only
guarantee the non-blocking property for extended configurations that are part of a transition sequence
originating in a valid GP 2 program. We call those reachable extended configurations. This is reasonable
because there can be no other types of configurations in a transition sequence modelling a GP 2 program.

Furthermore, we will describe the outcomes of a transition sequence starting with a valid GP 2 pro-
gram (Proposition 4.5), and show that we have finite nondeterminism (Proposition 4.7), i.e. there are
only finitely many one-step transitions starting from any configuration, and what it means for the seman-
tic function.

Let us first look at a lemma that guarantees we can make a transition step from extended configura-
tions that do not contain a break, which is the first step towards showing the non-blocking property.

Lemma 4.1 (Progress from Extended Configurations). Let 〈P,S〉 be an extended configuration. Then
one of the following applies:

• 〈P,S〉 → 〈P′,S′〉 for some extended configuration 〈P′,S′〉.

• 〈P,S〉 → S′ for some graph stack S′ ∈S .

• 〈P,S〉 → fail.

• P is not a command sequence and contains a break.

Proof. We shall prove this lemma by going through what P could be according to the syntax and the
semantics.

Case 1: P is a rule set call. Then either top(S)⇒P G or top(S) 6⇒P. So either [call1] or [call2] can be
applied.

Case 2: P is a loop. If P is a loop, [alap1] can be applied.
Case 3: P is fail, skip or an or statement. Then [fail], [skip], or [or1] can be applied respectively.
Case 4: P is of the form if P1 then P2 else P3 or try P1 then P2 else P3. Then [if1] or [try1] can

be applied. If any then-clause or else-clause is omitted as specified by the syntax, [if5], [try5], [try6], or
[try7] can be applied.

Case 5: P is of the form ITE(P1, P2, P3) or TRY(P1, P2, P3). If P contains a break, the fourth point
of the lemma is satisfied, as containing ITE or TRY statements makes P not a command sequence. So
for the remainder of this case, assume P does not contain a break. If P1 is a sequential composition, let
P1 = P′1; P′′1 where P′1 is not a sequential composition. Otherwise let P1 = P′1. We shall show the lemma’s
statement by induction on how many ITE or TRY statements are nested in P′1 via the first sequential
component of the condition.

• For the base case, assume P′1 is not an ITE or TRY statement. Then P′1 is not a sequential compo-
sition and covered by cases 1 to 4 (P′1 cannot be break since P contains no break).

• Now for the induction step, assume that P′1 is an ITE or TRY statement. Then P′1 does derive either
a configuration 〈P′′′1 ,S′〉, a graph stack S′ or fail by the induction hypothesis. Hence one of [if2],
[if3], [if4], [try2], [try3], or [try4] can be applied to 〈P,S〉.
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Case 6: P is a sequential composition. Then we can decompose P into P = P1;P2 where P1 is not
a sequential composition. We can apply [seq1], [seq2], or [seq3] since 〈P1,S〉 → 〈P′1,S′〉, 〈P1,S〉 → S′, or
〈P1,S〉 → fail respectively by cases 1 to 5.

Case 7: P contains a break.
If P is not a command sequence, the final point of the lemma is satisfied. Otherwise, P satisfies

context conditions, meaning it must be enclosed within a loop, so either case 2 or one of the other
previous cases is applicable.

Lemma 4.1 has a case where the extended command sequence contains a break. This is because for
a transition sequence not to get stuck on a break, we need to start with a command sequence where the
break is within a loop, which we cannot guarantee if we consider a single transition step like in Lemma
4.1. In order to deal with this case, we prove that we can construct a transition sequence that leads to a
state with no break in the following lemma. However, we need to restrict it to extended configurations
reachable from a valid GP 2 program. We say that an extended configuration C is reachable if there is
a configuration 〈P, [G]〉 such that 〈P, [G]〉 →∗ C. This will still allow us to work towards non-blocking,
since we only care about transition sequences that start with valid GP 2 programs.

Lemma 4.2 (Removing the break Statement). Let 〈P,S〉 be an extended configuration that is reachable
and non-terminal. Suppose that P contains break. Then one of the following applies.

• There is an extended configuration 〈P′,S′〉 containing no break statement such that 〈P,S〉 →∗
〈P′,S′〉.

• There is a graph stack S′ such that 〈P,S〉 →+ S′.

• 〈P,S〉 →+ fail

Proof. First assume that 〈P,S〉 satisfies context conditions, i.e. the break is contained within a loop,
and if the break is in the condition of an if or try statement, the enclosing loop must be in the same
condition.

We will apply various inference rules to construct a transition sequence starting in 〈P,S〉. Remember
that whenever we apply such an inference rule, it results in either a non-terminal extended configuration,
a graph stack, or fail. If it results in a graph stack or fail, the second or third point of the lemma is
satisfied. So at each step of the transition sequence we construct, we only need to consider the case
where an inference rule results in a non-terminal extended command sequence.

