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Various extensions of the temporal logic¢ L have recently been introduced to express rich properties
of multi-agent systems. Among thes&T Ls. extendsATL with strategy contextswhile Strategy
Logic hasfirst-order quantificatiorover strategies. There is a price to pay for the rich expressiss

of these logics: model-checking is non-elementary, andfiility is undecidable.

We prove in this paper that satisfiability is decidable inesal/special cases. The most important
one is when restricting tturn-basedgames. We prove that decidability also holds for concurrent
games if the number of moves available to the agents is balurdrally, we prove that restricting
strategy quantification to memoryless strategies bringk badecidability.

1 Introduction

Temporal logics are a convenient tool to reason about cagripatl systems, in particular in the setting
of verification | [ ) ]. When systems are interactive, the models usually invebxeral
agents (or players), and relevant properties to be checlted question the existence sfrategiesfor
these agents to achieve their goals. To handle tladtsenating-time temporal logievas introduced, and
its algorithmic properties were studied: model checkingT$ME-complete | ], while satisfiabil-
ity was settledEXPTIME-complete | ].

While model checking is tractabl&TL still suffers from a lack of expressiveness. Over the last
five years, several extensions or variant\®L have been developed, among whi&hL with strategy

contexts| ] and Strategy Logid 4 ]. The model-checking problem for these
logics has been proved non-elementany /110, ], while satisfiability is undecidable, both when
looking for finite-state or infinite-state models [ , ]. Several fragments of these logics have
been defined and studied, with the aim of preserving a richessjveness and at the same time lowering
the complexity of the decision problems/| , , ]

In this paper we prove that satisfiability is decidable (fjftowith non-elementary complexity) for
the full logic ATLsc (andSL) in two important cases: first, when satisfiability is reg&d to turn-based
games (this solves a problem left open inl\ ] for SL), and second, when the number of moves
available to the players is bounded. We also consider atairidtion, where quantification is restricted
to memorylesstrategies; in that setting, the satisfiability problemrgven undecidable, even for turn-
based games.

Our results heavily rely on a tight connection betweerisc and QCTL [ ], the extension
of CTL with quantification over atomic propositions. For instgrnte QCTL formula3p. ¢ states that
it is possible to label the unwinding of the model under cdesition with propositiorp in such a way
that¢ holds. This labeling with additional proposition allowstosmark the strategies of the agents and
the model-checking problem f&TLg; can then be reduced to the model-checking problenQforL.
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However, in this transformation, the resultiQC TL formula depends both on thel Ls; formula to be
checked and on the game where the formula is being checkeslwaly, the procedure does not extend
to satisfiability, which is actually undecidable. We prowrédthat this difficulty can be overcome when
considering turn-based games, or when the number of alaihabves is fixed. The satisfiability prob-
lem for AT Lgc is then reduced to the satisfiability problem Q€TL, which we proved decidable (with
non-elementary complexity) in.[Vi13]. When restricting to memoryless strategies, a similancéidn to
QCTL exists, but in a setting where the quantified atomic projprstdirectly label the model, instead of
its unwinding. The satisfiability problem f@CTL under that semantics is undecidabied0], 1,
and we adapt the proof of that result to show that satisftsbilf ATL‘S)C (in which quantification is
restricted to memoryless strategies) is also undecidable.

2 Definitions

2.1 ATL with strategy contexts

In this section, we define the framework of concurrent gamectires, and define the logiTL with
strategy contexts. We fix once and for all a A€tof atomic propositions.

Definition 1. A Kripke structure is a 3-tuple (Q,R,¢) where Q is a countable set of states_R)? is
a total relation {.e., for all g € Q, there is §c Q s.t.(q,q) € R) and/: Q — 2°P is a labelling function.

A path in a Kripke structure” is a mappingp: IN — Q such that(p(i),p(i+ 1)) € R for all i.
We write first(p) = p(0). Given a pathpo and an integei, thei-th suffix of p, is the pathpsi: n—
p(i+n); thei-th prefix of p, denotedo;, is the finite sequence made of the1 first state op. We write
Exec’(q) for the set of finite prefixes of paths (bistorieg with first stateq. We writelast(7) for the last
state of a historyt. Given a historyp<; and a pathr such thatiast(p<i) = first(), the concatenation
A =p<i-mis defined byA (j) = p(j) whenj <iandA(j)=n(j—i) whenj >i.

Definition 2 ([ ). AConcurrent Game Structu€GS ¢ is a7-tuple(Q,R, ¢, Agt,.# ,Mov, Edge)
where: (Q,R,¢) is a (possibly infinite-state) Kripke structurgt = {ay,...,ap} is a finite set ofagents
/ is a non-empty set of movedpv: Q x Agt — Z(.#) . {@} defines the set of available moves of
each agent in each state, afidge: Q x .#Z”& — R is a transition table associating, with each state ¢
and each set of moves of the agents, the resulting trangitarting from g.

The size of a CG% is |Q| + |Edge|. For a stateg € Q, we write Next(q) for the set of all states
reachable by the possible moves frggmandNext(q,a;,m;), with m; € Mov(q,a;), for the restriction
of Next(q) to possible transitions frorg when playera; plays movem;. We extendMov and Next to
coalitions (.e., sets of agents) in the natural way. We say that a CG@@tsbasedwhen each statg is
controlled by a given agent, called the ownegdgand denote®wn(q)). In other terms, for everg € Q,
for any two move vectorsn and m’ in which Own(q) plays the same move, it holdsge(g,m) =
Edge(qg,m) (which can be achieved by letting the sbtsv(q,a) be singletons for everg # Own(q)).

