
Gabriele Puppis, Tiziano Villa (Eds.): Fourth International
Symposium on Games, Automata, Logics and Formal Verification
EPTCS 119, 2013, pp. 79–92, doi:10.4204/EPTCS.119.9

c© D. Bresolin
This work is licensed under the
Creative Commons Attribution License.

Improving HyLTL model checking of hybrid systems

Davide Bresolin
University of Verona (Italy)

davide.bresolin@univr.it

The problem of model-checking hybrid systems is a long-time challenge in the scientific community.
Most of the existing approaches and tools are either limited on the properties that they can verify,
or restricted to simplified classes of systems. To overcome those limitations, a temporal logic called
HyLTL has been recently proposed. The model checking problem for this logic has been solved by
translating the formula into an equivalent hybrid automaton, that can be analized using existing tools.
The original construction employs a declarative procedure that generates exponentially many states
upfront, and can be very inefficient when complex formulas are involved. In this paper we solve
a technical issue in the construction that was not considered in previous works, and propose a new
algorithm to translate HyLTL into hybrid automata, that exploits optimized techniques coming from
the discrete LTL community to build smaller automata.

1 Introduction

Hybrid systems are heterogeneous systems characterized by a tight interaction between discrete and
continuous components. Typical examples include discrete controllers that operate in a continuous envi-
ronment, as in the case of manufacturing plants, robotic systems, and cyberphysical embedded systems.
Because of their heterogeneous nature, hybrid systems cannot be faithfully modeled by discrete only nor
by continuous only formalisms. In order to model and specify them in a formal way, the notion of hy-
brid automata has been introduced [1, 14]. Intuitively, a hybrid automaton is a “finite-state automaton”
with continuous variables that evolve according to dynamics characterizing each discrete state (called a
location or mode). Of particular importance in the analysis of hybrid automata is the model checking
problem, that is, the problem of verifying whether a given hybrid automaton respects some property of
interest. Unfortunately, the model checking problem is computationally very difficult. Indeed, even for
simple properties and systems, this problem is not decidable [11].

For very simple classes of hybrid systems, like timed automata, the model checking problem can
be solved exactly [2]. Tools like Kronos [20] and UPPAAL [13] can be used to verify properties of
timed automata. For more complex classes of systems, the problem became undecidable, and many
different approximation techniques may be used to obtain an answer, at least in some cases. Tools like
PhaVer [8] and SpaceEx [9] can compute approximations of the reachable set of hybrid automata with
linear dynamics, and thus can be used to verify safety properties. Other tools, like HSOLVER [17], and
Ariadne [4], can manage systems with nonlinear dynamics, but are still limited to safety properties.

We are aware of only very few approaches that can specify and verify complex properties of hybrid
systems in a systematic way. A first attempt was made in [12], where an extension of the Temporal Logic
of Actions called TLA+ is used to specify and implement the well-known gas burner example. Later on,
Signal Temporal Logic (STL), an extension of the well-known Metric Interval Logic to hybrid traces,
has been introduced to monitor hybrid and continuous systems [15]. More recent approaches include the
tool KeYmaera [16], that uses automated theorem proving techniques to verify nonlinear hybrid systems
symbolically, and the logic HRELTL [6], that is supported by an extension of the discrete model checker
NuSMV, but it is limited to systems with linear dynamics.

http://dx.doi.org/10.4204/EPTCS.119.9
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

80 Improving HyLTL model checking of hybrid systems

To overcome the limitations of the current technologies, an automata-theoretic approach for model
checking hybrid systems has been recently proposed [5]. The work is based on an extension of the well-
known temporal logic LTL to hybrid traces called HyLTL. The model checking problem for this logic has
been solved by translating the formula into an equivalent hybrid automaton, reducing the model checking
problem to a reachability problem that can be solved by existing tools. The original construction employs
a declarative procedure that generates exponentially many states upfront, and can be very inefficient when
complex formulas are involved.

In this paper we solve a technical issue in the construction that was not considered in previous works
by identifying the precise fragment of HyLTL that can be translated into hybrid automata, and we propose
a new algorithm to translate formulas into hybrid automata, that exploits optimized techniques coming
from the discrete LTL community to be more efficient than the original declarative approach.

2 Preliminaries

Before formally defining hybrid automata and the syntax and semantics of HyLTL we need to introduce
some basic terminology. Throughout the paper we fix the time axis to be the set of non-negative real
numbers R+. An interval I is any convex subset of R+, usually denoted as [t1, t2] = {t ∈R+ : t1 ≤ t ≤ t2}.
We also fix a countable universal set V of variables, ranging over the reals. Given a finite set of variables
X ⊆ V, a valuation over X is a function x : X 7→Rn that associates a value to every variable in X . The set
Val(X) is the set of all valuations over X .

A notion that will play an important role in the paper is the one of trajectory. A trajectory over a set
of variables X is a function τ : I 7→ Val(X), where I is a left-closed interval with left endpoint equal to
0. We assume trajectories to be differentiable almost everywhere on the domain, and we denote with τ̇

the corresponding (partial) function giving the value of the derivative of τ for every point in the interior
of I where τ is differentiable (note that τ̇ might not be differentiable neither continuous). With dom(τ)
we denote the domain of τ , while with τ.ltime (the limit time of τ) we define the supremum of dom(τ).
The first state of a trajectory is τ.fstate = τ(0), while, when dom(τ) is right-closed, the last state of a
trajectory is defined as τ.lstate = τ(τ.ltime). We denote with Trajs(X) the set of all trajectories over X .
If [t, t ′] is a subinterval of dom(τ), we denote whith τ↓[t,t ′] the trajectory τ ′ such that dom(τ ′) = [0, t ′− t]
and τ ′(t ′′) = τ(t ′′+ t) for every t ′′ ∈ dom(τ ′). Given two trajectories τ1 and τ2 such that τ1.ltime <+∞,
their concatenation τ1 · τ2 is the trajectory with domain [0,τ1.ltime+ τ2.ltime] such that τ1 · τ2(t) = τ1(t)
if t ∈ dom(τ1), τ1 · τ2(t) = τ2(t− τ1.ltime) otherwise.

