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We use a non-deterministic variant of storage types to develop a framework for the approximation of

automata with storage. This framework is used to provide automata-theoretic views on the approxi-

mation of multiple context-free languages and on coarse-to-fine parsing.

1 Introduction

Formal grammars (e.g. context-free grammars) are used to model natural languages. Language models

are often incorporated into systems that have to guarantee a certain response time, e.g. translation systems

or speech recognition systems. The desire for low response times and the high parsing complexity of the

used formal grammars are at odds. Thus, in real-world applications, the language model is often replaced

by another language model that is easier to parse but still captures the desired natural language reasonably

well. This new language model is called an approximation of the original language model. Nederhof [25]

gives an overview for the approximation of context-free grammars.

In order to approximate a context-free grammar it is common (but not exclusive [26, 4]) to first

construct an equivalent pushdown automaton and then approximate this automaton [21, 29, 23, 2, 28, 13,

20], e.g. by restricting the height of the pushdown. Automata with storage [31, 14, 10, 11] generalise

pushdown automata. By attaching weights to the transitions of an automaton with storage, we can model,

e.g. the multiplicity with which a word belongs to a language or the cost of recognising a word [30, 9].

The resulting devices are called weighted automata with storage and were studied in recent literature [15,

34]. Multiple context-free languages (MCFLs) [32, 33] are currently studied as language models because

they can express the non-projective constituents and discontinuous dependencies that occur in natural

languages [24, 22]. Their approximation was recently investigated from a grammar-centric viewpoint

[3, 6]. MCFLs can be captured by automata with specific storage [5, 7], which allows an automata-

theoretic view on their approximation.

We develop a framework to study the approximation of weighted automata with arbitrary storage.

To deal with non-determinism that arises due to approximation, we use automata with data storage [14]

which allow instructions to be non-deterministic;1 and we investigate their relation to automata with stor-

age (Sec. 3). Weighted automata with data storage differ from Engelfriet’s automata with storage [10, 11]

in two aspects: As instructions we allow binary relations instead of partial functions and each transition

is associated with a weight from a semiring. Using a powerset construction, we show that (weighted) au-

tomata with data storage have the same expressive power as (weighted) automata with storage (Props. 9

and 31). Our formalisation of strategies for approximating data storage (called approximation strate-

gies) is inspired by the storage simulation of Hoare [17, 12]. We use partial functions as approximation

1We add predicates to Goldstine’s original definition of data storage. This does not increase their expressiveness (Lem. 8).
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strategies (Sec. 4). Properties of the approximation strategy imply properties of the while approxima-

tion process: If an approximation strategy is a total function, then we have a superset approximation

(Thms. 21 and 34(i)). If an approximation strategy is injective, then we have a subset approximation

(Thms. 26 and 34(ii)). In contrast to Engelfriet and Vogler [12], we do not utilise flowcharts in our con-

structions. We demonstrate the benefit of our framework by providing an automata-based view on the

approximation of MCFLs (Sec. 5) and by describing an algorithm for coarse-to-fine parsing of weighted

automata with data storage (Sec. 6).

2 Preliminaries

The set {0,1,2, . . .} of natural numbers is denoted by N, N \ {0} is denoted by N+, and {1, . . . ,k} is

denoted by [k] for every k ∈ N (note that [0] = ∅). Let A be a set. The power set of A is denoted by

P(A).
Let A, B, and C be sets and let r ⊆ A×B and s ⊆ B×C be binary relations. We denote {(b,a) ∈

B×A | (a,b) ∈ r} by r−1, {b ∈ B | (a,b) ∈ r} by r(a) for every a ∈ A, and
⋃

a∈A′ r(a) by r(A′) for

every A′ ⊆ A. The sequential composition of r and s is the binary relation r ; s = {(a,c) ∈ A×C | ∃b ∈
B:((a,b) ∈ r)∧ ((b,c) ∈ s)}. We call r an endorelation (on A) if A = B. A semiring is an algebraic

structure (K,+, ·,0,1) where (K,+,0) is a commutative monoid, (K, ·,1) is a monoid, 0 is absorptive

with respect to ·, and · distributes over +. We say that K is complete if it has a sum operation ∑I:KI →K

that extends + for each countable set I [8, Sec. 2]. Let ≤ be a partial order on K. We say that K

is positively ≤-ordered if + preserves ≤ (i.e. for each a,b,c ∈ K with a ≤ b holds a+ c ≤ b+ c), ·
preserves ≤ (i.e. for each a,b,c ∈ K with a ≤ b holds a · c ≤ b · c and c · a ≤ c · b), and 0 ≤ a for each

a ∈ K (cf. Droste and Kuich [8, Sec. 2]).

The set of partial functions from A to B is denoted by A 99K B. The set of (total) functions from A

to B is denoted by A→ B. Let f :A 99K B be a partial function. The domain of f and the image of f are

defined by dom( f ) = {a ∈ A | ∃b ∈ B: f (a) = b} and img( f ) = {b ∈ B | ∃a ∈ A: f (a) = b}, respectively.

Abusing the notation, we may sometimes write f (a) = undefined to denote that a /∈ dom( f ). Note that

every total function is a partial function and that each partial function is a binary relation.

3 Automata with data storage

In addition to the finite state control, automata with storage are allowed to check and manipulate a storage

configuration that comes from a possibly infinite set. We propose a syntactic extension of automata with

storage where the set of unary functions (the instructions) is replaced by a set of binary relations on the

storage configurations.

3.1 Data storage

Definition 1. A data storage is a tuple S = (C,P,R,ci) where C is a set (of storage configurations),

P ⊆P(C) (predicates), R⊆P(C×C) (instructions), ci ∈C (initial storage configuration), and the set

r(c) is finite for every r ∈ R and c ∈C. �

Our definition of data storage differs from the original definition [14, Def. 3.1] in that we have

predicates. The “data storage types” introduced by Herrmann and Vogler [16, Sec. 3] are similar to our

data storages. For instructions they use partial functions that may depend on the input of the automaton

in addition to the current storage configuration instead of binary relations on storage configurations.
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Consider a data storage S = (C,P,R,ci). If every element of R is a partial function, we call S de-

terministic. The definition of “deterministic data storage” in this paper coincides with the definition of

“storage type” in previous literature [15, 34].

