
Rachid Echahed and Detlef Plump (Eds.): Tenth International
Workshop on Graph Computation Models (GCM 2019)
EPTCS 309, 2019, pp. 23–52, doi:10.4204/EPTCS.309.2

c© N. Behr
This work is licensed under the
Creative Commons Attribution License.

Sesqui-Pushout Rewriting:
Concurrency, Associativity and Rule Algebra Framework∗

Nicolas Behr
Université de Paris, IRIF, CNRS

F-75013 Paris, France
nicolas.behr@irif.fr

Sesqui-pushout (SqPO) rewriting is a variant of transformations of graph-like and other types of
structures that fit into the framework of adhesive categories where deletion in unknown context may
be implemented. We provide the first account of a concurrency theorem for this important type of
rewriting, and we demonstrate the additional mathematical property of a form of associativity for
these theories. Associativity may then be exploited to construct so-called rule algebras (of SqPO
type), based upon which in particular a universal framework of continuous-time Markov chains for
stochastic SqPO rewriting systems may be realized.

1 Motivation and relation to previous work

The framework of Sesqui-Pushout (SqPO) rewriting has been introduced relatively recently in [16] as
a novel alternative to the pre-existing algebraic graph transformation frameworks known as Double-
Pushout (DPO) [26, 24, 17, 34] and Single-Pushout (SPO) rewriting [32, 35, 38]. In the setting of the
rewriting of graph-like structures, the distinguishing feature of the aforementioned DPO-type rewriting
is that the deletion of vertices with incident edges is only possible if the incident edges are explicitly
deleted via the application of the rewriting rule. In contrast, in both the SqPO and the SPO rewriting
setups, “deletion in unknown context” is implementable. Thus for practical applications of rewriting,
in particular in view of the modeling of stochastic rewriting systems, the S(q)PO rewriting semantics
provide an important additional option for the practitioners, and will thus in particular complement the
existing DPO-type associative rewriting and rule algebra framework as introduced in [3, 7]. Referring
the interested readers to [36] for a recent review and further conceptual details of the three approaches,
suffice it here to quote that SqPO and SPO rewriting via linear rules1 (defined as monic spans) and along
monomorphic matches effectively encode the same semantics of rewriting. We chose (by the preceding
argument without loss of expressivity) to develop the theory of associative rewriting within the SqPO
rather than the SPO setting, since the SqPO framework bears certain close technical similarities to the
DPO rewriting framework, which proved crucial in finding a strategy for the highly intricate proofs of
the concurrency and associativity theorems presented in this paper. While it is well-known (see e.g. Sec-
tion 5.1 of [16]) that DPO- and SqPO-type semantics coincide for certain special classes of linear rules
(essentially rules that do not delete vertices), and while these cases might provide some valuable cross-
checks of technical results to the experts, SqPO-type semantics is in its full generality a considerably
more intricate variant of semantics due to its inherent “mixing” of pushouts with final pullback comple-
ments. It should further be noted that we must impose a set of additional assumptions on the underlying

∗This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement No 753750.

1While non-linear rules in SqPO rewriting have interesting applications in their own right (permitting e.g. the cloning and
fusing of vertices in graphs), this most general case is left for future work.

http://dx.doi.org/10.4204/EPTCS.309.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

24 SqPO Rewriting: Concurrency, Associativity and Rule Algebra Framework

adhesive categories (see Assumption 1) in order to ensure certain technical properties necessary for our
concurrency and associativity theorems to hold. To the best of our knowledge, apart from some partial
results in the direction of developing a concurrency theorem for SqPO-type rewriting in [16, 36, 15],
prior to this work neither of the aforementioned theorems had been available in the SqPO framework.

Associativity of SqPO rewriting theories plays a pivotal role in our development of a novel form
of concurrent semantics for these theories, the so-called SqPO-type rule algebras. Previous work on
associative DPO-type rewriting theories [3, 5, 7] (see also [8]) has led to a category-theoretical under-
standing of associativity that may be suitably extended to the SqPO setting. In contrast to the traditional
and well-established formalisms of concurrency theory for rewriting systems (see e.g. [42, 25, 23, 15]
for DPO-type semantics and [16, 15] for a notion of parallel independence and a Local Church-Rosser
theorem for SqPO-rewriting of graphs), wherein the focus of the analysis is mostly on derivation traces
and their sequential independence and parallelism properties, the focus of our rule-algebraic approach
differs significantly: we propose instead to put sequential compositions of linear rules at the center of the
analysis (rather than the derivation traces), and moreover to employ a vector-space based semantics in
order to encode the non-determinism of such rule compositions. It is for this reason that the concurrency
theorem plays a quintessential role in our rule algebra framework, in that it encodes the relationship
between sequential compositions of linear rules and derivation traces, which in turn gives rise to the so-
called canonical representations of the rule algebras (see Section 4). This approach in particular permits
to uncover certain combinatorial properties of rewriting systems that would otherwise not be accessible.
While undoubtedly not a standard technique in the realm of theoretical computer science, certain special
examples of rule algebras are ubiquitous in many areas of applied mathematics and theoretical physics.
The most famous such example concerns the so-called Heisenberg-Weyl algebra (see e.g. [9, 10, 11]),
which is well-known to possess a representation in terms of the formal multiplication operator x̂ and the
differentiation operator ∂x on formal power series in the formal variable x, with x̂ xn := xn+1 and ∂x acting
as the derivative. Referring the interested readers to Example 2 (see also [7, 4]) for the precise details, it
transpires that the monomials xn (for n a non-negative integer) are found to be in one-to-one correspon-
dence with graph states associated to n-vertex discrete graphs, while x̂ and ∂x may be understood as the
canonical representations of the discrete graph rewriting rules of creation and deletion of vertices. It will
thus come as no surprise that considering more general rewriting rules than those of discrete graphs will
lead to a very substantial generalization of these traditional results and techniques.

From the very beginning of the development of the rule algebra framework [3], one of our main
motivations has been the study of stochastic rewriting systems, whence of continuous-time Markov
chains (CTMCs) based upon DPO- or SqPO-type rewriting rules. While previously in particular ap-
plications of stochastic SqPO-type rewriting systems have played a role predominantly in highly spe-
cialized settings such as e.g. the formulation of the biochemical reaction system framework known as
KAPPA [20, 21, 19, 18], our novel approach of formulating such systems in terms of associative unital
rule algebras may very well open this versatile modeling technique to many other areas of applied re-
search. In conjunction with our previously developed DPO-type framework in [7], one could argue that
our stochastic mechanics frameworks are in a certain sense a universal construction, in that once a se-
mantics for associative unital rewriting is provided, the steps necessary to obtain the associated CTMCs
are clearly formalized. It is interesting to compare the traditional approaches to stochastic rewriting sys-
tems with CTMC semantics such as [31, 30] in the DPO- and [29] in the SPO-settings to our present
reformulation in terms of rule algebras. The former approaches yet again tend to focus on derivation
traces of stochastic rewriting systems, while our rule-algebraic approach aims to extract dynamical in-

N. Behr 25

formation from stochastic rewriting systems via analysis of certain combinatorial relationships (so-called
nested commutators) of the infinitesimal generator of the CTMC with the (pattern-counting) observables
of the system. It is via these relations that one may in certain cases obtain exact closed-form solutions
for such dynamical data (see e.g. Section 6). It would nevertheless be an intriguing avenue for future
research to understand better the finer points of the “traditional” stochastic rewriting frameworks (which
also feature sophisticated developments in terms of probabilistic model-checking and various types of
stochastic logics), and furthermore whether or not rule-algebraic techniques might be of interest also in
more general stochastic rewriting semantics such as probabilistic (timed) graph transformations [33, 40].

Structure of the paper: In Section 2, some category-theoretical background material is provided. The
key results of associativity and concurrency of SqPO rewriting are presented in Section 3, followed
by the construction of SqPO-type rule algebras in Section 4. The second part of the paper contains
the stochastic mechanics framework (Section 5) as well as a practical application example (Section 6).
Technical proofs are situated in the Appendix.

2 Background: adhesive categories and final pullback complements

We recall some of the elementary definitions and properties related to the notions of adhesive categories,
upon which our framework will rely.

Definition 1 ([34]). A category C is said to be adhesive if

(i) C has pushouts along monomorphisms,

(ii) C has pullbacks,

(iii) pushouts along monomorphisms are van Kampen (VK) squares.

The last property entails that in a commutative cube as in (1) on the left where the bottom square is a
pushout, this square is a VK square if and only if whenever the back and right vertical faces are pullbacks,
then the top square is a pushout if and only if the front and left vertical squares are pullbacks.

A′ C′

D′ B′

A C

D B

A B1

B2 D

E

b2

b1

(A) c1 d1

c2

d2

x

P
B A

C D
Q

x

w

yc (B)

a

b

d

z

w∗

(1)

We will be exclusively interested in categories that satisfy certain finiteness properties (in order to ensure
finiteness of the sets of matches for rule applications and compositions, see Section 3):

Definition 2 (Finitary categories [12]). A category C is said to be finitary if every object X ∈ obj(C)
has only finitely many subobjects (i.e. if there only exist finitely many monomorphisms Y → X up to
isomorphism for every X ∈ obj(C)). For every adhesive category C, the restriction to finite objects of C
defines a full subcategory C f in called the finitary restriction of C.

Theorem 1 (Finitary restrictions; [12], Thm. 4.6). The finitary restriction C f in of any adhesive category
C is a finitary adhesive category.

26 SqPO Rewriting: Concurrency, Associativity and Rule Algebra Framework

Adhesive categories have been introduced and advocated in [34] as a framework for rewriting due to
their numerous useful properties, some of which are listed in Appendix A for the reader’s convenience.
One of the central concepts in the theory of SqPO rewriting is the following:

Definition 3 (Final Pullback Complement (FPC); [16, 36]). Let C be a category. Given a commutative
diagram as in (1) on the right, a pair of morphisms (d,b) is a final pullback complement (FPC) of a pair
(c,a) if (i) (a,b) is a pullback of (c,d) (i.e. if the square marked (B) is a pullback square), and (ii) for
each collection of morphisms (x,y,z,w) as in (1) on the right, where (x,y) is pullback of (c,z) and where
a◦w = x, there exists a unique morphism w∗ with d ◦w∗ = z and w∗ ◦ y = b◦w.

For our associative rewriting framework, it will be crucial to work with a category in which (i)
FPCs are guaranteed to exist when constructing them for composable pairs of monomorphisms, and
(ii) monomorphisms are stable under FPCs, i.e. FPCs of pairs of monomorphisms are given by pairs of
monomorphisms. This property is satisfied by adhesive categories (cf. Lemma 3 of Appendix A), yet to
the best of our knowledge the question of which more general types of categories possess this property
has not yet been investigated to quite the level of generality as analogous classification problems in the
case of DPO rewriting, even though there does exist a large body of work on classes of categories that
admit SqPO constructions [16, 39, 36, 14, 37]. Within these classes, according to [13, 14] guarantees
for the existence of FPCs may be provided for categories that possess a so-called M -partial map clas-
sifier. However, it appears to be an open question of whether the statement of Lemma 3 on stability of
monomorphisms under FPCs may be generalized to the setting of M -adhesive categories, where M is a
class of monomorphisms. Relaying such questions to future work, we refer to Lemma 4 of Appendix A
for a well-known instantiation of a suitable categorical setting from the SqPO literature in the form of the
category FinGraph of finite directed multigraphs, which also serves to illustrate the FPC construction.

Assumption 1. C is an adhesive category in which all FPCs along monomorphisms exist, and in which
monomorphisms are stable under FPCs.

