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There have been several recent suggestions for tableau systems for deciding satisfiability in the practi-
cally important branching time temporal logic known as CTL*. In this paper we present a streamlined
and more traditional tableau approach built upon the author’s earlier theoretical work.

Soundness and completeness results are proved. A prototypeimplementation demonstrates the
significantly improved performance of the new approach on a range of test formulas. We also see
that it compares favourably to state of the art, game and automata based decision procedures.

1 Introduction

CTL* [5, 3] is an expressive branching-time temporal logic extending the standard linear PLTL [13].
The main uses of CTL* are for developing and checking the correctness of complex reactive systems [6]
and as a basis for languages (like ATL*) for reasoning about multi-agent systems [8].

Validity of formulas of CTL* is known to be decidable with an automata-based decision procedure of
deterministic double exponential time complexity [5, 4, 18]. There is also an axiomatization [14]. Long
term interest in developing a tableau approach as well has been because they are often more suitable
for automated reasoning, can quickly build models of satisfiable formulas and are more human-readable.
Tableau-style elements have indeed appeared earlier in some model-checking tools for CTL* but tableau-
based satisfiability decision procedures have only just started to be developed [17, 7].

Our CTL* tableau is of the tree, or top-down, form. To decide the validity of φ , we build a tree
labelled with finite sets of sets of formulas using ideas called hues and colours originally from [14]
and further developed in [16, 17]. The formulas in the labelscome from a closure set containing only
subformulas of the formula being decided, and their negations. Those earlier works proposed a tableau in
the form of a roughly tree-shaped Hintikka-structure, thatis, it utilised labels on nodes which were built
from maximally consistent subsets of the closure set. Each formula or its negation had to be in each hue.
In this paper we make the whole system much more efficient by showing how we only need to consider
subformulas which are relevant to the decision.

In the older papers we identified two sorts of looping: good looping allowed up-links in our tableau
tree while bad looping showed that a branch was just getting longer and longer in an indefinite way. In
this paper we tackle only the good looping aspect and leave bad looping for a follow-on paper.

A publicly available prototype implementation of the approach here is available and comparisons
with existing state of the art systems, and its Hintikka-style predecessor, show that we are achieving
orders of magnitude speed-ups across a range of examples. Aswith any other pure tableau system,
though, this one is better at deciding satisfiable formulas rather than unsatisfiable ones.

In section 2 we give a formal definition of CTL* before section3 defines some basic building block
concepts. Subsequent sections introduce the tableau shape, contain an example, look at a loop checking
rule and show soundness. Section 7 presents the tableau construction rules and then we show complete-
ness. Complexity, implementation and comparison issues are discussed briefly in section 10 before a
conclusion. There is a longer version of this paper available as [15].

http://dx.doi.org/10.4204/EPTCS.119.7
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
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2 Syntax and Sematics

Fix a countable setL of atomic propositions. A (transition) structure is a triple M = (S,R,g) where:
S is the non-empty set ofstates
R is a total binary relation⊆ S×S i.e. for everys∈ S, there is somet ∈ Ssuch that(s, t) ∈ R.
g : S→ P(L ) is a labelling of the states with sets of atoms.

Formulas are defined alongω-long sequences of states. Afullpath in (S,R) is an infinite sequence
〈s0,s1,s2, ...〉 of states such that for eachi, (si ,si+1) ∈ R. For the fullpathσ = 〈s0,s1,s2, ...〉, and any
i ≥ 0, we writeσi for the statesi andσ≥i for the fullpath〈si ,si+1,si+2, ...〉.

The formulas of CTL* are built from the atomic propositions in L recursively using classical con-
nectives¬ and∧ as well as the temporal connectivesX, U andA. We use the standard abbreviations,
true, false, ∨, →, ↔, Fα ≡ true Uα , Gα ≡ ¬F¬α , andEα ≡ ¬A¬α .

Truth of formulas is evaluated at fullpaths in structures. We writeM,σ |= α iff the formulaα is true
of the fullpathσ in the structureM = (S,R,g). This is defined recursively by:
M,σ |= p iff p∈ g(σ0), anyp∈ L

M,σ |= ¬α iff M,σ 6|= α
M,σ |= α ∧β iff M,σ |= α andM,σ |= β
M,σ |= Xα iff M,σ≥1 |= α
M,σ |= α Uβ iff there is i ≥ 0 such thatM,σ≥i |= β and for eachj, if 0 ≤ j < i thenM,σ≥ j |= α
M,σ |= Aα iff for all fullpaths σ ′ such thatσ0 = σ ′

0 we haveM,σ ′ |= α
We say thatα is valid in CTL*, iff for all transition structuresM, for all fullpathsσ in M, we have

M,σ |= α . Sayα is satisfiablein CTL* iff for some transition structureM and for some fullpathσ in M,
we haveM,σ |= α . Clearlyα is satisfiable iff¬α is not valid.