A strategyfor some playeml € Agt in a CGS% is a function f; that maps any history to a possi-
ble move fora;, i.e, satisfying f;(11) € Mov(last(m),a;). A strategyf; is memorylessf f;(mm) = fi(17)
wheneverlast(mm) = last(17). A strategy for a coalitiomA is a mapping assigning a strategy to each
agent inA. The set of strategies fak is denotedstrat(A). Thedomaindom(Fa) of Fa € Strat(A) is A.
Given a coalitionB, the strategy(Fa) g (resp.(Fa)..g) denotes the restriction & to the coalitionANB
(resp.A~ B). Given two strategie§ € Strat(A) andF’ € Strat(B), we defineF oF’ € Strat(A(JB) as
(FoF)g(p) =Fpa () (resp.Fl’aj (p))if aj € A(resp.a; € B\ A).
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Let p be a history. A strategifa = (fj)a,ca for some coalitiorA induces a set of paths from called
the outcomeof Fa after p, and denote®ut(p,Fa): an infinite pathrr= p - qi10s... is in Out(p,Fa) if,
and only if, writinggp = last(p), for alli > 0 there is a set of mon::*;‘{'(){,‘keAgt such thatr{< € Mov(q;,ak)
for all ax € Agt, m = f(7p4i) if a € A, andqj1 is the unique element diext(q;, Agt, (M) acagt)-
Also, given a history and a strategfa = (fj)a;ea, the strategFAp is the sequence of strategi(eﬁ’ )ajen
such thatf (1) = (o - m), assumingast(p) = first(7).

We now introduce the extension AT L with strategy contextsd , ]:

Definition 3. Given a set of atomic propositionSP and a set of agentégt, the syntax oATLg. is
defined as follows (where p ranges over AP and A @0&f):

ATL;C = ¢state7 state :p ‘ B ¢state ‘ ¢state \ LIJstate ’ >A< ¢state ‘ <A> ¢path
¢path7 LnUpath :::¢state ‘ - ¢path ‘ ¢path \/ LIJpath ’ X ¢path ‘ ¢path U LIJpath'

That a (state or path) formulf is satisfied at a positionof a pathp of a CGS% under a strategy
contextF € Strat(B) (for some coalitiorB), denoteds’, p,i = ¢, is defined as follows (omitting atomic
propositions and Boolean operators):

CPi FF WAl uae 1f C 0,1 FF L Patare
C,p,i Er (A) o iff  TFa € Strat(A). V' € Out(p<i,FacF). €,p",i ErioF Ppan
C P FF X 1 €, 0,i+1EF P
C, P FF Ppan U, 1ff - 3] >0.€,0,i+ | FF Yo, andVO <K < j. €, 0,1 + K FF Ppann

Notice how the (existential) strategy quantifier contaimgaplicit universal quantification over the set of
outcomes of the selected strategies. Also notice that &tateilas do not really depend on the selected
path: indeed one can easily show that

%7p7i ):F ¢state Iff (57p/7j ):Fl ¢state

where we assumg(i) = p'(j) and wherer andF’ verifies:F (p<i - p”) = F'(pZ; - p") for any finitep”
starting inp(i). In particular this is the case when the; = p’gj andF =F'.

In the sequel we equivalently writ€, 11(0) =¢ ¢..... in place of¢’, 1,0 = ¢..... when dealing with
state formulas.

For convenience, in the following we allow the constryé) ¢....., defining it as a shorthand for
(A) L Ud.... We also use the classical modalitiEsand G, which can be defined using. Also,
[A] P, = — (A) ~ ... EXPresses that amy-strategy has at least one outcome whgrg holds.

The fragmen®ATLg; of ATLS, is defined as usual, by restricting the set of path formulas to

¢path7 L.Upath L= ¢path ’ X ¢state ‘ ¢state U L.Ustate'

It was proved in [ ] that ATLsc is actually as expressive @9 L;.. Moreover, for any given
set of players, anATL. formula can be written without using negation in path foraslreplacing for
instance(-A) G ¢ with (-A) - (‘Agt\ (AUB)-)F - ¢, whereB is the domain of the context in which the
formula is being evaluated. While this is not a generic egjeirce (it depends on the context and on the
set of agents), it provides a way of removing negation frommgiven AT L. formula.
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2.2 QuantifiedCTL

In this section, we introduc®CTL, and define itdree semantics

Definition 4. Let 2 be a finite alphabet, and S be a (possibly infinite) set of toas. AZX-labelled
Streeis a pair 7 = (T,l), where TC S* is a non-empty set of finite words on S s.t. for any non-empty
word n=m-sin T with me S and se S, the word mis also in T; and IT — X is a labelling function.

Theunwinding(or execution trepof a Kripke structure” = (Q, R, ¢) from a state € Q is the 2\P-
labelledQ-tree .7 (q) = (Exec’(q),£2) with £7(go---Gi) = £(q). Note thatZ(q) = (Exec’(q),£7)
can be seen as an (infinite-state) Kripke structure whersdhef states iExecf(q), labelled according
to £ 7, and with transitiongm, m-s) for all m € Exec’(q) ands € Q s.t. m-s e Execf(q).