Variables will be used in the paper to build constraints: conditions on the value of variables and on
their derivative that can define sets of valuations, sets of trajectories, and jump relations. Formally, given
a set of variables X , and a set of mathematical operators OP (e.g. +, −, ·, exponentiation, sin, cos, . . .),
we define the corresponded set of dotted variables Ẋ as {ẋ|x ∈ X} and the set of tilde variables X̃ as
{x̃|x ∈ X}. We use OP, X , Ẋ and X̃ to define the following two classes of constraints.

• Jump constraints: expressions built up from variables in X ∪ X̃ , constants from R, mathematical
operators from OP and the usual equality and inequality relations (≤, =, >, . . .). Examples of
jump constraints are x = 4ỹ+ z̃, x2 ≤ ỹ, ỹ > cos(y).

• Flow constraints: expressions built up from variables in X ∪ Ẋ , constants from R, mathematical
operators from OP and the usual equality and inequality relations (≤, =, >, . . .). Examples of
flow constraints are ẋ = 4y+ z, ẋ+ y≥ 0, sin(x)> cos(ẏ).

D. Bresolin 81

We use jump constraints to give conditions on pairs of valuations (x̃,x). Given a jump constraint c, we
say that (x̃,x) respects c, and we denote it with (x̃,x) ` c, when, by replacing every variable x with its
value in x and every tilde variable x̃ with the value of the corresponding normal variable in x̃ we obtain
a solution for c. Flow constraints will be used to give conditions on trajectories. Given a flow constraint
c, we say that a trajectory τ respects c, and we denote it with τ ` c, if and only if for every time instant
t ∈ dom(τ), both the value of the trajectory τ(t) and the value of its derivative τ̇(t) respect c (we assume
that τ̇(t) respects c when τ̇ is not defined on t).

3 HyLTL: syntax and semantics

The logic HyLTL is an extension of the well-known temporal logic LTL to hybrid systems. Given a
finite set of actions A and a finite set of variables X , the language of HyLTL is defined from a set of flow
constraints FC over X by the following grammar:

ϕ ::= f ∈ FC | a ∈ A | ¬ϕ | ϕ ∧ϕ | ϕ ∨ϕ | Xϕ | ϕ U ϕ | ϕ R ϕ (1)

In HyLTL constraints from FC and actions from A take the role of propositional letters in standard
temporal logics, ¬, ∧ and ∨ are the usual boolean connectives, X, U and R are hybrid counterpart of the
standard next, until and release temporal operators.

The semantics of HyLTL is given in terms of hybrid traces mixing continuous trajectories with dis-
crete events. Formally, given a set of actions A and a set of variables X , an hybrid trace over A and X is
any infinite sequence α = τ1a1τ2a2τ3a3 . . . such that τi is a trajectory over X and ai is an action in A for
every i ≥ 1. For every i > 0, the truth value of a HyLTL formula ϕ over α at position i is given by the
truth relation , formally defined as follows:

• for every f ∈ FC, α, i f if and only if τi ` f ;

• for every a ∈ A, α, i a iff i > 1 and ai−1 = a;

• α, i ¬ϕ if and only if α, i 6 ϕ;

• α, i ϕ ∧ψ if and only if α, i ϕ and α, i ψ;

• α, i ϕ ∨ψ if and only if α, i ϕ or α, i ψ;

• α, i Xϕ if and only if α, i+1 ϕ;

• α, i ϕ U ψ if and only if there exists j ≥ i such that α, j ψ , and for every i≤ k < j, α,k ϕ;

• α, i ϕ R ψ if and only if for all j ≥ i, if for every i≤ k < j, α,k 6 ϕ then α, j ψ .

Other temporal operators, such as the “always” operator G and the “eventually” operator F can be
defined as usual:

Fϕ =>U ϕ Gϕ = ¬F¬ϕ

3.1 HyLTL with positive constraints

In this paper we will pay a special attention on formulas of HyLTL where flow constraints from FC
appears only in positive form, because it will turn out that they constitue the class of formulas that can be

82 Improving HyLTL model checking of hybrid systems

when a ∈ A : π(a) = a π(¬a) = ¬a
when f ∈ FC : π(f) = f ∧X((T ∧ f)U¬T) π(¬ f) = f̄ ∨X(T U (T ∧ f̄))

π(ϕ ∧ψ) = π(ϕ)∧π(ψ) π(ϕ ∨ψ) = π(ϕ)∨π(ψ)

π(ϕ U ψ) = (T ∨π(ϕ))U (¬T ∧π(ψ)) π(ϕ R ψ) = (¬T ∧π(ϕ))R (T ∨π(ψ))

π(Xϕ) = X(T U (¬T ∧π(ϕ)))

Table 1: The translation function π from HyLTL to HyLTL+

translated into hybrid automata. This particular fragment is called HyLTL with positive flow constraints,
denoted by HyLTL+, and formally defined by the following grammar:

ψ ::= f ∈ FC | a ∈ A | ¬a ∈ A | ψ ∧ψ | ψ ∨ψ | Xψ | ψ U ψ | ψ R ψ (2)

Despite being a syntactical fragment, HyLTL+ turns out to be equally expressive as the full language,
at the price of adding an auxiliary action symbol. In the following, given a constraint c we denote with
c̄ the corresponding “dual” constraint obtained by replacing < with ≥, > with ≤, = with 6=, and so on.
Notice that a trajectory τ that satisfies the negation of a flow constraint ¬c does not necessarily satisfy c̄.
Indeed, by the semantics of HyLTL we have that τ ` ¬c if there exists a time instant t such that τ(t) 6` c,
while τ ` c̄ if for all time instants t we have that τ(t) 6` c.

Hence, given a trajectory τ with domain dom(τ) = [0, tmax] such that τ ` ¬c, it is possible to find
a point t ∈ [0, tmax] such that τ(t) 6` c and we can split τ into three sub-trajectories τb, τc̄, τe such that
τb = τ↓[0,t], τc̄ = τ↓[t,t] and τe = τ↓[t,tmax]: it is easy to see that τc̄ ` c̄. In the following, the auxiliary
action symbol T will be used to represent the splitting points of trajectories when translating formulas
with negated flow constraints to formulas with positive flow constraints only.