3 Hues, Colours and Hintikka Structures

Fix the formulaφ whose satisfiability we are interested in. We writeψ ≤ φ if ψ is a subformula ofφ .
The length ofφ is |φ |. Theclosure setfor φ is cl φ = {ψ ,¬ψ | ψ ≤ φ}.

Definition. [MPC] Say thata⊆ cl φ is maximally propositionally consistent (MPC)for φ iff for all
α ,β ∈ cl φ , M1) if β = ¬α then (β ∈ a iff α 6∈ a); and M2) ifα ∧β ∈ cl φ then (α ∧β ∈ a iff both α ∈ a
andβ ∈ a).

The concepts of hues and colours were originally invented in[14] but we use particular formal
definitions as presented in [16, 17, 15]. A hue is supposed to capture (approximately) a set of formulas
which could all hold together of one fullpath. Definition. [hue] a⊆ cl φ is ahuefor φ , or φ -hue, iff all
these conditions hold:
H1) a is MPC;
H2) if α Uβ ∈ a andβ 6∈ a thenα ∈ a;
H3) if α Uβ ∈ (cl φ)\a thenβ 6∈ a;
H4) if Aα ∈ a thenα ∈ a.

Further, letHφ be the set of hues ofφ .

For example, if¬(AG(p→ EX p)→ (p→ EGp)), the example known as¬θ12 in [17], then here is
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a hue known ash38:

{¬(AG(p→ EX p)→ (p→ EGp)),(AG(p→ EX p)∧¬(p→ EGp)),
AG(p→ EX p),G(p→ EX p), true,¬¬(p→ EX p),
(p→ EX p), p,¬¬EX p,EX p,¬¬X p,X p,
¬(p→ EGp),(p∧¬EGp),¬EGp,A¬Gp,¬Gp,F¬p,¬¬p}

The usual temporal successor relation plays a role in determining allowed steps in the tableau. The
relation rX is put between huesa andb if a fullpath σ satisfyinga could have a one-step suffixσ≥1

satisfyingb: Definition. [rX ] For huesa andb, puta rX b iff the following four conditions all hold:
R1) if Xα ∈ a thenα ∈ b;
R2) if ¬Xα ∈ a then¬α ∈ b;
R3) if α Uβ ∈ a and¬β ∈ a thenα Uβ ∈ b; and
R4) if ¬(α Uβ ) ∈ a andα ∈ a then¬(α Uβ ) ∈ b.

We also introduced an equivalence relation aiming to tell whether two hues could correspond to
fullpaths starting at the same state. We just need the hues toagree on atoms and on universal path
quantified formulas: Definition. [rA] For huesa andb, put a rA b iff the following two conditions both
hold: A1) for all p∈ L , p∈ a iff p∈ b; and A2)Aα ∈ a iff Aα ∈ b.

Now we move up from the level of hues to the level of colours. Could a set of hues be exactly the
hues corresponding to all the fullpaths starting at a particular state? We would need each pair of hues to
satisfy rA but we would also need hues to be in the set to witness all the existential path quantifications:

Definition. [colour] Non-emptyc⊆ Hφ is acolourof φ , or φ -colour, iff the following two conditions
hold. For alla,b∈ c, C1)a rA b; and C2) ifa∈ c and¬Aα ∈ a then there isb∈ c such that¬α ∈ b. Let
Cφ be the set of colours ofφ .

The formulas¬X p,EX pare both inh37, another hue from the example in [17], so{h37} is not a
colour. However,X p∈ h38 witnesses the existential path quantification so{h37,h38} is a colour.

We define a successor relationRX between colours. It is defined in terms of the successor relation rX

between the component hues and it will be used to define the successor relation between tableau nodes,
themselves corresponding to states in transition structures, in terms of the colours which they exhibit.
Note that colours, and tableau nodes, will, in general, havea non-singleton range of successors and this
relationRX just tells us whether one node can be one of the successors of another node.

Definition. [RX] For all c,d ∈Cφ , putc RX d iff for all b∈ d there isa∈ c such thata rX b.
It is worth noting that colours and hues are induced by actualtransition structures. We will need

these concepts in our completeness proof.
Definition. [actualφ -hue] Suppose(S,R,g) is a transition structure. Ifσ is a fullpath through(S,R)

then we say thath= {α ∈ cl φ | (S,R,g),σ |= α} is theactual (φ -) hueof σ in (S,R,g).
It is straightforward to see that this is aφ -hue. It is also easy to show that along any fullpathσ , the

relationrX holds between the actual hue ofσ and the actual hue of its successor fullpathσ≥1.
Definition. [actualφ -colour] If s∈ S then the set of all actual hues of all fullpaths through(S,R)

starting ats is called theactual (φ -) colour of s in (S,R,g).
Again, it is straightforward to show that this is indeed aφ -colour and also thatRX holds between the

actual colour of any state and the actual colour of any of its successors.