Definition 5. For P C AP, two2”P-labelled trees7 = (T,¢) and.7’ = (T’ #') are P-equivalen{denoted
by 7 =p .7') whenever T=T’, and/(n)NP =/¢'(n)NP forany ne T.

In other terms,7 =p .7’ if .7’ can be obtained fron¥ by modifying the labelling function of7
for propositions not ifP. We now define the syntax and semanticQafTL":

Definition 6. The syntax oQCTL" is defined by the following grammar:

(Q(:-I_L>|< 9 ¢state7 state :p | - ¢state | ¢state \/ wstate | E¢path | A¢path | E|p ¢State
¢path7 L)Upath :::¢state | - ¢path | ¢path \/ wpath | X ¢path | ¢path U Wpath'

QCTL* is interpreted here over Kripke structures through thewindings': given a Kripke struc-
ture ., a stateg and a formulap € QCTL*, that¢ holds atq in .7, denoted with¥’,q = ¢, is defined
by the truth value of7~(q) |= ¢ that uses the standard inductive semanticSTf* over trees extended
with the following case:

g ’: Elp.d)sme iff 3:7/ EAP\{p} T s.t. y/ ’: d)state.

Universal quantification over atomic propositions, dedotgth the construct/p. ¢, is obtained by du-
alising this definition. We refer tol[V/13] for a detailed study oQCTL* and QCTL. Here we just
recall the following important properties of these logi€érst note thaQCTL is actually as expressive
asQCTL" (with an effective translation)Hre0], ]. Secondly model checking and satisfiability
are decidable but non elementary. More precisely givQ€aL formula¢ and a (finite) set of degrees
2 C NN, one can build a tree automate#, , recognizing thez-trees satisfyingp. This provides a
decision procedure for model checking as the Kripke strectt fixes the set7, and it remains to check
whether the unwinding of” is accepted by ». For satisfiability the decision procedure is obtained
by building a formulag, from ¢ such thatp, is satisfied by somé1, 2}-tree iff ¢ is satisfied by some
finitely-branching tree. Finally it remains to notice thaQ&TL formula is satisfiable iff it is satisfiable
in a finitely-branching tree (aQCTL is as expressive d4S0) to get the decision procedure fQCTL
satisfiability. By consequence we also have th&@rL formula is satisfiable iff it is satisfied by a
regular tree (corresponding to the unwinding of some finitiplké structure).

3 From ATLgcto QCTL

The main results of this paper concern the satisfiabilityojgm for ATLse given a formula inAT Lgg,
does there exists a CG8 and a state) such thats’,q =4 ¢ (with empty initial context)? Before we

INote that several semantics are possibleJaTL* and the one we use here is usually calledtthe semantics
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present these results in the next sections, we briefly explaiv we reduce the model-checking problem
for AT Lgc (which consists in deciding whether a given staief a given CGS¢ satisfies a giver\T Lgc
formula ¢) to the model-checking problem f&CTL. This reduction will serve as a basis for proving
our main result.

3.1 Model checking

Let? = (Q,R,¢,Agt,.# ,Mov, Edge) be afinite-state CGS, with a finite set of mov#s= {my,...,m}.
We consider the following sets of fresh atomic propositioRg = {pq | g € Q}, P!, ={ml,....m}}
for everya; € Agt, and writeP_, = Ua eagt P’% Let %, be the Kripke structuréQ,R, ¢, ) where
for any stateq, we have: ¢, (q) = £(q) U {pq}. A strategy for an agerd; can be seen as a function
fj: Exec(q) — P‘/// labeling the execution tree of;, with propositions irP{’//.

Let F € Strat(C) be a strategy context arl € ATLg.. We reduce the question wheth€rq = ®

to a model-checking instance fQCTL" over.#,. For this, we define QCTL* formula®” inductively:
for non-temporal formulas,

~———C
I 2 e R L L
For a formula of the form:-A) X d) with A= {ajl, ..., }, we let:
TAYXEE
(AIX§ =3mi: mi'. A\ AG (Parac(@))) A A (@5 = X94)
ajeA

where:

Dyirat(q)) = \/ (pq/\ \/ (mlj /\/\—|m|j))

geQ meMov(q,a;) 14
¢L’ﬂt—el A (arm=x(V pq/))]
qeQ g €Next(g,A,m)
meMov(q,A)

wherem is a move(m!), ca € Mov(g, A) for A andPy, is the propositional formulg\, cam’ character-
izing m. Formula®g,,:(a;j) ensures that the labelling of propositiomq% describes a feasible strategy
for a;. Formulad)ﬁﬁ\jt characterizes the outcomes of the strategyAfdhat is described by the atomic

propositions in the model. Note th@éﬂt is based on the transition taliteige of € (via Next(qg,A, m)).
For a formula of the form:A-) (¢ U L/J) with A= {a;,,...,a; }, we let:

—— €
(A)($UY) =Tmi. mf. LN\ AG (Patrar(ay) ) A A (@™ = (@AUTER)
ajeA
Then:
Theorem 7. [ ] Let g be a state in a CG%. Let® be anATLg, formula and F be a strategy

context for some coalition C. Lef’ be the execution tre€y, (q) with a labelling function/’ s.t. for
every T € Exec’(qg) of length i and any pc C, ¢/(1) N P!, =m/ if, and only if, F(m)ja; = mi. Then
%.q = @ if, and only if, 77, q = B