Given a formula of HyLTL in in negated normal form ϕ , consider the translation function π defined
in Table 1. To compare hybrid traces satisfying the original formula ϕ with the ones satisfying π(ϕ) we
have to remove the occurrences of T from the latter. To this end, we define a suitable restriction operator
over hybrid traces.

Definition 1. Let A a set of action, and B ⊂ A. Given a hybrid trace α = τ1a2τ2a2 . . . over A we define
its restriction to B as the hybrid trace α↓B obtained from α by first removing the actions not in B and
then concatenating adjacent trajectories.

The following lemma states that π(ϕ) is a formula of HyLTL+ equivalent to ϕ .

Lemma 1. For every hybrid trace α over A and X and every HyLTL-formula ϕ we have that α,1 ϕ if
and only if there exists a hybrid trace β over A∪{T} and X such that β↓A = α and β ,1 π(ϕ).

Proof. Let α = τ1a1τ2a2 . . . be an hybrid trace over A such that α,1 ϕ , and let FC be the set of flow
constraints that appears in ϕ . We will build a sequence of hybrid traces β0,β1,β2, . . . over A∪{T} as
follows.

1. β0 is the empty sequence.
2. For every i ≥ 1, consider the i-th trajectory τi in α , and let Ci = { f ∈ FC | τi 6` f}. Given an

enumeration f1, . . . , fn of Ci, we have that it is possible to find a set of time instants t1, . . . , tn such
that τi(t j) ` f̄ for every 1≤ j ≤ n. W.l.o.g., we can assume that τi.ftime = t0 ≤ t1 ≤ t2 ≤ . . .≤ tn ≤
tn+1 = τi.ltime and we can define the sequence of trajectories µ1,µ2, . . . ,µ2n+1 such that

µ1 = τi↓[t0,t1], µ2 j = τi↓[t j,t j], µ2 j+1 = τi↓[t j,t j+1] for every 1≤ j ≤ n (3)

We define βi = βi−1µ1T µ2T . . .T µ2n+1ai.

D. Bresolin 83

The hybrid trajectory we are looking for is the limit trajectory β = limi→∞ βi.
Given an index i, we will denote by α i and β i the suffix of α and of β starting at position i. We show

that β respects the following property: “for every subformula ψ of ϕ and i≥ 1, α, i ψ iff β , j π(ψ),
where j is the unique index such that β j↓A = α i”. The proof is by induction on ψ .
• If ψ = a or ψ = ¬a for some a ∈ A the property holds trivially.
• Suppose ψ = f for some f ∈ FC. By the semantics, we have that τi ` f . Consider now the

sequence µ1T µ2T . . .T µ2n+1ai built in the construction of βi, and let j be the index of µ1 in β .
By (3) we have that µh ` f for every 1≤ h≤ 2n+1. This implies that β , j f ∧X((T ∧ f)U¬T).
• If ψ = ¬ f for some f ∈ FC then we have that τi 6` f . Let µ1T µ2T . . .T µ2n+1ai be the sequence

built in the construction of βi. Since f ∈ Ci, we have that there exists t0 ≤ tk ≤ tn+1 such that
τi(tk) ` f̄ . By (3), this implies that µk ` f̄ . Let j be the index of µ1 in β . Two case may arise:
either µk = µ1 and thus β , j f̄ , or µk 6= µ1 and then β , j X(T U (T ∧ f̄)). In both cases the
property is satisfied.
• The cases of the boolean operators ∨ and ∧ are trivial and can be skipped.
• Suppose ψ = ψ1 U ψ2, and let i be such that α, i ψ1 U ψ2. By the semantics, we have that

there exists k ≥ i such that α,k ψ2 and, for every i ≤ h < k, α,h ψ1. Now, let j and l be
the two indexes such that β j↓A = α i and β l↓A = αk. By inductive hypothesis we can assume
that β , l π(ψ2), while by the definition of the ↓A operator we have that β , l ai 6= T . Hence,
β , l ¬T ∧π(ψ2). Consider now any index m such that j ≤ m < l. Two cases may arise: either
β ,m T , or not. In the latter case, we have that it is possible to find an index i≤ h < k such that
β m↓A = αh. Since α,h ψ1, by inductive hypothesis we have that β ,m π(ψ1). Hence, in both
cases β ,m T ∨π(ψ1). This proves that β , j (T ∨π(ψ1))U (¬T ∧π(ψ2)) = π(ψ).
To prove the converse implication, suppose that β , j (T ∨π(ψ1))U (¬T ∧π(ψ2)). By the se-
mantics, we have that there exists l ≥ j such that β , l ¬T ∧ π(ψ2) and, for every j ≤ m < l,
β ,m T ∨π(ψ1). Since β , l ¬T it is possible to find an index k such that β l↓A = αk. Hence,
by inductive hypothesis we have that α,k ψ2. Now, let h be such that i ≤ h < k, and consider
the index m such that β m↓A = αh. By the semantics we have that β ,m T ∨π(ψ1). Since, by
definition of the restriction operator, β ,m 6 T , we have that β ,m π(ψ1) and thus, by inductive
hypothesis, that α,h ψ1. This proves that α, i ψ1 U ψ2.
• The cases of the temporal operators X and R can be proved by a similar argument.

By the property it is immediate to conclude that, since α,1 ϕ then β ,1 π(ϕ).
To conclude the proof, suppose that there exists a hybrid trace β such that β ,1 π(ϕ), and let

α = β↓A. By an induction on the structure of ϕ similar to the one above, we can prove that α,1 ϕ .

4 Hybrid Automata

An hybrid automaton is a finite state machine enriched with continuous dynamics labelling each discrete
state (or location), that alternates continuous and discrete evolution. In continuous evolution, the discrete
state does not change, while time passes and the evolution of the continuous state variables follows the
dynamic law associated to the current location. A discrete evolution step consists of the activation of
a discrete transition that can change both the current location and the value of the state variables, in
accordance with the reset function associated to the transition.

In this section we recap the definition of Hybrid Automata introduced in [5] to solve the model
checking problem for HyLTL.