4 Tableau

The tableaux we construct will be roughly tree-shaped: the traditional upside down tree with a root at
the top, predecessors and ancestors above, successors and descendants below. However, we will allow
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n0

{h37,h38}

n1

{h28,h30}

b n3

{h34,h35,h36}

b n6

{h35}

b

b

n2

{h37,h38}

n4

{h28,h30}

b n7

{h34,h35,h36}

b n10

{h35}

b

b

n5

{h37,h38}

n8

{}

n9

{}

Figure 1: A Partial Tableau for¬θ12
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Definition. A tableaufor φ ∈ L is a tuple(T,s,η ,π) such that:
H1) T is a non-empty set ofnodes; one distinguished element called theroot;

H2) η is the phue label enumerator, so that for eacht ∈ T, ηt : N→ 2cl φ is a partial map,
H2.1) the domain ofηt is {0,1, ...,n−1} for somen> 0 denoted|ηt |;
H2.2) ηt(i) is theith label phue oft (if defined);
H3) s is the successor enumerator, so that for eacht ∈ T, st : N→ T is a partial map,
H3.1) the domain ofst is a subset of{0,1, ..., |ηt |−1}; st(i) the ith successor oft;
H3.3) for eacht ∈ T, there is a unique finite sequencer0, r1, ..., rk from T called theancestorsof t

such that ther i are all distinct,r0 is the root,rk = t and for eachj, r j+1 is a successor ofr j ;
H4) φ ∈ ηroot(0);
H5) π is the predecessor map whereby ift,u∈ T then eitherπt

u is undefined
and we say thatt is not a predecessor ofu; or for all j < |u|, πt

u( j) = i < |t| and
we say that theith phue int is a predecessor of thej th hue inu.

H6) if st(i) = u thenπt
u(0) = i (i.e. theith phue int is a predecessor of the 0th phue inst(i));

Figure 2: Definition of Tableau

up-links from a node to one of its ancestors. Each node will belabelled with a finite sequence of sets of
formulas from the closure set. We will call such a sequence ofsets aproto-colouror pcolour. The sets,
or proto-hues (phues), in the pcolour are ordered and once completed the node will have one (ordered)
successor for each phue.

The ordering of the successors will match the ordering of thehues (H3.1 and H6) so that we know
there is a successor node containing a successor phue for each phue in the label. The respective orderings
are otherwise arbitrary.

A proto-hue (phue)is just a subset ofcl φ .
See Figure 2 for our definition of a tableau.
Definition. Say that the tableau(T,s,η ,π) hassupported labellingif each formula in each phue in

each label is supported, as follows. Consider a formulaα ∈ ηt(i). Determining whetherα is support for
not depends on the form ofα :

− p is supported inηt(0). Otherwise, i.e. fori > 0, it is only supported ifp∈ ηt(0).
− Same with¬p.
− ¬¬α supported iffα ∈ ηt(i).
− α ∧β supported iffα ∈ ηt(i) andβ ∈ ηt(i).
− ¬(α ∧β ) supported iff either¬α ∈ ηt(i) or¬β ∈ ηt(i).
− Xα ∈ ηt(i) supported iff 1) there isu∈ T with u= st(i) and 2) for allu∈ T, for all j with

πt
u( j) = i, α ∈ ηu( j).

− ¬Xα ∈ ηt(i) supported iff 1) there isu∈ T with u= st(i) and 2) for allu∈ T, for all j with
πt

u( j) = i, ¬α ∈ ηu( j).
− αUβ ∈ ηt(i) supported iff 1)β ∈ ηt(i); or 2) all 2.1)α ∈ ηt(i); 2.2) there isu∈ T with

u= st(i); and 2.3) for allu∈ T, for all j with πt
u( j) = i, αUβ ∈ ηu( j).

− ¬(αUβ ) ∈ ηt(i) supported iff 1)¬β ∈ ηt(i); and 2) either 2.1)¬α ∈ ηt(i); or 2.2) both 2.2.1)
there isu∈ T with u= st(i); and 2.2.2) for allu∈ T, for all j with πt

u( j) = i, ¬(αUβ ) ∈ ηu( j).
− Aα ∈ ηt(i) supported iff for all j < |ηt |, α ∈ ηt( j).
− ¬Aα ∈ ηt(i) supported iff there is somej < |ηt |, ¬α ∈ ηt( j).

