
J.-F. Raskin and D. Bresolin (Eds.): 11th International Symposium
on Games, Automata, Logics, and Formal Verification (GandALF’20).
EPTCS 326, 2020, pp. 199–215, doi:10.4204/EPTCS.326.13

c© B. Abu Radi and O. Kupferman
This work is licensed under the
Creative Commons Attribution License.

Canonicity in GFG and Transition-Based Automata

Bader Abu Radi and Orna Kupferman
School of Computer Science and Engineering, The Hebrew University, Israel

bader.aburadi@gmail.com orna@cs.huji.ac.il

Minimization of deterministic automata on finite words results in a canonical automaton. For de-
terministic automata on infinite words, no canonical minimal automaton exists, and a language may
have different minimal deterministic Büchi (DBW) or co-Büchi (DCW) automata.

In recent years, researchers have studied good-for-games (GFG) automata – nondeterministic
automata that can resolve their nondeterministic choices in a way that only depends on the past.
Several applications of automata in formal methods, most notably synthesis, that are traditionally
based on deterministic automata, can instead be based on GFG automata.

The minimization problem for DBW and DCW is NP-complete, and it stays NP-complete for
GFG Büchi and co-Büchi automata. On the other hand, minimization of GFG co-Büchi automata
with transition-based acceptance (GFG-tNCWs) can be solved in polynomial time. In these au-
tomata, acceptance is defined by a set α of transitions, and a run is accepting if it traverses transitions
in α only finitely often. This raises the question of canonicity of minimal deterministic and GFG
automata with transition-based acceptance.

In this paper we study this problem. We start with GFG-tNCWs and show that the safe com-
ponents (that is, these obtained by restricting the transitions to these not in α) of all minimal GFG-
tNCWs are isomorphic, and that by saturating the automaton with transitions in α we get isomor-
phism among all minimal GFG-tNCWs. Thus, a canonical form for minimal GFG-tNCWs can be
obtained in polynomial time. We continue to DCWs with transition-based acceptance (tDCWs), and
their dual tDBWs. We show that here, while no canonical form for minimal automata exists, re-
stricting attention to the safe components is useful, and implies that the only minimal tDCWs that
have no canonical form are these for which the transition to the GFG model results in strictly smaller
automaton, which do have a canonical minimal form.

1 Introduction

Automata theory is one of the longest established areas in computer science. A classical problem in
automata theory is minimization: generation of an equivalent automaton with a minimal number of states.
For deterministic automata on finite words, a minimization algorithm, based on the Myhill-Nerode right
congruence [18, 19], generates in polynomial time a canonical minimal deterministic automaton [11].
Essentially, the canonical automaton, a.k.a. the quotient automaton, is obtained by merging equivalent
states.

A prime application of automata theory is specification, verification, and synthesis of reactive sys-
tems [25, 13]. Since we care about the on-going behaviors of nonterminating systems, the automata run
on infinite words and define ω-regular languages. Acceptance in such automata is determined according
to the set of states that are visited infinitely often during the run. In Büchi automata [5] (NBW and DBW,
for nondeterministic and deterministic Büchi word automata, respectively), the acceptance condition is
a subset α of states, and a run is accepting iff it visits α infinitely often. Dually, in co-Büchi automata
(NCW and DCW), a run is accepting iff it visits α only finitely often.

For ω-regular languages, no canonical minimal deterministic automaton exists, and a language may
have different minimal DBWs or DCWs. Consider for example the DCWs A1 and A2 appearing in

http://dx.doi.org/10.4204/EPTCS.326.13
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


200 Canonicity in GFG and Transition-Based Automata

Figure 1. Both are minimal DCWs for the language L = (a+b)∗ · (aω +bω) (“only finitely many a’s or
only finitely many b’s”; it is easier to see this by considering the dual DBWs, for “infinitely many a’s
and infinitely many b’s”).

A1 :

q0 q1q2

bb

aa

ba

A2 :

q0 q1 q2
a b

b a

a, b

Figure 1: The DCWs A1 and A2.

Since all the states of A1 and A2 recognize the language L and may serve as initial states, Figure 1
actually presents six different DCWs for L, and more three-state DCWs for L exist. The DCWs A1 and
A2, are however “more different” than variants of A1 obtained by changing the initial state: they have a
different structure, or more formally, there is no isomorphism between their graphs.

In some applications of automata on infinite words, such as model checking, algorithms can proceed
with nondeterministic automata. In other applications, such as synthesis and control, they cannot. The
algorithms for these applications involve solving a game that is played on an arena that is based on the
automaton. The difficulty in using nondeterministic automata in such game-based algorithms lies in the
fact that when a player resolves nondeterminism, her choices should accommodate all possible futures.

A study of nondeterministic automata that can resolve their nondeterministic choices in a way that
only depends on the past started in [14], where the setting is modeled by means of tree automata for
derived languages. It then continued by means of good for games (GFG) automata [10].1 A nonde-
terministic automaton A over an alphabet Σ is GFG if there is a strategy g that maps each finite word
u ∈ Σ∗ to the transition to be taken after u is read; and following g results in accepting all the words in
the language of A. Note that a state q of A may be reachable via different words, and g may suggest
different transitions from q after different words are read. Still, g depends only on the past, namely on
the word read so far. Obviously, there exist GFG automata: deterministic ones, or nondeterministic ones
that are determinizable by pruning (DBP); that is, ones that just add transitions on top of a deterministic
automaton. In fact, the GFG automata constructed in [10] are DBP.2

In terms of expressive power, it is shown in [14, 20] that GFG automata with an acceptance condi-
tion γ (e.g., Büchi) are as expressive as deterministic γ automata. The picture in terms of succinctness is
diverse. For automata on finite words, GFG automata are always DBP [14, 17]. For automata on infinite
words, in particular NBWs and NCWs, GFG automata need not be DBP [3]. Moreover, the best known
determinization construction for GFG-NBWs is quadratic, whereas determinization of GFG-NCWs has
an exponential blow-up lower bound [12]. Thus, GFG automata on infinite words are more succinct
(possibly even exponentially) than deterministic ones.3 Further research studies characterization, type-
ness, complementation, and further constructions and decision procedures for GFG automata [12, 4, 2],
as well as an extension of the GFG setting to pushdown ω-automata [15].

Recall that for automata on finite words, a minimal deterministic automaton can be obtained by
merging equivalent states. For general DBWs (and hence, also DCWs, as the two dualize each other),
merging equivalent states fails, and minimization is NP-complete [21]. Proving NP-hardness, Schewe

1GFGness is also used in [6] in the framework of cost functions under the name “history-determinism”.
2As explained in [10], the fact that the GFG automata constructed there are DBP does not contradict their usefulness in

practice, as their transition relation is simpler than the one of the embodied deterministic automaton and it can be defined
symbolically.

3We note that some of the succinctness results are known only for GFG automata with transition-based acceptance.



B. Abu Radi and O. Kupferman 201

used a reduction from the vertex-cover problem [21]. Essentially, the choice of a vertex cover in a given
graph G is reduced to a choice of a set of states that should be duplicated in a DBW induced by G. The
duplication is needed for the definition of the acceptance condition, and is not needed when the DBW
is defined with a transition-based acceptance condition. In such automata, the acceptance condition is
given by a subset α of the transitions, and a run is required to traverse transitions in α infinitely often
(in Büchi automata, denoted tNBW), or finitely often (in co-Büchi automata, denoted tNCW). Thus,
while minimization is NP-complete for DBW and DCW, its complexity is open for tDBWs and tDCWs.
Beyond the theoretical interest, there is recently growing use of transition-based automata in practical
applications, with evidences they offer a simpler translation of LTL formulas to automata and enable
simpler constructions and decision procedures [8, 7, 23, 16].