Example 2. The deterministic data storage Count models simple counting (Engelfriet [10, 11, Def. 3.4]):

Count = (N,{N,N+,{0}},{inc,dec},0) where inc = {(n,n+1) | n ∈ N} and dec = inc−1. �

Example 3. The following deterministic data storage models pushdown storage:2 PDΓ =(Γ ∗,Ppd,Rpd,ε)
where Γ is a nonempty finite set (pushdown symbols); Ppd = {Γ

∗,bottom}∪{topγ | γ ∈Γ }with bottom =
{ε} and topγ = {γw |w ∈ Γ ∗} for every γ ∈Γ ; and Rpd = {stay,pop}∪{pushγ | γ ∈Γ }∪{stayγ | γ ∈Γ }
with stay = {(w,w) | w ∈ Γ ∗}, pop = {(γw,w) | w ∈ Γ ∗,γ ∈ Γ }, pushγ = {(w,γw) | w ∈ Γ ∗}, and

stayγ = {(γ
′w,γw) | w ∈ Γ ∗,γ ′ ∈ Γ } for every γ ∈ Γ . �

We call a data storage S = (C,P,R,ci) boundedly non-deterministic (short: boundedly nd) if there is

a natural number k such that |r(c)| ≤ k holds for every r ∈ R and c ∈ C. The following two examples

illustrate that each deterministic data storage is also boundedly nd, but not vice versa.

Example 4. PD′Γ extends PDΓ (cf. Ex. 3) by adding an instruction pop∗ that allows us to remove

arbitrarily many symbols from the top of the pushdown: PD′Γ = (Γ ∗,Ppd,Rpd∪{pop∗},ε) where pop∗ =
{(uw,w) | u,w ∈ Γ ∗}.

The tuple PD′Γ is a data storage because |stay(w)|= 1, |pop(w)| ≤ 1, |pushγ(w)|= 1, |stayγ(w)| ≤ 1,

and |pop∗(w)|= |w|+1 for each w ∈ Γ ∗ and γ ∈ Γ are all finite. But PD′Γ is not boundedly nd. Assume

that it were. Then there would be a number k ∈N such that |r(w)| ≤ k for every r ∈ Rpd and w ∈ Γ ∗. But

if we take some w′ ∈ Γ ∗ of length k, then |pop∗(w′)|= k+1 > k which contradicts our assumption. �

Example 5. The data storage PD′′Γ extends PDΓ (cf. Ex. 3) by adding an instruction pushΓ that allows

us to add an arbitrary symbol from Γ the top of the pushdown: PD′′Γ = (Γ ∗,Ppd,Rpd∪{pushΓ },ε) where

pushΓ = {(w,wγ) | w ∈ Γ ∗,γ ∈ Γ }.
The data storage PD′′Γ is boundedly nd because if we take bound k = |Γ |, then |stay(w)| = 1 ≤ k,

|pop(w)| ≤ 1 ≤ k, |pushγ(w)| = 1 ≤ k, |stayγ(w)| ≤ 1 ≤ k, and |pushΓ (w)| = |Γ | ≤ k. In particular, if

|Γ |> 1, then PD′′Γ is not deterministic because |pushΓ (w)|= |Γ |> 1. �

3.2 Automata with data storage

For the rest of this paper let Σ be an arbitrary non-empty finite set.

Definition 6. Let S = (C,P,R,ci) be a data storage. An (S,Σ)-automaton is a tuple M = (Q,T,Qi,Qf)
where Q is a finite set (of states), T is a finite subset of Q× (Σ ∪{ε})×P×R×Q (transitions), Qi ⊆ Q

(initial states), and Qf ⊆ Q (final states). �

Let M = (Q,T,Qi,Qf) be an (S,Σ)-automaton and S = (C,P,R,ci). An M -configuration is an

element of Q×C×Σ ∗. For every τ = (q,v, p,r,q′) ∈ T , the transition relation of τ is the endorelation ⊢τ

on the set of M -configurations that contains (q,c,vw) ⊢τ (q
′,c′,w) for every w ∈ Σ ∗ and (c,c′) ∈ r with

c ∈ p. The run relation of M is ⊢M=
⋃

τ∈T ⊢τ . The transition relations are extended to sequences of

transitions by setting ⊢τ1···τk
= ⊢τ1

; . . . ;⊢τk
for every k ∈ N and τ1, . . . ,τk ∈ T . In particular, for the case

k = 0 we use the identity on Q×C×Σ ∗: ⊢ε = {(d,d) | d ∈Q×C×Σ ∗}. The set of runs of M is the set

RM =
{

θ ∈ T ∗ | ∃q,q′ ∈Q,c,c′ ∈C,w,w′ ∈ Σ ∗:(q,c,w) ⊢θ (q′,c′,w′)
}

. (1)

Let w ∈ Σ ∗. The set of runs of M on w is RM (w) =
{

θ ∈ T ∗ | ∃q ∈ Qi,q
′ ∈ Qf,c

′ ∈ C:(q,ci,w) ⊢θ

(q′,c′,ε)
}

. The language accepted by M is the set L(M ) = {w ∈ Σ ∗ | RM (w) 6= ∅}. Let S be a data

storage and L⊆ Σ ∗. We call L (S,Σ)-recognisable if there is an (S,Σ)-automaton M with L = L(M ).

2We allows (in comparison to Engelfriet [10, 11, Def. 3.2]) the execution of (some) instructions on the empty pushdown.
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1start 2 3

a,Γ ∗,pushΓ

b,Γ ∗,pushΓ

#,Γ ∗,stay

a′, topa,pop

b′, topb,pop

ε ,bottom,stay

Figure 1: Graph of the (PD′′Γ ,Σ)-automaton M from Ex. 7

Example 7. Recall the data storage PD′′Γ from Ex. 5. Let Σ = {a,b,#,a′,b′} and Γ = {a,b}, and consider

the (PD′′Γ ,Σ)-automaton M = ([3],T,{1},{3}) where

T : (1,a ,Γ ∗ ,pushΓ ,1)
(2,a′, topa,pop ,2)

(1,b ,Γ ∗ ,pushΓ ,1)
(2,b′, topb,pop ,2)

(1,#,Γ ∗ , stay,2)
(2,ε ,bottom, stay,3).

The graph of M is shown in Fig. 1. The label of each edge in the graph contains the input that is read

by the corresponding transition, the predicate that is checked, and the instruction that is executed. The

language recognised by M is L(M ) = {u#v | u ∈ {a,b}∗,v ∈ {a′,b′}∗, |u| = |v|}. The automaton M

recognises a given word u#v (with u ∈ {a,b}∗ and v ∈ {a′,b′}∗) as follows: In state 1, it reads the prefix

u and constructs any element of Γ ∗ of length |u| on the pushdown non-deterministically. It then reads #

and goes to state 2. In state 2, it reads a′ for each a on the pushdown and it reads b′ for each b on the

pushdown until the pushdown is empty. Since the pushdown can contain any sequence over {a,b} of

length |u|, M can read any sequence of {a′,b′} of length |u|, ensuring that |u|= |v|. �

We call a data storage S = (C,P,R,ci) predicate-free if P = {C}.3 The following lemma shows that

predicate-free-ness is a normal form among data storages.

Lemma 8. For every data storage S there is a predicate-free data storage S′ such that the classes of

(S,Σ)-recognisable languages and the class of (S′,Σ)-recognisable languages are the same.