A tableau issuccessfully finishediff it has no leaves, the predecessor relation is defined on all phues
and the tableau does not fail any of the three checks that we introduce below: LG, NTP and the non-
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{p,Gp,EF¬p}
•✳

✑
❥❬❘

❈
✶

✬
✗

✌
④

❧ ❝

��

❪ ✷

✏

RR
{p,X p,F¬p}
•

��

{p,F¬p}
•

ff

{p,Gp}
•

��✒✒✒✒✒✒✒✒

{¬p}
•

Figure 3: Example tableau.

existence of direct contradictions (orfalse) in phues.
It is common, in proving properties of tableau-theoretic approaches to reasoning, to refer to labelled

structures asHintikka structuresif the labels are maximally complete (relative to a closure set). We say
that one of our tableaux(T,s,η ,π) is a Hintikka tableau iff the elements of eachηt are all hues (not just
any phues). The older tableau approach in [17] was based on Hintikka tableaux.

5 Tableau Examples

Figure 1 is an example (unfinished) tableau illustrating general shape. There are 11 nodes, each with
successors marked, and each labeled with a set of phues. Notethat some of the successor relations
involve up-links:n1 is a successor ofn3. We just name the phues rather than listing their contents.There
are more details about this example in [17] as, in fact, it is aHintikka-tableau, which is a special type of
the tableau we are introducing in this paper. We use Hintikka-tableaux later in the completeness proof
here.

Figure 3 shows a smaller tableau in more detail. He we show thephues, which make up the pcolour
labels of nodes and we show the predecessor or traceback map in some cases.

6 The LG test and Soundness

In this section we will briefly describe the LG rule which is a tableau construction rule that prevents bad
up-links being added. LG is used to test and possibly fail a tableau. The test is designed to be used
soon after any new up-link is added after being proposed by the LOOP rule. If the new tableau fails the
LG test then “undo” the up-link and continue with alternative choices. We then show that if a tableau
finishes, that is has no leaves, and passes the LG test then it guarantees satisfiability.

There was also a very similar LG test in the earlier work on theoriginal slower tableau method [17].
In that paper, we show how to carry out the LG check on a tableauand we prove some results about its
use. The check is very much like a model check on the tableau sofar. We make sure that every phue
in a labelmatches, or is a subset of an actual hue at that node in a transition structure defined using a
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{p,X p}
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{F¬p}
•
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{¬p,G(p∧q),F¬q}
•

Figure 4: LG examples: left fails LG; right passes but eventually does not succeed

{GF p,AF(G¬p∨G¬q)}
•

{GFq}
•
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{p}
•
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{q}
•
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✸

❱ ①
☎

✎
✗

✣
✜

✧

✭

✴

✼
��

❨♦

✎

Figure 5: These two loops fail LG.

valuation of atoms based on the labels. It has polynomial running time in the size of the tableau so it is
not a significant overhead on the overall tableau construction algorithm.

Due to space restrictions we do not go through the full details of the only very slightly different
LG rule used for the faster tableaux here. Instead we give some brief motivation examples. The first
example shows us that not all up-links are allowable: e.g., anode labelled withp,AF¬p which also has
an immediate loop. See left hand example in Figure 4. The up-link would not be allowed by the LG rule.

The right hand example in Figure 4, with an allowable up-linkand also separately an unsatisfiable
leaf, is allowed by LG.

The example in Figure 5 has two loops, each one individually acceptable but not both. The LG rule
fails the tableau when both up-links are added.

Now we show that ifφ has a successfully finished tableau thenφ is satisfiable. This is the soundness
Lemma.

Lemma. Ifφ has a successfully finished tableau thenφ is satisfiable.

Here we just outline the proof: details in [15]. Say that(T,s,η ,π) is a successfully finished tableau
for φ . Define a structureM = (T,R,g) by interpreting thes relation as a transition relationg, and using
η to define the valuationg on nodes.

By definition of matching, after a final check of LG there is some actual hueb of the root such that
ηroot(0)⊆ b. This means thatφ holds along some fullpath in the final structure.
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7 Building a tree

In this section we briefly describe how a tableau is built via some simple operations, or rules. We start
with an initial tree of one root node labelled with just one phue containing onlyφ . The rules allow
formulas to be added inside hues in labels, new hues to be added in labels and new nodes to be added as
successors of existing nodes. The rules are generally non-deterministic allowing a finite range of options,
or choices, at any application.

There are some properties to check such as LG, described above, and NTP described below. We also
check that there are no hues containing both a formula and itsnegation, and we check thatfalse is not
contained in a phue. If these checks fail then the tableau hasfailed and we will need to backtrack to
explore other possible options at choice points along the way.