In [1], we described a polynomial-time algorithm for the minimization of GFG-tNCWs. Consider a
GFG-tNCW A. Our algorithm is based on an analysis of the safe components of A, namely its strongly
connected components obtained by removing transitions in α . Note that every accepting run of A even-
tually reaches and stays forever in a safe component. We showed that a minimal GFG-tNCW equivalent
to A can be obtained by defining an order on the safe components, and applying the quotient construc-
tion on a GFG-tNCW obtained by restricting attention to states that belong to components that form a
frontier in this order. Considering GFG-tNCWs rather than DBWs involves two modifications of the
original question: a transition to GFG rather than deterministic automata, and a transition to transition-
based rather than state-based acceptance. A natural question that arises is whether both modifications are
crucial for efficiency. It was shown recently [22] that the NP-completeness proof of Schewe for DBW
minimization can be generalized to GFG-NBWs and GFG-NCWs. This suggests that the consideration
of transition-based acceptance has been crucial, and makes the study of tDBW and tDCW very appealing.

Minimization and its complexity are tightly related to the canonicity question. Recall that ω-regular
languages do not have a unique minimal DBW or DCW. In this paper we study canonicity for GFG and
transition-based automata. We start with GFG-tNCWs and show that all minimal GFG-tNCWs are safe
isomorphic, namely their safe components are isomorphic4. More formally, if A1 and A2 are minimal
GFG-tNCWs for the same language, then there exists a bijection between the state spaces of A1 and A2
that induces a bijection between their ᾱ-transitions (these not in α). We then show that by saturating
the GFG-tNCW with α-transitions we get isomorphism among all minimal automata. We suggest two
possible saturations. One adds as many α-transitions as possible, and the second does so in a way that
preserves α-homogeneity, thus for every state q and letter σ , all the transitions labeled σ from q are
α-transitions or are all ᾱ-transitions. Since the minimization algorithm of [1] generates minimal α-
homogenous GFG-tNCWs, it follows that both forms of canonical minimal GFG-tNCW can be obtained
in polynomial time.

We then show that, as has been the case with minimization, GFGness is not a sufficient condition for
canonicity, raising the question of canonicity in tDCWs. Note that unlike the GFG-tNCW setting, here
dualization of the acceptance condition complements the language of an automaton, and thus our results
apply also to canonicity of tDBWs. We start with some bad news, showing that as has been the case with
DCWs and DBW, minimal tDCWs and tDBWs need not be isomorphic. Moreover, being deterministic,
we cannot saturate their transitions and make them isomorphic. On the positive side, safe isomorphism
is helpful also in the tDCW setting: Consider an ω-regular language L. Recall that the minimal GFG-
tNCW for L may be smaller than a minimal tDCW for L [12]. We say that L is tDCW-positive if this is not
the case. We prove that all minimal tDCWs for a tDCW-positive ω-regular language are safe isomorphic.

4In our results, we assume the GFG-tNCWs are nice: they satisfy some syntactic and semantic properties that can be easily
obtained from every GFG-tNCW.



202 Canonicity in GFG and Transition-Based Automata

Note that for such languages, we also know how to generate a minimal tDCW in polynomial time. For
ω-regular languages that are not tDCW-positive, safe isomorphism is left open. For such languages,
however, we care more about minimal GFG-tNCWs, which do have a canonical form. Also, all natural
ω-regular languages are tDCW-positive, and in fact the existence of ω-regular languages that are not
tDCW-positive has been open for quite a while [3]. Accordingly, we view our results as good news about
canonicity in deterministic automata with transition-based acceptance.

2 Preliminaries

For a finite nonempty alphabet Σ, an infinite word w = σ1 ·σ2 · · · ∈ Σω is an infinite sequence of letters
from Σ. A language L⊆ Σω is a set of words. We denote the empty word by ε , and the set of finite words
over Σ by Σ∗. For i ≥ 0, we use w[1, i] to denote the (possibly empty) prefix σ1 ·σ2 · · ·σi of w and use
w[i+1,∞] to denote its suffix σi+1 ·σi+2 · · · .

A nondeterministic automaton over infinite words is A = 〈Σ,Q,q0,δ ,α〉, where Σ is an alphabet,
Q is a finite set of states, q0 ∈ Q is an initial state, δ : Q×Σ→ 2Q \ /0 is a transition function, and α

is an acceptance condition, to be defined below. For states q and s and a letter σ ∈ Σ, we say that s is
a σ -successor of q if s ∈ δ (q,σ). The size of A, denoted |A|, is defined as its number of states, thus,
|A|= |Q|. Note that A is total, in the sense that it has at least one successor for each state and letter, and
that A may be nondeterministic, as the transition function may specify several successors for each state
and letter. If |δ (q,σ)|= 1 for every state q ∈ Q and letter σ ∈ Σ, then A is deterministic.

When A runs on an input word, it starts in the initial state and proceeds according to the transition
function. Formally, a run of A on w = σ1 ·σ2 · · · ∈ Σω is an infinite sequence of states r = r0,r1,r2, . . . ∈
Qω , such that r0 = q0, and for all i ≥ 0, we have that ri+1 ∈ δ (ri,σi+1). We sometimes extend δ to sets
of states and finite words. Then, δ : 2Q×Σ∗→ 2Q is such that for every S ∈ 2Q, finite word u ∈ Σ∗, and
letter σ ∈ Σ, we have that δ (S,ε) = S, δ (S,σ) =

⋃
s∈S δ (s,σ), and δ (S,u ·σ) = δ (δ (S,u),σ). Thus,

δ (S,u) is the set of states that A may reach when it reads u from some state in S.
The transition function δ induces a transition relation ∆⊆Q×Σ×Q, where for every two states q,s∈

Q and letter σ ∈ Σ, we have that 〈q,σ ,s〉 ∈ ∆ iff s ∈ δ (q,σ). We sometimes view the run r = r0,r1,r2, . . .
on w = σ1 ·σ2 · · · as an infinite sequence of successive transitions 〈r0,σ1,r1〉,〈r1,σ2,r2〉, . . . ∈ ∆ω . The
acceptance condition α determines which runs are “good”. We consider here transition-based automata,
in which α refers to the set of transitions that are traversed infinitely often during the run; specifically,
α ⊆ ∆. We use the terms α-transitions and ᾱ-transitions to refer to transitions in α and in ∆ \ α ,
respectively. We also refer to restrictions δ α and δ ᾱ of δ , where for all q,s ∈ Q and σ ∈ Σ, we have
that s ∈ δ α(q,σ) iff 〈q,σ ,s〉 ∈ α , and s ∈ δ ᾱ(q,σ) iff 〈q,σ ,s〉 ∈ ∆\α . For a run r ∈ ∆ω , let inf (r)⊆ ∆

be the set of transitions that r traverses infinitely often. Thus, inf (r) = {〈q,σ ,s〉 ∈ ∆ : q = ri,σ =
σi+1 and s = ri+1 for infinitely many i’s}. In co-Büchi automata, a run r is accepting iff inf (r)∩α = /0,
thus if r traverses transitions in α only finitely often. A run that is not accepting is rejecting. A word w
is accepted by A if there is an accepting run of A on w. The language of A, denoted L(A), is the set of
words that A accepts. Two automata are equivalent if their languages are equivalent. We use tNCW and
tDCW to abbreviate nondeterministic and deterministic transition-based co-Büchi automata over infinite
words, respectively.

We continue to definitions and notations that are relevant to our study. See Section 7 for a glossary.
For an automaton A = 〈Σ,Q,q0,δ ,α〉, and a state q ∈ Q, we define Aq to be the automaton obtained
from A by setting the initial state to be q. Thus, Aq = 〈Σ,Q,q,δ ,α〉. We say that two states q,s ∈ Q
are equivalent, denoted q ∼A s, if L(Aq) = L(As). The automaton A is semantically deterministic if



B. Abu Radi and O. Kupferman 203

different nondeterministic choices lead to equivalent states. Thus, for every state q ∈ Q and letter σ ∈ Σ,
all the σ -successors of q are equivalent: for every two states s,s′ ∈ Q such that 〈q,σ ,s〉 and 〈q,σ ,s′〉 are
in ∆, we have that s∼A s′. The following proposition follows immediately from the definitions.