Proof idea. Encode the predicates of S in the instructions of S′. �

Proposition 9. For every data storage S there is a deterministic data storage det(S) such that the class of

(S,Σ)-recognisable languages is equal to the class of (det(S),Σ)-recognisable languages.

Proof. Due to Lem. 8 we can assume that S is predicate-free. Thus, let S = (C,{C},R,ci). Using a power

set construction, we obtain the deterministic data storage det(S) = (P(C),{P(C)},det(R),{ci}) where

det(R) = {det(r) | r ∈ R} with det(r) = {(d,r(d)) | d ⊆C,r(d) 6=∅} for every r ∈ R.

Let M = (Q,T,Qi,Qf) be an (S,Σ)-automaton and M ′ = (Q,T ′,Qi,Qf) be a (det(S),Σ)-automaton.

We say that M and M ′ are related if T ′= det(T )= {det(τ) | τ ∈ T}with det(τ)= (q,v,P(C),det(r),q′)
for each τ =(q,v,C,r,q′)∈ T . Clearly, for every (S,Σ)-automaton there is an (det(S),Σ)-automaton such

that both are related, and vice versa.

Now let M = (Q,T,Qi,Qf) be an (S,Σ)-automaton and M ′ = (Q,det(T ),Qi,Qf) be a (det(S),Σ)-
automaton. Note that M and M ′ are related. We extend det:T → det(T ) to a function det:T ∗ →

3Even though S has a predicate C, we still call it predicate-free since C is trivial, i.e. C accepts any storage configuration.
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(det(T ))∗ by point-wise application. We can show for every θ ∈ T ∗ by induction on the length of θ that

∀q,q′ ∈Q,c,c′ ∈C,w,w′ ∈ Σ ∗: (q,c,w) ⊢θ (q′,c′,w′) ⇐⇒ ∀d ∋ c:∃d′ ∋ c′:(q,d,w) ⊢det(θ ) (q
′,d′,w′)

(2)

holds. We obtain L(M ) = L(M ′) from (2) and since {ci} is the initial storage configuration of M ′. �

For practical reasons it might be preferable to avoid the construction of power sets. The proof of the

following Proposition shows a construction for boundedly nd data storages.

Proposition 10. Let S = (C,P,R,ci) be a boundedly nd data storage. There is a deterministic data storage

S′ with the same set of storage configurations such that the class of (S,Σ)-recognisable languages is

contained in the class of (S′,Σ)-recognisable languages.

Proof. We construct the deterministic data storage S′ = (C,P,R′,ci) where R′ is constructed as follows:

Let r ∈ R and r(c)1, . . . ,r(c)mr,c be a fixed enumeration of the elements of r(c) for every c ∈ C. Fur-

thermore, let k = max{|r(c)| | r ∈ R,c ∈ C}. Since S is boundedly nd, the number k is well defined.

We define for each i ∈ [k] an instruction r′i by r′i(c) = r(c)i if i ≤ mr,c and r′i(c) = undefined other-

wise. Let R′ contain the instruction r′i for every r ∈ R and i ∈ [k]. Now let M = (Q,T,Qi,Qf) be an

(S,Σ)-automaton. We construct the (S′,Σ)-automaton M ′ = (Q,T ′,Qi,Qf) where T ′ contains for ev-

ery transition t = (q,v, p,r,q′) ∈ T and i ∈ [k] the transition t ′i = (q,v, p,r′i ,q
′). Then ⊢M =

⋃

t∈T ⊢t =
⋃

t=(q,v,p,r,q′)∈T

⋃

i∈[k]⊢t ′i
=

⋃

t ′∈T ′ ⊢t ′ = ⊢M ′ and thus L(M ) = L(M ′). �

The above construction fails for data storages that are not boundedly nd. Consider the data storage

PD′Γ from Ex. 4. Then there exists no bound kpop∗ ∈ N as would be required in the proof.

The containment shown in Prop. 10 is strict as the following example reveals.

Example 11 (due to Nederhof [27]). Recall the data storage PD′′Γ from Ex. 5. Consider the similar

data storage PD†
Γ = (Γ ∗,{Γ ∗,bottom},{stay,pushΓ }∪{popγ | γ ∈ Γ },ε) where popγ = {(γw,w) | γ ∈

Γ ,w ∈ Γ ∗} for each γ ∈ Γ . We can again think of Γ ∗ as a pushdown. Now, starting from PD
†
Γ , we

construct the deterministic data storage (PD†
Γ )
′ by the construction given in Prop. 10. We thereby obtain

(PD†
Γ )
′ = (Γ ∗,{Γ ∗,bottom},{stay}∪{pushγ | γ ∈ Γ }∪{popγ | γ ∈ Γ },ε). The only difference between

PD†
Γ and (PD†

Γ )
′ is that the instruction pushΓ is replaced by the |Γ | instructions in the set {pushγ | γ ∈Γ }.

Now consider the sets Σ = {a,b} and Γ = Σ , and the language L = {wwR | w ∈ Σ ∗} ⊆ Σ ∗ where wR

denotes the reverse of w for each w ∈ Σ ∗. The following ((PD
†
Γ )
′,Σ)-automaton M ′ recognises L and

thus demonstrates that L is ((PD†
Γ )
′,Σ)-recognisable: M ′ = ([3],T ′,{1},{3}) with

T ′: (1,a,Γ ∗,pusha,1)
(2,a,Γ ∗,popa ,2)

(1,b,Γ ∗,pushb,1)
(2,b,Γ ∗,popb ,2)

(1,ε ,Γ ∗ , stay,2)
(2,ε ,bottom, stay,3).

In state 1, M ′ stores the input in reverse on the pushdown until it decides non-deterministically go to

state 2. In state 2, M accepts the sequence of symbols that is stored on the pushdown. We can only enter

the final state 3 if the pushdown is empty, thus M ′ recognises L.

On the other hand, there is no (PD†
Γ ,Σ)-automaton M that recognises L. Assume that some (PD†

Γ ,Σ)-
automaton M recognises L. Then M would have to encode the first half of the input in the pushdown

since this unbounded information can not be stored in the states. The only instruction that adds informa-

tion to the pushdown is pushΓ . Thus, in the first half of the input, whenever we read the symbol a, we

have to execute pushΓ ; and whenever we read the symbol b, we also have to execute pushΓ . This offers

no means of distinguishing the two situations (reading symbol a and reading symbol b) and hence no

means of encoding the first half of the input in the pushdown. �
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Proposition 12. Let S = (C,P,R,ci) be a data storage and L be an (S,Σ)-recognisable language. If C is

finite, then L is recognisable (by a finite state automaton).

Proof. We will use a product construction. In particular, the states of the constructed finite state automa-

ton are elements of Q×C. For this we employ non-deterministic finite-state automata with extended

transition function (short: fsa) from Hopcroft and Ullman [18, Sec. 2.3] in a notation similar to that of

automata with storage. (We simply leave out the storage-related parts of the transitions.)