The tableau succeeds if there are no leaves.

7.1 Basic Tableau Rules

Here are most of the basic rules, in an abbreviated notation:

2NEG: {{¬¬α}}
{{α}} CONJ: {{α∧β}}

{{α ,β}} DIS: {{¬(α∧β)}}
{{¬α}} | {{¬β}} NEX: {{Xα}}→{{}}

{{Xα}}→{{α}} NNX: {{¬Xα}}→{{}}
{{¬Xα}}→{{¬α}}

UNT: {{αUβ}}→{{}}
{{αUβ ,β}}→{} | {{αUβ ,α}}→{{αUβ}} NUN: {{¬(αUβ)}}→{{}}

{{¬(αUβ),¬β ,¬α}}→{} | {{¬(αUβ),¬β ,α}}→{{¬(αUβ)}}

ATM: {{p},{}}
{{p},{p}} NAT: {{¬p},{}}

{{¬p},{¬p}} POS: {{¬Aα}}
{{¬Aα ,¬α}} | {{¬Aα},{¬α}} NEC: {{Aα},{}}

{{Aα ,α},{α}}

The rules are described in detail in [15] but the notation gives the main ideas. Here are details of a
few of the rules above.

DIS: If ¬(α ∧ β ) ∈ ηt( j) then can extend(T,s,η ,π) to (T ′,s′,η ′,π ′) via either: DIS1 or DIS2 as
follows. DIS1 produces(T ′,s′,η ′,π ′) such thatT ′ = T, s′ = s, and for allt ′ 6= t, ηt ′ = ηt and for alli′ 6= i,
η ′

t (i
′) = ηt(i′). However,η ′

t (i) = ηt(i)∪{¬α}. DIS2 is similar but useβ instead ofα .
NEX: If Xα ∈ηt(i) and there isu∈T and j with πt

u( j)= i then can extend(T,s,η ,π) to (T ′,s′,η ′,π ′)
such thatT ′ =T, s′ = s, andη ′

u( j) =ηu( j)∪{α}. If t ∈T but there is nost( j)∈T then extend(T,s,η ,π)
to (T ′,s′,η ′,π ′) using new objectt+ such thatT ′ = T∪{t+}, s′t(i) = t+, η ′

t+(0) = {} andπ ′t
t+(0) = i. For

all other arguments,s′, η ′ andπ ′ inherit values froms,η andπ respectively.
ATM: If an atomp∈ ηt( j) andk< |ηt | then can extend(T,s,η ,π) to (T ′,s′,η ′,π ′) such thatT ′ = T,

s′ = s, and for allt ′ 6= t, ηt ′ = ηt and for alli′ 6= k, η ′
t (i

′) = ηt(i′). However,η ′
t (k) = ηt(k)∪{p}.

POS: If ¬Aα ∈ ηt( j) andn= |ηt | then can extend(T,s,η ,π) to (T ′,s′,η ′,π ′) via one of POSk for
somek= 0,1,2, ...,n as follows. Fork< n, POSk involves extending(T,s,η ,π) to (T ′,s′,η ′,π ′) where
T ′ =T, s′ = s, and for allt ′ 6= t, ηt ′ =ηt and for alli′ 6= k, η ′

t (i
′)=ηt(i′). However,η ′

t (k)=ηt(k)∪{¬α}.
However, POSn involves extending(T,s,η ,π) to (T ′,s′,η ′,π ′) whereT ′ = T, s′ = s, and for allt ′ 6= t,
ηt ′ = ηt and for alli′ 6= k, η ′

t (i
′) = ηt(i′). However,η ′

t (k) = ηt(k)∪{¬α}.
There are also a couple of rules not sketched above.
PRED: If t,u∈ T andu is a successor oft but π(tu( j)) is not defined then we can extend(T,s,η ,π)

to (T ′,s′,η ′,π ′) via one of PREDk for somek= 0,1,2, ..., |ηt |−1 as follows.
Fork< |ηt |, PREDk involves extending(T,s,η ,π) to (T ′,s′,η ′,π ′) whereT ′ =T, s′ = s, andη ′ =η .

However,π ′t
u ( j) = k.
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For k = |ηt |, PREDk involves extending(T,s,η ,π) to (T ′,s′,η ′,π ′) whereT ′ = T, but η ′ = η but
giving t an extra empty phueη ′

t (k) = {}; ands= s′.
Later we need to add akth successor fort and fill in formulas inη ′

t (k).
Note thatt now potentially becomes unsupported, untraceable and unfinished, again.
LOOP: Supposet is an ancestor of the parentu− of u, then we can choose either to replace theu−

to u edge by an up-link fromu− to t, or to not do that replacement (and continue the branch normally).
(It is worth remembering which choice you make and not try that again if it did not work.)
Note that, as in normal successors, we will also putsu−(i) = t andπu−

t (0) = i where previously we
hadsu−(i) = u. All the other phues inηt will also have to have predecessors chosen amongst the phues
in ηu− . We will use the PRED rule to do this for each one.