Proposition 2.1. Consider a semantically deterministic automaton A, states q,s ∈ Q, letter σ ∈ Σ, and
transitions 〈q,σ ,q′〉,〈s,σ ,s′〉 ∈ ∆. If q∼A s, then q′ ∼A s′.

An automaton A is good for games (GFG, for short) if its nondeterminism can be resolved based on
the past, thus on the prefix of the input word read so far. Formally, A is GFG if there exists a strategy
f : Σ∗→ Q such that the following holds:

1. The strategy f is consistent with the transition function. That is, for every finite word u ∈ Σ∗ and
letter σ ∈ Σ, we have that 〈 f (u),σ , f (u ·σ)〉 ∈ ∆.

2. Following f causes A to accept all the words in its language. That is, for every infinite word
w = σ1 · σ2 · · · ∈ Σω , if w ∈ L(A), then the run f (w[1,0]), f (w[1,1]), f (w[1,2]), . . ., which we
denote by f (w), is accepting.

We say that the strategy f witnesses A’s GFGness. For an automaton A, we say that a state q of A is
GFG ifAq is GFG. Note that every deterministic automaton is GFG. We say that a GFG automatonA is
determinizable by prunning (DBP) if we can remove some of the transitions ofA and get a deterministic
automaton that recognizes L(A).

Consider a directed graph G = 〈V,E〉. A strongly connected set in G (SCS, for short) is a set C ⊆V
such that for every two vertices v,v′ ∈C, there is a path from v to v′. A SCS is maximal if it is maximal
w.r.t containment, that is, for every non-empty set C′ ⊆ V \C, it holds that C∪C′ is not a SCS. The
maximal strongly connected sets are also termed strongly connected components (SCCs, for short). The
SCC graph of G is the graph defined over the SCCs of G, where there is an edge from a SCC C to
another SCC C′ iff there are two vertices v ∈C and v′ ∈C′ with 〈v,v′〉 ∈ E. A SCC is ergodic iff it has
no outgoing edges in the SCC graph. The SCC graph of G can be computed in linear time by standard
SCC algorithms [24].

An automatonA= 〈Σ,Q,q0,δ ,α〉 induces a directed graph GA= 〈Q,E〉, where 〈q,q′〉 ∈E iff there is
a letter σ ∈Σ such that 〈q,σ ,q′〉 ∈∆. The SCSs and SCCs ofA are those of GA. We say that a tNCWA is
safe deterministic if by removing its α-transitions, we get a (possibly not total) deterministic automaton.
Thus, A is safe deterministic if for every state q ∈ Q and letter σ ∈ Σ, it holds that |δ ᾱ(q,σ)| ≤ 1. We
refer to the SCCs we get by removing A’s α-transitions as the safe components of A; that is, the safe
components ofA are the SCCs of the graph GAᾱ = 〈Q,E ᾱ〉, where 〈q,q′〉 ∈ E ᾱ iff there is a letter σ ∈ Σ

such that q′ ∈ δ ᾱ(q,σ). We denote the set of safe components of A by S(A). For a safe component
S ∈ S(A), the size of S, denoted |S|, is the number of states in S. Note that an accepting run of A
eventually gets trapped in one ofA’s safe components. A tNCWA is normal if there are no ᾱ-transitions
connecting different safe components. That is, for all states q and s ofA, if there is a path of ᾱ-transitions
from q to s, then there is also a path of ᾱ-transitions from s to q.

We now combine several properties defined above and say that a GFG-tNCW A is nice if all the
states in A are reachable and GFG, and A is normal, safe deterministic, and semantically deterministic.
As Theorem 2.2 below shows, each of these properties can be obtained in at most polynomial time, and
without the properties being conflicting.

Theorem 2.2. [12, 1] Every GFG-tNCW A can be turned, in polynomial time, into an equivalent nice
GFG-tNCW B such that |B| ≤ |A|.

Consider a tNCW A= 〈Σ,Q,q0,δ ,α〉. A run r of A is safe if it does not traverse α-transitions. The
safe language of A, denoted Lsa f e(A), is the set of infinite words w, such that there is a safe run of A on



204 Canonicity in GFG and Transition-Based Automata

w. Recall that two states q,s ∈ Q are equivalent (q∼A s) if L(Aq) = L(As). Then, q and s are strongly-
equivalent, denoted q ≈A s, if q ∼A s and Lsa f e(Aq) = Lsa f e(As). Finally, q is subsafe-equivalent to s,
denoted q -A s, if q∼A s and Lsa f e(Aq)⊆ Lsa f e(As). Note that the three relations are transitive. When
A is clear from the context, we omit it from the notations, thus write Lsa f e(q), q - s, etc. The tNCW A
is safe-minimal if it has no strongly-equivalent states. Then, A is safe-centralized if for every two states
q,s ∈ Q, if q - s, then q and s are in the same safe component of A. Finally, A is α-homogenous if for
every state q ∈ Q and letter σ ∈ Σ, either δ α

A(q,σ) = /0 or δ ᾱ
A(q,σ) = /0. Thus, either all the σ -labeled

transitions from q are α-transitions, or they are all ᾱ-transitions.

Example 2.1. Consider the tDCWA appearing in Figure 2. The dashed transitions are α-transitions. All
the states of A are equivalent, yet they all differ in their safe language. Accordingly, A is safe-minimal.
Since aω = Lsa f e(Aq2) ⊆ Lsa f e(Aq0), we have that q2 - q0. Hence, as q0 and q2 are in different safe
components, the tDCW A is not safe-centralized.

q0

q2

q1c

b

c

c b

a, b

a

a

Figure 2: The tDCW A.

The following properties of nice GFG-tNCWs are proven in [1].

Proposition 2.3. Consider a nice GFG-tNCW A and states q and s of A such that q ≈ s (q - s). For
every letter σ ∈ Σ and ᾱ-transition 〈q,σ ,q′〉, there is an ᾱ-transition 〈s,σ ,s′〉 such that q′ ≈ s′ (q′ - s′,
respectively).

Proposition 2.4. Let A and B be equivalent nice GFG-tNCWs. For every state p of A, there are states
q of A and s of B, such that p - q and q≈ s.

Lemma 2.5. Consider a nice GFG-tNCW A. If A is safe-centralized and safe-minimal, then for every
nice GFG-tNCW B equivalent to A, there is an injection η : S(A)→ S(B) such that for every safe
component T ∈ S(A), it holds that |T | ≤ |η(T )|.

3 Minimizing GFG-tNCW

A GFG-tNCW A is minimal if for every equivalent GFG-tNCW B, it holds that |A| ≤ |B|. In this
section, we review the minimization construction of [1], highlighting its properties that are important for
the canonization results. The algorithm is based on the following theorem.

Theorem 3.1. Consider a nice GFG-tNCW A. If A is safe-centralized and safe-minimal, then A is a
minimal GFG-tNCW for L(A).

Thus, minimization involves two steps: safe centralization and safe minimization.



B. Abu Radi and O. Kupferman 205

Step 1: Safe centralization Consider a nice GFG-tNCW A = 〈Σ,QA,q0
A,δA,αA〉. Recall that S(A)

denotes the set of safe components of A. Let H ⊆ S(A)×S(A) be such that for all safe components
S,S′ ∈ S(A), we have that H(S,S′) iff there exist states q ∈ S and q′ ∈ S′ such that q - q′. The relation H
is transitive: for every safe components S,S′,S′′ ∈ S(A), if H(S,S′) and H(S′,S′′), then H(S,S′′). We say
that a set S ⊆ S(A) is a frontier of A if for every safe component S ∈ S(A), there is a safe component
S′ ∈ S with H(S,S′), and for all safe components S,S′ ∈ S such that S 6= S′, we have that ¬H(S,S′) and
¬H(S′,S). Once H is calculated, a frontier of A can be found in linear time. For example, as H is
transitive, we can take one vertex from each ergodic SCC in the graph 〈S(A),H〉. Note that all frontiers
of A are of the same size, namely the number of ergodic SCCs in this graph.

