
Gabriele Puppis, Tiziano Villa (Eds.): Fourth International
Symposium on Games, Automata, Logics and Formal Verification
EPTCS 119, 2013, pp. 150–165, doi:10.4204/EPTCS.119.14

c© A. Di Pierro, H. Wiklicky
This work is licensed under the
Creative Commons Attribution License.

Probabilistic data flow analysis: a linear equational approach

Alessandra Di Pierro
University of Verona

Verona, Italy

alessandra.dipierro@univr.it

Herbert Wiklicky
Imperial College London

London, UK

herbert@doc.ic.ac.uk

Speculative optimisation relies on the estimation of the probabilities that certain properties of the
control flow are fulfilled. Concrete or estimated branch probabilities can be used for searching and
constructing advantageous speculative and bookkeeping transformations. We present a probabilistic
extension of the classical equational approach to data-flowanalysis that can be used to this purpose.
More precisely, we show how the probabilistic information introduced in a control flow graph by
branch prediction can be used to extract a system of linear equations from a program and present a
method for calculating correct (numerical) solutions.

1 Introduction

In the last two decades probabilistic aspects of software have become a particularly popular subject of
research. The reason for this is arguably ineconomicaland resource consciousquestions involving
modern computer systems. While program verification and analysis originally focused on qualitative
issues, e.g. whether code is correct or if compiler optimisations are valid, the focus is now more often
also on the costs of operations.

Speculative optimisation is part of this trend; it plays an important role in the design of modern
compiler and run time architectures. A speculative approach has been adopted in various models where
cost optimisation claims for a more optimistic interpretation of the results of a program analysis. It is in
fact often the case that possible optimisations are discarded because the analysis cannot guarantee their
correctness. The alternative to this sometimes overly pessimistic analysis is to speculatively assume in
those cases that optimisations are correct and then eventually backtrack and redo the computation if at a
later check the assumption turns out to be incorrect.

Speculative optimisation relies on the optimal estimationof the probabilities that certain properties
of the control flow are fulfilled. This is different from the classical (pessimistic) thinking where one aims
in providing bounds for what can happen during execution [8].

A number of frameworks and tools to analyse systems’s probabilistic aspects have been developed,
which can be seen as probabilistic versions of classical techniques such as model checking and abstract
interpretation. To provide a basis for such analysis various semantical model involving discrete and con-
tinuous time and also non-deterministic aspects have been developed (e.g. DTMCs, CTMCs, MDPs,
process algebraic approaches etc.). There also exist some powerful tools which implement these meth-
ods, e.g. PRISM [14], just to name one.

Our own contribution in this area has been a probabilistic version of the abstract interpretation frame-
work [6], called Probabilistic Abstract Interpretation (PAI) [12, 9]. This analysis framework, in its basic
form, is concerned with purely probabilistic, discrete time models. Its purpose is to give optimal esti-
mates of the probability that a certain property holds rather than providing probabilities bounds. As such,
we think it is well suited as a base for speculative optimisation.

http://dx.doi.org/10.4204/EPTCS.119.14
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

A. Di Pierro, H. Wiklicky 151

S ::= skip

| x := e(x1, . . . ,xn)
| x ?= ρ
| S1; S2

| if b then S1 else S2 fi

| while b do Sod

S ::= [skip]ℓ

| [x := e(x1, . . . ,xn)]
ℓ

| [x ?= ρ]ℓ
| S1; S2

| if [b]ℓ then S1 else S2 fi

| while [b]ℓ do Sod

Table 1: The syntax

The aim of this paper is to provide a framework for a probabilistic analysis of programs in the
style of a classical data flow approach [18, 1]. In particular, we are interested in a formal basis for
(non-static) branch prediction. The analysis technique wepresent consists of three phases: (i) abstract
branch prediction, (ii) specification of the actual data-flow equations based on the estimates of the branch
probabilities, and (iii) finding solutions. We will use vector space structures to specify the properties and
analysis of a program. This allows for the construction of solutions via numerical (linear algebraic)
methods as opposed to the lattice-theoretic fixed-point construction of the classical analysis.

2 A Probabilistic Language

2.1 Syntax and Operational Semantics

We use as a reference language a simple imperative language whose syntax is given in Table 1. Following
the approach in [18] we extend this syntax with unique program labelsℓ ∈ Lab in order to be able to
refer to certain program points during the analysis.

The dummy statementskip has no computational effect. For the arithmeticexpressions e(x1, . . . ,xn)
on the right hand side (RHS) of the assignment as well as for the testsb= b(x1, . . . ,xn) in if andwhile
statements, we leave the details of the syntax open as they are irrelevant for our treatment. The RHS of a
random assignmentx ?= ρ is a distributionρ over some set of values with the meaning thatx is assigned
one of the possible constant valuesc with probabilityρ(c).