3 Sesqui-Pushout rewriting

We will now develop a framework for Sesqui-Pushout (SqPO) rewriting in the setting of a category
C satisfying Assumption 1, in close analogy to the framework of associative Double-Pushout (DPO)
rewriting as introduced in [7, 8]. Unlike in the general setting of SqPO rewriting, we will thus be able to
not only prove a concurrency theorem (Section 3.1), but also an associativity property of the SqPO-type
rule composition (Section 3.2).

3.1 Concurrent composition and concurrency theorem

For reasons that will become more transparent when introducing the SqPO-type rule algebra framework
starting from Section 4, we opt for a non-standard convention of reading spans of monomorphisms
“from right to left” (rather than the traditional “left to right”), which is why we will speak of “input” and
“output” of rules rather than “left-” and “right hand sides” to avoid confusion.

Definition 4 (SqPO-type rewriting; compare [16], Def. 4). Let C be an adhesive category satisfying
Assumption 1. Denote by Lin(C) the set of (isomorphism classes2 of) so-called linear productions,

2Two productions O←K→ I and O′←K′→ I′ are defined to be isomorphic if there exist isomorphisms I→ I′, K→K′ and
O→ O′ that make the obvious diagram commute; we will not distinguish between isomorphic productions. As natural in this
category-theoretical setting, the constructions presented in the following are understood as defined up to such isomorphisms.

N. Behr 27

defined as the set of spans of monomorphisms,

Lin(C) := {p≡ (O o←− K i−→ I) | o, i ∈mono(C)}�∼= . (2)

Given an object X ∈ obj(C) and a linear production p ∈ Lin(C), we denote the set of SqPO-admissible
matches Msq

p (X) as the set of monomorphisms m : I → X . Then the diagram below is constructed by
taking the final pullback complement marked FPC followed by taking the pushout marked PO:

O K I

X ′ K X

m∗

o i

kPO FPC m

o′ i′

(3)

We write pm(X) := X ′ for the object “produced” by the above diagram. The process is called (SqPO-)

derivation of X along production p and admissible match m, and denoted pm(X)
SqPO⇐===
p,m

X .

Next, a notion of sequential composition of productions is introduced:

Definition 5 (SqPO-type concurrent composition). Let p1, p2 ∈ Lin(C) be two linear productions. Then
an overlap of the output object O1 of p1 with the input object I2 of p2, encoded as a span

m = (I2
m2←−M21

m1−→O1)

with m1,m2 ∈mono(C), is called an SqPO-admissible match of p2 into p1, denoted m ∈Msq
p2(p1), if the

square marked POC in (4) is constructible as a pushout complement (with the cospan I2
n2−→ N21

n1←− O1
obtained by taking the pushout marked PO). In this case, the remaining parts of the diagram are formed
by taking the final pullback complement marked FPC and the pushouts marked PO:

O2 K2 I2 M21 O1 K1 I1

O21 K2 N21 K1 I21

K21

n∗2

o2 i2

k2PO n2FPC

m2 m1

PO n1 POC

o1 i1

k1 PO n∗1
o′2 i′2 o′1 i′1

PBi′′2
o21=o′2◦i′′2

o′′1 i21=o′′1◦i′1

(4)

If m ∈Msq
p2(p1), we write p2

m
^ p1 ∈ Lin(C) for the composite of p2 with p1 along the admissible match

m, defined as
p2

m
^ p1 ≡ (O21

o21←− K21
i21−→ I21) . (5)

Due to stability of monomorphisms under pushouts, pullbacks and FPCs in the setting of a category
satisfying Assumption 1, all morphisms in Definitions 4 and 5 are guaranteed to be monomorphisms,
whence in particular the span p2

m
^ p1 is a span of monomorphisms and thus indeed an element of Lin(C).

At first sight, it might appear irritating that in the definition of the SqPO-type rule composition, the
right hand part of (4) involves a pushout complement (marked POC), while the left hand part of the
diagram in (4) features a final pullback complement (marked FPC). Intuitively, considering the case
of graph rewriting for concreteness, in a given sequential application of two productions, while the
application of the first production may lead to implicit edge deletions, the second production is incapable

28 SqPO Rewriting: Concurrency, Associativity and Rule Algebra Framework

of having any causal interaction with edges deleted by the first production. In contrast, the second
production may in a given sequential application very well implicitly delete edges present in the output
object of the first production, which explains the presence of the FPC in the defining equation (4). We
refer the interested readers to [5] for further intuitions attainable in terms of so-called rule diagrams for
presenting rule compositions. The justification for Definition 5 in the general case is provided via the
following concurrency theorem. Even though at least in certain specialized settings the “synthesis” part
of this theorem has been foreseen already in [36] (where it is also commented that a full concurrency
theorem for SqPO rewriting might be attainable), the following result appears to be new.

Theorem 2 (SqPO-type Concurrency Theorem). Let C be an adhesive category satisfying Assumption 1.
Let p1, p2 ∈ Lin(C) be two linear rules and X0 ∈ ob(C) an object.

• Synthesis: Given a two-step sequence of SqPO derivations

X2
SqPO⇐===
p2,m2

X1
SqPO⇐===
p1,m1

X0 ,

with X1 := p1m1
(X0) and X2 := p2m2

(X1), there exists a SqPO-composite rule q = p2
n
^ p1 for a

unique n ∈Msq
p2(p1), and a unique SqPO-admissible match n ∈Msq

q (X), such that

qn(X)
SqPO⇐===

q,n
X0 and qn(X0)∼= X2 .

• Analysis: Given an SqPO-admissible match n ∈Msq
p2(p1) of p2 into p1 and an SqPO-admissible

match n ∈Msq
q (X) of the SqPO-composite q = p2

n
^ p1 into X, there exists a unique pair of SqPO-

admissible matches m1 ∈Msq
p1(X0) and m2 ∈Msq

p2(X1) with X1 := p1m1
(X0) such that

X2
SqPO⇐===
p2,m2

X1
SqPO⇐===
p1,m1

X0 and X2 ∼= qn(X) .

Proof. See Appendix B.1.

3.2 Composition and associativity

The following theorem establishes that in analogy to the DPO rewriting setting of [7], also the sesqui-
pushout variant of rule compositions possesses a form of associativity property.

Theorem 3 (SqPO-type associativity theorem). Let C be an adhesive category satisfying Assumption 1.
Then the SqPO-composition operation .

.
^ . on linear productions of C is associative in the following

sense: given linear productions p1, p2, p3 ∈ Lin(C), there exists a bijective correspondence between
pairs of SqPO-admissible matches (m21,m3(21)) and (m32,m(32)1) such that

p3
m3(21)
^
(

p2
m21
^ p1

)
∼=
(

p3
m32
^ p2

) m(32)1
^ p1 . (6)

Proof. Intuitively, the associativity property in the SqPO case manifests itself in a form entirely analo-
gous to the DPO case [7], whereby the data provided along the path highlighted in orange below permits
to uniquely compute the data provided along the path highlighted in blue and vice versa (with both sets

N. Behr 29

of overlaps computing the same “triple composite” production that is encoded as the composition of the
three spans in the bottom front row):

O3 K3 I3 M32 O2 K2 I2 M21 O1 K1 I1

O3 K3 I3 M3(21) O21 K′2 N21 K′1 I21

O32 K′3 N32 K′′2 I32 M(32)1 O1 K1 I1

O321 K3 N3(21) K2 N(32)1 K1 I321

(7)

See Appendix B.2 for the precise technical details of the proof.

We invite the interested readers to compare the SqPO-type constructions presented here against those
contained in the extended journal version [8] of [7] for the DPO framework, since this might lend some
intuitions on the otherwise very abstract nature of the proofs to the experts.

4 From associativity to SqPO-type rule algebras

For the rule algebra constructions, we will require an additional structure:
Definition 6 (Initial objects). An object∅∈ obj(C) of some category C is said to be a strict initial object
if for every object X ∈ obj(C), there exists a unique morphism∅→ X , and if any morphism X→∅must
be an isomorphism.

For example, the category Graph and its finitary restriction FinGraph possess a strict initial object
(the empty graph). For the experts, it appears worthwhile noting the following result:
Lemma 1 (Extensive categories; [34], Lem. 4.1). An adhesive category C is an extensive category3 if
and only if it possesses a strict initial object.
Assumption 2 (Prerequisites for SqPO-type rule algebras). We assume that C is an adhesive category
satisfying Assumption 1, and which is in addition finitary and possesses a strict initial object∅∈ obj(C).
Definition 7 (SqPO-type rule algebras). Let δ : Lin(C)→RC be defined as an isomorphism from Lin(C)
to the basis of a free R-vector space RC ≡ (RC,+, ·), such that4

RC := spanR({δ (p) | p ∈ Lin(C)}) . (8)

In order to clearly distinguish between elements of Lin(C) and basis vectors of RC, we introduce the
notation

(O
p⇐ I) := δ

(
O o←− K i−→ I

)
. (9)

Define the SqPO rule algebra product �RC on a category C that satisfies Assumption 2 as the binary
operation

�RC : RC×RC→RC : (R2,R1) 7→ R2�RC R1 , (10)

where for two basis vectors Ri = δ (pi) encoding the linear rules pi ∈ Lin(C) (i = 1,2),

R2�RC R1 := ∑
m∈Msq

p2 (p1)

δ

(
p2

m
^ p1

)
. (11)

3For the purposes of this paper, it suffices to consider the “if” direction as a definition of extensivity, since the relevant
structure to our constructions is that of having a strict initial object (see e.g. [34] for the precise definition of extensivity).

4Recall that for a set A, the notation spanR({e(a) | a ∈ A}) entails to “take the R-span over basis vectors e(a) indexed by
elements of A”, i.e. elements of the resulting R-vector space are (finite) linear combinations of the basis vectors e(a) with real
coefficients .

30 SqPO Rewriting: Concurrency, Associativity and Rule Algebra Framework

The definition is extended to arbitrary (finite) linear combinations of basis vectors by bilinearity, whence
for pi, p j ∈ Lin(C) and αi,β j ∈ R,(

∑
i

αi ·δ (pi)

)
�RC

(
∑

j
β j ·δ (p j)

)
:= ∑

i, j
(αi ·β j) · (δ (pi)�RC δ (p j)) . (12)

We call Rsq
C ≡ (RC,�RC) the SqPO-type rule algebra over the finitary adhesive and extensive category

C.
The rule algebra product R2�RC R1 for R j = δ (r j) (j = 1,2) thus encodes the non-determinism in

the SqPO-type sequential composition of the linear rule r2 with r1 in terms of the “sum over all possible
compositions”. As the following example illustrates, since δ is defined to map from isomorphism classes
of linear rules to basis vectors of RC, and since two distinct matches may lead to isomorphic composite
rules, R2�RC R1 typically evaluates to a linear combination of basis vectors δ (r) with integer coefficients:
Example 1. Let C = FinGraph be the category of finite directed multigraphs, with ∅ the empty graph.
Then with �≡�RC , we find for example

δ (∅←↩∅ ↪→)�δ (←↩∅ ↪→∅)
= ∑

m∈{(←↩∅↪→),(←↩ ↪→),
(←↩ ↪→)}

δ

(
(∅←↩∅ ↪→)

m
^ (←↩∅ ↪→∅)

)
= δ (←↩∅ ↪→)+2δ (←↩∅ ↪→∅) .