Proposition 3.2. Consider safe components S,S′ ∈ S(A) such that H(S,S′). Then, for every state p ∈ S
there is a state p′ ∈ S′, such that p - p′.

Given a frontier S of A, we define the automaton BS = 〈Σ,QS ,q0
S ,δS ,αS〉, where QS = {q ∈ QA :

q ∈ S for some S ∈ S}, and the other elements are defined as follows. The initial state q0
S is chosen

such that q0
S ∼A q0

A. Specifically, if q0
A ∈ QS , we take q0

S = q0
A. Otherwise, by Proposition 3.2 and

the definition of S , there is a state q′ ∈ QS such that q0
A - q′, and we take q0

S = q′. The transitions
in BS are either ᾱ-transitions of A, or α-transitions that we add among the safe components in S in
a way that preserves language equivalence. Formally, consider a state q ∈ QS and a letter σ ∈ Σ. If
δ ᾱ
A(q,σ) 6= /0, then δ ᾱ

S (q,σ) = δ ᾱ
A(q,σ) and δ α

S (q,σ) = /0. If δ ᾱ
A(q,σ) = /0, then δ ᾱ

S (q,σ) = /0 and
δ α
S (q,σ) = {q′ ∈ QS : there is q′′ ∈ δ α

A(q,σ) such that q′ ∼A q′′}. Note that BS is α-homogenous.

Example 3.1. Consider the nice tDCW A from Figure 2. By removing the α-transitions of A, we
get the safe components described in Figure 3. Since q2 - q0, we have that A has a single frontier
S = {{q0,q1}}. The automaton BS appears in Figure 4. As all the states of A are equivalent, we direct
a σ -labeled α-transition to q0 and to q1, for every state with no σ -labeled transition in A.

q0

q2

q1

c

b

a

a

Figure 3: The safe components of A.

q0 q1

c

a, b

b

ca

c

a, b

Figure 4: The tNCW BS for S = {{q0,q1}}.

Proposition 3.3. Let q and s be states of A and BS , respectively, with q ∼A s. It holds that Bs
S is a

GFG-tNCW equivalent to Aq.

Proposition 3.4. For every frontier S, the automaton BS is a nice, safe-centralized, and α-homogenous
GFG-tNCW equivalent to A.

Step 2: Safe minimization Let B = 〈Σ,Q,q0,δ ,α〉 be a nice, safe-centralized, and α-homogenous
GFG-tNCW. For q ∈ Q, define [q] = {q′ ∈ Q : q ≈B q′}. We define the tNCW C = 〈Σ,QC , [q0],δC ,αC〉
as follows. First, QC = {[q] : q ∈ Q}. Then, the transition function is such that 〈[q],σ , [p]〉 ∈ ∆C iff there
are q′ ∈ [q] and p′ ∈ [p] such that 〈q′,σ , p′〉 ∈ ∆, and 〈[q],σ , [p]〉 ∈ αC iff 〈q′,σ , p′〉 ∈ α . Note that B
being α-homogenous implies that αC is well defined; that is, independent of the choice of q′ and p′. To
see why, assume that 〈q′,σ , p′〉 ∈ ᾱ , and let q′′ be a state in [q]. As q′ ≈B q′′, we have, by Proposition
2.3, that there is p′′ ∈ [p] such that 〈q′′,σ , p′′〉 ∈ ᾱ . Thus, as B is α-homogenous, there is no σ -labeled



206 Canonicity in GFG and Transition-Based Automata

α-transition from q′′ in B. In particular, there is no σ -labeled α-transition from q′′ to a state in [p]. Note
that, by the above, the tNCW C is α-homogenous.

Proposition 3.5. For every [p] ∈ QC and s ∈ [p], we have that C[p] is a GFG-tNCW equivalent to Bs.

Proposition 3.6. The GFG-tNCW C is a nice, safe-centralized, safe-minimal, and α-homogenous GFG-
tNCW equivalent to A.

Example 3.2. The safe languages of the states q0 and q1 of the GFG-tNCW BS from Figure 4 are
different. Thus, q0 6≈ q1, and applying safe minimization to BS results in the GFG-tNCW C identical to
BS .

4 Canonicity in GFG-NCWs

In this section we study canonicity for GFG-tNCWs. We first show that the sufficient conditions for
minimality of nice GFG-tNCWs specified in Theorem 3.1 are necessary.

Theorem 4.1. Nice minimal GFG-tNCWs are safe-centralized and safe-minimal.

Proof. Consider a nice minimal GFG-tNCW A. We argue that if A is not safe-centralized or not safe-
minimal, then it can be minimized further by the minimization construction of [1]. Assume first that A
is not safe-centralized. Then, there are two different safe components S,S′ ∈ S(A) and states q ∈ S and
q′ ∈ S′ such that q - q′. Then, H(S,S′), implying that the safe components in S(A) are not a frontier.
Then, Step 1 of the construction minimizes A further. Indeed, in the transition to the automaton BS , at
least one safe component in S(A) is removed from A when the frontier S is computed. Assume now
that A is safe-centralized. Then, for every two different safe components S,S′ ∈ S(A), it holds that
¬H(S,S′) and ¬H(S′,S). Hence, every strict subset of S(A) is not a frontier. Thus, S(A) is the only
frontier of A. Hence, the automaton BS constructed in Step 1 has S = S(A), and is obtained from A by
adding α-transitions that do not change the languages and safe languages of its states. Accordingly, BS
is safe-minimal iff A is safe-minimal. Therefore, if A is not safe-minimal, then applying Step 2 in the
construction to BS merges at least two different states. Hence, also in this case, A is minimized further.

We formalize relations between tNCWs by means of isomorphism and safe isomorphism. Consider
two tNCWsA= 〈Σ,QA,q0

A,δA,αA〉 and B= 〈Σ,QB,q0
B,δB,αB〉, and a bijection κ : QA→QB. We say

that κ is:

• α-transition respecting, if κ induces a bijection between the α-transitions of A and B. Formally,
for all states q,q′ ∈ QA and letter σ ∈ Σ, we have that q′ ∈ δ

αA
A (q,σ) iff κ(q′) ∈ δ

αB
B (κ(q),σ).

• ᾱ-transition respecting, if κ induces a bijection between the ᾱ-transitions of A and B. Formally,
for all states q,q′ ∈ QA and letter σ ∈ Σ, we have that q′ ∈ δ

ᾱA
A (q,σ) iff κ(q′) ∈ δ

ᾱB
B (κ(q),σ).

Then,A and B are safe isomorphic if there is a bijection κ : QA→QB that is ᾱ-transition respecting.
If, in addition, κ is α-transition respecting, then A and B are isomorphic. Note that if κ is ᾱ-transition
respecting, then for every state q ∈ QA, we have that q and κ(q) are safe equivalent. Also, if κ is both
α-transition respecting and ᾱ-transition respecting, then for every state q ∈ QA, we have that q≈ κ(q).



B. Abu Radi and O. Kupferman 207

4.1 Safe isomorphism

Theorem 4.2. Every two equivalent, nice, and minimal GFG-tNCWs are safe isomorphic.

Proof. Consider two equivalent, nice, and minimal GFG-tNCWs A and B. By Theorem 4.1, A is safe-
minimal and safe-centralized. Hence, by Lemma 2.5, there is an injection η : S(A)→ S(B) such that
for every safe component T ∈ S(A), it holds that |T | ≤ |η(T )|. For a safe component T ∈ S(A), let pT

be some state in T . By Proposition 2.4, there are states qT ∈ QA and sT ∈ QB such that pT - qT and
qT ≈ sT . Since A is safe-centralized, the state qT is in T , and in the proof of Lemma 2.5, we defined
η(T ) to be the safe component of sT in B. Likewise, B is safe-minimal and safe-centralized, and there is
an injection η ′ : S(B)→S(A). The existence of the two injections implies that |S(A)|= |S(B)|. Thus,
the injection η is actually a bijection. Hence,

|A|= ∑
T∈S(A)

|T | ≤ ∑
T∈S(A)

|η(T )|= ∑
T ′∈S(B)

|T ′|= |B|

Indeed, the first inequality follows from the fact |T | ≤ |η(T )|, and the second equality follows from
the fact that η is a bijection. Now, asA and B are both minimal, we have that |A|= |B|, and so it follows
that for every safe component T ∈ S(A), we have that |T | = |η(T )|. We use the latter fact in order to
show that η induces a bijection κ : QA→ QB that is ᾱ-transition respecting.