Note also that making such an up-link can possibly cause a subsequent consequential failure of the
tableau. A contradiction could be introduced into the hues of t, the NTP could fail and/or the LG property
could fail. It is possible to test for a few of these potentialproblems just before making use of this rule
and act accordingly.

7.2 The NTP check: nominated thread property

The LG property check that every looping path is noticed by the labels in nodes. The converse require-
ment is taken care of by the much simpler NTP check.

We put a special significance on the initial hue in each colourlabel. This, along with the next
condition, helps us ensure that each hue actually has a fullpath witnessing it. We are going to require the
following property, NTP, of the tableaux which we construct.

First some auxiliary definitions: Definition. [hue thread] Supposeσ is a path through(T,s,η ,π). A
hue threadthroughσ is a sequenceξ of hues such that|ξ |= |σ |, for each j < |ξ |, ξ j ∈ η(σ j) and for
each j < |ξ |−1, ξ j rXξ j+1.

Definition. [fulfilling hue thread] Supposeσ is a path through(T,s,η ,π) and ξ is a hue thread
throughσ . We say thatξ is fulfilling iff either |σ | < ω , or |σ | = ω and all the eventualities in eachξi

are witnessed by some laterξ j ; i.e. if α Uβ ∈ ξi then there isj ≥ i such thatβ ∈ ξ j .
Definition. [the nominated thread property] We say that the tableau(T,s,η ,π) has thenominated

thread property(NTP) iff the following holds. Suppose that for allt ∈ T such that 0< |st |, st(0) is an
ancestor oft and thatt0 = st(0), t1, ..., tk = t is a non-repeating sequence with eacht j+1 = st j (0). Let σ be
the fullpath〈t0, t1, ..., tk, t0, t1, ..., tk, t0, t1, ...〉 andξ be the sequence〈ηt0(0),ηt1(0), ...,ηtk(0),ηt0(0), ...〉 of
hues inσ . Thenξ is a fulfilling hue thread forσ .

It is straightforward to prove that this is equivalent to checking that each eventuality inηt0(0) (or
in all, or any,ηti (0)) is witnessed in at least one of theηt j (0). So it is neither hard to implement nor
computationally complex.

Using the rules described above, using any applicable one atany stage, allows construction of
tableaux. We know that the LG rule ensures that any successful ones which we build thus will guar-
antee thatφ is satisfiable. In the next section we consider whether we canbuild a successful tableau for
any satisfiable formula in the way.

8 Completeness Using the Hintikka Tableau

In [17], the completeness result for the tableau in that paper, shows that for any satisfiable CTL* formula
there is a finite model satisfying certain useful propertiesand from that we can find a successful tableau
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(as defined in that paper) for the formula. In fact the tableauconstructed in that paper is just a special
form of the tableaux that we are constructing in this paper: they are Hintikka structures.

Definition. A structure(T,s,η ,π) is a Standard Hintikka Tableaufor φ iff (T,s,η ,π) is a finite
finished successful tableau forφ and for eacht, for eachi, ηt(i) is an MPC subset ofcl (φ).

Thus, in a Hintikka tableau, the labels tell us exactly whichformulas hold there.
The completeness result in [17] shows the following, in terms of the concepts defined in this paper:
Lemma. Ifφ ∈ L is satisfiable then it has a Standard Hintikka Tableau.
The proof of this lemma is a straightforward translation of the definitions from [17] but we need to

specify how to define our current predecessor relationπ and we also need to check that the tableau is
finished.

The predecessor relationπ is not made explicit in the tableau structures of the earlierpaper. Instead
we require that the colour of a nodet is related by a successor relationRX between colours to the colour
of any successort ′. This means that for any hue in the colour oft ′ there is a hueh in the colour oft such
thath andh′ are related by a successor relation between hues. We can use such a hueh as the predecessor
of h′ and so defineπ.

To show that the tableau(T,s,η ,π) is finished, we just need to check all the rules of our tableau
construction and make sure none require the tableau to be changed in any way. This needs to be done
each rule at a time, and needs to be done carefully, although it is straightforward.

The proof in [17] uses a finite model theorem for CTL* to obtainabranch boundednessresult on the
Hintikka tableau. We can guarantee existence of a such a tableau with a certain function of the length of
the formula bounding the length of each branch (before an up-link). The bound is triple exponential in
the length of the formula, so rather large.