Combined with the (non-elementary) decision procedur@forF L* model checking, we get a model-
checking algorithm for model checkil§TLs.. Notice that our reduction above is in@CTL*, but as
explained before everQCTL" formula can be translated inQCTL. Finally note that model checking
is non elementaryktEXPTIME-hard for anyk) both for QCTL andAT Lg¢ [ ].
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3.2 Satisfiability

We now turn to satisfiability. The reduction @CTL we just developed for model checking does not
extend to satisfiability, because tRECTL formula we built depends both on the formula and on the
structure. Actually, satisfiability is undecidable fAf Ls;, both for infinite CGS and when restricting
to finite CGS | ]. It is worth noticing that both problems are relevant,A84_ s does not have the
finite-model property (nor does it have the finite-branchingperty). This can be derived from the fact
that the modal logi&s" does not have the finite-model propertyuf02], and from the elegant reduction
of satisfiability of 5" to satisfiability ofATLgc givenin [ ]12.

In what follows, we prove decidability of satisfiability imvb different settings: first in the setting
of turn-based games, and then in the setting of a bounded emaikactions allowed to the players.
A consequence of our decidability proofs is that in both sgbased on automata constructioms)Lsc
does have the finite-model property (thanks to Rabin’s gegultheorem). We also consider the setting
where quantification is restricted to memoryless stragedpat prove that then satisfiability is undecidable
(even on turn-based games and with a fixed number of actions).

Before we proceed to the algorithms for satisfiability, wevera generic resuft about the number
of agents needed in a CGS to satisfy a formula involving argaet of agents. This result has already
been proved foATL (e.g.in | ]). Given a formula® € ATLg., we useAgt(®P) to denote the
set of agents involved in the strategy quantifierin

Proposition 8. AnATLgc formula® is satisfiable iff, it is satisfiable in a CGS withgt(®P)| + 1 agents.

Proof. Assume® is satisfied in a CG® = (Q,R,¢,Agt, .# ,Mov,Edge). If |Agt| < Agt(®P), one can
easily add extra players f@ in such a way that they play no role in the behavior of the gametsire.
Otherwise, if|Agt| > Agt(®) + 1, we can replace the agentsAgt that do not belong té\gt(®) by a
unigue agent mimicking the action of the removed players.ekample, a coalitiodh = {ay,...,a} can
be replaced by a playerwhose moves aretuples in.zX. O

4 Turn-based case

Let ® be anATLg. formula, and assumagt(®) is the sef{ay,...,ay}. Following Prop.8, let Agt be
the set of agentdgt(®) U {ap}, whereag is an additional player. In the following, we use an atomic
propositions(turnj)a,cagt t0 specify the owner of the states. A strategy for an aggean be encoded
by an atomic propositiomov;: indeed it is sufficient to mark onguccessoof every a;-state (notice
that this is a crucial difference with CGS). The outcomesuahsa strategy are the runs in which every
aj-state is followed by a state labelled wittov; this is the main idea of the reduction below.

Given a coalitionC (which we intend to represent the agents that have a strametie current
context), we define CTL* formula®C inductively:

e for non-temporal formulas we let:
_——_cC - _—C . —C
AL =9 A =9 NY° =g =3¢

o for path formulas, we define:

3
I

X" =X §C $UG =pcugS

2Indeed the finite-branching property falr Lsc would imply the finite-model property fa85".
3Note that it still holds true when restricting to turn-basganes.
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e for formulas of the form(-A;) ¢ with A= {a;,,...,a; }, we let:

_—cC
(A)¢ =dmovj,...movj,.

AG /\(turnj:>EX1movJ-)/\A[G( /\ (turnj:>XmovJ-)):><ﬁCUAH

ajeA aj€AUC

whereEX; a is a shorthand foEX a AVp. ( EX(aAp)=AX (a= p)) , Specifying the existence
of a unique successor satisfying

Now we have the following proposition, whose proof is donetoyctural induction over the formula:

Proposition 9. Let® € ATLg., andAgt = Agt(®) U{ag} as above. Le¥ be a turn-based CGS, q be a
state of¢’, and F be a strategy context. L&%(q) = (T, /) be the execution tree of the underlying Kripke
structure of¢’ (including a labelling with propositiongturnj)a cagt)- Letlr be the labelling extending
such that for every node of T belonging to someja dom(F) (i.e., such thatast(p) € Own(a;)), its
successop - q according to F (i.e., such thatjfp) = q) is labelled withmovj. Then we have:

¢,qkr @ iff (T ) | @%om®)

Proof. The proof is by structural induction ovér. The cases of atomic propositions and Boolean opera-
tors are straightforward.

o ®=(A)(pUY): assume&’,q = P. Thenthere existBa € Strat(A) s.t. for anyp € Out(q,FacF),
there exist$ > 0.7, p(i) F(r,oF )< Y andVO< j <i, we haved’, p(j) =g, op)o<i ¢- Letlr,or
be the extension of labelling T with propositions(movj)a cag: according to the strategy con-
textFaoF. By induction hypothesis, the following two statementschiolie:

- <T7€FAOF>P§i ): ql\dom(F)UA, and
— (T lesor)p.; = @4 F)YA for any 0< j <.
(where (U, 1) is the subtree ofU,l) rooted at nodet € U). As this is true for every in the

outcomes induced biyaoF, it holds for every path in the execution tree satisfying ¢bastraint
over the labelling ofturnj)a cagt and(movj)a;cage. It follows that

<T7€FAOF> ’: A{G ( /\ (turnj =X mOVj)) :>$d°m(F)UA}

ajeAUC

Moreover we also know thadG A ca(turnj= EX1movj) holds true in(T, g, .r) since the la-
belling ¢k, .r includes the strategya. Hence(T, /g) = ®m(F) with the labelling for(movj)a ea
being obtained fronfra.