Let M = (Q,T,Qi,Qf). We construct the fsa M ′ = (Q×C,Σ ,T ′,Qi×{ci},Qf×C) where T ′ =
{((q,c),v,(q′ ,c′)) | (q,v, p,r,q′) ∈ T,(c,c′) ∈ r,c ∈ p}. We can show

∀q,q′ ∈Q,c,c′ ∈C,w,w′ ∈ Σ ∗: (q,c,w) ⊢∗M (q′,c′,w′) ⇐⇒ ((q,c),w) ⊢∗M ′ ((q′,c′),w′). (3)

by straight-forward induction on the length of runs. Using (1) and (3), we then derive L(M ) = L(M ′).
�

4 Approximation of automata with data storage

An approximation strategy maps a data storage to another data storage. It is specified in terms of storage

configurations and naturally extended to predicates and instructions.

Definition 13. Let S = (C,P,R,ci) be a data storage. An approximation strategy is a partial function

A:C 99KC′ for some set C′. We call A S-proper if (A−1 ;r ;A)(c′) is finite for every r ∈ R and c′ ∈C′. �

Definition 14. Let S = (C,P,R,ci) be a data storage and A:C 99K C′ be an S-proper approximation

strategy. The approximation of S with respect to A is the data storage A(S) = (C′,A(P),A(R),A(ci))
where A(P) = {A(p) | p ∈ P} with A(p) = {A(c) | c ∈ p} for every p ∈ P, and A(R) = {A(r) | r ∈ R}
with A(r) = A−1 ;r ;A for every r ∈ R. �

Example 15. Consider the approximation strategy Ao:N→ {odd}∪{2n | n ∈ N} that assigns to every

odd number the value odd and to every even number the number itself. Then Ao is not Count-proper

since (A−1
o ; inc ;Ao)(odd) = (A−1

o ;dec ;Ao)(odd) = {2n | n ∈ N} is not finite.

On the other hand, consider the approximation strategy Aeo:N→ {even,odd} that returns odd for

every odd number and even otherwise. Then Aeo is Count-proper since (A−1
eo ; inc ;Aeo)(even) = {odd}=

(A−1
eo ;dec ;Aeo)(even) and (A−1

eo ; inc ;Aeo)(odd) = {even}= (A−1
eo ;dec ;Aeo)(odd) are finite. �

Definition 16. Let M = (Q,T,Qi,Qf) be an (S,Σ)-automaton and A an S-proper approximation strategy.

The approximation of M with respect to A is the (A(S),Σ)-automaton A(M ) = (Q,A(T ),Qi,Qf) where

A(T ) = {A(τ) | τ ∈ T} and A(τ) = (q,v,A(p),A(r),q′) for each τ = (q,v, p,r,q′) ∈ T . �

Example 17. Let Σ = {a,b}. Consider the (Count,Σ)-automaton M = ([3],T,{1},{3}) and its approx-

imation Aeo(M ) = ([3],Aeo(T ),{1},{3}) with

T : τ1 = (1,a,N , inc ,1)
τ2 = (1,b,N ,dec,2)
τ3 = (2,b,N ,dec,2)
τ4 = (2,ε ,{0}, inc ,3)

Aeo(T ): τ ′1 = (1,a,Aeo(N) ,Aeo(inc) ,1)
τ ′2 = (1,b,Aeo(N) ,Aeo(dec),2)
τ ′3 = (2,b,Aeo(N) ,Aeo(dec),2)
τ ′4 = (2,ε ,Aeo({0}),Aeo(inc) ,3)

where Aeo(N) = Aeo(N+) = {even,odd} and Aeo({0}) = {even} are the predicates of Aeo(Count), and

Aeo(inc) = Aeo(dec) = {(even,odd),(odd,even)} is the instruction of Aeo(Count). The word aabb ∈
{a,b}∗ is recognised by both automata:

(1,0,aabb) ⊢τ1
(1,1,abb) ⊢τ1

(1,2,bb) ⊢τ2
(2,1,b) ⊢τ3

(2,0,ε) ⊢τ4
(3,1,ε)

(1,even,aabb) ⊢τ ′1
(1,odd,abb) ⊢τ ′1

(1,even,bb) ⊢τ ′2
(2,odd,b) ⊢τ ′3

(2,even,ε) ⊢τ ′4
(3,odd,ε).
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On the other hand, the word bb can be recognised by Aeo(M ) but not by M :

(1,even,bb) ⊢τ ′2
(2,odd,b) ⊢τ ′3

(2,even,ε) ⊢τ ′4
(3,odd,ε). �

Observation 18. Let S = (C,P,R,ci), M be an (S,Σ)-automaton, and A1:C 99K C̄ and A2:C̄ 99K C′ be

approximation strategies. If A1 is S-proper and A2 is A1(S)-proper, then A2(A1(M )) = (A1 ;A2)(M ). �

We call an approximation strategy total if it is a total function and we call it injective if it is an

injective partial function. The distinction between total and injective approximation strategies allows

us to define two preorders on approximation strategies (Def. 19) and provides us with simple criteria to

ensure that an approximation strategy leads to a superset (Thm. 21) or a subset approximation (Thm. 26).

Definition 19. Let A1:C 99K C1 and A2:C 99K C2 be approximation strategies. We call A1 finer than A2,

denoted by A1 � A2, if there is a total approximation strategy A:C1→C2 with A1 ;A = A2. We call A1

less partial than A2, denoted by A1 ⊑ A2, if there is an injective approximation strategy A:C1 99KC2 with

A1 ;A = A2. �

4.1 Superset approximations

In this section we will show that total approximation strategies (i.e. total functions) lead to superset

approximations.

Lemma 20. Let M = (Q,T,Qi,Qf) be an (S,Σ)-automaton, S = (C,P,R,ci), and A be an S-proper

total approximation strategy. We extend A:T → A(T ) to sequences of transitions by point-wise applica-

tion. Then for each θ ∈ T ∗, q,q′ ∈ Q, c,c′ ∈C, w,w′ ∈ Σ ∗: (q,c,w) ⊢θ (q′,c′,w′) =⇒ (q,A(c),w) ⊢A(θ )

(q′,A(c′),w′).

Proof idea. The claim can be shown by straightforward induction on the length of θ . �

Theorem 21. Let M be an (S,Σ)-automaton and A be an S-proper total approximation strategy. Then

L(A(M )) ⊇ L(M ).

Proof. The claim follows immediately from Lem. 20 and the definition of A(M ). �

Example 22. Recall M and Aeo(M ) from Ex. 17. Their recognised languages are L(M ) = {anbn |
n ∈ N+} and L(Aeo(M )) = {ambn | m ∈ N,n ∈ N+,m ≡ n mod 2}. Thus L(Aeo(M )) is a superset of

L(M ). �

Corollary 23. Let M be an (S,Σ)-automaton, and A1 and A2 be S-proper approximation strategies. If

A1 is finer than A2, then L(A1(M )) ⊆ L(A2(M )).