Thus we can conclude that each satisfiable formula has a tableau, but we can not yet claim that it is
a tableau which can be constructed by our rules.

In the rest of this section we describe how we can show that ifφ is satisfiable then there is a sequence
of applications of our tableau rules that allow the construction of a successful tableau forφ . Suppose
φ is satisfiable. From the lemma above we know that there is a successful, branch-bounded, supported
tableauT−∞ = (T ′,s′,η ′,π ′) for φ .

In [15], we show how to build a related, successful tableau for φ in a step by step manner only using
the construction rules from section 7.1. Thus we make a sequenceT0,T1, ... of tableaux each one using
a construction step to get to the next.

In order to useT−∞ to guide us, we also construct a sequence of mapsw0,w1,w2, ..., eachwi relating
the phues of the labels of the nodes ofT i to the hues of the labels of the nodes ofT−∞.

Thus eachwi maps ordered pairs which are nodes paired with indices to other such pairs. Suppose
thatT i = (T,s,η ,π) andT−∞ = (T ′,s′,η ′,π ′). Sayt ∈ T i and j < |ηt |. Thenwi(t, j) will be defined: say
thatwi(t, j) = (u,k) for u∈ T ′. Thenk< |η ′

u|. The idea in this example is thatwi is associating thejth
phue oft with thekth phue ofu.

All the while during the construction we ensure thatwi maps each node inT i to a node inT−∞ which
has a superset label.

We also show that the constructed tableau does not fail at anystage if one of the check rules such as
LG, NTP or the existence of direct contradictions in phues. This follows from the fact that the phues in
its labels are subsets of the hues in the labels of the Hintikka tableau.

If T is finished (leafless), supported and all predecessors existthen we are done. IfT is not supported
then choose any formulaα in any phue in the label of any node that is not supported. Depending on the
form of α we apply one of the tableau rules to add some successor, or some phue and/or some formula(s)
in a phue that will ensure thatα is then supported. See [15] for details.
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There are only a finite number of formulas that can be added in hues in labels in a finite structure
which is a subset ofT−∞. This guarantees that the process will eventually terminate.

Thus every satisfiable formula has a successful tableau which can be found via our set of rules.
In fact, we can go further and get an even better completenessresult. We can show that each formula

φ only has a finite number of tableaux which respect the branch bounds and a simple bound on branching
factor. Furthermore, if there is a successful tableau then there will be one obeying these bounds. There
are at most 2|φ | hues and so each node in a Hintikka tableau has at most 2|φ | successors: by the form of
completeness proof we can enforce the same bound on our more general tableaux. As we also have a
finite bound on the length of branches there are clearly only finitely many tableaux for any particularφ .

Lemma. Givenφ , there are only a finite number of tableaux which respect the branch length bound
and the branching degree bounds.

In this definition of tableau we have guaranteed terminationof any tableau construction algorithm by
putting a simple but excessive bound on the length of branches. This allows us to conclude failure in a
finite time and to also abbreviate the search for successful tableaux.

9 Stopping Repetition: coming up in follow-on paper

In this paper we have only briefly mentioned the limit on the length of branches as a way of guaranteeing
that there are only finitely many tableau, and so that a searchwill terminate one way or another. The
limit, based on a theoretical upper bound on the minimal CTL*model size, is very generous and hence
this is an inefficient way of cutting short tableau searches.Being so generous slows down both negative
and positive satisfiability reports.

In order to make some sort of working implementation to demonstrate the practicality of this tableau
it is necessary to have a better way of preventing the construction of wastefully long branches. For want
of better terminology we will call such a facility, a “repetition checker”.

The task of making a quick and more generally usable repetition checker will be left to be advanced
and presented at a later date. In fact, eventually we hope to provide a useful set of criteria for earlier
termination of construction of branches depending on the properties of the sequence of colours so far. A
simple example of the sort of criterion is the repeated appearance of the same sequence of colours and
hues along a non-branching path without being able to construct any up-links. Other more sophisticated
ideas are easily suggested but we want to develop a more systematic set of tests before presenting this in
future work.

In [17], we present some basic repetition checking tests forthe Hintikka style tableau. These can be
used in order to allow some faster automated tableau construction. The tests can be modified to work
with our sparser labels, and we will present full details in afuture paper. There are many opportunities
for more thorough repetition checks as well.