(13)

The result of the composition thus captures the combinatorial insight that there are two contributions
that evaluate to an isomorphic rule algebra element. More generally, one finds the following structure of
compositions of rule algebra elements based upon “discrete” graph rewriting rules: letting •]n denote
the n-vertex graph without edges (for n≥ 0), one finds (for p,q,r,s≥ 0)

δ (•] p←↩∅ ↪→•]q)�δ (•] r←↩∅ ↪→•] s)

=
min(q,r)

∑
k=0

k!
(

q
k

)(
r
k

)
δ (•] (p+r−k)←↩∅ ↪→•] (q+s−k)) .

(14)

This result is further interpreted in Example 2.
Theorem 4 (Properties of Rsq

C). For every category C satisfying Assumption 2, the associated SqPO-
type rule algebra Rsq

C ≡ (RC,�RC) is an associative unital algebra, with unit element R∅ := (∅⇐∅).
(Proof: Appendix B.3)

For the unital and associative SqPO-type rule algebras, one may provide a notion of representations
in analogy to the DPO-type case (compare [3, 7]):
Definition 8 (Canonical representation of Rsq

C). Let C be a category satisfying Assumption 2, with a
strict initial object ∅ ∈ ob(C), and let Rsq

C be its associated rule algebra of SqPO type. Denote by Ĉ the
free R-vector space spanned by basis vectors |X〉 indexed by isomorphism classes of objects,

Ĉ := spanR ({|X〉|X ∈ obj(C)∼=})≡ (Ĉ,+, ·) . (15)

Then the canonical representation ρ
sq
C : Rsq

C → EndR(Ĉ) of Rsq
C is defined as a morphism from the

SqPO-type rule algebra Rsq
C to endomorphisms of Ĉ, with

ρ
sq
C (δ (p)) |X〉 :=

{
∑m∈Msq

p (X) |pm(X)〉 if Msq
p (X) 6= /0

0Ĉ otherwise,
(16)

N. Behr 31

and extended to arbitrary elements of Rsq
C and of Ĉ by linearity.

Example 2. Extending Example 1, letting ρ ≡ ρ
sq
FinGraph, note first that by definition for all (isomorphism

classes of) finite multigraphs G ∈ obj(FinGraph)∼=, |G〉= ρ(δ (G←↩∅ ↪→∅)) |∅〉. With

D̂ := ρ(δ (∅←↩∅ ↪→)) , X̂ := ρ(δ (←↩∅ ↪→∅)) , |n〉 :=
∣∣•]n〉(n≥ 0) , (17)

as a consequence of (14) of Example 1 one may verify that

D̂ |0〉= 0 ̂FinGraph , D̂ |n〉= n |n−1〉 (n > 0) , X̂ |n〉= |n+1〉 . (18)

In other words, the data of (17) and (18) furnishes a representation of the famous Heisenberg-Weyl alge-
bra that is of fundamental importance in combinatorics and physics (see e.g. [9, 10, 11]). An alternative
such representation is given by the linear operators x̂ (multiplication by x) and ∂x (derivation by x) act-
ing on the R-vector space spanned by monomials xn, which reproduces equations isomorphic to (17)
and (18), with ∂xxn = nxn−1 and x̂xn = xn+1. However, the action of D̂ and X̂ is of course defined on all
states |G〉 with G ∈ obj(FinGraph), so that we may e.g. compute the following “derivative of a graph”:

D̂ | 〉= 2 | 〉+ | 〉 (19)

The following theorem states that ρ
sq
C as given in Definition 8 is indeed a homomorphism (and thus

qualifies as a representation of Rsq
C).

Theorem 5 (SqPO-type canonical representation). For a category C satisfying Assumption 2, ρ
sq
C :

Rsq
C → End(Ĉ) of Definition 8 is a homomorphism of unital associative algebras. (Proof: Appendix B.4)

5 Applications of SqPO-type rule algebras to stochastic mechanics

In practical applications of stochastic rewriting systems, the type of rewriting semantics presents one of
the key design choices. For example, if in a given situation a stochastic graph rewriting system should be
implemented, choosing DPO- vs. SqPO-type rewriting entails two entirely different semantics in terms
of the behavior of vertex deletion rules: in the former case, vertices may only be deleted if also all its
incident edges are explicitly deleted as well, while in the latter case no such restriction applies (i.e. an
application of a vertex deletion rule “automatically” leads to the deletion of all incident edges). Evidently,
such fundamentally different behavior at the level of rewriting rules will also have strong influence on the
dynamical behavior of the associated stochastic rewriting systems, whence it is of considerable practical
interest to have a universal implementation of such systems available in both formalisms. We begin by
specializing the general definition of continuous-time Markov chains (see e.g. [41, 1]) to the setting of
SqPO-type rewriting systems in close analogy to [3, 6, 7].

Definition 9 (Continuous-time Markov Chains (CTMCs); compare [7], Def. 7.1). Let C be a category
satisfying Assumption 2, and which in addition possesses a countable set of isomorphism classes of
objects obj(C)∼=. Let Ĉ denote the free R-vector space introduced in Definition 8. We define the space
Prob(C) as the space of sub-probability distributions in the following sense:

Prob(C) :=

{
|Ψ〉= ∑

o∈obj(C)∼=

ψo |o〉
∣∣∣∣∣∀o ∈ obj(C)∼= : ψo ∈ R≥0∧ ∑

o∈obj(C)∼=

ψo ≤ 1

}
(20)

Let Stoch(C) := EndR(Prob(C)) be the space of endomorphisms of Prob(C), with elements referred
to as sub-stochastic operators. Then a continuous-time Markov chain (CTMC) is specified in terms of

32 SqPO Rewriting: Concurrency, Associativity and Rule Algebra Framework

a tuple of data (|Ψ(0)〉 ,H), where |Ψ(0)〉 ∈ Prob(C) is the initial state, and where H ∈ EndR(SC) is
the infinitesimal generator or Hamiltonian of the CTMC (with SC the space of real-valued sequences
indexed by elements of obj(C)∼= and with finite coefficients). H is required to be an infinitesimal (sub-)
stochastic operator, which entails that for H ≡ (ho,o′)o,o′∈obj(C)∼= and for all o,o′ ∈ obj(C)∼=,

(i) ho,o ≤ 0 , (ii)∀o 6= o′ : ho,o′ ≥ 0 , (iii) ∑
o′

ho,o′ = 0 . (21)

Then this data encodes the evolution semi-group E : R≥0→ Stoch(C) as the (point-wise minimal non-
negative) solution of the Kolmogorov backwards or master equation:

d
dt E (t) = HE (t) , E (0) = 1Stoch(C)⇒ ∀t, t ′ ∈ R≥0 : E (t)E (t ′) = E (t + t ′) (22)

Consequently, the time-dependent state |Ψ(t)〉 of the system is given by

∀t ∈ R≥0 : |Ψ(t)〉= E (t) |Ψ(0)〉 . (23)

An important technical aspect of the above definition of CTMCs is the definition of the relevant space
of (sub-)probability distributions in interaction with the definition of the infinitesimal generator H and
of the space SC. Some remarks on this interaction and a short explanation of the relevant mathematical
concepts are provided in Appendix B.5.

Our main approach in studying CTMCs based on rewriting systems will consist in analyzing the
dynamical statistical behavior of so-called observables:

Definition 10 (Observables; [7], Def. 7.1). Let OC ⊂ EndR(SC) denote the space of observables, defined
as the space of diagonal operators5,

OC := {O ∈ EndR(SC) | ∀X ∈ obj(C)∼= : O |X〉= ωO(X) |X〉 , ωO(X) ∈ R} . (24)

We furthermore define the so-called projection operation 〈| : SC → R via extending by linearity the
definition of 〈| acting on basis vectors of Ĉ,

∀X ∈ obj(C)∼= : 〈 |X〉 := 1R . (25)

These definitions induce a notion of correlators of observables (also referred to as (mixed) moments),
defined for O1, . . . ,On ∈ OC and |Ψ〉 ∈ Prob(C) as

〈O1, . . . ,On〉|Ψ〉 := 〈|O1, . . . ,On |Ψ〉= ∑
X∈obj(C)∼=

ψX ·ωO1(X) · · ·ωOn(X) . (26)

The precise relationship between the notions of CTMCs and SqPO-type rewriting rules as encoded in
the corresponding SqPO-type rule algebra formalism is established in the form of the following theorem,
where in particular the notion of observables is quite different in nature to the DPO-type analogon (com-
pare Thm. 7.12 of [7]). This result is the first-of-its-kind universal definition of SqPO-type stochastic
rewriting systems with “mass-action semantics” (where activities of productions are proportional to their
number of admissible matches in a given system state).

5Depending on the concrete case, the eigenvalue ωO(X) in O |X〉= ωO(X) |X〉 may e.g. coincide with the number of occur-
rences of a pattern in the object X (see also Appendix B.5).

N. Behr 33

Theorem 6 (SqPO-type stochastic mechanics framework). Let C be a category satisfying Assumption 2.
Let {(O j

p j⇐ I j) ∈Rsq
C } j∈J be a (finite) set of rule algebra elements, and {κ j ∈ R≥0} j∈J a collection

of non-zero parameters (called base rates). Then one may construct the Hamiltonian H of the associated
CTMC from this data according to

H := Ĥ + H̄ , Ĥ := ∑
j∈J

κ j ·ρsq
C

(
O j

p j⇐ I j

)
, H̄ :=− ∑

j∈J
κ j ·Osq

I j
. (27)

Here, the notation Osq
M for arbitrary objects M ∈ obj(C) denotes the observables (sometimes referred to

as motif counting observables) for the resulting CTMC of SqPO-type, with

Osq
M := ρ

sq
C

(
δ

(
M idM←−−M idM−−→M

))
. (28)

We furthermore have the SqPO-type jump-closure property, whereby for all (O
p⇐ I) ∈Rsq

C

〈|ρsq
C (O

p⇐ I) = 〈|Osq
I . (29)

Proof. See Appendix B.5.

6 Application example: a dynamical random graph model

In order to illustrate our novel SqPO-type stochastic mechanics framework, let us consider a dynamical
system evolving on the space of finite directed multigraphs.

Example 3. Let FinGraph be the finitary restriction of the category Graph (see also Lemma 4), and de-
note by ∅ ∈ FinGraph the strict initial object (the empty graph). We define a stochastic SqPO rewriting
system based upon rules encoding vertex creation/deletion (v±) and edge creation/deletion (e±):

v+ := (←∅→∅) v− := (∅←∅→)

e+ := (← →) e− := (← →)
(30)

Together with a choice of base rates ν±,ε± ∈ R≥0 and an initial state |Ψ(0)〉 ∈ Prob(FinGraph), this
data defines a stochastic rewriting system with Hamiltonian H := Ĥ + H̄,

Ĥ = ν+V++ν−V−+ ε+E++ ε−E−
H̄ =−ν+O∅−ν−O − ε+O − ε−O ,

(31)

where V± := ρ
sq
FinGraph(δ (v±)) and E± := ρ

sq
FinGraph(δ (e±)).

Despite the apparent simplicity of this model (which might be seen as a paradigmatic example of a
random graph model), the explicit analysis via the stochastic mechanics framework will uncover a highly
non-trivial interaction of the dynamics of the vertex- and of the edge-counting observables. Intuitively,
since in SqPO-rewriting no conditions are posed upon vertices that are to be deleted, the model is ex-
pected to possess a vertex dynamics that is the one of a so-called birth-death process. If it were not for
the vertex deletions, one would find a similar dynamics for the edge-counting observables (compare e.g.
the DPO-type rewriting model considered in [7]). However, since deletion of vertices deletes all incident
edges, the dynamics of the edge-counting observable is rendered considerably more complicated, and in

34 SqPO Rewriting: Concurrency, Associativity and Rule Algebra Framework

particular much less evident to foresee by heuristic arguments.