Proof. Since A1 is finer than A2, there is a total approximation strategy A such that A1 ;A = A2. It follows

from the fact that A2 is S-proper and from A1 ;A = A2 that A must be A1(S)-proper. Hence we obtain

L(A1(M ))
Thm. 21

⊆ L
(

A(A1(M ))
) Obs. 18

= L((A1 ;A)(M )) = L(A2(M )). �

The following example shows four approximation strategies that occur in the literature. The first

three approximation strategies approximate a context-free language by a recognisable language (taken

from Nederhof [26, Sec. 7]). The fourth approximation strategy approximates a context-free language

by another context-free language. It is easy to see that the shown approximation strategies are total and

thus lead to superset approximations.

Example 24. Let Γ be a finite set and k ∈N+.
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(i) Evans [13] proposed to map each pushdown to its top-most element. The same result is achieved

by dropping condition 7 and 8 from Baker [1]. This idea is expressed by the total approximation

strategy Atop:Γ ∗ → Γ ∪{@} with Atop(ε) = @ and Atop(γw) = γ for every w ∈ Γ ∗ and γ ∈ Γ ,

where @ is a new symbol that is not in Γ .

(ii) Bermudez and Schimpf [2] proposed to map each pushdown to its top-most k elements. The total

approximation strategy Atop,k:Γ ∗→{w ∈ Γ ∗ | |w| ≤ k} implements this idea where Atop,k(w) = w

if |w| ≤ k and Atop,k(w) = u if w is of the form uv for some u ∈ Γ k and v ∈ Γ +.

(iii) Pereira and Wright [28] proposed to map each pushdown to one where no pushdown symbol occurs

more than once. To achieve this, they replace each substrings of the form γw′γ (for some γ ∈Γ and

w′ ∈ Γ ∗) in the given pushdown by γ : Consider Auniq:Γ ∗→ Seqnr(Γ ) with Auniq(w) = Auniq(uγv)
if w is of form uγw′γv for some γ ∈ Γ and Auniq(w) = w otherwise, where Seqnr(Γ ) denotes the

set of all sequences over Γ without repetition.

(iv) In their coarse-to-fine parsing approach for context-free grammars (short: CFG), Charniak et al. [4]

propose, given an equivalence relation ≡ on the set of non-terminals N of some CFG G, to con-

struct a new CFG G′ whose non-terminals are the equivalence classes of ≡.4 Let Σ be the ter-

minal alphabet of G. Say that g:N → N/≡ is the function that assigns for a nonterminal of

G its corresponding equivalence class; and let g′:(N ∪Σ)∗ → ((N/≡)∪ Σ)∗ be an extension of

g∪{(σ ,σ) |σ ∈Σ}. Then g′ is PDN∪Σ -proper and L(g′(M )) = L(G′)where M is the (PDN∪Σ ,Σ)-
automaton obtained from G by the usual construction [18, Thm. 5.3]. �

4.2 Subset approximations

In this section we will show that injective approximation strategies lead to a subset approximation, this

is proved by a variation of the proof of Thm. 21.

Lemma 25. Let M = (Q,T,Qi,Qf) be an (S,Σ)-automaton, S = (C,P,R,ci), and A be an S-proper injec-

tive approximation strategy. Then for each θ ∈ T ∗, q,q′ ∈ Q, c,c′ ∈ img(A), w,w′ ∈ Σ ∗: (q,c,w) ⊢A(θ )

(q′,c′,w′) =⇒ (q,A−1(c),w) ⊢θ (q′,A−1(c′),w′).

Proof idea. The claim can be shown by straightforward induction on the length of θ . �

Theorem 26. Let M be an (S,Σ)-automaton and A be an S-proper injective approximation strategy.

Then L(A(M ))⊆ L(M ).

Proof. Then the claim follows immediately from Lem. 25 and the definition of A(M ). �

Corollary 27. Let M be an (S,Σ)-automaton and A1 and A2 be S-proper approximation strategies. If A1

is less partial than A2, then L(A1(M ))⊇ L(A2(M )).

Proof. Since A1 is less partial than A2, we know that there is an injective approximation strategy A such

that A1 ;A = A2. As in the proof of Cor. 23 we know that A is A1(S)-proper. Hence we obtain

L(A1(M ))
Thm. 26

⊇ L
(

A(A1(M ))
) Obs. 18

= L((A1 ;A)(M )) = L(A2(M )). �

The following example approximates a context-free language with a recognisable language (taken

from Nederhof [26, Sec. 7]). It is easy to see that the shown approximation strategy is injective and thus

leads to subset approximations.

4Charniak et al. [4] actually considered probabilistic CFGs, but for the sake of simplicity we leave out the probabilities here.
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Example 28. Let Γ be a finite set and k ∈ N+. Krauwer and des Tombe [21], Pulman [29], and Lan-

gendoen and Langsam [23] proposed to disallow pushdowns of height greater than k. This can be

achieved by the partial identity Abd,k:Γ +
99K {w ∈ Γ | |w| ≤ k} where Abd,k(w) = w if |w| ≤ k and

Abd,k(w) = undefined if |w|> k. �

4.3 Potentially incomparable approximations

The following example shows that our framework is also capable of expressing approximation strategies

that lead neither to superset nor to subset approximations.

Example 29. Let Γ be a (not necessarily finite) set, ∆ be a finite set, k ∈ N+, and g:Γ → ∆ be a total

function. For pushdown automata with an infinite pushdown alphabet, Johnson [20, end of Section 1.4]

proposed to first approximate the infinite pushdown alphabet with a finite set and then restrict the push-

down height to k. This can be easily expressed as the composition of two approximations:

Aincomp,k:Γ +
99K {w | w ∈ ∆ , |w| ≤ k} Aincomp,k = ĝ ;Abound,k

where ĝ:Γ + → ∆+ is the point-wise application of g. Let |∆ | < |Γ |. Then ĝ is total but not injective,

Abound,k is injective but not total, and Aincomp,k is neither total nor injective. Hence Thms. 21 and 26

provide no further insights about the approximation strategy Aincomp,k. This concurs with the observation

of Johnson [20, end of Section 1.4] that Aincomp,k is not guaranteed to induce either subset or superset

approximations. �

4.4 Approximation of weighted automata with storage

Definition 30. Let S be a data storage and K be a complete semiring. An (S,Σ ,K)-automaton is a tuple

M = (Q,T,Qi,Qf,δ ) where (Q,T,Qi,Qf) is an (S,Σ)-automaton and δ :T →K (transition weights). We

sometimes denote (Q,T,Qi,Qf) by Muw (“uw” stands for unweighted). �

Consider the (S,Σ ,K)-automaton M = (Q,T,Qi,Qf,δ ). The M -configurations, the run relation of

M , and the set of runs of M on w for every w ∈ Σ ∗ are the same as for Muw. The weight of θ in M

is the value wtM (θ) = δ (τ1) · . . . · δ (τk) for every θ = τ1 · · ·τk with τ1, . . . ,τk ∈ T . In particular, we let

wtM (ε) = 1. The weighted language induced by M is the function JM K:Σ ∗→ K where

JM K(w) = ∑θ∈RM (w)
wtM (θ) (4)

For every w ∈ Σ ∗. Let S be a data storage, K be a complete semiring, and r:Σ ∗→ K. We call r (S,Σ ,K)-
recognisable if there is an (S,Σ ,K)-automaton M with r = JM K.