Definition 2. A hybrid automaton is a tuple H = 〈Loc,X , A,Edg,Dyn,Res, Init〉 such that:

84 Improving HyLTL model checking of hybrid systems

1. Loc is a finite set of locations;
2. X is a finite set of variables;
3. A is a finite set of actions;
4. Edg⊆ Loc×A×Loc is a set of discrete transitions;
5. Dyn is a mapping that associates to every location ` ∈ Loc a set of flow constraints Dyn(`) over

X ∪ Ẋ describing the dynamics of `;
6. Res is a mapping that associates every discrete transition (`,e, `′) ∈ Edg with a set of jump con-

straints Res(`,e, `′) over X̃ ∪X describing the guard and reset function of the transition;
7. Init⊆ Loc is a set of initial locations.

The state of a hybrid automaton H is a pair (`,x), where ` ∈ Loc is a location and x ∈ Val(X) is a
valuation for the continuous variables. A state (`,x) is said to be admissible if (`,x) ` Dyn(`). Tran-
sitions can be either continuous, capturing the continuous evolution of the state, or discrete, capturing
instantaneous changes of the state.

Definition 3. Let H be a hybrid automaton. The continuous transition relation τ−→ between admissible
states, where τ is a bounded trajectory over X, is defined as follows:

(`,x) τ−→ (`,x′) ⇐⇒ τ.fstate = x∧ τ.lstate = x′∧ τ ` Dyn(`). (4)

The discrete transition relation a−→ between admissible states, where a ∈ A, is defined as follows:

(`,x) a−→ (`′,x′) ⇐⇒ x ` Dyn(`)∧x′ ` Dyn(`′)∧ (x,x′) ` Res(`,a, `′). (5)

The above definitions allows an infinite sequence of discrete events to occur in a finite amount of time
(Zeno behaviors). Such behaviors are physically meaningless, but very difficult to exclude completely
from the semantics. In this paper we assume that all hybrid automata under consideration do not generate
Zeno runs. This can be achieved, for instance, by adding an extra clock variable that guarantees that the
delay between any two discrete actions is bounded from below by some constant. Moreover, we assume
that all hybrid automata are progressive, that is, that all runs can be extended to an infinite one: it is not
possible to stay forever in a location and never activate a new discrete action.

We can view progressive, non-Zeno hybrid automata as generators of hybrid traces, as formally
expressed by the following definition.

Definition 4. Let H be a progressive, non-Zeno hybrid automaton, and let α = τ1a1τ2a2 . . . be a in-
finite hybrid trace over X and A. We say that α is generated by H if there exists a corresponding
sequence of locations `1`2 . . . such that `1 ∈ Init and, for every i ≥ 1: (i) (`i,τi.fstate) τi−→ (`i,τi.lstate),
and (ii) (`i,τi.lstate) ai−→ (`i+1,τi+1.fstate).

Our definition of hybrid automata admits composition, under the assumpion that all variables and
actions are shared between the different automata. The formal definition of the parallel composition
operator ‖ can be found in [5]. In this paper it is sufficient to recall that it respects the usual “composi-
tionality property”, that is, that the set of hybrid traces generated by a composition of hybrid automata
corresponds to the intersection of the hybrid traces generated by the components (up to projection to the
correct set of actions and variables).

5 Model checking HyLTL

In analogy with the classical automata-theoretic approach, in [5] the model checking problem for HyLTL
has been solved by translating the HyLTL formula into an equivalent hybrid automaton, enriched with

D. Bresolin 85

a suitable Büchi acceptance condition to identify the traces generated by the automaton that fulfills the
semantics of HyLTL.

Definition 5. A Hybrid Automaton with Büchi condition (BHA) is a tuple H = 〈Loc,X ,A,Edg,Dyn,
Res, Init,F〉 such that 〈Loc,X ,A,Edg,Dyn,Res, Init〉 is a Hybrid Automaton, and F ⊆ Loc is a finite set
final locations.

We say that a hybrid trace α = τ1a1τ2a2 . . . is accepted by a BHA H if there exists an infinite
sequence of locations `1`2 . . . such that:

(i) `1 ∈ Init;
(ii) for every i≥ 1, (`i,τi.fstate) τi−→ (`i,τi.lstate);

(iii) for every i≥ 1, (`i,τi.lstate) ai−→ (`i+1,τi+1.fstate);
(iv) there exists ` f ∈ F that occurs infinitely often in the sequence.

By the above definition, not all sequences generated by the automaton are accepting: only those that
respect the additional accepting condition are considered.

By the definition of the dynamics, hybrid automata can enforce only positive constraints on the
continuous flow of the system. Hence, they can only recognize formulas of the positive flow fragment of
HyLTL, as summarized by the following theorem.

Theorem 1 ([5]). Given a HyLTL+ formula ϕ , it is possible to build a BHA Hϕ that accepts all and only
those hybrid traces that satisfies ϕ .

Theorem 1 and Lemma 1 can be exploited to solve the model checking problem for full HyLTL as
follows. Let HS be a hybrid automaton representing the system under verification, and let ϕ be the
HyLTL formula representing a property that the system should respect. Consider the formula ¬ϕ and
its translation ϕ = π(¬ϕ). By Lemma 1 we have that ϕ is a formula of HyLTL+ that is equivalent to
¬ϕ , and thus we can build a BHA Hϕ that is equivalent to the negation of the property: it accepts all
the hybrid traces that violates the property we want to verify. Now, if we compose the automaton for the
system with the automaton for ϕ we obtain a BHA HS‖Hϕ that accepts only those hybrid traces that are
generated by the system and violates the property. This means that HS respects the property ϕ if and
only HS‖Hϕ does not accept any hybrid trace.

It is worth pointing out that the reachability problem of hybrid automata is undecidable. This means
that the model checking of HyLTL is an undecidable problem as well (reachability can be expressed by
an eventuality formula). However, this does not mean that out logic is completely intractable. A number
of different approximation techniques have been developed in the past years to obtain an answer to the
reachability problem (at least in some cases), and they can be exploited to solve the model checking
problem of HyLTL as well. Indeed, HS‖Hϕ accepts an hybrid trace if and only if there exists a loop that
includes a final location and that is reachable from the initial states. As shown in [5], this property can be
reduced to a reachability property that can be tested by existing tools for the analysis of hybrid automata.
The only thing that one needs to do is to write a procedure implementing the construction of Hϕ , and
then send the results to the reachability analysis tool.