Now assuméT, /) = ®%m(F) Write A= {a;,,...,aji}. Then we have:

(T le) E Elmovj-l...movj-l.{AG /\ (turnj= EX 1movj) A

ajeA

A [G (a. E/A\UC(tumj —X mOVj)) :>(¢dom(F)UAU ’w\dom(F)UA)H
j
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The first part of the formula, namel&G A ca(turnj=- EX1movj), ensures that the labeling
with (mov ), ca defines a strategy for the coalitién The second part states that every run belong-
ing to the outcomes d?Ao F (remember thafr already contains the strategy cont&3tsatisfies
(@dom(F)UAY ydom(F)UA) " Finally it remains to use the induction hypothesis ovetestalong the
execution to deduc®,q =g (A) (¢ Uy).

o ® = )A(Y: assume?,q =k @. Then?,q=r,, .. Y- Applying the induction hypothesis,
we get(T, ¢k, ) = @ FNA And it follows that(T, ¢¢) = 4°m(F)\* because the labeling of
strategles for coalitiod\ in F is not used for evaluatlng/dom )\A_ Conversely, assum@, (g) =
geom(FN\A Then we haveT, o ) = geom(F)\A (again the labeling of strategies irF is not
used for evaluating the formula). Applying induction hyipesis, we ge¥’, q deom(F)\A Y and then
%,q ’:F ®.

e ®= (A)X ¢ and® = )A( X ¢: the proofs are similar to the previous ones. O

Finally, let dy, be the following formula, used to make the game turn-based:

CDtb:AG[ \/ (turnj/\ A —|turn|)}

ajeAgt a #a;

and let® be the formulaby, A ®?. Then we have:

Theorem 10. Let® be anATLg for@ula and® be theQCTL* formula defined as above» is satisfiable
in a turn-based CGS if, and only i is satisfiable (in the tree semantics).

Proof. If @ is satisfiable in a turn-based structure, then there exists a structur&’ with |Agt(P)| +1
agents. Assum#’,q = @. Now consider the execution treg,(q) with the additional labelling to mark
states with the correct propositioftsirn| )a,cagt, indicating the owner of each state. From Proposifipn
we haveZy(q) = ®?. Thus clearlyZ(q) = ®.

Conversely assumg = ®. As explained in Sectio2, we can assume that is regular. Thus
T = Py AD?: the first part of the formula ensures that every state of tigerlying Kripke structure
can be assigned to a unique agent, hence defining a turn-6&®dThe second part ensures tdiolds
for the corresponding game, thanks to Proposifion O

The above translation froAT Lsc into QCTL* transforms a formula withk strategy quantifiers into
a formula with at mosk+ 1 nested blocks of quantifiers; satisfiability oR&LTL* formula withk+ 1
blocks of quantifiers is itk + 3)-EXPTIME [ ]. Hence the algorithm has non-elementary complex-
ity. We now prove that this high complexity cannot be avoided

Theorem 11. Satisfiability ofAT Lscformulas in turn-based CGS is non-elementary (i.e. ktiESXPTIME-
hard, for all k).

Proof (sketch). Model checkingAT Lg over turn-based games is non-elementary{112], and it can
easily be encoded as a satisfiability problem. €et (Q,R, ¢, Agt,.# ,Mov, Edge) be a turn-based CGS,
and® be anATLg: formula. LetPq be a fresh atomic proposition for eveqy= Q. Now we define an
ATLgc formulaWy to describe the gani€ as follows:

We = AG (\/ (Pah \ =Pgr A\ PA A =P))A
aeQ qd+#q Pel(a)  P'¢l(a)

AG [/ (Pa=( A\ (Own(@)XPgn A = (Own(@))XPq))]

qeQ g—q q. aAq
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whereq — d denotes the existence of a transition frgro g in 4. Any turn-based CGS satisfyirtgy
corresponds to some unfolding @f, and then has the same execution tree. Finally we clearky tieat
¢,q= ®if, and only if, W, APy A @ is satisfiable in a turn-based structure. O

5 Bounded action alphabet

We consider here another setting where the reductiéd®dL* can be used to solve the satisfiability of
ATLs: we assume that each player has a bounded number of avaitaldas. Formally, it corresponds
to the following satisfiability problem:
Problem: (Agt, #)-satisfiability
Input: a finite set of moves#, a set of agentdgt, and amAT Lsc formula® involving
the agents irdgt;
Question: does there exist a CG8 = (Q,R ¢,Agt,.# ,Mov,Edge) and a state] € Q
such thatg’,q = .

Assume# ={1,...,a} andAgt = {ay,...,a,}. With this restriction, we know that we are looking
for a CGS whose execution tree has nodes with degrees inttes€(1,2,...,a"}. We consider such
2-trees where the transition table is encoded as followseery ageng; and movenin .#, we use the
atomic propositiommov" to specify that agers; has played movenin the previousnode. Any execution
tree of such a CGS satisfies formula

Degge = AG [( A EX 1movfﬁ) A AX ( \/ mov’ﬁ)}
me.#" me.#"

wheremov™ stands forA\a;eagt movrjﬁj. Notice that the second part of the formula is heeded beaafuse

the way we handle thienplicit universal quantification associated with the strategy tiiens of AT L.