We extend Prop. 9 to the weighted case, using the functions det as defined in Prop. 9.

Proposition 31. The classes of (S,Σ ,K)-recognisable and of (det(S),Σ ,K)-recognisable languages are

the same for every data storage S and semiring K.

Proof. Let M =(Q,T,Qi,Qf,δ ) be an (S,Σ ,K)-automaton and M ′=(Q′,T ′,Q′i,Q
′
f,δ
′) a (det(S),Σ ,K)-

automaton. We call M and M ′ related if Muw and M ′
uw are related, and δ ′(det(τ)) = δ (τ) for every

τ ∈ T . Note that det : T → det(T ) is a bijection. Clearly, for every (S,Σ ,K)-automaton M there is an

(det(S),Σ ,K)-automaton M ′ such that M and M ′ are related and vice versa. It remains to be shown

that JM K = JM ′K. For every w ∈ Σ ∗, we derive

JM K(w)
(4)
= ∑θ∈RM

wtM (θ) =∑θ∈RM

wtM ′(det(θ))
(2)
= ∑θ ′∈R

M ′
wtM ′(θ ′)

(4)
= JM ′K(w). �
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Definition 32. Let M = (Q,T,Qi,Qf,δ ) be an (S,Σ ,K)-automaton and A be an S-proper approxi-

mation strategy. The approximation of M with respect to A is the (A(S),Σ ,K)-automaton A(M ) =
(Q,A(T ),Qi,Qf,A(δ )) where A(S) and A(T ) are defined as in Def. 16, and A(δ )(τ ′) = ∑τ∈T :A(τ)=τ ′ δ (τ)
for every τ ′ ∈ A(T ). �

Lemma 33. Let M be an (S,Σ ,K)-automaton, A be an S-proper approximation strategy, ≤ be a partial

order on K, and K be positively ≤-ordered.

(i) wtA(M )(θ
′)≥ ∑θ∈RM :A(θ )=θ ′wtM (θ) for every θ ′ ∈ RA(M ).

(ii) If A is injective, then wtA(M )(θ
′) = ∑θ∈RM :A(θ )=θ ′wtM (θ) for every θ ′ ∈ RA(M ).

Proof. ad (i): We proof the claim by induction on the length of θ ′. For θ ′ = ε , we derive

wtA(M )(ε) = 1≥ 1 = wtM (ε) = ∑θ∈RM :A(θ )=ε
wtM (θ).

For θ ′τ ′ ∈ RA(M ) with τ ′ ∈ A(T ), we derive

wtA(M )(θ
′τ ′) = wtA(M )(θ

′) ·A(δ )(τ ′)

≥
(

∑θ∈RM ,A(θ )=θ ′
wtM (θ)

)

·A(δ )(τ ′) (by IH and since · preserves ≤)

=
(

∑θ∈RM ,A(θ )=θ ′
wtM (θ)

)

·
(

∑τ∈T :A(τ)=τ ′
δ (τ)

)

(by Def. 32)

=∑θ∈RM ,τ∈T :(A(θ )=θ ′)∧(A(τ)=τ ′)
wtM (θ) ·δ (τ) (by distributivity of K)

≥∑θ∈RM ,τ∈T :θ τ∈RM∧(A(θ τ)=θ ′τ ′)
wtM (θ) ·δ (τ) (by (∗) and since + preserves ≤)

=∑θ̄∈RM :(A(θ̄)=θ ′τ ′)
wtM (θ̄ ) (by Def. 32)

For (∗), we note that the index set of the left sum subsumes that of the right sum and hence ≥ is justified.

ad (ii): The proof follows the same structure as the proof of (i). But we make the following modifi-

cations: In the induction base, we can write “=” instead of “≥” since 1 = 1. For the induction step, we

assume that (ii) holds for every θ ′ of length n. Then the “≥” in the second line of the induction step can

be replaced by “=”. In order to turn the “≥” in the fifth line of the induction step into “=”, we propose

that the index sets of the left and the right sum are the same. This holds since A is injective, θ ′τ ′ is in

RA(M ), and hence (by Lem. 25) each θτ with A(θτ) = θ ′τ ′ is in RM . �

Theorem 34. Let M be an (S,Σ ,K)-automaton, A be an S-proper approximation strategy, and ≤ be a

partial order on K, and K be positively ≤-ordered.

(i) If A is total, then JA(M )K(w)≥ JM K(w) for every w ∈ Σ ∗.

(ii) If A is injective, then JA(M )K(w)≤ JM K(w) for every w ∈ Σ ∗.

Proof. ad (i): For every w ∈ Σ ∗, we derive

JA(M )K(w)
(4)
= ∑θ ′∈RA(M )(w)

wtA(M )(θ
′)

(∗)

≥∑θ ′∈RA(M )(w)∑θ∈RM : A(θ )=θ ′
wtM (θ)

Def. 16
= ∑θ ′∈RA(M )(w)∑θ∈RM (w) : A(θ )=θ ′

wtM (θ)
(†)
= ∑θ∈RM (w)

wtM (θ)
(4)
= JM K(w)

where (∗) follows from Lem. 33 (i) and the fact that + preserves ≤. For (†), we argue that for each

θ ∈ RM (w) there is exactly one θ ′ ∈ RA(M )(w) with A(θ) = θ ′ since A is total. Hence the left side and
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the right side of the equation have exactly the same addends. Then, since + is commutative, the “=” is

justified.

ad (ii): For every w ∈ Σ ∗, we derive

JA(M )K(w)
(4)
= ∑θ ′∈RA(M )(w)

wtA(M )(θ
′)

Lem. 33 (ii)
= ∑θ ′∈RA(M )(w)∑θ∈RM : A(θ )=θ ′

wtM (θ)

Def. 16
= ∑θ ′∈RA(M )(w)∑θ∈RM (w) : A(θ )=θ ′

wtM (θ)
(‡)

≤∑θ∈RM (w)
wtM (θ)

(4)
= JM K(w).