6 An improved construction algorithm

The algorithm presented in [5] to build a BHA equivalent to a HyLTL+-formula ϕ is based on a declar-
ative construction. While being simple to understand, it suffers of a major drawback from the efficiency
point of view: it generates exponentially many locations upfront, even though many of them may be in-
consistent, redundant or unreachable. This implies that the resulting BHA can be very big, even for very

86 Improving HyLTL model checking of hybrid systems

γ(ϕ) =
∧n−1

i=0 ¬bi∧ γ0(ϕ)

γ0(a) = b(a) γ0(f) = f when a ∈ A or f ∈ FC
γ0(¬ϕ) = ¬γ0(ϕ) γ0(ϕ ∧ψ) = γ0(ϕ)∧ γ0(ψ) γ0(ϕ ∨ψ) = γ0(ϕ)∨ γ0(ψ)

γ0(Xϕ) = X(γ0(ϕ)) γ0(ϕ U ψ) = γ0(ϕ)U γ0(ψ) γ0(ϕ R ψ) = γ0(ϕ)R γ0(ψ)

Table 2: The translation function γ from HyLTL to LTL

simple formulas. In this section we describe an improved construction algorithm, based on the following
steps:

A. the HyLTL+-formula ϕ is first translated into a suitable formula of discrete LTL γ(ϕ);

B. a discrete Büchi automaton Aγ(ϕ), equivalent to γ(ϕ), is built using one of the many optimized tools
available in the literature;

C. a BHA Hϕ , equivalent to ϕ , is built from Aγ(ϕ).

The new algorithm improves the original one by building a smaller BHA, thanks to the use of opti-
mized tools for LTL in step B.

6.1 From HyLTL to discrete LTL

Let FC and A be respectively the set of all flow constraints and discrete actions appearing in ϕ . For
the sake of simplicity, we will assume that ‖A∪{T}‖ = 2n− 1 for some n ∈ N (if this is not the case,
we can always add some fresh action symbols to A that will not appear in the formula). Under this
assumption we can represent action symbols from A∪{T} by means of a set of n propositional letters
B = {b0, . . . ,bn−1}, where every possible combination of the truth values, but the one where all letters
are false, uniquely identify one action symbol. For every a ∈ A∪ {T} let b(a) be the corresponding
encoding. By definition, we put b(T) =

∧n−1
i=0 bi.

If we consider AP = FC∪{b0, . . . ,bn−1} as a set of propositional letters for discrete LTL, we have
that we can transform any hybrid trace α = τ1a1τ2a2 . . . into a discrete sequence Σ(α) = σ1σ2σ3 . . .
where every element is a subset of AP defined as follows: σ1 = { f ∈ FC | τ1 ` f}; for every i > 1,
σi = { f ∈ FC | τi ` f}∪{b j ∈ B | b j holds true in b(ai−1)}.

Now, let γ(ϕ) be the discrete LTL formula obtained from ϕ by means of the translation function γ

defined in Table 2. It is easy to see that Σ(α) is a model for γ(ϕ), as proved by the following lemma.

Lemma 2. For every hybrid trace α , α,1 ϕ if and only if Σ(α),1 γ(ϕ).

Proof. Let ϕ be a HyLTL formula, and α a hybrid trace. We prove the lemma by showing that the
following stronger claim holds:

for every i≥ 1, α, i ϕ if and only if Σ(α), i γ0(ϕ).

We reason by induction on the structure of ϕ:
• if ϕ = a, with a ∈ A, then γ0(a) = b(a) and the claim follows easily by the definition of Σ(α);
• if ϕ = f , with f ∈ FC, then γ0(f) = f and the claim follows easily by the definition of Σ(α);
• the boolean cases are trivial and thus skipped;
• when ϕ = Xψ , we have that α, i Xψ iff α, i+ 1 ψ . By inductive hypothesis we have that

Σ(α), i+1 γ0(ψ), from which we can conclude that Σ(α), i Xγ0(ψ);

D. Bresolin 87

• suppose ϕ = ψ1 U ψ2. By the semantic of HyLTL, we have that α, i ψ1 U ψ2 iff there exists j ≥ i
such that α, j ψ2, and for every i ≤ k < j, α,k ψ1. By inductive hypothesis we have that
Σ(α), j γ0(ψ2) and that Σ(α),k γ0(ψ1) for every i≤ k < j. Hence, Σ(α), i γ0(ψ1)U γ0(ψ2)
and the claim is proved.
• the case when ϕ = ψ1 R ψ2 is analogous.

To conclude the proof it is sufficient to consider that, by definition, Σ(α),1
∧n−1

i=0 ¬bi. Hence, from the
claim it is immediate to conclude that Σ(α),1

∧n−1
i=0 ¬bi∧ γ0(ϕ) if and only if α,1 ϕ .

When ϕ is a formula of HyLTL+ we have that also γ(ϕ) is a formula where flow constraints appear
only in positive form. Hence, γ(ϕ) cannot force the negation of a flow constraint to hold in any of the
elements σi of a discrete sequence, as formally stated by the following lemma.

Lemma 3. Let Σ= σ1σ2 . . . and P= ρ1ρ2 . . . be two discrete sequences such that for every i≥ 1, σi∩B=
ρi∩B (the sequences agrees on the propositional letters in B) and σi ⊆ ρi (every flow constraint that is
true in Σ is true also in P). Then, for every LTL formula γ where flow constraints appear only in positive
form and index j ≥ 1, if Σ, j γ then P, j γ .

Proof. Suppose Σ, j γ . We prove the claim by induction on the structure of γ .
• If γ = bk or γ = ¬bk, for some bk ∈ B, we have that the claim follows immediately by the fact that

σ j ∩B = ρ j ∩B;
• If γ = f for some f ∈ FC, by the semantics of LTL we have that f ∈ σ j. By hypothesis σ j ⊆ ρ j

and this implies that P, j f ;
• The remaining cases can be easily proved from the inductive hypothesis and the semantics of
LTL.