If there are multiple loops with break statements, they are either in different sequential composition
components, or nested. So let us show this lemma by induction on nesting and sequential composition.

As a base case, assume P contains a single loop with a break, and want to show we can apply
a sequence of inference rules that ultimately removes the break. So P is of the form Q0;Q1!;Q2,
where Q1 contains a break, and neither Q0 nor Q2 do. (What follows also applies if P is of the form
Q1!;Q2, Q0;Q1!, or Q1!.) We can repeatedly apply Lemma 4.1 to transition to Q1!;Q2. Then we
apply [alap1] followed by [try1] to get TRY(Q1,Q1! ,skip). We can then use Lemma 4.1 repeatedly as a
premise for [try2] until we get TRY(Q3;Q4,Q1! ,skip), where Q3 contains break and is not a sequential
composition. If Q3 is a break, we can apply [try2] under the premise of [break], followed by [alap2]
to get rid of the break. We know Q3 cannot be a loop since we assumed Q1! is the enclosing loop of
the break. So Q3 is either an or, if, or try statement. If it is an or statement, we can apply [or1]
or [or2] to either remove the break or lead to TRY(break;Q5,Q1! ,skip). Similarly, if Q3 is an if or
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try statement, the break must be in the then or else part due to context conditions, and we can use
inference rules to either remove the break or lead to TRY(break;Q5,Q1! ,skip). We can now apply
[try2] under the premise of [break] to get TRY(break,Q1! ,skip). To this, we can apply [alap2], which
gets rid of the break.

For the induction step, let us first consider the case of nesting. Assume that P is of the form
Q0;(Q1;Q2;Q3)! ; Q4, where Q2 satisfies the lemma statement, and either Q1 or Q2 contain a single
break. We can use the same arguments as in the base case in addition to [seq1] under the premise of the
induction hypothesis to get rid of the break.

Now consider sequential composition. As an induction step, assume that P is of the form Q0;Q1! ;Q2;
Q3! ;Q4, where one of Q1 or Q3 satisfies the lemma statement, and the other contains a single break.
Again, we can use the arguments from the base case as well as the induction hypothesis in conjunction
with [seq1] to remove the break.

Finally, assume that 〈P,S〉 does not satisfy context conditions, i.e. either there is a break without
an enclosing loop, or there is a break in the condition of a branching statement whose enclosing loop
is not within that condition. Since 〈P,S〉 is reachable, the latter cannot be the case: transitions steps
cannot separate a break from its enclosing loop in a way that they stop being within the same condition
of a branching statement (loops can only be removed by inference rules, they cannot be “moved”). So
suppose there is a break without an enclosing loop. This must be because [alap1] is applied earlier in
the transition sequence, so it must be within the condition of a try or TRY. So we can use the same
arguments as earlier in the proof, except that we need not argue that some of the inference rule, such as
[alap1] or [try1] need to be applied.

Now that we have Lemmata 4.1 and 4.2, we can prove that the non-blocking property holds.

Proposition 4.3 (Non-Blocking Property). Let 〈P,S〉 be an extended configuration that is reachable and
non-terminal. Then there is a transition step 〈P,S〉 →C for some extended configuration C.

Proof. If P does not contain a break, this proposition follows from Lemma 4.1. Otherwise, it follows
from Lemma 4.2.

Let us now introduce a lemma that makes various statements about the size of host graph stacks in
order to ensure that the inference rules are well-defined. Since we defined stacks to be nonempty, we
want to make sure that if a transition sequence starts with a nonempty stack, it cannot lead to an empty
stack, which the following lemma shows. Furthermore, when a transition sequence terminates in a graph
stack, we want that stack to only contain one host graph.

For this lemma, we want to start from a valid GP 2 program, not extended command sequences in
general (since they may contain auxiliary constructs like ITE and TRY). So we consider configurations
in CommandSeq×S . These follow the context conditions on where the break statement can appear as
specified in [3].

Lemma 4.4 (Stack Size). Let 〈P, [G]〉 be a configuration in CommandSeq×S .

(a) If 〈P, [G]〉 →∗ 〈P′,S〉, where 〈P′,S〉 is an extended configuration, then |S|≥ 1.

(b) If 〈P, [G]〉 →+ S, where S is a graph stack, then |S|= 1.

Proof. The statement in (a), is satisfied for zero transition steps. So let us examine the inference rules
that contain push, pop, and pop2. The rule [call1] contains both push and pop, but preserves the size of
the stack. The rules that push a graph onto the stack are [if1] and [try1] which are exactly the rules that
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introduce an ITE or a TRY. The rules that pop a graph from the stack are [alap2], [if3], [if4], [try3], and
[try4]. These are exactly rules that remove an ITE or TRY from the extended command sequence. Since
〈P, [G]〉 contains no ITE or TRY statements and only one host graph, we have |S|= #(P′) + 1, where
# counts the combined number of ITE and TRY statements in an extended command sequence. Since
|S|= #(P′)+1, we have |S|≥ 1.