For (‡), we argue that for each θ ∈ RM (w) there is at most one θ ′ ∈ RA(M )(w) with A(θ) = θ ′ since

A is a partial function. Hence all the addends on the left side of the inequality also occur on the right

side. But there may be an addend wtM (θ) on the right side which does not occur on the left side because

A(θ) = undefined. Since + preserves ≤, the “≤” is justified. �

5 Approximation of multiple context-free languages

Due to the equivalence of pushdown automata and context-free grammars [18, Thms. 5.3 and 5.4], the

approximation strategies in Exs. 24 and 28 can be used for the approximation of context-free languages.

The framework presented in this paper together with the automata characterisation of multiple context-

free languages [7, Thm. 18] allows an automata-theoretic view on the approximation of multiple context-

free languages. The automata characterisation uses an excursion-restricted form of automata with tree-

stack storage [7]. A tree-stack is a tree with a designated position inside of it (the stack pointer). The

automaton can read the label under the stack pointer, can determine whether the stack pointer is at the

bottom (i.e. the root), and can modify the tree stack by moving the stack pointer or by adding a node.

The excursion-restriction bounds how often the stack pointer may enter a position from its parent node.

Definition 35. Let Γ be a finite set. The tree-stack storage over Γ is the deterministic data storage

TSSΓ = (TSΓ ,Pts,Rts,ci,ts) where

• TSΓ is the set of tuples 〈ξ ,ρ〉 where ξ :N∗+ 99K Γ ∪{@}, dom(ξ ) is finite and prefix-closed,5

ρ ∈ dom(ξ ), and ξ (ρ ′) = @ iff ρ ′ = ε (We call ξ the stack and ρ the stack pointer of 〈ξ ,ρ〉.);

• ci,ts = 〈{(ε ,@)},ε〉;

• Pts = {TSΓ ,bottom}∪{topγ | γ ∈ Γ } with bottom = {〈ξ ,ρ〉 ∈ TSΓ | ρ = ε} and topγ = {〈ξ ,ρ〉 ∈
TSΓ | ξ (ρ) = γ} for every γ ∈ Γ ; and

• Rts = {down}∪{upn,pushn,γ | n ∈N,γ ∈ Γ } where for each n ∈ N+ and γ ∈ Γ :

– upn = {(〈ξ ,ρ〉,〈ξ ,ρn〉) | 〈ξ ,ρ〉 ∈ TSΓ ,ρn ∈ dom(ξ )},

– down =
⋃

n∈N+
up−1

n , and

– pushn,γ = {(〈ξ ,ρ〉,〈ξ ∪{(ρn,γ)},ρn〉) | 〈ξ ,ρ〉 ∈ TSΓ ,ρn /∈ dom(ξ )}. �

Example 36. Consider Σ = {a,b,c}, Γ = {∗,#}, the (TSSΓ ,Σ)-automaton M = ([4],T,{1},{4}), and

T : τ1 = (1,a ,TSΓ ,push1,∗,1)

τ2 = (1,ε ,TSΓ ,push1,#,2)

τ3 = (2,ε , top# ,down ,2)

τ4 = (2,b, top∗ ,down,2)
τ5 = (2,ε ,bottom,up1 ,3)
τ6 = (3,c, top∗ ,up1 ,3)

τ7 = (3,ε , top#,down,4.)

5A set D⊆N
∗
+ is prefix closed if for each w ∈ D, every prefix of w is also in D.
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(1,a ,Γ ∗ ,push∗ ,1)
(1,ε ,Γ ∗ ,push# ,2)
(2,ε , top# ,pop ,2)
(2,b, top∗ ,pop ,2)
(2,ε ,bottom,push∗∪push#,3)
(3,c , top∗ ,push∗∪push#,3)
(3,ε , top# ,pop ,4)

(1,a ,Γ@ ,{(γ ,∗) | γ ∈ Γ@} ,1)
(1,ε ,Γ@ ,{(γ ,#) | γ ∈ Γ@} ,2)
(2,ε ,{#} ,{(γ ,γ ′) | γ ,γ ′ ∈ Γ@} ,2)
(2,b,{∗} ,{(γ ,γ ′) | γ ,γ ′ ∈ Γ@} ,2)
(2,ε ,{@},{(γ ,γ ′) | γ ∈ Γ@,γ ′ ∈ Γ },3)
(3,c ,{∗} ,{(γ ,γ ′) | γ ∈ Γ@,γ ′ ∈ Γ },3)
(3,ε ,{#} ,{(γ ,γ ′) | γ ,γ ′ ∈ Γ@} ,4)

Figure 2: Transitions of Acf,Γ (M ) (left) and (Acf,Γ ;Atop)(M ) (right)

The runs of M all have a specific form: M executes τ1 arbitrarily often (say n times) until it executes

τ2, leading to the storage configuration ζ = 〈{(ε ,@),(1,∗), . . . ,(1n,∗),(1n+1,#)},1n+1〉 where 1k means

that 1 is repeated k times. The stack of ζ is a monadic tree where the leave is labelled with #, the root

is labelled with @, and the remaining n nodes are labelled with ∗. The stack pointer of ζ points to the

leave. From this configuration M executes τ3 once and τ4 n times (i.e. for each ∗ on the stack), moving

the stack pointer to the root. Then M executes τ5 once and τ6 n times, leading to the final state. Hence

the language of M is L(M ) = {anbncn | n ∈ N}, which is not context-free. �

Example 37. The following two approximation strategies for multiple context-free languages are taken

from the literature. Let Γ be a finite set.

(i) Van Cranenburgh [6, Sec. 4] observed that the idea of Ex. 24 (iv) also applies to multiple context-

free grammars (short: MCFG). The idea can be applied to tree-stack automata similarly to the way

it was applied to pushdown automata in Ex. 24 (iv). The resulting data storage is still a tree-stack

storage. This approximation strategy is total and thus leads to a superset approximation.