Consider a safe component T ∈ S(A). We define a bijection κT : T → η(T ). The desired bijection
κ is then the union of the bijections κT for T ∈ S(A). By Lemma 2.5, we have that |T | ≤ |η(T )|. The
proof of the lemma associates with a safe run rT = q0,q1, . . .qm of A that traverses all the states in the
safe component T , a safe run rη(T ) = s0,s1, . . .sm of B that traverses states in η(T ) and qi ≈ si, for every
1≤ i≤ m. Moreover, if 1≤ i1, i2 ≤ m are such that qi1 6≈ qi2 , then si1 6≈ si2 . Now, as A is safe-minimal,
every two states in T are not strongly equivalent. Therefore, the function κT that maps each state qi in rT

to the state si in rη(T ) is an injection from T to η(T ). Thus, as |T |= |η(T )|, the injection κT is actually
a bijection.

Clearly, as η : S(A)→S(B) is a bijection, the function κ that is the union of the bijections κT is a
bijection from QA to QB. We prove that κ is ᾱ-transition respecting. Consider states q,q′ ∈ QA and a
letter σ ∈ Σ such that 〈q,σ ,q′〉 is an ᾱ-transition ofA. Let T be q’s safe component. By the definition of
κT , we have that q≈ κT (q). By Proposition 2.3, there is an ᾱ-transition of B of the form t = 〈κ(q),σ ,s′〉,
where q′ ≈ s′. As t is an ᾱ-transition of B, we know that s′ is in η(T ). Recall that B is safe-minimal; in
particular, there are no strongly-equivalent states in η(T ). Hence, s′ = κ(q′), and so 〈κ(q),σ ,κ(q′)〉 is
an ᾱ-transition of B. Likewise, if 〈κ(q),σ ,κ(q′)〉 is an ᾱ-transition of B, then 〈q,σ ,q′〉 is an ᾱ-transition
of A, and so we are done.

4.2 Isomorphism

Theorem 4.2 implies that all nice minimal GFG-tNCWs for a given language are safe isomorphic. We
continue and show that it is possible to make these GFG-tNCWs isomorphic. We propose two canonical
forms that guarantee isomorphism. Both are based on saturating the GFG-NCW with α-transitions. One
adds as many α-transitions as possible, and the second does so in a way that preserves α-homogeneity.

Consider a nice GFG-tNCW A = 〈Σ,Q,q0,δ ,α〉. We say that a triple 〈q,σ ,s〉 ∈ Q×Σ×Q is an
allowed transition in A if there is a state s′ ∈ Q such that s ∼ s′ and 〈q,σ ,s′〉 ∈ ∆. Thus, 〈q,σ ,s〉 is
allowed if there is a state s′ equivalent to s such that s′ ∈ δ (q,σ). We now define two types of α-
maximality:



208 Canonicity in GFG and Transition-Based Automata

• We say that A is α-maximal if all allowed transitions in Q×Σ×Q are in ∆.

• We say that A is α-maximal up to homogeneity if A is α-homogenous, and for every state q ∈ Q
and letter σ ∈ Σ, if q has no outgoing σ -labeled ᾱ-transitions, then all allowed transitions in
{q}×{σ}×Q are in ∆.

Thus, α-maximal automata include all allowed transitions, and α-maximal up to homogeneity au-
tomata include all allowed transitions as long as their inclusion does not conflict with α-homogeneity.

Example 4.1. Recall the minimal GFG-tNCW BS appearing in Figure 4. The GFG-tNCWs C1 and C2
in Figure 5 are obtained from BS by removing a c-labeled α-transition from q0. This does not change
the language and result in two minimal equivalent GFG-tNCWs that are safe isomorphic yet are not
α-maximal nor α-maximal up to homogeneity.

C1:
q0q0 q1

c

a, b

b

ca a, b

C2:
q0 q1

c

b

a

c

a, b

a, b

Figure 5: Two safe-isomorphic yet not isomorphic minimal equivalent GFG-tNCWs.

We now see that both types of α-maximality guarantee isomorphism.

Theorem 4.3. Every two equivalent, nice, minimal, and α-maximal GFG-tNCWs are isomorphic.

Proof. Consider two equivalent, nice, minimal, and α-maximal GFG-tNCWs C1 and C2. By Theo-
rem 4.2, we have that C1 and C2 are safe isomorphic. Thus, there is a bijection κ : QC1 → QC2 that is ᾱ-
transition respecting. The bijection κ was defined such that q≈ κ(q), for every state q ∈ QC1 . We show
that κ is also α-transition respecting. Let 〈q,σ ,s〉 be an α-transition of C1. Then, as κ is ᾱ-transition
respecting, and 〈q,σ ,s〉 is not an ᾱ-transition in C1, the triple 〈κ(q),σ ,κ(s)〉 cannot be an ᾱ-transition
in C2. We show that 〈κ(q),σ ,κ(s)〉 is a transition in C2, and thus it has to be an α-transition. As C2 is
nice, in particular total, there is a transition 〈κ(q),σ ,s′〉 in C2. As q∼ κ(q) and both automata are nice,
in particular, symantically deterministic, Proposition 2.1 then implies that s ∼ s′. Now since s ∼ κ(s),
we get by the transitivity of ∼ that s′ ∼ κ(s). Therefore, the existence of the transition 〈κ(q),σ ,s′〉 in
C2, implies that the transition 〈κ(q),σ ,κ(s)〉 is an allowed transition, and so α-maximality of C2 implies
that it is also a transition in C2. Likewise, if 〈κ(q),σ ,κ(s)〉 is an α-transition in C2, then 〈q,σ ,s〉 is an
α-transition in C1, and so we are done.

Theorem 4.4. Every two equivalent, nice, minimal, and α-maximal up to homogeneity GFG-tNCWs are
isomorphic.

Proof. The proof is identical to that of Theorem 4.3, except that we also have to prove that κ(q) has no
outgoing σ -labeled ᾱ-transitions in C2. To see this, assume by way of contradiction that there is an ᾱ-
transition 〈κ(q),σ ,s′〉 in C2. Then, as q≈ κ(q), Proposition 2.3 implies that q has an outgoing σ -labeled
ᾱ-transition in C1, contradicting the fact that C1 is α-homogenous.



B. Abu Radi and O. Kupferman 209

5 Obtaining Canonical Minimal GFG-tNCWs

In this section we show how the two types of canonical minimal GFG-tNCWs can be obtained in poly-
nomial time. We start with α-maximality up to homogeneity and show that such an α-maximization is
performed by the minimization construction of [1]. We continue with α-maximality, show that adding
allowed transitions to a GFG-tNCW does not change its language, and conclude that α-maximization
can be performed on top of the minimization construction of [1].

5.1 Obtaining canonical minimal α-maximal up to homogeneity GFG-tNCWs

Theorem 5.1. Consider a nice GFG-tNCW A, and let C be the minimal GFG-tNCW produced from A
by the minimization construction of [1]. Then, C is α-maximal up to homogeneity.