10 Complexity, Implementation and Comparisons

Say that|φ | = l . Thusφ has≤ l subformulas andcl φ contains at most 2l formulas. Since each hue
contains, for eachα ≤ φ at most one ofα or ¬α , there are at most≤ 2l hues. Thus there are less
than 22

l
colours. It is straightforward to see that there is a triple exponential upper bound if the tableau

search algorithm uses the double exponential bound on branch length [17] to curtail searches down long
branches.
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A prototype implementation written by the author shows thatfor many interesting, albeit relatively
small, formulas, the experimental performance of the system is relatively impressive. There are some
preliminary results detailed in [15] which show a comparison of running times with the older Hintikka-
style tableau technique of [17] and the state of the art game-based CTL* reasoner from [7]. In general the
new reasoner is more than an order of magnitude quicker at deciding formulas from a range of basic and
distinctive CTL* validities and their negations and a few other satisfiable formulas. The implementation
is available as Java code for public download [15]. Online reasoner coming soon.

The implementation for the new technique that is used in these experiments, uses some basic repeti-
tion checking derived from the checks given earlier in the Hintikka-style system [17]. The new, slightly
modified versions of these mechanisms are not described in the current paper. Instead they will be de-
scribed in a future paper.

In [7], four series of formulas are suggested to examine asymptotic behaviour. Timing results for our
system on these formulas are presented in Table 6. We comparethe performance of our new tableau with
the state of the art in game-based techniques for deciding CTL*. This is using published performance
of the reasoner from [7] as reported in experiments in [11]. Consider the following series of formulas:
α1 =AFGq, β1 =AFAGqand for eachi ≥ 1, αi+1 = AFGαi andβi+1 =AFAGβi. In table 6, we compare
the performance of the Hintikka-style tableau system from [17], the game-based reasoner from [7] and
the new tableau system of this paper (using basic repetitionchecking) on the growing series built from
these formulas. Although the running times, are on different computers, and so not directly comparable,
we can see the difference in asymptotic performance. Running times greater than an hour or two are
curtailed. From the results we see that we have achieved verynoticeable and significant improvements
in performance on the satisfiable examples.

Pure tableau-style reasoning on unsatisfiable formulas often involves exhaustive searches and the new
technique is not immune to such problems. See the 400 series of examples in the asymptotic experiments.
We will say more about these examples when proposing some newrepetition mechanisms in the future.

There are some, more theoretical descriptions of other game-based and automata-based techniques
for model-checking CTL* in older papers such as [10], [2] and[9]. However, these do not seem di-
rectly applicable to satisfiability decisions and/or theredo not seem to be any easily publicly available
implemented tools based on these approaches.

11 Conclusion

In this paper we have presented, albeit in a fairly high levelsketch, a traditional tableau approach to
reasoning with the important logic CTL*. Soundness and completeness results are proved and prototype
implementation demonstrates the significantly improved performance of the new approach on a range of
test formulas.

The next task in this direction is to build on the foundation here and present full details and proofs of
the repetition checking mechanisms that can be used with thetableau construction. There are some basic
repetition mechanisms available in the previous, Hintikkastyle tableau [17] but they need to be modified
slightly. There are opportunities for additional techniques. It is also important to improve and document
the rule-choice algorithms which have a bearing on running times.

In the future, it will be useful to develop reasoning tools which combine the latest in tableaux, au-
tomata and game-based approaches to CTL*. Having tools working in parallel should allow faster de-
cisions. It will also be useful to extend the work to logics ofmulti-agent systems such as ATL* and
strategy logic [12].
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# formula length sat? MRH FLL NEW
[17] [7] this paper

101 α1 → β1 20 Y 330 120 39
102 α2 → β2 35 Y > 105 130 43
103 α3 → β3 50 Y out of time 120 69
108 α8 → β8 125 Y out of time 380 664
113 α13 → β13 200 Y out of time > 105 2677
115 α15 → β15 230 Y out of time > 106 4228
119 α19 → β19 290 Y out of time out of time 9468

201 ¬(α1 → β1) 21 Y 350 120 172
202 ¬(α2 → β2) 36 Y > 105 170 117
203 ¬(α3 → β3) 51 Y out of time 2270 213
204 ¬(α4 → β4) 66 Y out of time > 106 377
205 ¬(α5 → β5) 81 Y out of time out of time 673
212 ¬(α12 → β12) 186 Y out of time out of time 7153

301 β1 → α1 20 Y 340 130 48
302 β2 → α2 35 Y > 105 140 50
303 β3 → α3 50 Y out of time 140 86
312 β12 → α12 185 Y out of time 30970 3333
314 β14 → α14 215 Y out of time > 106 5512
316 β16 → α16 245 Y out of time out of time 8627
319 β19 → α19 290 Y out of time out of time 15615

401 ¬(β1 → α1) 21 N 400 760 1801
402 ¬(β2 → α2) 36 N > 105 48670 > 105

403 ¬(β3 → α3) 51 N out of time > 106 out of time

Figure 6: Asymptotic Examples: Running Times (milliseconds)
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