Now in case (b), we can break down the transition sequence into 〈P, [G]〉→∗ 〈P′,S′〉→ S. Like in the
proof of (a), the formula |S′|= #(P′)+1 applies. Let us examine which inference rules can be applied in
the final step of the transition. It can only be either [skip], [call1], or [alap2]. To apply [skip], P′ must be
skip and #(skip)= 0, so |S|= |S′|= 1. To apply [call1], P′ must be rule set call, and hence cannot contain
ITE or TRY, so |S|= |S′|= 1. To apply [alap2], P′ must be of the form TRY(break,P′′! ,skip), where P′′

is an extended command sequence. We know P′′ cannot contain an ITE or TRY statement because they
can only be nested in their first argument. Indeed, if an extended command sequence already starts with
an ITE or TRY, no inference rule allows for said ITE or TRY statement to be nested within another one.
So the only way to nest statements is via the rule [try2], which modifies the first argument. But the first
argument of P′ is break, which contains no ITE or TRY statements. So #(P′) = 1 and |S′|= 2. Since we
apply [alap2], we have S = pop2(S′), so |S|= |S′|−1 = 1.

We also want to make sure that if we call pop2 on a stack to pop its second element, the stack does
indeed contain at least two elements. More precisely, under the premise of Lemma 4.4, if 〈P, [G]〉 →+

〈P′,pop2(S)〉 (an extended configuration) or 〈P, [G]〉 →+ pop2(S) (a graph stack), then |S|≥ 2. This
follows directly from Lemma 4.4 since |pop2(S)|= |S|−1.

Let us now use Lemmata 4.1, 4.2, and 4.4 is to describe what the possible outcomes of a transition
sequence starting in a valid GP 2 program are.

Theorem 4.5 (Outcomes of Transition Sequences). Let 〈P, [G]〉 be a configuration. Then one of the
following applies:

• There is an infinite transition sequence 〈P, [G]〉 → 〈P1,S1〉 → 〈P2,S2〉 → . . . where 〈Pi,Si〉 is an
extended configuration for all i≥ 1.

• 〈P, [G]〉 →+ [G′] for some host graph G′.

• 〈P, [G]〉 →+ fail.

Proof. Lemma 4.4 guarantees that if a transition sequence starts in 〈P, [G]〉 and ends in a stack, that stack
only contains one graph. So for this proposition, it is enough to show that transition sequences end in a
stack in the relevant cases.

In order to get rid of a potential break statement in P, we can apply Lemma 4.2 to 〈P, [G]〉. If we get
a graph stack or fail, we fulfil the second or third case of this proposition. Otherwise we get an extended
configuration 〈P′,S〉 that contains no break.

Since there is now no break in either 〈P, [G]〉 or 〈P′,S〉, we can apply the first, second, and third
cases of Lemma 4.1 either indefinitely to get an infinite transition sequence, or until we get a graph stack
or fail.

Now that we know the possible outcomes of a transition sequence, we can define the semantic func-
tion J K : CommandSeq→ (G → 2G⊕), where G is the set of host graphs, [G ] the set of stacks consisting
of exactly one host graph (which we can identify with single host graphs), and G ⊕= [G ] ∪ {fail,⊥}. The
symbol ⊥ is used to represent an infinite transition sequence, i.e. divergence. The function is defined as

JPKG = {X ∈ [G ]∪{fail}|〈P,G〉 →+ X} ∪ {⊥|P can diverge from G}.
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This functions differs from the one presented in [17] and Section 2 since ⊥ is only used when P
diverges, because we know by Proposition 4.3 that P cannot get stuck. We will show in Lemma 5.5 that
every infinite or stuck transition sequence in the previous semantics corresponds to an infinite transition
sequence in the new semantics.

Let us now examine the property of finite nondeterminism as specified by Apt in Section 4.1 of [1],
i.e. the set of elements reachable from a configuration in one transition step is finite. A related concept
is bounded nondeterminism, where the cardinality of the aforementioned set is finite and depends on the
program only (and not on the size of the current state). An example for a language with bounded non-
determinsim is Dijkstra’s language of guarded commands [18]. Many references [8, 10, 18, 19] equate
the concepts of finite and bounded nondeterminism and call it “bounded nondeterminism”. However,
rule-based languages generally have unbounded nondeterminism because they rely on nondeterministic
rule matching. This also applies to GP 2 which the following example illustrates.
Example 4.6. Consider the rule r : 1 ⇒1 and the comb graph G4 as shown in Figure 6. There

Figure 6: The comb graph G4

are four possible matches for the left-hand side of rule r in graph G4, so applying the rule can result in
four different non-isomorphic graphs, which is a finite amount. When applying r to comb graph Gk, we
get k non-isomorphic graphs, which depends on the size of the host graph and hence is not bounded.

We now show that GP 2 does have finite nondeterminism.

Proposition 4.7 (Finite Nondeterminism). Let γ ∈ ExtComSeq×S be an extended configuration, and
Tγ = {γ ′ |γ → γ ′ ∈ ExtCommSeq×S }. Then |Tγ | is finite.