In order to compute the dynamics of the vertex counting observable OV :=O , we follow the approach
of exponential moment-generating functions put forward in [3, 6, 4] and define

MV (t;λ) := 〈|eλOV |Ψ(t)〉 , (32)

with λ a formal variable. MV (t;λ) encodes the moments of the observable OV , in that taking the n-th
derivative of MV (t;λ) w.r.t. λ followed by setting λ → 0 yields the n-th moment of OV . Note that we
must assume the finiteness of all statistical moments as standard in the probability theory literature in
order for MV (t;λ) to be well-posed, a property that we will in the case at hand indeed derive explicitly.
Referring the interested readers to [8] for further details, suffice it here to recall the following variant
of the BCH formula (see e.g. [28], Prop. 3.35), for λ a formal variable and A,B two composable linear
operators,

eλABe−λA = eadλAB = ∑
n≥0

λ n

n!
ad◦nA (B) , adA(B) := AB−BA≡ [A,B] , (33)

with the convention that ad◦0A (B) := B. The operation [., .] is typically referred to as the commutator. We
may then derive the formal evolution equation for MV (t;λ):

∂

∂ t MV (t;λ) = 〈|eλOV H |Ψ(t)〉= 〈|
(

eλOV He−λOV
)

eλOV |Ψ(t)〉

= 〈|
(

eadλOV H
)

eλOV |Ψ(t)〉 .
(34)

Since by definition 〈|H = 0, it remains to compute the adjoint action adOV (H) of OV on H:

adOV (H) = ν+[OV ,V+]+ν−[OV ,V−]+ ε+[OV ,E+]+ ε−[OV ,E−]

= ν+V+−ν−V−
(35)

Here, the result that [OV ,E±] = 0 has a very simple intuitive meaning: in applications of the linear rules
e±, the number of vertices remains unchanged, whence the vanishing of the commutator. Combining
these results with the SqPO-type jump-closure property (cf. Theorem 6), we finally arrive at the following
formal evolution equation for MV (t;λ):

∂

∂ t MV (t;λ) = ν+

(
eλ −1

)
〈|V+eλOV |Ψ(t)〉+ν−

(
e−λ −1

)
〈|V−eλOV |Ψ(t)〉

(29)
= ν+

(
eλ −1

)
〈|eλOV |Ψ(t)〉+ν−

(
e−λ −1

)
〈|OV eλOV |Ψ(t)〉

=
(

ν+

(
eλ −1

)
+ν−

(
e−λ −1

)
∂

∂λ

)
MV (t;λ) .

(36)

Supposing for simplicity an initial state |Ψ(0)〉 = |G0〉 (for G0 ∈ obj(Graph f in) some graph with NV

vertices and NE edges), we find that MV (0;λ) = exp(λNV). The resulting initial value problem may
be solved in closed-form via semi-linear normal-ordering techniques known from the combinatorics
literature [22, 9, 11, 6] (see also [8, 4]), and we obtain (for t ≥ 0)

MV (t;λ) = exp
(

ν+

ν−
(eλ −1)(1− e−ν−t)

)(
1+(eλ −1)e−ν−t

)NV
. (37)

In the limit t → ∞, the moment-generating function becomes that of a Poisson-distribution (of param-
eter ν+/ν−), thus confirming the aforementioned intuition that the vertex-counting observable has the

N. Behr 35

dynamical behavior of a so-called birth-death process (see e.g. [6]).

Let us consider next the dynamics of the edge-counting observable OE := O , where for brevity
we will only consider the evolution of the mean edge count. The calculation of the evolution equation
for the expectation value of OE simplifies to the analogue of the so-called Ehrenfest equation,

∂

∂ t 〈|OE |Ψ(t)〉= 〈|OE H |Ψ(t)〉= 〈|
(
H OE +[OE ,H]

)
|Ψ(t)〉 . (38)

Recalling that 〈|H = 0, it remains to compute the commutator [OE ,H]:

[OE ,H] = ν+[OE ,V+]+ν−[OE ,V−]+ ε+[OE ,E+]+ ε−[OE ,V−]

= ν+ ·0−ν−(E
0,1
− +E1,0

−)+ ε+E+− ε−E−

E0,1
− = ρ

sq
FinGraph

(
δ

(
b
←

b
→

a b

))
E1,0
− = ρ

sq
FinGraph

(
δ

(
a
←

a
→

a b

))
.

(39)

This calculation is a representative example of various effects that may occur in rule-algebraic commu-
tation relations: we find a zero commutator [OE ,V+], indicating the fact that application of the vertex
creation rule V+ does not influence the edge count. The commutators [OE ,E±] = ±E± encode that
application of the edge creation/deletion rules leads to positive/negative contributions to the edge count.
Finally, the contribution of the commutator [OE ,V−] =−E0,1

− −E1,0
− is given by the representations of two

rule algebra elements not originally present in the Hamiltonian H, with the structure of the underlying
linear rules indicated by the labels a and b on the vertices (as customary in the rewriting literature). It then
remains to apply the jump-closure property (Theorem 6) together with the identity O = OV (OV −1) in
order to obtain the evolution equation

∂

∂ t 〈|OE |Ψ(t)〉= ε+ 〈|OV (OV −1) |Ψ(t)〉− (ε−+2ν−)〈|OE |Ψ(t)〉 . (40)

Together with an initial condition such as e.g. |Ψ(0)〉= |G0〉 for some (finite) directed graph G0 with NV

vertices and NE edges, and computing the closed-form expression for the first contribution in (40) from
our previous solution (37) (as ∂λ (∂λ −1)MV (t;λ) followed by setting λ → 0), the initial value problem
for the mean edge count evolution may be easily solved in closed form via the use of a computer algebra
software such as MAPLE, MATHEMATICA or SAGE. It is also straightforward to verify that for an
arbitrary initial state |Ψ(0)〉= |G0〉, the limit value of the mean edge count for t→ ∞ reads

lim
t→∞
〈|OE |Ψ(t)〉= ν2

+ε+

ν2
−(2ν−+ε−)

. (41)

Since the rates ν± and ε± are free parameters, the above result entails that in this model one may freely
adjust the limit value of the average vertex count as encoded in (36) (whence ν+/ν−) as well as the limit
value of the average edge count via suitable choices of the parameters ε±. For illustration, we present
some plots of the mean edge count evolution for the case |Ψ(0)〉= |∅〉 and various choices of parameters
in Figure 1.

7 Conclusion and Outlook

Extending our previous work on Double-Pushout (DPO) rewriting theories as presented in [3, 7, 4] to
the important alternative setting of Sesqui-Pushout (SqPO) rewriting, we provide a number of original

36 SqPO Rewriting: Concurrency, Associativity and Rule Algebra Framework

� � � � �

��

���

���

���

Figure 1: Time-evolution of 〈|OE |Ψ(t)〉 for |Ψ(0)〉= |∅〉.

results in the form of concurrency and associativity theorems for SqPO rewriting theories on adhesive
categories. These fundamental results in turn permit us to formulate so-called SqPO-type rule algebras,
which play a central role in our novel universal stochastic mechanics framework. We strongly believe
that these contributions will provide fruitful grounds for further developments both in theory and practice
of rewriting beyond the specialists’ communities, especially in view of static analysis techniques [2].

References

[1] W.J. Anderson (1991): Continuous-Time Markov Chains. Springer New York, doi:10.1007/978-1-4612-
3038-0.

[2] N. Behr (2019): Tracelets and Tracelet Analysis Of Compositional Rewriting Systems. arXiv preprint
arXiv:1904.12829.

[3] N. Behr, V. Danos & I. Garnier (2016): Stochastic mechanics of graph rewriting. In: Proceedings
of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science - LICS ’16, ACM Press,
doi:10.1145/2933575.2934537.

[4] N. Behr, V. Danos & I. Garnier (2019): Combinatorial Conversion and Moment Bisimulation for Stochastic
Rewriting Systems. arXiv preprint 1904.07313.

[5] N. Behr, V. Danos, I. Garnier & T. Heindel (2016): The algebras of graph rewriting. arXiv:1612.06240.

[6] N. Behr, G.H.E. Duchamp & K.A. Penson (2017): Combinatorics of Chemical Reaction Systems.
arXiv:1712.06575.

[7] N. Behr & P. Sobocinski (2018): Rule Algebras for Adhesive Categories. In Dan Ghica & Achim Jung,
editors: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018), Leibniz International
Proceedings in Informatics (LIPIcs) 119, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Ger-
many, pp. 11:1–11:21, doi:10.4230/LIPIcs.CSL.2018.11.

[8] N. Behr & P. Sobocinski (2019): Rule Algebras for Adhesive Categories (invited extended journal version).
arXiv preprint 1807.00785v2.

[9] P. Blasiak, G.H.E. Duchamp, A. Horzela, K.A. Penson & A.I. Solomon (2005): Boson normal
ordering via substitutions and Sheffer-Type Polynomials. Physics Letters A 338(2), pp. 108–116,
doi:10.1016/j.physleta.2005.02.028.

http://dx.doi.org/10.1007/978-1-4612-3038-0
http://dx.doi.org/10.1007/978-1-4612-3038-0
https://arxiv.org/abs/1904.12829
https://arxiv.org/abs/1904.12829
http://dx.doi.org/10.1145/2933575.2934537
https://arxiv.org/abs/1904.07313
https://arxiv.org/abs/1612.06240
https://arxiv.org/abs/1712.06575
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.11
https://arxiv.org/abs/1807.00785v2
http://dx.doi.org/10.1016/j.physleta.2005.02.028

N. Behr 37

[10] P. Blasiak, G.H.E. Duchamp, A. Horzela, K.A. Penson & A.I. Solomon (2010): Combinatorial Algebra for
second-quantized Quantum Theory. Advances in Theoretical and Mathematical Physics 14(4), pp. 1209–
1243, doi:10.4310/atmp.2010.v14.n4.a5.

[11] P. Blasiak & P. Flajolet (2011): Combinatorial Models of Creation-Annihilation. Séminaire Lotharingien de
Combinatoire 65(B65c), pp. 1–78.

[12] B. Braatz, H. Ehrig, K. Gabriel & U. Golas (2010): Finitary M -Adhesive Categories. In H. Ehrig,
A. Rensink, G. Rozenberg & A. Schürr, editors: Graph Transformations (ICGT 2010), Lecture Notes in
Computer Science 6372, Springer, Berlin, Heidelberg, pp. 234–249, doi:10.1007/978-3-642-15928-2 16.

[13] J.R.B. Cockett & S. Lack (2003): Restriction categories II: partial map classification. Theoretical Computer
Science 294(1-2), pp. 61–102, doi:10.1016/s0304-3975(01)00245-6.

[14] A. Corradini, D. Duval, R. Echahed, F. Prost & L. Ribeiro (2015): AGREE – Algebraic Graph Rewriting with
Controlled Embedding. In Francesco Parisi-Presicce & Bernhard Westfechtel, editors: Graph Transformation
(ICGT 2015), Lecture Notes in Computer Science 9151, Springer International Publishing, Cham, pp. 35–51,
doi:10.1007/978-3-319-21145-9 3.

[15] A. Corradini, D. Duval, M. Löwe, L. Ribeiro, R. Machado, A. Costa, G. Grochau Azzi, J. Santos Bezerra
& L. Marques Rodrigues (2018): On the Essence of Parallel Independence for the Double-Pushout and
Sesqui-Pushout Approaches. In R. Heckel & G. Taentzer, editors: Graph Transformation, Specifications,
and Nets, Lecture Notes in Computer Science 10800, Springer International Publishing, Cham, pp. 1–18,
doi:10.1007/978-3-319-75396-6 1.