Given a coalitiorC, we define QQCTL* formula®° inductively as follows:
e for non-temporal formulas we let

(o
A =9Ch FAg =9%n° Sgt=p¢ PPep
o for temporal modalities, we define
—C —°C
X¢ =X§° pUY =F°UTC

e finally, for formulas of the form(-A;) ¢ with A= {a;,,...,a; }, we let:

c
(A) @ =3choosej, ...choosef. ...choose] ...choosef.

[AG ( AV (choose™A A ﬂchoose?)) A

ajeA m=1l..a n#m

A [G ( A /\ (choose]'=X movrj“)) = $CUAH.

a;eALC m=1...a

The first part of this formula requires that the atomic prajmss choose’j“ describe a strategy,
while the second part expresses that every execution fmitpthe labelled strategies (including
those forC) satisfies the path formu-A.
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Now, Ietting@ be the formula®g e A®?, we have the following theorem (similar to Theoréi):

Theorem 12. Let® be anATLsc formula, Agt = {au, ..., a.} be a finite set of agents#Z = {1,....a}
be a finite set of moves, adelbe the formula defined above. Theris (Agt,.# )-satisfiable in a CGS if,
and only if, theQCTL* formula® is satisfiable (in the tree semantics).

We end up with a non-elementary algorithm (ki 2)-EXPTIME for a formula involvingk strategy
quantifiers) for solving satisfiability of aATLs; formula for a bounded number of moves, both for a
fixed or for an unspecified set of agents (we can infer the sapgehts using Pro@). SinceAT Lgc
model checking is non-elementary even for a fixed number afam¢the crucial point is the alternation
of strategy quantifiers), we deduce:

Corollary 13. (Agt,.#)-satisfiability forATLsc formulas is non-elementary (i.&-EXPTIME-hard, for
all k).

6 Memoryless strategies

Memoryless strategies are strategies that only dependeoprésent state (as opposed to general strate-
gies, whose values can depend on the whole history). R@sfristrategy quantifiers to memoryless
strategies in the logic makes model checking much easiexfimte game, there are only finitely many
memoryless strategies to test, and applying a memorylegtegy just amounts to removing some tran-
sitions in the graph. Still, quantification over memoryletategies is not possible in plakTLs., and

this additional expressive power turns out to make satlfighindecidable, even when restricting to turn-
based games. One should notice that the undecidabilityf pfgo ] for satisfiability in concurrent
games uses one-step gamies, (they only involve oneX modality), and hence also holds for memoryless
strategies.

Theorem 14. Satisfiability ofATL‘S)C (with memoryless-strategy quantification) is undecidaéen when
restricting to turn-based games.

Proof. We prove the result for infinite-state turn-based games, dapting the corresponding proof
for QCTL under the structure semanti¢cs £07], which consists in encoding the problem of tiling a quad-
rant. The result for finite-state turn-based games can lzenaat using similar (but more involved) ideas,
by encoding the problem of tiling all finite grids (se€\]13] for the corresponding proof fa@CTL).

We consider a finite sé€k of tiles, and two binary relationsl andV indicating which tile(s) may
appear on the right and above (respectively) a given tile. gbaof consists in writing a formula that is
satisfiable only on a grid-shaped (turn-based) game stauctpresenting a tiling of the quadrang(
of IN x IN). The reduction involves two players: Player 1 controlsasgustates (which are labelled
with [J), while Player 2 controls circle states (labelled with. Each state of the grid is intended to
represent one cell of the quadrant to be tiled. For technézdons, the reduction is not that simple, and
our game structure will have three kinds of states (seelfig.

o the “main” states (controlled by Player 2), which form th@giEach state in this main part has a
right neighbour and #&p neighbour, which we assume we can identify: more precisetymake
use of two atomic propositions andv, which alternate along the horizontal lines of the grid. The
right successor of & -state is labelled withr,, while itstop successor is labelled with;

o the “tile” states, labelled with one item @f (seen as atomic propositions). Each tile state only has
outgoing transition(s) to a tile state labelled with the sedite;



218 Satisfiability of ATL with strategy contexts

e the “choice” states, which appear between “main” states'tdet states: there is one choice state

associated with each main state, and each choice state rmass#didn to each tile state. Choice
states are controlled by Player 1.

Fig. 1: The turn-based game encoding the tiling problem

Assuming that we have such a structure, a tiling of the gridesponds to anemorylesstrategy of
Player 1 (who only plays in the “choice” states). Once suchemoryless strategy for Player 1 has
been selected, that it corresponds to a valid tiling can lpeessed easily: for instance, in any cell
of the grid (assumed to be labelled with), there must exist a pair of tilefi;,to) € H such that
VIA (299 XX t1 A (299X (V2 AXX1T2). This would be written as follows:

i\ (2)0XX 1A (2)gX (v2AXX )
(tl,tz)EH
<'l‘>oG /\

o=\ (290XX A (20X (Vi AXX )
(tl,tz)EH

The same can be imposed for vertical constraints, and foosing a fairness constraint on the base line
(under the same memoryless strategy for Player 1).