6.2 Building the Büchi automaton Aγ(ϕ)

Since the seminal work of Vardi and Wolper [19], translation of LTL formulas into equivalent Büchi
automata plays an important role in many model checking and satisfiability checking algorithms. This
led to the development of many translation algorithms exploiting several heuristics and optimization
techniques. According to the experiments in [18], two leading tools are LTL2BA [10] and SPOT [7]. A
new version of the former, called LTL3BA, has been recently introduced [3]. According to the authors,
it is faster and it produces smaller automata than LTL2BA, while it produces automata of similar quality
with respect to SPOT, being usually faster.

We choose to use LTL3BA as the tool for translating the formula γ(ϕ) into the Büchi automaton
Aγ(ϕ), since it is a state-of-the-art tool that is freely available under an open source license. Nevertheless,
the high level HyLTL+ translation algorithm is independent from the specific tool used to build Aγ(ϕ),
and can be easily adapted to use other tools.

The output of LTL3BA is a Büchi automaton Aγ(ϕ) of the form 〈Q,q0,δ ,F〉, where Q is the set of
states, q0 is the unique initial state, δ is the transition relation and F is the set of final states. To merge
many transitions into a single one, the transitions are labelled with conjunctions of atomic propositions
from AP: the automaton can fire a transition (q,β ,q′) whenever it reads a symbol σ j of the discrete
sequence that satisfies the boolean formula β . Since γ(ϕ) is a formula where flow constraints appear
only positively, Lemma 3 guarantees that we can assume, without loss of generality, that in the boolean
formulas labeling the transitions of Aγ(ϕ) flow constraints appear only positively. The following lemma
connects the language of Aγ(ϕ) with the set of hybrid traces satisfying ϕ .

88 Improving HyLTL model checking of hybrid systems

Algorithm 1: how to build the BHA equivalent to ϕ

Input: Aγ(ϕ) = 〈Q,q0,δ ,F〉
Output: Hϕ = 〈Loc,X ,A∪{T},Edg,Dyn,Res, Init,F〉

1 Loc = /0, Edg = /0;
2 L= /0;
3 foreach transition (q0,β ,q) ∈ δ do
4 if β →

∧n−1
i=0 ¬bi then

5 C = { f ∈ FC | β → f};
6 add (q,C) to Loc;
7 add (q,C) to Init;
8 set Dyn(q,C) =C;
9 add (q,C) to L;

10 end
11 end
12 while the queue L is not empty do
13 extract an element (q,C) from L;
14 foreach transition (q,β ,q′) ∈ δ do
15 C′ = { f ∈ FC | β → f};
16 if (q′,C′) 6∈ Loc then
17 add (q′,C′) to Loc;
18 set Dyn(q′,C′) =C′;
19 add (q′,C′) to L;
20 end
21 foreach a ∈ A∪{T} do
22 if β → b(a) then
23 add transition (q,C,a,q′,C′) to Edg;
24 set Res(q,C,a,q′,C′) =>;
25 end
26 end
27 end
28 end
29 F = {(q,C) ∈ Loc | q ∈ F};

Lemma 4. Let ϕ be a HyLTL+ formula, and α a hybrid trace. Then α,1 ϕ if and only if Σ(α) is
accepted by Aγ(ϕ).

6.3 From Aγ(ϕ) to Hϕ

By Lemma 4, we have that the language of Aγ(ϕ) contains all the discrete sequences Σ(α) such that
α satisfies ϕ . However, Aγ(ϕ) may accepts also “spurious” discrete sequences that do not represent a
hybrid trace (for instance, sequences where flow constraints are contradictory). Algorithm 1 accepts as
input the discrete automaton Aγ(ϕ) and build a BHA Hϕ that accepts only the hybrid traces satisfying ϕ .

The following theorem proves that the algorithm is correct.

D. Bresolin 89

Theorem 2. Let ϕ be a formula of HyLTL+, and let Hϕ be the BHA built by Algorithm 1. For every
hybrid trace α , we have that Hϕ accepts α if and only if α,1 ϕ .

Proof. Let α = τ1a1τ2a2 . . . be a hybrid trace such that α,1 ϕ . By Lemma 4, we have that Aγ(ϕ)

accepts the discrete sequence Σ(α). Let q0
β1−→ q1

β2−→ q2
β2−→ . . . be an accepting run of Aγ(ϕ) over Σ(α).

For every i≥ 1, let Ci = { f ∈ FC | βi→ f}, and consider the sequence (q1,C1),(q2,C2),(q3,C3) By
Algorithm 1 we have that:

1. every pair (qi,Ci) of the sequence is a location of Hϕ ;
2. (q1,C1) ∈ Init;
3. every set of flow constraints Ci is such that Dyn(qi,Ci) =Ci;
4. the transition (qi,Ci,ai,qi+1,Ci+1) ∈ Edg with reset condition >.

By definition of Σ(α) we have that τi ` Ci, and thus we can conclude that for every i ≥ 1, both
(qi,Ci,τi.fstate) τi−→ (qi,Ci,τi.lstate) and (qi,Ci,τi.lstate) ai−→ (qi+1,Ci+1,τi+1.fstate) are valid transitions
of Hϕ . This means that α is generated by Hϕ . Since Σ(α) is accepted by the discrete automaton Aγ(ϕ)

is possible to find a location (q f ,C f) ∈ F that occurs infinitely often in the sequence. This proves that α

is accepted by Hϕ .
To conclude the proof, consider a hybrid trace α = τ1a1τ2a2 . . . that is accepted by Hϕ , and let

Σ(α) = σ1σ2 . . . be the corresponding discrete sequence. By the semantics of BHA, it is possible
to find an accepting sequence of locations (q1,C1),(q2,C2),(q3,C3) . . . such that (qi,Ci,τi.fstate) τi−→
(qi,Ci,τi.lstate) and (qi,Ci,τi.lstate) ai−→ (qi+1,Ci+1,τi+1.fstate) for every i≥ 1. By Algorithm 1 we have
that there exists an accepting run q0

ρ1−→ q1
ρ2−→ q2

ρ3−→ . . . of the discrete automaton Aγ(ϕ) over the discrete
sequence P = ρ1ρ2 . . . where ρi = Ci ∪{b j ∈ B | b j holds true in b(ai−1)} for every i ≥ 1. Since every
location (qi,Ci) is such that Dyn(qi,Ci) =Ci we have that for every f ∈Ci, τi ` f and thus that ρi ⊆ σi.
From Lemma 3 we can conclude that, since Aγ(ϕ) accepts P then Aγ(ϕ) accepts also Σ(α). By Lemma 4
we can conclude that α,1 ϕ .