Proof. The only inference rules that cause nondeterminism are [or1], [or2], and [call1]. If the rules [or1]
and [or2] are applicable to γ then there are exactly two configurations reachable from γ . In [call1], the
nondeterminism comes from several GP 2 rules being called non-deterministically as part of a rule set,
as well as from all the ways these rules can be matched in the host graph. Since rule sets and host graphs
are finite, the number of configurations reachable from γ in one step via the inference rule [call1] is finite
as well.

Reynolds [18] defines this kind of nondeterminism using the semantic function instead of the set
of configurations reachable in one step. The following corollary shows that this semantics fulfils that
definition as well.
Corollary 4.8. Let P ∈ CommandSeq and G ∈ G such that JPKG is infinite. Then ⊥ ∈ JPKG.

Proof. Let γ0 = 〈P, [G]〉. Then T ∗γ0
= {γ |γ0→∗ γ ∈ExtCommSeq×S } is infinite as well since it contains

all elements of JPKG except perhaps fail or ⊥. The set T ∗γ0
can be seen as a tree whose nodes are

configurations and whose edges are defined by transition relations. Since Tγ is finite for all configurations
γ by Proposition 4.7, each node in the tree only has finitely many adjacent nodes. By König’s Lemma
[12], the tree contains an infinite path. Since every node of the tree is reachable from the root γ0, there
is an infinite path starting from γ0. By definition of the tree, this means there is an infinite transition
sequence starting with γ0. By definition of the semantic function, we can conclude that ⊥ ∈ JPKG.
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5 Comparison to the Previous Semantics

In this section, we show that the new semantics is a conservative extension of the previous one, i.e. their
behaviour is equivalent on converging configurations, and if a configuration diverges in the previous
semantics, it also diverges in the new one.

When we mention graph stacks in this section, we allow them to be empty. We use the notation
[G1,G2, . . . ,Gk,S] (where Gi are graphs, S is a graph stack, and k > 0) to denote a stack whose top k
elements are G1,G2, . . . ,Gk, and whose remaining elements are the elements of S.

Lemma 5.1 (Simulating Finite Old Transition Sequences). Let P ∈ CommandSeq, G ∈ G , and X ∈
{〈P′, G′〉, G′, fail}, where P′ ∈ CommandSeq and G′ ∈ G . If 〈P, G〉 ∗ X , then, for any graph stack S,
there is a transition sequence

• 〈P, [G,S]〉 →∗ 〈P′, [G′,S]〉 if X = 〈P′, G′〉.

• 〈P, [G,S]〉 →∗ [G′] if X = G′.

• 〈P, [G,S]〉 →∗ fail if X = fail.

Proof. We shall prove this lemma by induction on the number of if, try, and ! statements in P com-
bined.

If P has no if, try, or ! statements, none of the [if], [try], and [alap] inference rules are applicable.
All other rules behave identically in both semantics when identifying the tops graph of the stacks in the
new rules with the graphs in the previous rules. Hence the base case is satisfied.

As the induction hypothesis, assume the lemma holds for P containing k if, try, or ! statements.
Now consider the case where P contains k+1 of them. Let 〈P1, G1〉 〈P2, G2〉 be a derivation step of
〈P,G〉 ∗ X that uses an [if], [try], or [alap] rule (possibly as a premise for another rule such as [seq1]).
If such a step does not exist, the lemma holds by the same argument used in the base case. Consider the
[if], [try], or [alap] rule [r] that relates to the if, try, or ! statement enclosing all others resolved in the
same step. Then no rule where [r] is a premise (or the premise of a premise) is an [if], [try], or [alap] rule.
Since those are identical in both semantics, we only need to show that the part of P resolved by [r] is
resolved in a way that fulfils the lemma statement.

If [r] = [if1], we have 〈if C then P3 else Q, G3〉 〈P3, G3〉 under the premise of 〈C, G3〉 + H.
Since P contains k+1 if, try, or ! statements, C contains at most k of them. So by the induction hy-
pothesis, there is a transition sequence 〈C, [G3,S]〉 →∗ [H,S] (for any graph stack S). We can decompose
this transition sequence into 〈C, [G3,S]〉 →l 〈C4, S4〉 → [H,S] where l ≥ 0, and S4 is a graph stack. This
fulfills the premise of [if2] l times, and then the premise of [if3] once. So for any graph stack S′, the
premises are fulfilled by choosing S = [G3,S′], and we have

〈if C then P3 else Q, [G3,S′]〉 →[if1] 〈ITE(C,P3,Q), [G3,G3,S′]〉 →l
[if2]
〈ITE(C4,P3,Q), S4〉

→[if3] 〈P2, [G3,S′]〉.
If [r] = [if2], we have 〈if C then P3 else Q, G3〉 〈Q, G3〉 under the premise of 〈C, G3〉 + fail.