[16] A. Corradini, T. Heindel, F. Hermann & B. König (2006): Sesqui-Pushout Rewriting. In A. Corradini,
H. Ehrig, U. Montanari, L. Ribeiro & G. Rozenberg, editors: Graph Transformations (ICGT 2006), Lecture
Notes in Computer Science 4178, Springer, Berlin, Heidelberg, pp. 30–45, doi:10.1007/11841883 4.

[17] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel & M. Löwe (1997): Algebraic Approaches to
Graph Transformation - Part I: Basic Concepts and Double Pushout Approach. In: Handbook of Graph
Grammars and Computing by Graph Transformations, Volume 1: Foundations, World Scientific, pp. 163–
246, doi:10.1142/9789812384720 0003.

[18] V. Danos, J. Feret, W. Fontana, R. Harmer, J. Hayman, J. Krivine, C. Thompson-Walsh & G. Winskel
(2012): Graphs, Rewriting and Pathway Reconstruction for Rule-Based Models. In D. D’Souza,
T. Kavitha & J. Radhakrishnan, editors: IARCS Annual Conference on Foundations of Software Tech-
nology and Theoretical Computer Science (FSTTCS 2012), Leibniz International Proceedings in Infor-
matics (LIPIcs) 18, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp. 276–288,
doi:10.4230/LIPIcs.FSTTCS.2012.276.

[19] V. Danos, J. Feret, W. Fontana, R. Harmer & J. Krivine (2008): Rule-Based Modelling, Symmetries, Re-
finements. In Jasmin Fisher, editor: Formal Methods in Systems Biology (FMSB 2008), Lecture Notes in
Computer Science 5054, Springer, Berlin, Heidelberg, pp. 103–122, doi:10.1007/978-3-540-68413-8 8.

[20] V. Danos, J. Feret, W. Fontana, R. Harmer & J. Krivine (2010): Abstracting the Differential Semantics of
Rule-Based Models: Exact and Automated Model Reduction. In: 2010 25th Annual IEEE Symposium on
Logic in Computer Science, IEEE, doi:10.1109/lics.2010.44.

[21] V. Danos & C. Laneve (2004): Formal molecular biology. Theoretical Computer Science 325(1), pp. 69–110,
doi:10.1016/j.tcs.2004.03.065.

[22] G. Dattoli, P. L. Ottaviani, A. Torre & L. Vazquez (1997): Evolution operator equations: Integration with al-
gebraic and finite-difference methods: Applications to physical problems in classical and quantum mechanics
and quantum field theory. Riv. Nuovo Cim. 20N2, pp. 1–133, doi:10.1007/BF02907529.

[23] H. Ehrig, U. Golas, A. Habel, L. Lambers & F. Orejas (2014): M -adhesive transformation systems with
nested application conditions. Part 1: parallelism, concurrency and amalgamation. Mathematical Structures
in Computer Science 24(04), doi:10.1017/s0960129512000357.

http://dx.doi.org/10.4310/atmp.2010.v14.n4.a5
http://dx.doi.org/10.1007/978-3-642-15928-2_16
http://dx.doi.org/10.1016/s0304-3975(01)00245-6
http://dx.doi.org/10.1007/978-3-319-21145-9_3
http://dx.doi.org/10.1007/978-3-319-75396-6_1
http://dx.doi.org/10.1007/11841883_4
http://dx.doi.org/10.1142/9789812384720_0003
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.276
http://dx.doi.org/10.1007/978-3-540-68413-8_8
http://dx.doi.org/10.1109/lics.2010.44
http://dx.doi.org/10.1016/j.tcs.2004.03.065
http://dx.doi.org/10.1007/BF02907529
http://dx.doi.org/10.1017/s0960129512000357

38 SqPO Rewriting: Concurrency, Associativity and Rule Algebra Framework

[24] H. Ehrig, A. Habel, H.J. Kreowski & F. Parisi-Presicce (1991): Parallelism and concurrency in
high-level replacement systems. Mathematical Structures in Computer Science 1(3), pp. 361–404,
doi:10.1017/s0960129500001353.

[25] H. Ehrig, A. Habel, J. Padberg & U. Prange (2004): Adhesive High-Level Replacement Categories and
Systems. In H. Ehrig, G. Engels, F. Parisi-Presicce & G. Rozenberg, editors: Graph Transformations
(ICGT 2004), Lecture Notes in Computer Science 3256, Springer, Berlin, Heidelberg, pp. 144–160,
doi:10.1007/978-3-540-30203-2 12.

[26] H. Ehrig, M. Pfender & H. J. Schneider (1973): Graph-grammars: An algebraic approach. In: 14th Annual
Symposium on Switching and Automata Theory (SWAT 1973), IEEE, doi:10.1109/swat.1973.11.

[27] U. Golas, A. Habel & H. Ehrig (2014): Multi-amalgamation of rules with application con-
ditions in M -adhesive categories. Mathematical Structures in Computer Science 24(04),
doi:10.1017/s0960129512000345.

[28] B.C. Hall (2015): Lie Groups, Lie Algebras, and Representations. Springer International Publishing,
doi:10.1007/978-3-319-13467-3.

[29] R. Heckel (2005): Stochastic Analysis of Graph Transformation Systems: A Case Study in P2P Networks.
In D. Van Hung & M. Wirsing, editors: Theoretical Aspects of Computing (ICTAC 2005), Lecture Notes in
Computer Science 3722, Springer, Berlin, Heidelberg, pp. 53–69, doi:10.1007/11560647 4.

[30] R. Heckel, H. Ehrig, U. Golas & F. Hermann (2012): Parallelism and Concurrency of Stochastic Graph
Transformations. In H. Ehrig, G. Engels, H.J. Kreowski & G. Rozenberg, editors: Graph Transforma-
tions (ICGT 2012), Lecture Notes in Computer Science 7562, Springer, Berlin, Heidelberg, pp. 96–110,
doi:10.1007/978-3-642-33654-6 7.

[31] R. Heckel, G. Lajios & S. Menge (2004): Stochastic Graph Transformation Systems. In H. Ehrig, G. Engels,
F. Parisi-Presicce & G. Rozenberg, editors: Graph Transformations (ICGT 2004), Lecture Notes in Computer
Science 3256, Springer, Berlin, Heidelberg, pp. 210–225, doi:10.1007/978-3-540-30203-2 16.

[32] R. Kennaway (1990): Graph rewriting in some categories of partial morphisms. In H. Ehrig, H.J. Kreowski
& G. Rozenberg, editors: Graph Grammars and Their Application to Computer Science (Graph Grammars
1990), 532, Springer, Berlin, Heidelberg, pp. 490–504, doi:10.1007/bfb0017408.

[33] C. Krause & H. Giese (2012): Probabilistic Graph Transformation Systems. In H. Ehrig, G. Engels, H.J. Kre-
owski & G. Rozenberg, editors: Graph Transformations (ICGT 2012), Lecture Notes in Computer Science
7562, Springer, Berlin, Heidelberg, pp. 311–325, doi:10.1007/978-3-642-33654-6 21.

[34] S. Lack & P. Sobociński (2005): Adhesive and quasiadhesive categories. RAIRO - Theoretical Informatics
and Applications 39(3), pp. 511–545, doi:10.1051/ita:2005028.

[35] M. Löwe (1993): Algebraic approach to single-pushout graph transformation. Theoretical Computer Science
109(1-2), pp. 181–224, doi:10.1016/0304-3975(93)90068-5.

[36] M. Löwe (2015): Polymorphic Sesqui-Pushout Graph Rewriting. In F. Parisi-Presicce & B. Westfechtel, ed-
itors: Graph Transformation (ICGT 2015), Lecture Notes in Computer Science 9151, Springer International
Publishing, Cham, pp. 3–18, doi:10.1007/978-3-319-21145-9 1.

[37] M. Löwe (2018): Characterisation of Parallel Independence in AGREE-Rewriting. In L. Lambers & J. Weber,
editors: Graph Transformation (ICGT 2018), Lecture Notes in Computer Science 10887, Springer Interna-
tional Publishing, Cham, pp. 118–133, doi:10.1007/978-3-319-92991-0 8.

[38] M. Löwe, H. König & C. Schulz (2014): Polymorphic Single-Pushout Graph Transformation. In S. Gnesi
& A. Rensink, editors: Fundamental Approaches to Software Engineering (FASE 2014), Lecture Notes in
Computer Science 8411, Springer, Berlin, Heidelberg, pp. 355–369, doi:10.1007/978-3-642-54804-8 25.

[39] M. Löwe & M. Tempelmeier (2015): Single-Pushout Rewriting of Partial Algebras. GCM 2015 Graph
Computation Models, p. 82.

[40] M. Maximova, H. Giese & C. Krause (2018): Probabilistic timed graph transformation systems. Journal of
Logical and Algebraic Methods in Programming 101, pp. 110–131, doi:10.1016/j.jlamp.2018.09.003.

http://dx.doi.org/10.1017/s0960129500001353
http://dx.doi.org/10.1007/978-3-540-30203-2_12
http://dx.doi.org/10.1109/swat.1973.11
http://dx.doi.org/10.1017/s0960129512000345
http://dx.doi.org/10.1007/978-3-319-13467-3
http://dx.doi.org/10.1007/11560647_4
http://dx.doi.org/10.1007/978-3-642-33654-6_7
http://dx.doi.org/10.1007/978-3-540-30203-2_16
http://dx.doi.org/10.1007/bfb0017408
http://dx.doi.org/10.1007/978-3-642-33654-6_21
http://dx.doi.org/10.1051/ita:2005028
http://dx.doi.org/10.1016/0304-3975(93)90068-5
http://dx.doi.org/10.1007/978-3-319-21145-9_1
http://dx.doi.org/10.1007/978-3-319-92991-0_8
http://dx.doi.org/10.1007/978-3-642-54804-8_25
http://dx.doi.org/10.1016/j.jlamp.2018.09.003

N. Behr 39

[41] J. R. Norris (1997): Markov Chains. Cambridge University Press, doi:10.1017/cbo9780511810633.
[42] G. Rozenberg (1997): Handbook of Graph Grammars and Computing by Graph Transformations, Volume 1:

Foundations. World Scientific, doi:10.1142/9789812384720.

A A collection of useful technical results on adhesive categories and final
pullback complements

Notational convention: Here and as throughout this paper, while evidently category-theoretical con-
structions such as pushouts are only unique up to isomorphisms, we will typically nevertheless pick
convenient representatives of the respective isomorphism classes to simplify our notations. As standard
practice in the literature, we will thus e.g. fix the convention as in (42) to choose representatives appro-
priately to label the pushout along an isomorphism with “equality arrows” (rather than keeping object
labels generic and decorating the relevant arrow with a “∼=” symbol).

Lemma 2. Let C be a category.

(i) “Single-square” lemmata (see e.g. [8], Lem. 1.7): In any category, given commutative diagrams of
the form

A B

A B

f

(A)

f

A A

A B

(B) g

g

A B

A C

f

(C) g

g◦ f

, (42)

(a) (A) is a pushout for arbitrary morphisms f ,
(b) (B) is a pullback if and only if the morphism g is a monomorphism, and
(c) (C) is a pullback for arbitrary morphisms f if g is a monomorphism.

(ii) special adhesivity corollaries (cf. e.g. [23], Lemma 2.6): in any adhesive category,

(a) pushouts along monomorphisms are also pullbacks, and
(b) (uniqueness of pushout complements) given a monomorphism A ↪→ C and a generic mor-

phism C→ D, the respective pushout complement A→ B
b
↪−→ D (if it exists) is unique up to

isomorphism, and with b ∈mono(C) (due to stability of monomorphisms under pushouts).