Proof. Consider the minimization construction of [1]. We first show that the safe-centralized GFG-
tNCW BS , defined in Step 1, is α-maximal up to homogeneity. Then, we show that α-maximality up to
homogeneity is maintained in the transition to the GFG-tNCW C, defined in Step 2. By Theorem 3.4,
we know that BS is α-homogenous. Assume that q is a state in BS with no outgoing σ -labeled ᾱ-
transitions, and assume that 〈q,σ ,s〉 is an allowed transition. We need to show that 〈q,σ ,s〉 is a transition
in BS . As 〈q,σ ,s〉 is an allowed transition, there is a transition 〈q,σ ,s′〉 in BS with s∼BS s′, and by the
assumption, 〈q,σ ,s′〉 has to be an α-transition. By the definition of the transition function of BS , we
have that s′ ∼A q′ for some state q′ ∈ δ α

A(q,σ). As A is semantically deterministic, we get that the
state s′ is A-equivalent to every state in δ α

A(q,σ). So again, by the definition of the transition function
of BS , we can write δ α

S (q,σ) = {p ∈ QS : p ∼A q′}. Now, as s ∼BS s′, Proposition 3.3 implies that
L(As) = L(Bs

S) = L(Bs′
S) = L(As′); that is, s∼A s′, and since s′ ∼A q′, we get by the transitivity of ∼A

that s∼A q′, and so 〈q,σ ,s〉 is a transition in BS .
We show next that the GFG-tNCW C is α-maximal up to homogeneity. By Theorem 3.6, we have

that C is α-homogenous. Assume that [q] is a state in C with no outgoing σ -labeled ᾱ-transitions, and
assume that 〈[q],σ , [s]〉 is an allowed transition. We need to show that 〈[q],σ , [s]〉 is a transition in C.
As 〈[q],σ , [s]〉 is an allowed transition, there is a transition 〈[q],σ , [s′]〉 in C with [s] ∼ [s′]. Thus, by
Proposition 3.5, we have that L(Bs

S) = L(C[s]) = L(C[s′]) = L(Bs′
S); that is, s′ ∼BS s. By the assumption,

〈[q],σ , [s′]〉 has to be an α-transition. Therefore, by the definition of C, there are states q′′ ∈ [q] and
s′′ ∈ [s′], such that 〈q′′,σ ,s′′〉 is an α-transition in BS . Now, by transitivity of ∼BS and the fact that
s′′ ∼BS s′, we get that s′′ ∼BS s. Finally, as BS is α-homogenous, we get that q′′ has no outgoing σ -
labeled ᾱ-transitions in BS , and so by the α-maximality up to homogeneity of BS , we have that 〈q′′,σ ,s〉
is a transition in BS . Therefore, by the definition of C, we have that 〈[q],σ , [s]〉 is a transition in C, and
we are done.

We can thus conclude with the following.

Theorem 5.2. Every GFG-tNCWA can be canonized into a nice minimal α-maximal up to homogeneity
GFG-tNCW in polynomial time.

5.2 Obtaining canonical minimal α-maximal GFG-tNCWs

Consider a nice GFG-tNCWA= 〈Σ,Q,q0,δ ,α〉. We say that a set of triples E ⊆Q×Σ×Q is an allowed
set if all the triples in it are allowed transitions in A. For every set E ⊆ Q×Σ×Q, we define the tNCW
AE = 〈Σ,Q,q0,δE ,αE〉, where ∆E = ∆∪E and αE = α ∪E . Clearly, as A and AE have the same set of
states and the same set of ᾱ-transitions, they are safe equivalent.



210 Canonicity in GFG and Transition-Based Automata

In Propositions 5.4 and 5.5 below, we prove that for every allowed set E , we have that AE is a nice
GFG-tNCW equivalent to A. We first extend Proposition 2.1 to the setting of A and AE :

Proposition 5.3. Consider states q and s of A and AE , respectively, a letter σ ∈ Σ, and transitions
〈q,σ ,q′〉 and 〈s,σ ,s′〉 of A and AE , respectively. If q∼A s, then q′ ∼A s′.

Proof. If 〈s,σ ,s′〉 /∈ E , then, by the definition of ∆E , it is also a transition of A. Hence, since q∼A s and
A is nice, in particular, semantically deterministic, Proposition 2.1 implies that q′ ∼A s′. If 〈s,σ ,s′〉 ∈ E ,
then, by the definition of ∆E , it is an allowed transition of A. Therefore, there is a state p′ ∈ Q such that
s′ ∼A p′ and 〈s,σ , p′〉 ∈ ∆. As q ∼A s and A is semantically deterministic, Proposition 2.1 implies that
q′ ∼A p′. Therefore, using the fact that p′ ∼A s′, the transitivity of ∼A implies that q′ ∼A s′, and so we
are done.

Proposition 5.4. Let p and s be states ofA andAE , respectively, with p∼A s. Then,As
E is a GFG-tNCW

equivalent to Ap.

Proof. We first prove that L(As
E)⊆ L(Ap). Consider a word w = σ1σ2 . . . ∈ L(As

E), and let s0,s1,s2, . . .
be an accepting run ofAs

E on w. Then, there is i≥ 0 such that si,si+1, . . . is a safe run ofAsi
E on the suffix

w[i+1,∞]. Let p0, p1, . . . pi be a run of Ap on the prefix w[1, i]. Since p0 ∼A s0, we get, by an iterative
application of Proposition 5.3, that pi ∼A si. In addition, as the run of Asi

E on the suffix w[i+ 1,∞] is
safe, it is also a safe run of Asi . Hence, w[i+ 1,∞] ∈ L(Api), and thus p0, p1, . . . , pi can be extended to
an accepting run of Ap on w.

Next, as A is nice, all of its states are GFG, in particular, there is a strategy f s witnessing As’s
GFGness. Recall that A is embodied in AE . Therefore, every run in A exists also in AE . Thus, as
p∼A s, we get that for every word w ∈ L(Ap), the run f s(w) is an accepting run of As on w, and thus is
also an accepting run of As

E on w. Hence, L(Ap)⊆ L(As
E) and f s witnesses As

E ’s GFGness.

Proposition 5.5. For every allowed set E , the GFG-tNCW AE is nice.

Proof. It is easy to see that the factA is nice implies thatAE is normal and safe deterministic. Also, asA
is embodied inAE and both automata have the same state-space and initial states, then all the states inAE
are reachable. Finally, Proposition 5.4 implies that all the states in AE are GFG. To conclude that AE is
nice, we prove below that it is semantically deterministic. Consider transitions 〈q,σ ,s1〉 and 〈q,σ ,s2〉 in
∆E . We need to show that s1 ∼AE s2. By the definition of ∆E , there are transitions 〈q,σ ,s′1〉 and 〈q,σ ,s′2〉
in ∆ for states s′1 and s′2 such that s1 ∼A s′1 and s2 ∼A s′2. As A is nice, in particular, semantically
deterministic, we have that s′1 ∼A s′2. Hence, as s1 ∼A s′1 and s′2 ∼A s2, we get by the transitivity of ∼A
that s1 ∼A s2. Then, Proposition 5.4 implies that L(As1) = L(As1

E ) and L(As2) = L(As2
E ), and so we get

that s1 ∼AE s2. Thus, AE is semantically deterministic.

Let C be a nice minimal GFG-tNCW equivalent toA, and let Ê be the set of all allowed transitions in
C. By Propositions 5.4 and 5.5, we have that CÊ is a nice minimal GFG-tNCW equivalent to A. Below
we argue that it is also α-maximal.

Proposition 5.6. Let C be a nice GFG-tNCW, and let Ê be the set of all allowed transitions in C. Then,
CÊ is α-maximal.



B. Abu Radi and O. Kupferman 211

Proof. Let C = 〈Σ,Q,q0,δ ,α〉, and consider an allowed transition 〈q,σ ,s〉 ∈Q×Σ×Q in CÊ . We prove
that 〈q,σ ,s〉 is an allowed transition also in C. Hence, it is in Ê , and thus is a transition in CÊ .

By the definition of allowed transitions, there is a state s′ ∈ Q with s ∼CÊ s′ such that s′ ∈ δÊ(q,σ).
Proposition 5.4 implies that L(Cs) = L(Cs

Ê) = L(Cs′

Ê ) = L(Cs′), and thus s∼C s′. Also, by the definition of
δÊ , there is a state s′′ ∈Q such that s′′ ∼C s′ and s′′ ∈ δ (q,σ). Therefore, as the transitivity of∼C implies
that s∼C s′′, we have that 〈q,σ ,s〉 is also an allowed transition in C, and we are done.