Again, we can use the induction hypothesis to conclude 〈C, [G3,S]〉→∗ fail (for any graph stack S), which
is a sequence of l ≥ 0 transitions 〈C, [G3,S]〉 →l 〈C4, S4〉 between extended configurations, followed by
1 transition 〈C4, S4〉 → fail. This fulfills the premise of [if2] l times, and then the premise of [if4] once.
So for any graph stack S′, the premises are fulfilled by choosing S = [G3,S′], and we have

〈if C then P3 else Q, [G3,S′]〉 →[if1] 〈ITE(C, P3, Q), [G3,G3,S′]〉 →l
[if2]
〈ITE(C4, P3, Q), S4〉

→[if4] 〈Q, [G3,S′]〉.
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If [r] = [try1], we can use the same arguments as when [r] = [if1] to get a transition sequence
〈try C then P3 else Q, [G3,S′]〉 →+ 〈P3, [G4,S′]〉 for any graph stack S′.

If [r] = [try2], we can use the same arguments as when [r] = [if2] to get a transition sequence
〈try C then P3 else Q, [G3,S′]〉 →+ 〈Q, [G3,S′]〉 for any graph stack S′.

If [r] = [alap1], we have 〈P3! , G3〉 〈P3! , H〉 under the premise of 〈P3, G3〉 + H. Since P contains
k + 1 if, try, or ! statements, P3 contains at most k of them. So by the induction hypothesis, we
can conclude 〈P3, [G3,S]〉 →∗ [H,S] for any graph stack S. We can decompose this transition sequence
into 〈P3, [G3,S]〉 →l 〈P4, S4〉 → [H,S], where l ≥ 0, and S4 is a graph stack. These derivations fulfil the
premise of [try2] l times and then the premise of [try3] once. So for any graph stack S′, the premises are
fulfilled by choosing S = [G3,S′], and we have

〈P3! , [G3,S′]〉 →[alap1] 〈try P3 then P! else skip, [G3,S′]〉 →[try1] 〈TRY(P3, P3! ,skip), [G3,G3,S′]〉
→l

[try2]
〈TRY(P4,P3! ,skip), S4〉 →[try3] 〈P3! , [H,S′]〉.

If [r] = [alap2], we have 〈P3! , G3〉 G3 under the premise of 〈P3, G3〉 + fail. Again, we can use
the induction hypothesis to conclude 〈P3, [G3,S]〉 →∗ fail for any graph stack S. We can decompose this
transition sequence into 〈P3, [G3,S]〉→l 〈P4, [G4,S]〉→ fail, where l ≥ 0, and G4 is a graph. Let us argue
that the graph stack right before the fail is [G4,S]. The stack ends in S because P3 is a command sequence
and hence does not contain ITE or TRY statements, which are the only constructs that could pop and
hence modify S. Any if, try, and ! statements in P3 must resolve before the configuration that leads to
fail in one step because fail is not reachable in one step from if, try, !, ITE, and TRY statements. Since
they all resolved, any push has a corresponding pop, meaning the number of graphs in the stack before S
remains 1. The derivations fulfil the premise of [try2] l times and then the premise of [try4] once. So for
any graph stack S′, the premises are fulfilled by choosing S = [G3,S′], and we have

〈P3! , [G3,S′]〉 →[alap1] 〈try P3 then P! else skip, [G3,S′]〉 →[try1] 〈TRY(P3, P3! ,skip), [G3,G3,S′]〉
→l

[try2]
〈TRY(P4,P3! ,skip), [G4,G3,S′]〉 →[try4] 〈skip, [G3,S′]〉 →[skip] [G3,S′].

If [r] = [alap3], we have 〈P3! , G3〉 H under the premise of 〈P3, G3〉 ∗ 〈break,H〉. Again, we can
use the induction hypothesis to conclude 〈P3, [G3,S]〉 →∗ 〈break, [H,S]〉 (for any graph stack S). Let
l ≥ 0 be the number of steps in that transition sequence. These derivations fulfil the premise of [try2] l
times. So for any graph stack S′, the premises are fulfilled by choosing S = [G3,S′], and we have

〈P3! , [G3,S′]〉 →[alap1] 〈try P3 then P3! else skip, [G3,S′]〉 →[try1] 〈TRY(P3, P3! ,skip), [G3,G3,S′]〉
→l

[try2]
〈TRY(break,P3! ,skip), [H,G3,S′]〉 →[alap2] [H,S′].

Lemma 5.2 (Configurations That Get Stuck). Let 〈P,G〉 be a configuration to which no inference rule
of the previous semantics is applicable. Then P starts with an if, try, or ! statement such that the
condition (or the body in the case of !) diverges or gets stuck in the previous semantics.

Proof. For this proof, whenever we say a rule is applicable, we mean it is either applicable, or it can be
used as a premise for a [seq] rule.