(iii) “Double-square lemmata”: given commutative diagrams of the shapes

A B C

A′ B′ C′

a (1)

d

b (2)

e

c

d′ e′

Z Z′

Y Y ′

X X ′

w (3) w′

z

v (4)

y

v′

x

(43)

then in any category C (cf. e.g. [34]):

(a) Pullback-pullback (de-)composition: If (1) is a pullback, then (1)+ (2) is a pullback if and
only if (2) is a pullback.

(b) Pushout-pushout (de-)composition: If (2) is a pushout, then (1)+(2) is a pushout if and only
if (1) is a pushout.

If the category is adhesive:

http://dx.doi.org/10.1017/cbo9780511810633
http://dx.doi.org/10.1142/9789812384720

40 SqPO Rewriting: Concurrency, Associativity and Rule Algebra Framework

(c) pushout-pullback decomposition ([23], Lemma 2.6): If (1)+ (2) is a pushout, (1) is a pull-
back, and if d′ ∈ mono(C) and (c ∈ mono(C) or e ∈ mono(C)), then (1) and (2) are both
pushouts (and thus also pullbacks).

(d) pullback-pushout decomposition ([27], Lem. B.2): if (1)+ (2) is a pullback, (2) a pushout,
(1) commutes and a ∈mono(C), then (1) is a pullback.

(e) Horizontal FPC (de-)composition (cf. [16], Lem. 2 and Lem. 3, compare [36], Prop. 36):6 If
(1) is an FPC (i.e. if (d′,b) is FPC of (a,d)), then (1)+(2) is an FPC if and only if (2) is an
FPC.

(f) Vertical FPC (de-)composition (ibid): if (3) is an FPC (i.e. if (y.w′) is FPC of (w,z)), then
i. if (4) is an FPC (i.e. if (x,v′) is FPC of (v,y)), then (3)+(4) is an FPC (i.e. (x,v′ ◦w′)

is FPC of (v◦w,z));
ii. if (3)+(4) is an FPC (i.e. if (x,v′ ◦w′) is FPC of (v◦w,z)), and if (4) is a pullback, then

(4) is an FPC (i.e. (x,v′) is FPC of (v,y)).
(g) Vertical FPC-pullback decomposition (compare [36], Lem. 38): If v ∈ mono(C), if (4) is a

pullback and if (3)+ (4) is an FPC (i.e. if (x,v′ ◦w′) is FPC of (v ◦w,z)), then (3) and (4)
are FPCs.

(h) Vertical FPC-pushout decomposition7: If all morphisms of the squares (3) and (4) except v
are in mono(C), if v ◦w ∈ mono(C), if (3) is a pushout and if (3)+ (4) is an FPC (i.e. if
(x,v′ ◦w′) is FPC of (v◦w,z)), then (4) is an FPC and v ∈mono(C).

Proof. Referring to the references above for the proofs of the (well-known) statements (where neces-
sary by specializing the more general case of M -adhesive categories to the case of adhesive categories
via setting M to the class of all monomorphisms), it remains to prove our novel vertical FPC-pushout
decomposition result. To this end, we first invoke pullback-pushout decomposition (Lemma 2(3d)) in
order to demonstrate that since (3)+ (4) is an FPC and thus also a pullback, and since (3) is a pushout
and since x ∈ mono(C), (4) is a pullback. By applying vertical FPC-pullback decomposition, we may
conclude that (4) is an FPC. In order to demonstrate that v ∈mono(C), construct the commutative cube
below left:

Z Z′

Y Y ′

Z Z′

X X ′

z

w′w

v z

x

y

v′

Z Z′

Y Y ′

X

w
v◦w (3)

z

w′

v
y

v◦y

(44)

Since the bottom square is the FPC (and thus pullback) (3)+(4), and since the right square is a pullback
via Lemma 2(1c) (because v′ ∈mono(C)), by pullback composition the square �(Z′,Z,X ,Y ′) (the right
plus the bottom square) is a pullback. Thus assembling the commutative diagram as shown above right,

6It is worthwhile emphasizing that in these FPC-related lemmata, the “orientation” of the diagrams plays an important role.
Moreover, the precise identity of the pair of morphisms that plays the role of the final pullback complement in a given square
may be inferred from the “orientation” specified in the condition part of each statement.

7We invite the interested readers to compare the precise formulation of the vertical FPC-pushout decomposition result to its
concrete applications in the setting of the proof of the concurrency theorem, for which it has been specifically developed.

N. Behr 41

since by assumption (3) is a pushout and all arrows except v are monomorphisms, invoking Theorem 7
below permits to prove that also v ∈mono(C).

The last part of the preceding proof relied upon one of the quintessential properties of adhesive
categories in view of associative rewriting theories:

Theorem 7 (Effective unions; [34], Thm. 5.1). In an adhesive category C, given a commutative diagram
such as in the middle of (1), if all morphisms except the morphism x are monomorphisms, if the square
marked (A) is a pushout and if the exterior square is a pullback, then x is also a monomorphism.

The following result provides several important facts on FPCs.

Lemma 3 (cf. [36], Fact 2, and [16], Lemma 2 and Proposition 2). Let C be adhesive. For an arbitrary
morphism f : A→ B, (idB, f) is an FPC of (f , idA) and vice versa. Moreover, every pushout square along
monomorphisms is also an FPC square. FPCs are unique up to isomorphism and preserve monomor-
phisms. The latter property entails that if C d←− D b←− A is the FPC of C c←− B a←− A and if a ∈ mono(C),
then also d ∈ mono(C) and vice versa (while c ∈ mono(C) entails that b ∈ mono(C) by stability of
monomorphisms under pullbacks in an adhesive category C).

For concreteness, we quote the following explicit construction of FPCs in the category Graph of
directed multigraphs:

Lemma 4 (FPCs for graphs; [16], Sec. 4.1 and Construction 5). Let Graph denote the adhesive category
of directed multigraphs, with

• obj(Graph): (multi-)graphs, i.e. tuples G = (VG,EG,srcG : EG→VG, trgG : EG→VG), with VG the
set of vertices, EG the set of edges (with VG∩EG = /0), srcG the source and trgG the target maps

• mor(Graph): graph homomorphisms f : G→ H, specified in terms of pairs of morphisms (fV :
VG→VH , fE : EG→ EH) such that srcH ◦ fE = fV ◦ srcG and trgH ◦ fE = fV ◦ trgG.

Let mono(Graph) denote the class of all injective graph morphisms. Then for every composable pair of

monomorphisms K
i

↪−→ I
m
↪−→ X, the FPC exists and is constructed explicitly as8 K

m|K
↪−−→ K

⊆
↪−→ X, where ⊆−→

denotes an inclusion morphism, and where the graph K reads

VK =VX \m[VI \VK]

EK = {e ∈ EX \m[EI \EK]|srcX(e) ∈VK ∧ trgX(e) ∈VK} .
(45)

B Proofs

B.1 Proof of the SqPO concurrency theorem

Proof. Throughout this proof, in each individual constructive step it may be verified that due to the
stability of monomorphisms under pullbacks and pushouts, due to the various decomposition lemmata
provided in the form of Lemma 2, and on occasion due to Theorem 7 on effective unions in adhesive
categories, all morphisms induced in the “Synthesis” and “Analysis” steps are in fact monomorphisms.
For better readability, we will not explicitly mention the individual reasoning steps on this point except
for a few intricate sub-steps, since they may be recovered in a straightforward manner.

8The quoted Construction 5 of [16] is slightly more general, in that the morphism m may be permitted to not be a monomor-
phism; we will however have no application for such a generalization in our framework.

42 SqPO Rewriting: Concurrency, Associativity and Rule Algebra Framework

— Synthesis: Consider the setting presented in (46a). Here, we have obtained the candidate match
n = (I2←M21→O1) via pulling back the cospan (I2→X1←O1). Next, we construct N21 via taking
the pushout of n, which induces a unique arrow N21→X1 that is according to Theorem 7 a monomor-
phism. The diagram in (46b) is obtained by taking the pullbacks of the spans Ki → X1← N21 (ob-
taining the objects K′i , for i = 1,2). By virtue of pushout-pullback decomposition (Lemma 2(3c)), the
squares �(K′1,K1,X1,N21) and �(K1,K′1,N21,O1) are pushouts. Invoking vertical FPC-pullback decom-
position (Lemma 2(3g)), the squares �(K′2,N21,X1,K2) and �(K2, I2,N21,K′2) are FPCs. Next, letting
O21 := PO(O2← K2→ K′2) and I21 := PO(O1← K1→ K′1), we have via vertical FPC-pushout decom-
position (Lemma 2(3h)) that the resulting two squares on the very right (the ones involving I21) are FPCs
and that the arrow I21→X0 is a monomorphism, while pushout-pushout decomposition (Lemma 2(3b))
entails that the two newly formed squares on the very left (the ones involving O21) are pushouts.

The final step as depicted in (46c) consists in constructing K21 = PB(K′2 → N21 ← K′1) and K21 =
PB(K2→ X1←K1), which by universality of pullbacks induces a unique arrow K21→ K21. By invoking
pullback-pullback decomposition (Lemma 2(3a)), one may show that the squares�(K21,K21,Ki,K′i) (for
i = 1,2) are pullbacks. Since the square �(K′1,K1,X1,N21) is a pushout, via the van Kampen property
(cf. Def. 1) the square �(K21,K21,K2,K′2) is a pushout. Since according to Lemma 3 pushouts are also
FPCs, it follows via horizontal composition of FPCs (Lemma 2(3e)) that the square �(K21,K21,X1,N21)
is an FPC. Noting that the pushout square �(K′1,K1,X1,N21) is an FPC as well, it follows via horizontal
decomposition of FPCs (Lemma 2(3e)) that �(K21,K21,K1,K′1) is an FPC. Thus the claim follows by
invoking pushout composition (Lemma 2(3b)) and horizontal FPC composition (Lemma 2(3e)) in order
to obtain the pushout square �(K21,K21,X2,O21) and the FPC square �(K21,K21,X0, I21).

— Analysis: Given the setting as depicted in (47a) of Figure 3, where the top row has the structure of
an SqPO-composition (compare (4)), where the square�(K21,K′1,N21,K′2) is a pullback, the left “curvy”
bottom square a pushout and the right “curvy” bottom square an FPC, we may obtain the configuration
of (47c) as follows: construct9 K1 via taking the final pullback complement of K′1 → I21 → X0 (which
implies the existence of an arrow K21→ K1 via the FPC property). Note in particular that according to
Lemma 3, both arrows constructed via forming the aforementioned FPC are monomorphisms, and thus
by stability of monomorphisms in an adhesive category (compare Definition 1 and Lemma 2(1c)), the
arrow K21 → K1 is a monomorphism as well. Next, take the pushout X1 = PO(K1 ← K′1 → N21), fol-
lowed by constructing K2 as the final pullback complement of K′2→ N21→ X1 (which implies due to the
FPC property of the resulting square �(K′2,K2,X1,N21) the existence of an arrow K21→ K2). Invoking
pullback-pullback decomposition (Lemma 2(3a)) twice, followed by the van Kampen property (Def. 1),
we may conclude that the square �(K21,K21,K2,K′2) is a pushout. Thus invoking pushout-pushout de-
composition (Lemma 2(3b)), we find that also �(K′2,K2,X2,O21) is a pushout. We finally arrive at the
configuration in (47d) via composition of pushout and FPC squares, respectively, thus concluding the
proof.