7 The improved algorithm at work

In [5] feasibility of the automaton-based model checking approach has been tested by verifying the well-
known Thermostat example against the HyLTL formula ϕhyb = ¬F (x≥ 21∧Xon) corresponding to the
property that “it is not possible that the heater turns on when the temperature is above 21 degrees”.

To verify the example it is necessary to build the automaton for ¬ϕhyb = F(x≥ 21∧Xon) = >U
(x≥ 21∧Xon). The original declarative construction builds a BHA with 18 locations. In this section we
will apply the new algorithm to the formula and we will show that the resulting BHA is much smaller
that the previous one. Notice that the formula ¬ϕhyb is a formula where flow constraints appears only
in positive form. Hence, it is not necessary to apply the translation π of Table 1 to obtain a formula
of HyLTL+. The first step of the translation algorithm is thus the application of function γ (Table 2) to
obtain the following formula of discrete LTL:

γ(¬ϕhyb) = ¬b0∧¬b1∧>U (x≥ 21∧X(b0∧¬b1)) ,

where we assume that b(on) = b0 ∧¬b1. By using the tool LTL3BA we obtain the Büchi automa-
ton Aγ(¬ϕhyb) depicted in Figure 1a. Then, by applying Algorithm 1 we can build the BHA depicted
in Figure 1b. In both pictures initial states/locations are identified by a bullet-arrow while the final
states/locations have a double border. The final BHA obtained by the new construction algorithm is
made of only 3 location, with a great improvement over the original declarative construction.

90 Improving HyLTL model checking of hybrid systems

q1 >

q2

q3 >

q0

x≥ 21

b0∧¬b1

¬b0∧¬b1∧ x≥ 21

¬b0∧¬b1

(a) Büchi automaton Aγ(¬ϕhyb).

q1
> on

off

q2
x≥ 21

q3
> on

off

on

offon

(b) Hybrid automaton H¬ϕhyb .

Figure 1: The discrete and hybrid automata for ¬ϕhyb.

As a second example, consider the globally-eventually formula ϕliv = G(¬x≥ 18→ X F on) ex-
pressing the liveness property to “eventually switch the heater on if the temperature falls below 18
degrees”. In this case the negation of the property is the formula ¬ϕliv = F(¬x≥ 18∧X G¬on) =
>U (¬x≥ 18∧X(⊥R¬on)), that do not belongs to the language of HyLTL+. Hence, it is necessary to
apply the translation function π to obtain the following equivalent formula:

ϕ liv = π

(
>U

(
¬x≥ 18∧X(⊥R¬on)

))
= (T ∨>)U

(
¬T ∧π

(
¬x≥ 18∧X(⊥R¬on)

))
=>U

(
¬T ∧π(¬x≥ 18)∧π

(
X (⊥R¬on)

))
=>U

(
¬T ∧

(
x < 18∨X

(
T U (T ∧ x < 18)

))
∧X
(

T U
(
¬T ∧π(⊥R¬on)

)))
=>U

(
¬T ∧

(
x < 18∨X

(
T U (T ∧ x < 18)

))
∧X
(

T U
(
¬T ∧⊥R (T ∨¬on)

)))

The input formula for LTL3BA is thus

γ(ϕsa f e) = ¬b0∧¬b1∧>U

(
¬(b0∧b1)∧

(
x < 18∨X

(
(b0∧b1)U (b0∧b1∧ x < 18)

))
∧X
(
(b0∧b1)U

(
¬(b0∧b1)∧⊥R

(
(b0∧b1)∨¬(b0∧¬b1)

))))

while the resulting discrete Büchi automaton is depicted in Figure 2a. Algorithm 1 transforms it into the
BHA with 5 locations shown in Figure 2b. Notice that, despite the increased complexity of the formula
due to the translation into HyLTL+ the final result is still of very small size.

We have verified that the thermostat example given in [5] respects the two example properties ϕhyb
and ϕliv using the software package PhaVer [8]. Since the system and the automata for the properties are
very simple, the computation time was almost instantaneous: less than 0.1s for both formulas on an Intel
Core 2 Duo 2.4 GHz iMac with 4 Gb of RAM.

D. Bresolin 91

q0

q1> q2 b0∧b1

q3b0∧b1

q4
¬b0,

b0∧b1

¬b0∧¬b1∧ x < 18

b0∧b1∧ x < 18

¬b0∧¬b1

¬b0∧ x < 18,
b0∧¬b1∧ x < 18

¬b0

¬b0∧¬b1

¬b0,
b0∧¬b1

(a) Büchi automaton Aγ(ϕ liv)
.

q1
>T,on,off

q2
> T

q1
3

x < 18
q2

3
> T

q4
> T,off

Ton,off

on,off

T

off

(b) Hybrid automaton Hϕ liv
.

Figure 2: The discrete and hybrid automata for ¬ϕliv.

8 Conclusion

In this paper we extended the current research on HyLTL, a logic that is able to express properties of
hybrid traces, and that can be used to verify hybrid systems. We identified the fragment of HyLTL that
can be transformed into hybrid automata, that is, the positive flow constraints fragment HyLTL+. Then,
we have shown that every property definable in the full language is also definable by HyLTL+. Finally,
we developed a new algorithm to translate formulas into hybrid automata, that turned out to be much
more efficient than the original declarative algorithm.

This work can be extended in many directions. The expressivity of the logic can be extended by
adding jump predicates to the language, to express properties on the reset functions of the system. A
comprehensive tool support for the logic is currently missing: an implementation of the complete model
checking algorithm into the software package Ariadne [4] is under development.

References
[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. h. Ho, X. Nicollin, A. Olivero, J. Sifakis &

S. Yovine (1995): The Algorithmic Analysis of Hybrid Systems. Theoretical Computer Science 138, pp.
3–34, doi:10.1016/0304-3975(94)00202-T.