Let us first show that, if P does not start with an if, try, or ! statement, we can apply an inference
rule to 〈P,G〉. If P starts with a rule set, that rule set is either applicable to the host graph or not, so either
[call1] or [call2] can be applied. If P starts with a break, skip, or fail, then [break], [skip], or [fail] can
be applied respectively. If P starts with an or statement, either [or1] or [or2] can be applied.

Now assume that P starts with an if, try, or ! statement with a condition or body C. If 〈C,G〉
neither converges nor gets stuck, there is a transition sequence 〈C,G〉 fail, or 〈C,G〉 H for some
graph H. Hence one of [if1], [if2], [try1], [try2], [alap1], or [alap2] is applicable.
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Lemma 5.3 (Loop-Free Command Sequences Do Not Get Stuck). For every loop-free command se-
quence P and graph G, no transition sequence starting with 〈P,G〉 gets stuck in the previous semantics.

Proof. We prove this lemma by structural induction. For a base case, consider programs consisting of a
single rule set R. Then on any graph G, R is either applicable or not. So to 〈R,G〉 we can apply either
[call1] or [call2], leading to a graph or fail. They are both transition sequences that end in a terminal state,
and hence do not get stuck.

Another base case is skip or fail, which always lead to a graph or fail in a single step, and hence
cannot lead to stuck transition sequences.

The break statement cannot be in P since context conditions require it to have an enclosing loop.
For the induction step, assume that every proper subprogram of P cannot get stuck, and show that P

cannot get stuck either.
Assume P = P1;P2. By the induction hypothesis, for any graph G, no transition sequence starting

with 〈P1,G〉 gets stuck, i.e. they can all be extended to either 〈P1,G〉 + fail or 〈P1,G〉 + H for some
graph H. This fulfils the premise of [seq1] some number of times, and then the premise of either [seq2]
or [seq3] once. So each transition sequence staring with 〈P,G〉 must be of the form 〈P,G〉 +

[seq] fail or
〈P,G〉 +

[seq] H.
Assume P = if C then P1 else P2. Then by induction hypothesis, for any graph G, no transi-

tion sequence starting with 〈C,G〉 can get stuck, i.e. they can all be extended to either 〈C,G〉 + fail
or 〈C,G〉 + H for some graph H. This satisfies the premise of either [if1] or [if2]. So each transi-
tion sequence staring with 〈P,G〉 must be of the form 〈P,G〉 [if1] 〈P1,G〉 or 〈P,G〉 [if2] 〈P2,G〉. Any
continuation of these sequences cannot get stuck because P1 and P2 satisfy the induction hypothesis.

The case P = try C then P1 else P2 is analogous to the previous one.
If P is an if or try with omitted then or else clauses, one of [if3], [try3], [try4], or [try5] can be

applied, and then the arguments used in the if and try cases can be applied.
Assume P = P1 or P2. Then for any graph G, any transition sequence starting with 〈P,G〉 starts with

either 〈P,G〉 [or1] P1 or 〈P,G〉 [or2] P2. Any continuation of these sequences cannot get stuck because
P1 and P2 satisfy the induction hypothesis.

Lemma 5.4 (Non-Nested Loops Do Not Get Stuck). For every loop-free command sequence P and graph
G, no transition sequence starting with 〈P! ,G〉 gets stuck in the previous semantics.

Proof. It is enough to show that either 〈P,G〉 + H, 〈P,G〉 + fail, or 〈P,G〉 ∗ 〈break,H〉. Because
then, one of [alap1], [alap2], or [alap3] is applicable. And if [alap1] was applicable, we get 〈P! ,G〉 
〈P! ,H〉, the same arguments can be used on 〈P! ,H〉, and hence on all its successors.

First of all, since P contains no !, 〈P,G〉 cannot diverge. If P does not contain a break, 〈P,G〉 cannot
get stuck by Lemma 5.3. If P does contain a break, that is never called, the arguments of the proof of
Lemma 5.3 still apply, and 〈P,G〉 does not get stuck. If P contains a break that is called, that means
there is a transition sequence 〈P,G〉 ∗ 〈break,H〉, or 〈P,G〉 ∗ 〈break;Q,H〉, to which we can apply
[break] to get the former.

So either 〈P,G〉 ∗ 〈break,H〉, or 〈P,G〉 neither diverges nor gets stuck, which means 〈P,G〉 must
resolve to either a graph or fail.

Lemma 5.5 (Simulating Old Transition Sequences That Are Infinite or Stuck). Assume there is an in-
finite transition sequence 〈P,G〉 . . . , or a stuck transition sequence 〈P,G〉 ∗ 〈P′,G′〉. Then for any
graph stack S, there is an infinite transition sequence 〈P, [G,S]〉 → . . . .
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Proof. First assume there is an infinite transition sequence 〈P,G〉  〈P1,G1〉  . . . . To each step
〈Pi,Gi〉 〈Pi+1,Gi+1〉 in that transition sequence, we can apply Lemma 5.1 to get a transition sequence
〈Pi, [Gi,Si]〉 →∗ 〈Pi+1, [Gi+1,Si+1]〉 for any graph stack Si and some Si+1. We can concatenate these into
an infinite transition sequence.