to c-state

Fig. 2: The cell gadget Fig. 3: Several cells forming (part of) a grid

It remains to build a formula characterising an infinite grithis requires a slight departure from
the above description of the grid: each main state will int fae a gadget composed of four states, as
depicted on Fig2. The first state of each gadget will give the opportunity tayel 1 tocolor the state
with eithera or B. This will be used to enforce “confluence” of several trdosi to the same state
(which we need to express that the two successors of anyfdbk grid share a common successor).
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We now start writing our formula, which we present as a coctjon of several subformulas. We re-
quire that the main states be labelled withthe choice states be labelled withand the tile states be
labelled with the names of the tiles. We &0’ = {m,c} UT andAP = AP’ U {vi,v»,a,3,00,0O}. The
first part of the formula reads a follows (where universahggiantification can be encoded, as long as
the context is empty, usinga-),):

A

AG L\/ pA A ﬂp’} AA(MWc) A AG lc;» <D/\/\ (1)pXtAAX (\/ AGt))

cAP’ peAP\{p} teT teT

AG

(O -0O)A (D:> N\ (EXp& (1)5X p)) A (O:» /\ (EXp& (25X p)>} (1)

peAP peAP

This formula enforces that each state is labelled with déxacte proposition fromAP’. It also enforces
that any path will wander through the main part until it pbgsgoes to a choice state (this is expressed
as A(mW c), wheremW ¢ meansGmv muUc, and can be expressed a negated-until formula). Finally,
the second part of the formula enforces the witnessingtsires to be turn-based.

Now we have to impose that the-part has the shape of a grid: intuitively, each cell hasethre
successors: one “to the right” and one “to the top” in the npairt of the grid, and one-state which we
will use for associating a tile with this cell. For technicahsons, the situation is not that simple, and
each cell is actually represented by the gadget depictedgr2FEach state of the gadget is labelled
with m. We constrain the form of the cells as follows:

AG [m=((OA=aA=B)VOA~(aAB))|AAG [((MAT)= (Ve v2)) A((v1 V) =(mAD))] A
AG [(mAD) =[AX (MAOA(a v B) A AX (MAOA=aA=B)) A (1)oXan (19X B]| ()

This says that there are four types of states in each cellspedifies the possible transitions within such
cells. We now express constraints on the transitions lgaxicell:

AG [(EXcV EX 1V EXVo) =(mAOA-~a A= B)| A
AG [(MAOA=a A= B)=(EXCA EXviA EXVa A AX (cVVi V)| - (3)

It remains to enforce that the successor ofthand 3 states are the same. This is obtained by the
following formula:

AG [(mAD) = [2]o ((2)oX3(cVvi)V (@)oX3(cVVa))] (4)

Indeed, assume that some cell has two different “final” statken there would exist a strategy for
Player 2 (consisting in playing differently in those two figtates) that would violate Formuld)( Hence
each cell as a single final state.

We now impose that each cell in the main part has exactly nwsuccessors, and these twe
successors have amtsuccessor in common. For the former property, FormBjalfeady imposes that
each cell has at least two-successors (one labelled with and one withv,). We enforce that there
cannot be more that two:

AG [(MAD) = [Lp[((2)oX 3(viAX @) A (20X 32 AX @)= [2]g (@)X X a]].  (5)
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Notice that[-2], (@+),¢ means thatp has to hold along any outcome of amemorylesstrategy of
Player 2. Assume that a cell has three (or more) successsr Then at least one is labelled withand
at least one is labelled wittp. There is a strategy for Player 1 to color onesuccessor cell and one
Vo-successor cell witlr, and a third successor cell wifh thus violating Formula) (as Player 2 has a
strategy to reach a successor cell colored #ith

For the latter property (the two successors have a commaessir), we add the following formula
(as well as itsp-counterpart):

[0 (290G [((MATIAV) = ([(200X 3(Va A 20X 3X )] = (20X 3(-vaAX3 (v AX a))]) | (6)

In this formula, the initial (universal) quantification av&rategies of Player 1 fixes a color for each cell.
The formula claims that whatever this choice, if we are in segacell and can move to another-cell
whose two successors have cotorthen also we can move tova-cell having onea successor (which
we require to be &,-cell). As this must hold for any coloring, both successdrthe originalv;-cell
share a common successor. Notice that this does not préweigtritd to be collapsed: this would just
indicate that there is gegular infinite tiling.

We conclude by requiring that the initial state be in a sqsaie of a cell in the main part. O

7 Results for Strategy Logic

In this section, we extend the previous results to Strateggid (SL). This logic has been initially

introduced in { ] for two-player turn-based games. It has then been extetwdeglayers concur-
rent games inlJ ]. As explained in the introduction, satisfiability has bedrown undecidable
when considering infinite structures| ], and the proof in| ] for finite satisfiability of AT Lgc

straightforwardly extends t6L. Here we show that satisfiability is decidable when congideturn-
based games and when fixing a finite alphabet, and that it rsnuaidecidable when only considering
memoryless strategies.