(ii) Burden and Ljunglöf [3, Sec. 4] and van Cranenburgh [6, Sec. 4] proposed to split each produc-

tion of a given MCFG into multiple productions, each of fan-out 1. Since the resulting grammar

is of fan-out 1, it produces a context-free language and can be recognised by a pushdown au-

tomaton. The corresponding approximation strategy in our framework is Acf,Γ :TSΓ → Γ ∗ with

Acf,Γ ((ξ ,n1 · · ·nk)) = ξ (n1 · · ·nk) · · ·ξ (n1n2)ξ (n1) for every (ξ ,n1 · · ·nk) ∈ TSΓ with n1, . . . ,nk ∈
N+. The resulting data storage is a pushdown storage. Acf,Γ is total and thus leads to a superset

approximation. �

Example 38. Let us consider the (TSSΓ ,Σ)-automaton M from Ex. 36. Figure 2 shows the transitions

of the (Acf,Γ (TSSΓ ),Σ)-automaton Acf,Γ (M ) (cf. Ex. 37) and the ((Acf,Γ ;Atop)(TSSΓ ),Σ)-automaton

(Acf,Γ ;Atop)(M ) (cf. also Ex. 24). The languages recognised by the two automata are L(Acf,Γ (M )) =
{anbncm | n,m∈N} and L((Acf,Γ ;Atop)(M )) = {anbmck | n,m,k∈N}. Clearly, L(Acf,Γ (M )) is a context-

free language. Since (Acf ;Atop)(M ) has finitely many storage configurations, its language is recognis-

able by a finite state automaton (Prop. 12). �

6 Coarse-to-fine n-best parsing for weighted automata with storage

Parsing is a process that takes a finite representation R of a language L(R) ⊆ Σ ∗ and a word w ∈ Σ ∗,
and outputs analyses of w in R. If R is a grammar, then the analyses of w are the parse trees in R

for w. If R is an automaton (with storage), then the analyses of w are the runs of R on w. Since this

paper is concerned with weighted automata with storage, let R be an (S,Σ ,K)-automaton. Also, let K

be partially ordered by a relation ≤. We will call a run θ ,,better than“ a run θ ′ if wtR(θ) ≥ wtR(θ ′).
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Using wtR , we can assign weights to the runs of R on w and enumerate those runs in descending order

(with respect to ≤) of their weights.6 If we output the first n from the descending list of runs, we call the

parsing n-best parsing [19].

Coarse-to-fine parsing [4] employs a simpler (i.e. easier to parse) automaton R ′ to parse w and uses

the runs of R ′ on w to narrow the search space for the runs of R on w. To ensure that there are runs

of R ′ on w whenever there are runs of R on w, we require that L(R ′) ⊇ L(R). The automaton R ′ is

obtained by superset approximation. In particular, we require R ′ = A(R) for some total approximation

strategy A.

Algorithm 3 Coarse-to-fine n-best parsing for weighted automata with storage

Input: (S,Σ ,K)-automaton M , S-proper total approximation strategy A, n ∈N, word w ∈ Σ ∗

Output: some set of n greatest (with respect to the image under wtM and ≤) runs of M on w

1: X ←∅ ⊲ X is the set of runs of M on w that were already found

2: Y ← RA(M )(w) ⊲ Y is the set of runs of A(M ) on w that were not yet considered

3: while |X |< n or minθ∈X wtM (θ) < maxθ ′∈Y wtA(M )(θ
′) do

4: θ ′← smallest element of Y with respect to the image under wtA(M )

5: Y ←Y \{θ ′}
6: for each θ ∈ A−1(θ ′) that is a sequence of transitions in M do

7: if θ ∈ RM then X ← X ∪{θ} ⊲ it is sufficient to only check the storage behaviour for θ

8: return a set of n greatest elements of X with respect to the image under wtM

Algorithm 3 describes coarse-to-fine n-best parsing for weighted automata with storage. The inputs

are an (S,Σ ,K)-automaton M , an S-proper approximation strategy A which will be used to construct

an approximation of M , a natural number n which specifies how many runs should be computed, and a

word w ∈ Σ ∗ which we want to parse. The output is a set of n-best runs of M on w. The algorithm starts

with a set X that is empty (line 1) and a set Y that contains all the runs of A(M ) on w (line 2). Then,

as long as X has less than n elements or an element of Y is greater than the smallest element in X with

respect to their weights (line 3), we take the greatest element θ ′ of Y (line 4), remove θ ′ from Y (line 5),

calculate the corresponding sequences θ of transitions from M (line 6), and add θ to X if θ is a run of

M (line 7).

We can restrict the automaton A(M ) to the input w with the usual product construction. The set of

runs of the resulting product automaton (let us call it MA,w) can be mapped onto RA(M )(w) by some

projection ϕ . Hence MA,w (finitely) represents RA(M )(w). The automaton MA,w can be construed as a

(not necessarily finite) graph GA,w with the MA,w-configurations as nodes. The edges shall be labelled

with the images of the corresponding transitions of MA,w under ϕ . Then the paths (i.e. sequences of

edge labels) in GA,w from the initial MA,w-configuration to all the final MA,w-configurations are exactly

the elements of RA(M )(w). Those paths can be enumerated in descending order of their weights using a

variant of Dijkstra’s algorithm. This provides us with a method to compute maxθ ′∈Y wtA(M )(θ
′) on line 3

and θ ′ on line 4 of Alg. 3.

Example 39. Let Γ = {a,b,c}, Σ = Γ ∪ {#}, K be the Viterbi semiring (N∪{∞},min,+,∞,0) with

linear order ≤, and A#:Γ ∗→ N,u 7→ |u| be a total approximation strategy. Note that A#(PDΓ ) = Count.

Now consider the (PDΓ ,Σ ,K)-automaton M = ([3],T,{1},{3},δ ) and the (Count,Σ ,K)-automaton

6The resulting list of runs is not unique since different runs may get the same weight and since we only have a partial order.
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A#(M ) = ([3],T ′,{1},{3},δ ′) where T = {τ1, . . . ,τ8} and T ′ = {τ ′1,τ
′
2,τ
′
4,τ
′
5,τ
′
6,τ
′
7,τ
′
8} with

τ1=(1,a,Γ ∗ ,pusha,1)
τ5=(2,a, topa,pop ,2)

τ2=(1,ε ,Γ ∗ ,pushb,1)
τ6=(2,b, topb,popb ,2)

τ3=(1,ε ,Γ ∗ ,pushc,1)
τ7=(2,c , topc,pop ,2)

τ4=(1,#,Γ ∗ ,stay,2)
τ8=(2,ε ,bottom,stay,3)

τ ′1=(1,a,N , inc ,1)
τ ′5=(2,a,N+,dec,2)

τ ′2=(1,ε ,N , inc ,1)
τ ′6=(2,b,N+,dec,2) τ ′7=(2, c, N+, dec, 2)

τ ′4=(1,#,N , id,2)
τ ′8=(2,ε ,{0}, id,3),

δ (τ) = 1 for each τ ∈ T , and δ ′(τ ′) = 1 for each transition τ ′ ∈ T ′. 7

We use Alg. 3 to obtain the 1-best run of w = a#ba: On line 4, we get θ ′ = τ ′1τ ′2τ ′4τ ′7τ ′5τ ′8 (the only

run of A#(M ) on w). Then there are only two possible values for θ on line 7, namely θ1 = τ1τ2τ4τ7τ5τ8

and θ2 = τ1τ3τ4τ7τ5τ8 of which only θ2 is a run of M , hence the algorithm returns {θ2}. �

Outlook. The author intends to extend Alg. 3 to use multiple levels of approximation (i.e. multiple

approximation strategies that can be applied in sequence) and to investigate the viability of this extension

for parsing multiple context-free languages in the context of natural languages.
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