Now assume there is a stuck transition sequence 〈P,G〉 ∗ 〈P′,G′〉. We can apply Lemma 5.1 to
each step in that sequence to get 〈P, [G,S]〉 →∗ 〈P′, [G′,S]〉 for each graph stack S.

We claim that for any command sequence P′ such that 〈P′,G′〉 is stuck with respect to  , there is
a diverging transition sequence 〈P′, [G′,S]〉 → . . . for any graph stack S. This is enough to prove the
Lemma. Let us show this by induction on the combined number of if, try, and ! statements in P′.

If there are no such statements, then 〈P′,G′〉 cannot get stuck by Lemma 5.2, so there has to be at
least one, and P′ starts with it. If that one statement is an if or a try, then 〈P′,G′〉 cannot get stuck by
Lemma 5.3. If it is a ! statement, 〈P′,G′〉 cannot get stuck by Lemma 5.4. So there have to be at least
two if, try, or ! statements.

So for our base case, assume P′ contains exactly two if, try, or ! statements. By Lemma 5.3, P′

must contain a ! statement. If the two statements are not nested, we can apply Lemmata 5.3 and/or 5.4
sequentially to conclude that 〈P′,G′〉 does not get stuck. So the two statements must be nested, and they
must be the start of P′ by Lemma 5.2. Assume the “inner” statement is not a ! statement. Then the
“outer” statement must be the ! statement. By Lemma 5.4, 〈P′,G′〉 does not get stuck. So the “inner”
statement must be a ! statement Q!. The loop Q! cannot resolve to a graph or fail because then, the
“outer” statement could be resolved and 〈P′,G′〉 would not be stuck. By Lemma 5.4, Q! cannot get stuck
either. So Q! must diverge, and so must the condition or body C of the starting statement of P′. So there
is an infinite transition sequence 〈C,G′〉 . . . , and hence by Lemma 5.1 to each step in that transition
sequence, we get 〈C, [G′,S]〉 → . . . for any graph stack S. This serves as a premise for [if2] or [try2],
which we can use to get an infinite transition sequence 〈P′,G′〉 → . . . .

Now for the induction step, assume we get infinite transition sequences for programs with at most k
if, try, and ! statements. Assume P′ has k+1 such statements. By Lemma 5.2, since 〈P′,G′〉 is stuck,
P′ must start with one of those statements. So we can apply either [if1], [try1], or [alap1] followed by [try1]
to get 〈P′, [G′,S′]〉→+ 〈P′′, [G′,G′,S′]〉 for any graph stack S′, where P′′ starts with either ITE(C,Q,Q′) or
TRY(C,Q,Q′). Now C has at least one less if, try, or ! statement than P′, so we can apply the induction
hypothesis to get an infinite transition sequence 〈C, [G′,G′,S′]〉 → . . . , which can serve as premises for
infinitely many applications of [if2] or [try2] (or these inference rules provide the premises for [seq1]).
Hence we have an infinite transition sequence 〈P′, [G′,S′]〉 →+ 〈P′′, [G′,G′,S′]〉 → . . . .

Lemma 5.6 (Simulating Finite New Transition Sequences). Let P ∈ CommandSeq, G ∈ G , S a graph
stack, and X ∈ {〈P′, [G′,S′]〉, [G′,S′], fail}, where P′ ∈ CommandSeq, S′ is a graph stack, and G′ ∈ G . If
〈P, [G,S]〉 →∗ X , then there is a transition sequence

• 〈P, G〉 ∗ 〈P′, G′〉 if X = 〈P′, [G′,S′]〉.

• 〈P, G〉 ∗ G′ if X = [G′,S′].

• 〈P, G〉 ∗ fail if X = fail.

Proof. Let us show this lemma by induction on the combined number of if, try, and ! statements in P.
If P has no such statements, no step in 〈P, [G,S]〉 →∗ X uses [if], [try], or [alap] rules. So no pushing or
popping occurs and only the top of the stack is modified. The applied rules behave identically to those
in the previous semantics when identifying the top of the stacks in the new rules with the host graphs in
the previous rules. Hence the lemma is satisfied in the base case.
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Now assume that the lemma holds for command sequences with k if, try, and ! statements, and
assume P has k + 1 of them. By the previous paragraph, we can simulate transition steps that do not
involve [if], [try], or [alap] rules. So let 〈Q, [H,S′]〉 be a configuration (we will handle the case where
〈Q, [H,S′]〉 is an extended configuration, but not a configuration later) in the sequence 〈P, [G,S]〉 →∗ X
that uses such a rule to get the next state. Let [r] be that rule. It can only be [if1], [try1], or [alap1] since
〈Q, [H,S′]〉 is a configuration and hence does not contain ITE or TRY.