[2] R. Alur & D. L. Dill (1994): A Theory of Timed Automata. J. of Theor. Computer Science 126(2), pp.
183–235, doi:10.1016/0304-3975(94)90010-8.

[3] T. Babiak, M. Kretı́nský, V. Rehák & J. Strejcek (2012): LTL to Büchi Automata Translation: Fast and More
Deterministic. In: Proc. of the 18th Int. Conf. on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2012), LNCS 7214, pp. 95–109, doi:10.1007/978-3-642-28756-5 8.

[4] L. Benvenuti, D. Bresolin, P. Collins, A. Ferrari, L. Geretti & T. Villa (2012): Assume-guarantee verification
of nonlinear hybrid systems with ARIADNE. Int. J. Robust Nonlinear Control, doi:10.1002/rnc.2914.

[5] D. Bresolin (2013): HyLTL: a temporal logic for model checking hybrid systems. In: Proc. of the 3rd
International Workshop on Hybrid Autonomous Systems (HAS 2013), EPTCS 118, pp. 64–75. To appear.

[6] A. Cimatti, M. Roveri & S. Tonetta (2009): Requirements Validation for Hybrid Systems. In: CAV, LNCS
5643, pp. 188–203, doi:10.1007/978-3-642-02658-4 17.

http://dx.doi.org/10.1016/0304-3975(94)00202-T
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1007/978-3-642-28756-5_8
http://dx.doi.org/10.1002/rnc.2914
http://dx.doi.org/10.1007/978-3-642-02658-4_17

92 Improving HyLTL model checking of hybrid systems

[7] A. Duret-Lutz (2011): LTL translation improvements in SPOT. In: Proc. of the 5th Int. Conf. on Verification
and Evaluation of Computer and Communication Systems (VECoS’11), British Computer Society, pp. 72–
83.

[8] G. Frehse (2008): PHAVer: algorithmic verification of hybrid systems past HyTech. International Journal on
Software Tools for Technology Transfer (STTT) 10, pp. 263–279, doi:10.1007/s10009-007-0062-x.

[9] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang &
O. Maler (2011): SpaceEx: Scalable Verification of Hybrid Systems. In: Proc. 23rd International Confer-
ence on Computer Aided Verification (CAV 2011), LNCS 6806, Springer Berlin / Heidelberg, pp. 379–395,
doi:10.1007/978-3-642-22110-1 30.

[10] P. Gastin & D. Oddoux (2001): Fast LTL to Büchi Automata Translation. In: Proc. of the 13th Int. Conf. on
Computer Aided Verification (CAV 2001), LNCS 2102, Springer, pp. 53–65, doi:10.1007/3-540-44585-4 6.

[11] T. A. Henzinger, P. W. Kopke, A. Puri & P. Varaiya (1998): What’s Decidable about Hybrid Automata?
Journal of Computer and System Sciences 57(1), pp. 94 – 124, doi:10.1006/jcss.1998.1581.

[12] L. Lamport (1993): Hybrid systems in TLA+. In: Hybrid Systems, LNCS 736, Springer, pp. 77–102,
doi:10.1007/3-540-57318-6 25.

[13] K. G. Larsen, P. Pettersson & W. Yi (1997): UPPAAL in a nutshell. Int. J. on Software Tools for Technology
Transfer 1(1–2), pp. 134–152, doi:10.1007/s100090050010.

[14] O. Maler, Z. Manna & A. Pnueli (1991): From Timed to Hybrid Systems. In: Real-Time: Theory in Practice,
LNCS 600, Springer-Verlag, pp. 447–484, doi:10.1007/BFb0032003.

[15] O. Maler & D. Nickovic (2004): Monitoring Temporal Properties of Continuous Signals. In: Formal Tech-
niques, Modelling and Analysis of Timed and Fault-Tolerant Systems, LNCS 3253, Springer, pp. 152–166,
doi:10.1007/978-3-540-30206-3 12.

[16] A. Platzer & J.-D. Quesel (2008): KeYmaera: A Hybrid Theorem Prover for Hybrid Systems. In: Proc. of
the 3rd International Joint Conference on Automated Reasoning (IJCAR 2008), LNCS 5195, Springer, pp.
171–178, doi:10.1007/978-3-540-71070-7 15.

[17] S. Ratschan & Z. She (2007): Safety Verification of Hybrid Systems by Constraint Propagation Based Ab-
straction Refinement. ACM Trans. in Embedded Computing Systems 6(1), doi:10.1145/1210268.1210276.

[18] K. Y. Rozier & M. Y. Vardi (2010): LTL satisfiability checking. Int. J. on Software Tools for Technology
Transfer 12(2), pp. 123–137, doi:10.1007/s10009-010-0140-3.

[19] M. Y. Vardi & P. Wolper (1986): An Automata-Theoretic Approach to Automatic Program Verification. In:
Proc. of the 1st Symposium on Logic in Computer Science (LICS’86), IEEE Computer Society, pp. 332–344.

[20] S. Yovine (1997): Kronos: a verification tool for real-time systems. Int. J. on Software Tools for Technology
Transfer 1(1–2), pp. 123–133, doi:10.1007/s100090050009.

http://dx.doi.org/10.1007/s10009-007-0062-x
http://dx.doi.org/10.1007/978-3-642-22110-1_30
http://dx.doi.org/10.1007/3-540-44585-4_6
http://dx.doi.org/10.1006/jcss.1998.1581
http://dx.doi.org/10.1007/3-540-57318-6_25
http://dx.doi.org/10.1007/s100090050010
http://dx.doi.org/10.1007/BFb0032003
http://dx.doi.org/10.1007/978-3-540-30206-3_12
http://dx.doi.org/10.1007/978-3-540-71070-7_15
http://dx.doi.org/10.1145/1210268.1210276
http://dx.doi.org/10.1007/s10009-010-0140-3
http://dx.doi.org/10.1007/s100090050009

	1 Introduction
	2 Preliminaries
	3 HyLTL: syntax and semantics
	3.1 HyLTL with positive constraints

	4 Hybrid Automata
	5 Model checking HyLTL
	6 An improved construction algorithm
	6.1 From HyLTL to discrete LTL
	6.2 Building the Büchi automaton A_()
	6.3 From A_() to H_

	7 The improved algorithm at work
	8 Conclusion