B.2 Proof of the SqPO associativity theorem

Our proof strategy will be closely related to the one presented in [7] (with full technical details provided
in [8]) for the analogous associativity theorem in the DPO-rewriting case. However, the SqPO-type
case poses considerable additional challenges, since this rewriting semantics yields diagrams of a rather
heterogeneous nature (including pullbacks, pushouts, pushout complements and FPCs) as compared to

9Note that it is precisely in this step and the following step that we require the existence of FPCs for arbitrary pairs of
monomorphisms as per Assumption 1.

N. Behr 43

O2 K2 I2 M21 O1 K1 I1

N21

X2 K2 X1 K1 X0

(46a)

O2 K2 I2 M21 O1 K1 I1

O21 K′2 N21 K′1 I21

X2 K2 X1 K1 X0

(46b)

O2 K2 I2 M21 O1 K1 I1

O21 K′2 N21 K′1 I21

X2 K2 X1 K1 X0

K21

K21

(46c)

Figure 2: Synthesis part of the concurrency theorem.

the DPO case, and in addition unlike DPO-type rule compositions, SqPO-type compositions are not
reversible in general, which necessitates an independent proof of both directions of the bijective corre-
spondence.

Proof. We first prove the claim in the “⇒” direction, i.e. starting from the set of data

m21 = (O2←M21→I1) ∈Msq
p2
(p1)

m3(21) = (O3←M3(21)→I21) ∈Msq
p3
(p21) , p21 = p2

m21
^ p1 ,

(48)

we have to demonstrate that one may uniquely (up to isomorphisms) construct from this information a
pair of admissible matches

m32 = (O3←M32→I2) ∈Msq
p3
(p2)

m(32)1 = (O32←M(32)1→I1) ∈Msq
p32

(p1) , p32 = p3
m32
^ p2 ,

(49)

44 SqPO Rewriting: Concurrency, Associativity and Rule Algebra Framework

and such that the property described in (6) holds. We begin by forming the SqPO-composite rule p3(21) =

p3
m3(21)
^ p21, which results in the diagram

O2 K2 I2 M21 O1 K1 I1

O3 K3 I3 M3(21) O21 K′2 N21 K′1 I21

O321 K3 N3(21) K2 N(32)1 K1 I321

(50)

by virtue of invoking SqPO-composition twice. For the remainder of the proof, it is very important to
precisely determine the nature of each of the squares in this diagram:

• To clarify the structure of the rightmost four squares at the bottom, consider the setting presented
in (47a): since in the definition of the SqPO-composition as presented in (4) the nature of the
squares to the right is that of pushout complement and pushout, respectively, it may be verified
that applying the analysis procedure to the diagram in (47a) with thus the “curvy” front and right
bottom faces both pushouts, one eventually arrives (by virtue of pushout-pushout and pushout-
pullback decomposition) at the setting depicted in (47c) with all squares in the bottom row being
pushouts. Thus the rightmost four squares at the bottom of (50) are all pushouts.

• By virtue of the definition of SqPO-composition, all vertical squares in the back of (47c) are
pushouts, except for the square �(K2,K′2,N21, I2), which is an FPC. Analogously, the bottom left-
most three squares are (in order from left to right) a pushout, an FPC and a pushout.

Constructing the pullback M32 = PB(M3(21)→O21← O2) (which by composition of pullbacks also
leads to an arrow M32→I3) and forming the three additional vertical squares on the far left in the evident
fashion in the diagram below

O3 K3 I3 M32 O2 K2 I2 M21 O1 K1 I1

O3 K3 I3 M3(21) O21 K′2 N21 K′1 I21

O321 K3 N3(21) K2 N(32)1 K1 I321

(51)

allows us to construct N32 = PO(I3←M32→O2), which in turn via universality of pushouts uniquely
induces an arrow N32→ N3(21):

O3 K3 I3 M32 O2 K2 I2 M21 O1 K1 I1

O3 K3 I3 M3(21) O21 K′2 N21 K′1 I21

O32 K′3 N32 K′′2 I32 O1 K1 I1

O321 K3 N3(21) K2 N(32)1 K1 I321

(52)

Here, the rightmost three squares on the top are formed in the evident fashion (and they are pushouts by
virtue of Lemma 2(1a)), while the other arrows of the above diagram are constructed as follows:

K′3 = PB(K3→ N3(21)← N32) , O32 = PO(K′3← K3→ O3)

K′′2 = PB(N32→ N3(21)←K2) , I32 = PO(K′′2 ← K2→ I2)
(53)

N. Behr 45

Invoking pushout-pullback, pushout-pushout and vertical FPC-pullback decompositions, it may be veri-
fied that (describing positions of front and top square pairs by the position of the respective front square,
from left to right)
• the leftmost front and top squares are pushouts,

• the second from the left front and top squares are FPCs,

• the third from the left front and top squares are pushouts,

• in the next adjacent pair, the front square is an FPC and the top square a pushout,

• the second from the right front and top squares are pushouts, and

• the rightmost front and top squares are pushouts.
Defining the pullback object M(32)1 = PB(I32→ N3(21)←O1), thus inducing an arrow M21→M3(21),

O3 K3 I3 M32 O2 K2 I2 M21 O1 K1 I1

O3 K3 I3 M3(21) O21 K′2 N21 K′1 I21

O32 K′3 N32 K′′2 I32 M(32)1 O1 K1 I1

O321 K3 N3(21) K2 N(32)1 K1 I321

(54)

it remains to verify that the square �(M3(21), I32,N3(21),O1) is not only a pullback, but also a pushout
square. This part of the proof requires a somewhat intricate diagram chase; since the required arguments
are identical10 to the “⇒” part of proof of DPO-type associativity as presented in [8], we omit this part
of the proof here in the interest of brevity.

It thus remains to prove the claim in the “⇐” direction, i.e. starting from the set of data

m32 = (O3←M32→I2) ∈Msq
p3
(p2)

m(32)1 = (O32←M(32)1→I1) ∈Msq
p32

(p1) , p32 = p3
m32
^ p2 ,

(55)

we need to demonstrate that one may uniquely (up to isomorphisms) construct from this information a
pair of admissible matches

m21 = (O2←M21→I1) ∈Msq
p2
(p1)

m3(21) = (O3←M3(21)→I21) ∈Msq
p3
(p21) , p21 = p2

m21
^ p1 ,

(56)

and such that the property described in (6) holds. We begin by forming the SqPO-composite rule p(32)1 =

p32
m(32)1
^ p1, which results in the diagram

O3 K3 I3 M32 O2 K2 I2

O32 K′3 N32 K′′2 I32 M(32)1 O1 K1 I1

O321 K3 N3(21) K2 N(32)1 K1 I321

(57)

10More precisely, the only difference in the structure of the relevant sub-diagram compared to the DPO case resides in the two
FPC squares in the front and back in fourth position from the left (which happen to be pushout squares in the corresponding
DPO-type proof), but the structure of this part of the diagram is not explicitly used in the proof in the DPO variant of the
theorem, whence the claim follows.

46 SqPO Rewriting: Concurrency, Associativity and Rule Algebra Framework

by virtue of invoking SqPO-composition twice. A careful inspection of the definition of the SqPO-
composition and of the analysis part of the SqPO concurrency theorem permit to verify that the nature of
all squares thus constructed coincides precisely with the nature of the corresponding squares in the “⇒”
part of the proof.

Constructing the pullback M21 = PB(I2 → I32 ← M(32)1) (which by composition of pullbacks also
leads to an arrow M21→O1) and forming the three additional vertical squares on the far right in the
evident fashion in the diagram below

O3 K3 I3 M32 O2 K2 I2 M21 O1 K1 I1

N21

O32 K′3 N32 K′′2 I32 M(32)1 O1 K1 I1

O321 K3 N3(21) K2 N(32)1 K1 I321

(58)

allows us to construct N21 = PO(I2←M21→O1), which in turn via the universal property of pushouts
induces an arrow N21→ N(32)1:

O3 K3 I3 M32 O2 K2 I2 M21 O1 K1 I1

O3 K3 I3 O21 K′2 N21 K′1 I21

O32 K′3 N32 K′′2 I32 M(32)1 O1 K1 I1

O321 K3 N3(21) K2 N(32)1 K1 I321

(59)

The remaining new squares of the above diagram are constructed as follows:

K′2 = PB(K2→ N(32)1← N21) O21 = PO(O2← K2→ K′2) . (60)

Moreover, by virtue of vertical FPC composition, the square �(K3,K3,N3(21), I3) is an FPC, while via
pushout composition the square �(K3,K3,O321,O3) is a pushout.

Again, the nature of all squares constructed thus far coincides precisely with the structure as pre-
sented in the “⇒” part of the proof, with one notable exception: by virtue of vertical FPC-pullback
decomposition, we may only conclude that the square �(K′2,K2,N(32)1,N21) is an FPC (but at this point
we do not know whether it is also a pushout as in the analogous part of the diagram in the “⇒” part of the
proof). However, an auxiliary calculation demonstrates that this square is in fact a pushout in disguise
— consider the following “splitting” of the relevant sub-part of the diagram as shown below:

K2 I2 M21

K′′2 I32 M3(21)

K2 N(32)1 O1

K′2 N21 O1

K2 I2 M21

K′′2 I32 M3(21)

K′′2 I32 M3(21)

K2 N′(32)1 O′1

K2 N(32)1 O1

K′2 N21 O1

(61)

N. Behr 47

The precise steps are as follows: the front left square in the diagram above left is an FPC; thus if one
takes the pushout N′(32)1 = PO(K2 ← K′2 → N21) as well as in the bottom back the pushout along the
isomorphism of K′′2 as displayed (yielding the arrows in the middle), followed by taking the pullback
O′1 = PB(N′(32)1,N(32)1,O1) (which entails that the arrow M3(21) → O′1 exists), it is straightforward to
verify that O′1 ∼= O1. Invoking the van Kampen property (recalling that by definition the right square on
the bottom is a pushout), we find that �(M3(21),O′1,N

′
(32)1, I32) is a pushout. Thus by pushout-pushout

decomposition, the square �(O′1,O1,N(32)1,N′(32)1) is a pushout, whence N′(32)1
∼= N(32)1. This in sum-

mary entails11 that the square �(K′2,K2,N(32)1,N21) is not only an FPC, but in fact also a pushout.

Back to the main proof, defining the pullback object

M3(21) = PB(I3→ N(32)1←O21) ,

thus inducing an arrow M32→M3(21),

O3 K3 I3 M32 O2 K2 I2 M21 O1 K1 I1

O3 K3 I3 M3(21) O21 K′2 N21 K′1 I21

O32 K′3 N32 K′′2 I32 M(32)1 O1 K1 I1

O321 K3 N3(21) K2 N(32)1 K1 I321

(62)

it remains to verify that the square �(M3(21),O21,N3(21), I3) is not only a pullback, but also a pushout
square. Let us construct the auxiliary diagram as depicted in Figure 4, with objects obtained via taking
suitable pullbacks as indicated. The four cubes that are drawn separately are the top, back, bottom and
front cubes induced via the newly constructed arrows, and are oriented such that one may easily apply the
van Kampen property in the next step of the proof (which in most cases requires a suitable 3d-rotation).

Invoking pullback-pullback decomposition and the van Kampen property repeatedly, it may be veri-
fied that in the relevant sub-diagram as presented below

M32 O2 K2 A M21

M3(21) O21 K′2 B O1

I3 N3(21) K2 D O1

I3 N32 K′′2 C M(32)1

(63)

we find the following structure of the squares:

• All squares on the top are pushouts, except the second one from the right (which is a pullback).

• The second and third square from the left in the back of the diagram are pushouts, the other two
back squares are pullbacks, with the same structure for the front squares.