Since the relation ∼ can be calculated in polynomial time [9, 12], and so checking if a triple in
Q×Σ×Q is an allowed transition can be done in polynomial time, then applying α-maximization on
top of the minimization construction of [1] is still polynomial. We can thus conclude with the following.
Theorem 5.7. Every GFG-tNCW A can be canonized into a nice minimal α-maximal GFG-tNCW in
polynomial time.
Example 5.1. By applying α-maximization to the GFG-tNCW BS , we obtained the α-maximal GFG-
tNCW CÊ appearing in Figure 6

CÊ :
q0q0 q1

c

a, b

b

a, ca

b, c

a, b, c

Figure 6: The α-maximal GFG-tNCW for the GFG-tNCW BS in Figure 4.

6 Canonicity in tDCW and tDBW

For deterministic automata with state-based acceptance, an analogue definition of isomorphism between
automata A and B with acceptance conditions αA ⊆ QA and αB ⊆ QB, seeks a bijection κ : QA→ QB
such that for every q ∈ QA, we have that q ∈ αA iff κ(q) ∈ αB, and for every letter σ ∈ Σ, and state
q′ ∈ QA, we have that q′ ∈ δA(q,σ) iff κ(q′) ∈ δB(κ(q),σ). It is easy to see that the DCWs A1 and
A2 from Figure 1 are not isomorphic, which is a well known property of DCWs and DBWs [13]. In
Theorem 6.1 below, we extend the “no canonicity” result to GFG-NCWs.
Theorem 6.1. Nice, equivalent, and minimal GFG-NCWs need not be isomorphic.

Proof. Consider the language L = (a+ b)∗ · (aω + bω). In Figure 1, we described the non-isomorphic
DCWs A1 and A2 for L. The DCWs A and B can be viewed as nice GFG-NCWs. It is not hard to
see that there is no 2-state GFG-NCW for L, implying that A and B are nice, equivalent, and minimal
GFG-NCWs that are not isomorphic, as required.

In Example 4.1 we saw that nice, equivalent, and minimal GFG-tNCWs need not be isomorphic too,
yet they may be made isomorphic by α-maximization. For the GFG-NCWs in the proof of Theorem 6.1,
this does not work for every definition of α-maxization that makes sense: we cannot add transitions and
make the automata isomorphic. This suggests that the consideration of automata with transition-based
acceptance is more crucial for canonization than the consideration of GFG automata, and makes the
study of canonization for tDCWs very interesting. In particular, unlike the case of GFG automata, here
results on tDCWs immediately apply also to tDBWs. We start with some bad news, showing that there
is no canonicity also in the transition-based setting.



212 Canonicity in GFG and Transition-Based Automata

Theorem 6.2. Nice, equivalent, and minimal tDCWs and tDBWs need not be isomorphic.

Proof. The GFG-tNCW BS from Figure 4 is DBP. In Figure 7 below, we describe two tDCWs obtained
from it by two different prunnings. It is not hard to see that both tDCWs are equivalent to BS , yet are not
isomorphic.

D1:
q0 q1

c

a

b

ca b

D2:
s0 s1

c

b

a

c

b

a

Figure 7: Two non-isomorphic equivalent minimal nice tDCWs, obtained by different prunnings of BS .

By removing the a-labeled transitions from the tDCWs in Figure 7, we obtain a simpler example.
Consider the tDCWs D′1 and D′2 in Figure 8. It is easy to see that L(D′1) = L(D′2) = (b+ c)∗ · (b · c)ω .
Clearly, there is no single-state tDCW for this language. Also, the tDCWs are not isomorphic, as a
candidate bijection κ has to be ᾱ-transition respecting, and thus have κ(q0) = s0 and κ(q1) = s1, yet
then it is not α-transition respecting. By dualizing the acceptance condition ofD′1 andD′2, we obtain two
non-isomorphic tDBWs for the complement language, of all words with infinitely many occurrences of
bb or cc.

D′
1:

q0 q1

c

b

c b

D′
2:

s0 s1

c

b

c

b

Figure 8: Two nice, minimal, equivalent, and non-isomorphic tDCWs

The GFG-NCWs used in the proof of Theorem 6.1 cannot be made isomorphic by changing member-
ship of states in α or by adding transitions. Likewise, since tDCWs cannot be α-maximized, as adding
transitions conflicts with determinism, the tDCWs used in the proof of Theorem 6.2 cannot be made
isomorphic either. Hence, we have the following.

Theorem 6.3. There is no canonicity for minimal GFG-NCWs and for minimal tDCWs.

The tDCWs in the proof of Theorem 6.2 are safe isomorphic, We continue and study safe-isomorphism
between minimal tDCWs. Here too, we restrict attention to nice minimal tDCWs. Note that here, some
of the properties of nice GFG-tNCWs are trivial: being minimal and deterministic, then clearly all states
are reachable and GFG, the automata are semantically deterministic and safe deterministic, and we only
have to make them normal by classifying transitions between safe components as α-transitions.

We say that an ω-regular language L is tDCW-positive if a minimal tDCW for L is not bigger than a
minimal GFG-tNCW for L. Thus, tDCWs for L are as succinct as GFG-tNCWs for it.

Theorem 6.4. Consider an ω-regular language L. If L is tDCW-positive, then every two nice and
minimal tDCWs for L are safe isomorphic.



B. Abu Radi and O. Kupferman 213

Proof. Consider a language L that is tDCW-positive, and consider two nice minimal tDCWs A1 and A2
for L. Since L is tDCW-positive, then A1 and A2 are also nice minimal GFG-tNCWs for L. Hence, by
Theorem 4.2, they are safe isomorphic.

Note that safe isomorphism for ω-regular languages that are not tDCW-positive is left open. Theo-
rem 6.4 suggests that searching for a language L that has two minimal tDCWs that are not safe isomor-
phic, we can restrict attention to languages that are not tDCW-positive. Such languages are not natural.
Moreover, their canonicity is less crucial, as working with a minimal GFG-tNCW for them is more ap-
pealing. Examples of languages that are not tDCW-positive can be found in [12], where it was shown
that GFG-tNCWs may be exponentially more succinct than tDCWs.

7 Glossary

All notations and definitions refer to a GFG-tNCW A= 〈Σ,Q,q0,δ ,α〉.

Relations between states

• Two states q,s ∈ Q are equivalent, denoted q∼ s, if L(Aq) = L(As).

• Two states q,s ∈ Q are safe equivalent if Lsa f e(Aq) = Lsa f e(As).

• Two states q,s ∈ Q are strongly-equivalent, denoted q≈ s, if q∼ s and Lsa f e(Aq) = Lsa f e(As).

• A state q ∈Q is subsafe-equivalent to a state s, denoted q - s, if q∼ s and Lsa f e(Aq)⊆ Lsa f e(As).

Properties of a GFG-tNCW

• A is semantically deterministic if for every state q ∈ Q and letter σ ∈ Σ, all the σ -successors of q
are equivalent: for every two states s,s′ ∈ δ (q,σ), we have that s∼ s′.

• A is safe deterministic if by removing its α-transitions, we get a (possibly not total) deterministic
automaton. Thus, for every state q ∈ Q and letter σ ∈ Σ, it holds that |δ ᾱ(q,σ)| ≤ 1.

• A is normal if there are no ᾱ-transitions connecting different safe components. That is, for all
states q and s of A, if there is a path of ᾱ-transitions from q to s, then there is also a path of
ᾱ-transitions from s to q.

• A is nice if all the states in A are reachable and GFG, and A is normal, safe deterministic, and
semantically deterministic.

• A is α-homogenous if for every state q ∈Q and letter σ ∈ Σ, either δ α(q,σ) = /0 or δ ᾱ(q,σ) = /0.

• A is safe-minimal if it has no strongly-equivalent states.

• A is safe-centralized if for every two states q,s ∈ Q, if q - s, then q and s are in the same safe
component of A.