If [r] = [if1], then we get 〈Q, [H,S′]〉 → 〈ITE(C,Q1,Q2);Q3, [H,H,S′]〉 →+ 〈Q4;Q3, [H,S′]〉, where
Q1, Q2, and Q3 are command sequences, and where Q4 ∈ {Q1,Q2} (since this is part of a transition
sequence that ends in X , a configuration, graph, or fail, we know that the if eventually resolves). So
either 〈C, [H,H,S′]〉 →∗ [H ′,H,S′] or 〈C, [H,H,S′]〉 →∗ fail. We can apply the induction hypothesis to
C, which has at most k if, try, and ! statements, to get that either 〈C,H〉 ∗ H ′ or 〈C,H〉 ∗ fail. We
can use this as a premise for either [if1] or [if2] to get 〈Q,H〉 〈Q4;Q3,H〉, where Q4 ∈ {Q1,Q2}, which
simulates the sequence outlined at the beginning of this case.

If [r] = [try1], then we get either 〈Q, [H,S′]〉 → 〈TRY(C,Q1,Q2);Q3, [H,H,S′]〉 →+ 〈Q1;Q3, [H ′,S′]〉
or 〈Q, [H,S′]〉 → 〈TRY(C,Q1,Q2);Q3, [H,H,S′]〉 →+ 〈Q2;Q3, [H,S′]〉, where Q1, Q2, and Q3 are com-
mand sequences, and H ′ some graph. We can use the same arguments as in the previous case to get a
transition sequence 〈Q,H〉 〈Q1;Q3,H ′〉 or 〈Q,H〉 〈Q2;Q3,H〉.

If [r] = [alap1], we have Q = Q1! ;Q2 so either 〈Q1! ;Q2, [H,S′]〉 →∗ 〈Q1! ;Q2, [H ′,S′]〉, 〈Q1! ;Q2,
[H,S′]〉 →∗ 〈Q2, [H,S′]〉, or 〈Q1! ;Q2, [H,S′]〉 →∗ 〈TRY(break,Q1! ,skip);Q2, [H ′,H,S′]〉 → 〈Q2, [H ′,
S′]〉. We can conclude that either 〈Q1, [H,S′]〉 →∗ [H ′,S′], 〈Q1, [H,S′]〉 →∗ fail, or 〈Q1, [H,S′]〉 →∗
〈break, [H ′,S′]〉. By induction hypothesis, we get that either 〈Q1,H〉  ∗ H ′, 〈Q1,H〉  ∗ fail, or
〈Q1,H〉 ∗ 〈break,H ′〉. These can be used as premises of [alap1], [alap2], or [alap3] to conclude that
either 〈Q1! ;Q2, H〉 〈Q1! ;Q2,H ′〉, 〈Q1! ;Q2,H〉 〈Q2,H〉, or 〈Q1! ;Q2,H〉 〈Q2,H ′〉.

Finally, if 〈Q, [H,S′]〉 is an extended configuration, but not a configuration, Q must contain an ITE,
TRY, or a break that does not satisfy the context conditions. All of these must originate in an if, try,
or ! statement, and are hence covered by the previous part of the proof.

Note that the first point of Lemma 5.6 only applies to transition sequences between command se-
quences (they do not contain TRY or ITE constructs). So diverging transition sequences in the new
semantics where all command sequences contain ITE or TRY after some step cannot be simulated with
diverging transition sequences in the previous semantics.

Theorem 5.7. Let P ∈ CommandSeq and G ∈ G . Then

(a) [P]G⊆ JPKG and

(b) [P]G\{⊥}= JPKG\{⊥}.

Proof. Lemma 5.1 guarantees that (a) holds for graphs and fail, and Lemma 5.5 guarantees that (a) holds
for ⊥. Furthermore, (b) follows from (a) and Lemma 5.6.

6 Conclusion

We have introduced a new operational semantics for the graph programming language GP 2. Unlike the
previous semantics, this one is entirely small-step and non-blocking. As a consequence, it accurately
models computations which intuitively should diverge (and do so in the implementation). In particular,
the new semantic function correctly lists ⊥ as an outcome when there is a computation in which the
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condition of a branching statement or the body of a loop diverges. We also obtain finite nondeterminism,
meaning that for every configuration there are only finitely many choices for the next transition step.

Furthermore, we have shown that the new semantic function is an extension of the previous one, and
that they are equivalent excluding divergence.

In future work, the new semantics should serve as a solid underpinning for setting up a time and
space complexity theory for GP 2. Its small-step nature is crucial to defining atomic computation steps.
Such a theory could possibly be automated akin to the resource analysis in [13].

Another aspect of the GP 2 semantics is that it is orthogonal to the definition of the transformation
rules. The inference rules that depend on the domain of graph transformation only need the definition
of a rule application ([call1]) and the information when such an application fails ([call2]). Hence this
semantics could be used as a foundation for GP 2-like programming languages over other rule-based
domains, such as string rewriting [5] or term rewriting [2].

Acknowledgements. We are grateful to the anonymous referees whose comments helped to improve the
presentation of this paper.
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