11Coincidentally, at this point we are back into full structural analogy to the “⇒” part of the proof, a necessary prerequisite
for completing this part of the proof as it will turn out.

48 SqPO Rewriting: Concurrency, Associativity and Rule Algebra Framework

O2 K2 I2 M21 O1 K1 I1

O21 K′2 N21 K′1 I21

X2 X0

K21

K21

(47a)

O2 K2 I2 M21 O1 K1 I1

O21 K′2 N21 K′1 I21

X2 K1 X0

K21

K21

(47b)

O2 K2 I2 M21 O1 K1 I1

O21 K′2 N21 K′1 I21

X2 K2 X1 K1 X0

K21

K21

(47c)

O2 K2 I2 M21 O1 K1 I1

O21 K′2 N21 K′1 I21

X2 K2 X1X1 K1 X0

K21

K21

(47d)

Figure 3: Analysis part of the concurrency theorem.

N
.B

ehr
49

B

O3 K3 I3 M32 O2 K2 I2 M21 O1 K1 I1

O3 K3 I3 M3(21) O21 K02 N21 K01 I21

O32 K03 N32 K002 I32 M(32)1 O1 K1 I1

O321 K3 N3(21) K2 N(32)1 K1 I321

A

A M21

C N3(21)

K2 I2

K002 I32

B A

K02 K2

O1 M21

N21 I2

O1 B

O1 D

N21 K02

N(32)1 K2

K002 C

K2 D

I32 M(32)1

N(32)1 O1

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

A = PB(K2! I2 M21)

B = PB(K02! N21 O1)

C = PB(K002 ! I32 M(32)1)

D = PB(K2! N(32)1 O1)

cube 1 (top) cube 2 (back)

cube 3 (bottom) cube 4 (front)

C

D

Figure 4: Auxiliary diagram for the second part of the SqPO associativity proof.

50 SqPO Rewriting: Concurrency, Associativity and Rule Algebra Framework

• Counting from left to right, the second and fourth square on the bottom are pushouts, the other two
are pullbacks.

In particular, as indicated this entails that D∼= B. We proceed by performing the following “splitting” of
the diagram:

M32 O2 K2 A M21

M3(21) O′
2 K ′′′

2 B′ O′
1

M3(21) O21 K ′
2 B O1

I3 N ′
32 K2

′
D′ O′′

1

I3 N3(21) K2 D O1

I3 N32 K ′′
2 C M(32)1

(64)

Start the “splitting” via taking the pushouts N′32 = PO(I3 ← I3 → N32) (which entails that N′32
∼= N32)

and O′2 = PO(M3(21)←M32→O2). By pullback-pullback decomposition followed by pushout-pullback
decomposition, we may conclude that the resulting square �(O′2,N

′
32, I3,M3(21)) is a pushout. Note also

that all vertical squares in the bottom left part of the diagram thus constructed are pullbacks (by virtue of
suitable pullback decompositions).

Next, construct the pullbacks K′2 = PB(N′32→ N3(21) ← K2) and K′′′2 = PB(O′2 → O21 ← K′2). By
pushout-pullback decomposition, in the diagram on the right the top and bottom front squares and back
squares in the second column are pushouts, while the square�(K′′′2 ,K′2,K2,K

′
2) is a pullback. Performing

the precise same steps in the next column, i.e. via taking the pullbacks D′ = PB(K′2 → K2 ← D) and
B′ = PB(K′′′2 → K′2← B), we obtain via pushout-pullback decomposition that the top and bottom front
and top and bottom back squares in the third column are pushouts, while the square �(B′,B,D,D′) is a
pullback. But since D∼= B and since isomorphisms are stable under pullback, we conclude that D′ ∼= B′,
and thus that the square �(B′,B,D,D′) is in fact a pushout.

By pushout composition, we may thus conclude that �(K′′′2 ,K′2,K2,K
′
2) is a pushout, whence the

square�(O′2,O21,N3(21),N′32) is a pushout, which finally allows us to verify that�(M3(21),O21,N3(21), I3)
is a pushout. This concludes the proof of the SqPO-type associativity theorem.

B.3 Proof of the theorem on SqPO rule algebra properties

Proof. Associativity of �RC follows from the associativity of the operation .
.
^ . proved in Theorem 3.

The claim that R∅ = δ (∅← ∅→ ∅) is the unit element of the rule algebra Rsq
C follows directly from

the definition of the rule algebra product for R∅�RC R and R�RC R∅ for R ∈Rsq
C . More concretely, we

present below the category-theoretic composition calculation that underlies the equation R∅�RC R = R:

∅ ∅ ∅ ∅ O K I

O O O K I

PO FPC PO POC

o i

PO

o i

(65)

N. Behr 51

Here, it is important to note that the pushout complement used to construct the square marked POC
always exists (see Lemma 2(1a)), whence the claim follows.

B.4 Proof of the SqPO canonical representation theorem

Proof. In order for ρ
sq
C to qualify as an algebra homomorphism (of unital associative algebras Rsq

C and
End(Ĉ)), we must have (with R∅ = δ (p∅), p∅ = (∅←∅→∅))

(i) ρ
sq
C (R∅) = 1End(Ĉ)

(ii) ∀R1,R2 ∈Rsq
C : ρ

sq
C (R1�RC R2) = ρ

sq
C (R1)ρ

Sq
C (R1) .

Due to linearity, it suffices to prove the two properties on basis elements δ (p),δ (q) of Rsq
C (for p,q ∈

Lin(C)) and on basis elements |X〉 of Ĉ. Property (i) follows directly from the definition,

∀X ∈ obj(C)∼= : ρ
sq
C (R∅) |X〉 (16)

= ∑
m∈Msq

r∅ (X)

|(r∅)m(X)〉= |X〉 .

Property (ii) follows from Theorem 2 (the SqPO-type concurrency theorem): for all basis elements
δ (p),δ (q) ∈Rsq

C (with p,q ∈ Lin(C)) and for all X ∈ obj(C),

ρ
sq
C (δ (q)�C δ (p)) |X〉 (11)

= ∑
d∈Msq

q (p)

ρ
sq
C

(
δ

(
q

d
^ p
))
|X〉

(16)
= ∑

d∈Msq
q (p)

∑
e∈Msq

rd (X)

|(rd)e(X)〉 (rd = q
d
^ p)

= ∑
m∈Msq

p (X)

∑
n∈Msq

q (pm(X))

|qn(pm(X))〉 (via Thm. 2)

(16)
= ∑

m∈Msq
p (X)

ρ
sq
C (δ (q)) |pm(X)〉

(16)
= ρ

sq
C (δ (q))ρ

sq
C (δ (p)) |X〉 .

B.5 Proof of the SqPO stochastic mechanics framework theorem

Proof. By definition, the SqPO-type canonical representation of a generic rule algebra element (O
p⇐ I)∈

RC is a row-finite linear operator, since by virtue of the finitarity of objects according to Assumption 2,
for every object X ∈ obj(C) the set of SqPO-admissible matches Msq

p (X) of the associated linear rule

p = (O o←− K i−→ I) is finite. We may thus verify that the linear operator H possesses all the required
properties of a so-called Q-matrix (or infinitesimal generator) of a CTMC [41, 1], i.e. its non-diagonal
entries are non-negative, its diagonal entries are finite, and furthermore the row sums of H are zero
(whence H constitutes a conservative and stable Q-matrix; compare (21) of Definition 9). It is crucial to
note that while originally H as a linear combination of representations of rule algebra elements is only
defined to act on finite linear combinations of basis vectors |X〉 of Ĉ, an important mathematical result
from the theory of CTMCs entails that if a row-finite linear operator such as H is a stable and conservative
Q-matrix, it extends to a linear operator on infinitely supported distributions (here over basis vectors of

52 SqPO Rewriting: Concurrency, Associativity and Rule Algebra Framework

Ĉ) with finite real coefficients (see e.g. [1], Chapters 1 and 2). Moreover, the property 〈|H = 0 follows
directly from the defining equations (21) of Definition 9.

Let us prove next the claim on the precise structure of observables. Recall that according to Defini-
tion 10, an observable O ∈OC must be a linear operator in End(SC) that acts diagonally on basis states
|X〉 (for X ∈ obj(C)∼=), whence that satisfies for all X ∈ obj(C)∼=

O |X〉= ωO(X) |X〉 (ωO(X) ∈ R) .

Comparing this equation to the definition of the SqPO-type canonical representation (Definition 8) of a
generic rule algebra basis element δ (p) ∈Rsq

C (for p≡ (O o←− K i−→ I) ∈ Lin(C)),

ρ
sq
C (δ (p)) |X〉 :=

{
∑m∈Msq

p (X) |pm(X)〉 if Msq
p (X) 6= /0

0Ĉ else,

we find that in order for ρ
sq
C (δ (p)) to be diagonal we must have

∀X ∈ obj(C) : ∀m ∈Msq
p (X) : pm(X)∼= X .

But by definition of SqPO-type derivations of objects along admissible matches (Definition 4), the only
linear rules p ∈ Lin(C) that have this special property are precisely the rules of the form

pidM = (M idM←−−M idM−−→M) .

In particular, defining Osq
M := ρ

sq
C (δ (pidM)), we find that the eigenvalue ωOsq

M
(X) coincides with the car-

dinality of the set Msq
pidM

(X) of SqPO-admissible matches,

∀X ∈ ob(C) : Osq
M |X〉= |Msq

pidM
(X)| · |X〉 .

This proves that the operators Osq
M form a basis of diagonal operators on End(Ĉ) (and thus on End(SC))

that can arise as linear combinations of representations of rule algebra elements.
To prove the jump-closure property, note that it follows from Definition 4 that for an arbitrary linear

rule p ≡ (O o←− K i−→ I) ∈ Lin(C), a generic object X ∈ obj(C) and a monomorphism m : I → X , m is
according to Definition 4 both a match of the rule p as well as of the rule pidI . Evidently, the application
of the rule p to X along the match m produces an object pm(X) that is in general different from the
object pidIm

(X) produced by application of the rule pidI to X along the match m. But by definition of the
projection operator 〈| (Definition 10),

∀X ∈ obj(C)∼= : 〈 |X〉 := 1R ,

we find that
〈 | pm(X)〉=

〈
| pidIm

(X)
〉
= 1 ,

whence we may prove the claim of the SqPO-type jump-closure property via verifying it on arbitrary
basis elements (with notations as above):

〈|ρsq
C (δ (p)) |X〉= |Msq

p (X)|= |Msq
pidI

(X)|= 〈|ρsq
C (δ (pidI)) |X〉 .

Since X ∈ obj(C)∼= was chosen arbitrarily, we thus have indeed that

〈|ρsq
C (δ (p)) = 〈|ρsq

C (δ (pidI)) .

This concludes the proof that our definition of continuous-time Markov chains based upon SqPO-type
rewriting rules is well-posed and yields all the requisite properties.

	1 Motivation and relation to previous work
	2 Background: adhesive categories and final pullback complements
	3 Sesqui-Pushout rewriting
	3.1 Concurrent composition and concurrency theorem
	3.2 Composition and associativity

	4 From associativity to SqPO-type rule algebras
	5 Applications of SqPO-type rule algebras to stochastic mechanics
	6 Application example: a dynamical random graph model
	7 Conclusion and Outlook
	A A collection of useful technical results on adhesive categories and final pullback complements
	B Proofs
	B.1 Proof of the SqPO concurrency theorem
	B.2 Proof of the SqPO associativity theorem
	B.3 Proof of the theorem on SqPO rule algebra properties
	B.4 Proof of the SqPO canonical representation theorem
	B.5 Proof of the SqPO stochastic mechanics framework theorem