214 Canonicity in GFG and Transition-Based Automata

References

[1] B. Abu Radi & O. Kupferman (2019): Minimizing GFG Transition-Based Automata. In: Proc. 46th Int.
Colloq. on Automata, Languages, and Programming, LIPIcs 132, Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, pp. 100:1–100:16, doi:10.4230/LIPIcs.ICALP.2019.100.

[2] M. Bagnol & D. Kuperberg (2018): Büchi Good-for-Games Automata Are Efficiently Recognizable. In: Proc.
38th Conf. on Foundations of Software Technology and Theoretical Computer Science, LIPIcs 122, Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 16:1–16:14, doi:10.4230/LIPIcs.FSTTCS.2018.16.

[3] U. Boker, D. Kuperberg, O. Kupferman & M. Skrzypczak (2013): Nondeterminism in the Presence of a
Diverse or Unknown Future. In: ICALP (2), Lecture Notes in Computer Science 7966, Springer, pp. 89–
100, doi:10.1007/978-3-642-39212-2 11.

[4] U. Boker, O. Kupferman & M. Skrzypczak (2017): How Deterministic are Good-For-Games Automata?
In: Proc. 37th Conf. on Foundations of Software Technology and Theoretical Computer Science, Leibniz
International Proceedings in Informatics (LIPIcs) 93, pp. 18:1–18:14, doi:10.4230/LIPIcs.FSTTCS.2017.18.

[5] J.R. Büchi (1962): On a Decision Method in Restricted Second Order Arithmetic. In: Proc. Int. Congress on
Logic, Method, and Philosophy of Science. 1960, Stanford University Press, pp. 1–12.

[6] Th. Colcombet (2009): The theory of stabilisation monoids and regular cost functions. In: Proc. 36th Int.
Colloq. on Automata, Languages, and Programming, Lecture Notes in Computer Science 5556, Springer, pp.
139–150, doi:10.1007/978-3-642-02930-1 12.

[7] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, Th. Michaud, E. Renault & L. Xu (2016): Spot 2.0 — a frame-
work for LTL and ω-automata manipulation. In: 14th Int. Symp. on Automated Technology for Verification
and Analysis, Lecture Notes in Computer Science 9938, Springer, pp. 122–129, doi:10.1007/978-3-319-
46520-3 8.

[8] D. Giannakopoulou & F. Lerda (2002): From States to Transitions: Improving Translation of LTL Formulae
to Büchi Automata. In: Proc. 22nd International Conference on Formal Techniques for Networked and
Distributed Systems, Lecture Notes in Computer Science 2529, Springer, pp. 308–326, doi:10.1007/3-540-
36135-9 20.

[9] T.A. Henzinger, O. Kupferman & S. Rajamani (2002): Fair simulation. Information and Computation 173(1),
pp. 64–81, doi:10.1006/inco.2001.3085.

[10] T.A. Henzinger & N. Piterman (2006): Solving Games without Determinization. In: Proc. 15th Annual
Conf. of the European Association for Computer Science Logic, Lecture Notes in Computer Science 4207,
Springer, pp. 394–410, doi:10.1007/11874683 26.

[11] J.E. Hopcroft (1971): An n logn algorithm for minimizing the states in a finite automaton. In Z. Kohavi,
editor: The Theory of Machines and Computations, Academic Press, pp. 189–196, doi:10.1016/B978-0-12-
417750-5.50022-1.

[12] D. Kuperberg & M. Skrzypczak (2015): On Determinisation of Good-for-Games Automata. In: Proc. 42nd
Int. Colloq. on Automata, Languages, and Programming, pp. 299–310, doi:10.1007/978-3-662-47666-6 24.

[13] O. Kupferman (2015): Automata Theory and Model Checking. Handbook of Theoretical Computer Science.

[14] O. Kupferman, S. Safra & M.Y. Vardi (2006): Relating word and tree automata. Ann. Pure Appl. Logic
138(1-3), pp. 126–146, doi:10.1016/j.apal.2005.06.009.

[15] K. Lehtinen & M. Zimmermann (2020): Good-for-games ω-Pushdown Automata. In: Proc. 35th IEEE
Symp. on Logic in Computer Science, pp. 689–702, doi:10.1145/3373718.3394737.

[16] W. Li, Sh. Kan & Z. Huang (2017): A Better Translation From LTL to Transition-Based Generalized Büchi
Automata. IEEE Access 5, pp. 27081–27090, doi:10.1109/ACCESS.2017.2773123.

[17] G. Morgenstern (2003): Expressiveness results at the bottom of the ω-regular hierarchy. M.Sc. Thesis, The
Hebrew University.

http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.100
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2018.16
http://dx.doi.org/10.1007/978-3-642-39212-2_11
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2017.18
http://dx.doi.org/10.1007/978-3-642-02930-1_12
http://dx.doi.org/10.1007/978-3-319-46520-3_8
http://dx.doi.org/10.1007/978-3-319-46520-3_8
http://dx.doi.org/10.1007/3-540-36135-9_20
http://dx.doi.org/10.1007/3-540-36135-9_20
http://dx.doi.org/10.1006/inco.2001.3085
http://dx.doi.org/10.1007/11874683_26
http://dx.doi.org/10.1016/B978-0-12-417750-5.50022-1
http://dx.doi.org/10.1016/B978-0-12-417750-5.50022-1
http://dx.doi.org/10.1007/978-3-662-47666-6_24
http://dx.doi.org/10.1016/j.apal.2005.06.009
http://dx.doi.org/10.1145/3373718.3394737
http://dx.doi.org/10.1109/ACCESS.2017.2773123


B. Abu Radi and O. Kupferman 215

[18] J. Myhill (1957): Finite automata and the representation of events. Technical Report WADD TR-57-624,
pages 112–137, Wright Patterson AFB, Ohio.

[19] A. Nerode (1958): Linear Automaton Transformations. Proceedings of the American Mathematical Society
9(4), pp. 541–544, doi:10.2307/2033204.

[20] D. Niwinski & I. Walukiewicz (1998): Relating hierarchies of word and tree automata. In: Proc. 15th
Symp. on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science 1373, Springer, pp.
320–331, doi:10.1007/BFb0028571.

[21] S. Schewe (2010): Beyond Hyper-Minimisation—Minimising DBAs and DPAs is NP-Complete. In: Proc.
30th Conf. on Foundations of Software Technology and Theoretical Computer Science, Leibniz International
Proceedings in Informatics (LIPIcs) 8, pp. 400–411, doi:10.4230/LIPIcs.FSTTCS.2010.400.

[22] S. Schewe (2020): Minimising Good-for-Games automata is NP complete. CoRR abs/2003.11979.
[23] S. Sickert, J. Esparza, S. Jaax & J. Křetı́nský (2016): Limit-Deterministic Büchi Automata for Linear Tem-

poral Logic. In: Proc. 28th Int. Conf. on Computer Aided Verification, Lecture Notes in Computer Science
9780, Springer, pp. 312–332, doi:10.1007/978-3-319-41540-6 17.

[24] R.E. Tarjan (1972): Depth first search and linear graph algorithms. SIAM Journal of Computing 1(2), pp.
146–160, doi:10.1137/0201010.

[25] M.Y. Vardi & P. Wolper (1994): Reasoning about Infinite Computations. Information and Computation
115(1), pp. 1–37, doi:10.1006/inco.1994.1092.

http://dx.doi.org/10.2307/2033204
http://dx.doi.org/10.1007/BFb0028571
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.400
http://dx.doi.org/10.1007/978-3-319-41540-6_17
http://dx.doi.org/10.1137/0201010
http://dx.doi.org/10.1006/inco.1994.1092

	1 Introduction
	2 Preliminaries
	3 Minimizing GFG-tNCW
	4 Canonicity in GFG-NCWs
	4.1 Safe isomorphism
	4.2 Isomorphism

	5 Obtaining Canonical Minimal GFG-tNCWs
	5.1 Obtaining canonical minimal -maximal up to homogeneity GFG-tNCWs
	5.2 Obtaining canonical minimal -maximal GFG-tNCWs

	6 Canonicity in tDCW and tDBW
	7 Glossary