Strategy Logic in a nutshell. We start by briefly recalling the main ingredientsSdf. The syntax is
given by the following grammar:

¢ wi=ploAw| -9 X |oUY[(X)¢[(aX)9

wherea € Agt is an agent and is a (strategy) variable (we use Var to denote the set of thesables).
Formula(x)) ¢ expresses the existence of a strategy, which is storediabl@x, under which formula
holds. In¢, theagent bindingoperator(a, x) can be used to bind ageato follow strategyx. An assign-
menty is a partial function fromAgt U Var to Strat. SL formulas are interpreted over pairg, q) where
qis a state of some CGS apds an assignment such that every free strategy variablefagecurring in
the formula belongs tdom(x). Note that we havégt C dom(x) when temporal modalitieX and U

are interpreted: this implies that the set of outcomes igicésd to a unique execution generated by all
the strategies assigned to player\gt, and the temporal modalities are therefore interpreted the
execution. Here we just give the semantics of the main tweattocts (seelf ] for a complete
definition of SL):

C. X, (xX)¢ iff 3IF eStrats.t. €, xx— F|l,q=¢
¢, X.aF (@x¢ iff < xla—x(X)],aF=¢

“We use the standard notion of freedom for the strategy Viasakith the hypothesis thatx) bindsx, and for the agents
with the hypothesis thgg, x) bindsa and that every agent igt is free in temporal subformula €., with U or X as root).
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In the following we assume w.l.0.g. that every quantiffes) introduces a fresh strategy variabtethis
allows us to permanently use variabléo denote the selected strategy &r

Turn-based case. The approach we used fAil Ls; can be adapted f&L. Given arSL formula® and a
mappingV : Agt — Var, we define CTL" formula®V inductively as follows (Boolean cases omitted):

—V \%

(X) ¢ =3move.[AG (EX1mov) A 3| @xp = gVl

Note that in this case we require tleateryreachable state has a (unique) successor labelednwith
indeed when one quantifies over a stratggthe agent(s) who will use this strategy are not known yet.
However, in the turn-based case, a given strategy shoulcebeated to a single agent: there is no
natural way to share a strategy for two different agentsierather way around, any two strategies for
two different agents can be seen as a single strategy), aatbanot playing in the same states. When
the strategy is assigned to some agemtonly the choices made in tlzestates are considered.

The temporal modalities are treated as follows:

¢Uw —A{G( /\ (turnj = Xmovy 4 ))i(ﬁVUL/J}
ajeAgt

@V:A[G( A (turnj:>Xm0vV(aj)))=>x‘75v}

ajeAgt

Now let ® be the formulacbtb/\@’fa. Then we have the following theorem:

Theorem 15. Let ® be anSL formula and§ be theQCTL"* formula defined as above. Th@nis
satisfiable in a turn-based CGS if, and onlydijs satisfiable (in the tree semantics).

Bounded action alphabet Let .# be {1,...,a}. The reduction carried out fokTLs; can also be
adapted foSL in this case. Given afiL formula® and a partial functioVv : Agt — Var, we define the
QCTL* formula®? inductively as follows:

v —V
(x) ¢ =3choose;...3choosel. AG( \/ choosel'A A\ ﬂchoose;‘) ARV (ax)p =@V

1I<m<a n#m

The temporal modalities are handled as follows:

WV:A[( A (ehoosly, = xman)) = (803

ajeAgt 1I<m<a

= KG A A (choosev = X mov! )):>(X $V)}
ajeAgt 1I<m<a
Remember that in this casepv!" labels the possible successors of a state where agefaysm.
Finally, let® be the formuIaDmo\,e/\@g. We have:
Theorem 16. Let® be anSL formula based on the séigt = {a,...,a}, let.# ={1,...,a} be afinite

set of moves, an® be theQCTL* formula defined as above. Théris (Agt,.#)-satisfiable if, and only
if, @ is satisfiable (in the tree semantics).
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7.1 Memoryless strategies

We now extend the undecidability result/tsﬂ“LgC to SL with memoryless-strategy quantification. Notice
that there is an important difference betweléftgc andSL? (the logic obtained fron$L by quantifying
only on memoryless strategies): tA€ Lsc-quantifier (-A;), still has an implicit quantification ovesll
the strategies of the other players (unless their stratefiydd by the context), while i6L° all strategies
must be explicitly quantified. Henc&.° andATLSC have uncomparable expressiveness. Still:

Theorem 17. SLC satisfiability is undecidable, even when restricting totiased game structures.

Proof (sketch). The proof uses a similar reduction as for the proofAEﬁLSC. The difference is that the
implicitly-quantified strategies iATL(S)C are now explicitly quantified, hence memoryless. Howevesim
of the properties that our formulas impose are “local” ctinds (involving at most four nested “next”
modalities) imposed in all the reachable states. Such piepean be enforced even when considering
only the ultimately periodic paths that are outcomes of mgtass strategies. The only subformula not
of this shape is formul&mW c, but imposing this property along the outcomes of memosydtimtegies

is sufficient to have the formula hold true along any path. O

8 Conclusion

While satisfiability forATLsc andSL is undecidable, we proved in this paper that it becomes dblzd
when restricting the search to turn-based games. We alsidewad the case where strategy quantifi-
cation in those logics is restricted to memoryless strategivhile this makes model checking easier,
it makes satisfiability undecidable, even for turn-basegdcsiires. These results have been obtained by
following the tight and natural link between those tempdoglcs for games and the logRCTL, which
extendsCTL with quantification over atomic propositions. This witnesshe power and usefulness of
QCTL, which we will keep on studying to derive more results abeutporal logics for games.

Acknowledgement. We thank the anonymous reviewers for their numerous suggssivhich helped
us improve the presentation of the paper.
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