An operational semantics in the SOS style is given in Table 2.2. This defines a probabilistic transition
relation on configurations inConf = Stmt×Statewith Stmt the set of all statements in our language
together withstop which indicates termination andState= Var → Value. The details of the semantics
of arithmetic and boolean expressions[[a]] = E (a) and[[b]] = E (b) respectively are again left open in our
treatment here and can be found in [10].

2.2 Computational States

In any concrete computation or execution – even when it is involving probabilistic elements – the com-
putational situation is uniquely defined by a mappings : Var → Value to which we refer to as aclassical
state. Every variable inVar has a unique value inValue possibly including⊥∈ Value to indicate unde-
finedness. We denote byStatethe set of all classical states.

In order to keep the mathematical treatment simple we will assume here that every variable can take
values in a finite setValue. These sets can be nevertheless quite large and cover, for example, all finitely
representable integers on a given machine.

152 Equational Data Flow

R0 〈stop,s〉⇒1〈stop,s〉
R1 〈skip,s〉⇒1〈stop,s〉
R2 〈v := e,s〉⇒1〈stop,s[v 7→ E (e)s]〉
R3 〈v ?= ρ ,s〉⇒ρ(r)〈stop,s[v 7→ r]〉

R41
〈S1,s〉⇒p〈S

′
1,s

′〉
〈S1;S2,s〉⇒p〈S

′
1;S2,s

′〉

R42
〈S1,s〉⇒p〈stop,s

′〉
〈S1;S2,s〉⇒p〈S2,s

′〉
R51 〈if b then S1 else S2 fi,s〉⇒1〈S1,s〉 if E (b)s= true
R52 〈if b then S1 else S2 fi,s〉⇒1〈S2,s〉 if E (b)s= false
R61 〈while b do Sod,s〉⇒1〈S; while b do Sod,s〉 if E (b)s= true
R62 〈while b do Sod,s〉⇒1〈stop,s〉 if E (b)s= false

Table 2: The rules of the SOS semantics

For a finite setX we denote byP(X) the power-set ofX and byV (X) the free vector space over
X, i.e. the set of formal linear combinations of elements inX. We represent vectors via their coor-
dinates(x1, . . . ,xn) as rows, i.e. elements inR|X| with |X| denoting the cardinality ofX and use post-
multiplication with matrices representing linear maps, i.e. A(x) = x·A. The setDist(X) of distributions
on X – i.e. ρ : X → [0,1] and∑i ρ(xi) = 1 – clearly correspond to a sub-set ofV (X). We will also use a
tuple notation for distributions:ρ = {

〈

a, 1
2

〉

,
〈

b, 1
4

〉

,
〈

c, 1
4

〉

} will denote a distribution wherea has prob-
ability ρ(a) = 1

2 andb andc both have probability14. For uniform distributions we will simply specify
the underlying set, e.g.{a,b,c} instead of

〈

a, 1
3

〉

,
〈

b, 1
3

〉

,
〈

c, 1
3

〉

}.
The tensor product is an essential element of the description of probabilistic states. The tensor

product1 of two vectors(x1, . . . ,xn) and(y1, . . . ,ym) is given by(x1y1, . . . ,x1ym, . . . ,xny1, . . . ,xnym) annm
dimensional vector. Similarily for matrices. The tensor product of two vector spacesV ⊗W can be
defined as the formal linear combinations of the tensor productsvi ⊗w j with vi andw j base vectors inV
andW , respectively. For further details we refer e.g to [19, Chap. 14].

Importantly, the isomorphismV (X×Y) = V (X)⊗V (Y) allows us to identify set of all distributions
on the cartesian product of two sets with the tensor product of the spaces of distributions onX andY.

We define aprobabilistic stateσ as any probability distribution over classical states, i.e. σ ∈

Dist(State). This can also be seen asσ ∈V (State)=V (Var →Value)=V (Value|Var |)=V (Value)⊗v

thev-vold tensor product ofV (Value) with v= |Var |.
In our setting we represent (semantical) functions and predicates or tests as linear operators on the

probabilistic state space, i.e. as matrices. For any function f : X 7→Y we define a linear representation
|X|× |Y| matrix by:

(F f)i j = (F(f))i j = (F)i j =

{

1 if f (xi) = y j

0 otherwise.

where we assume some fixed enumeration on bothX andY. For an equivalence relation onX we can
also represent the function which maps every element inX to its equivalence classc : x 7→ [x] in this way.
Such aclassification matrixcontains in every row exactly one non-zero entry 1. Classification matrices
(modulo reordering of indices) are in a one-to-one correspondence with the equivalence relations on a set
X and we will use them to define probabilistic abstractions forour analysis (cf. Section 4.2). A predicate
p : X → {true, false} is represented by a diagonal|X|× |X| matrix:

(Pp)i j = (P(p))i j = (P)i j =

{

1 if i = j andp(xi) = true
0 otherwise.

1More precisely, the Kronecker product – the coordinate based version of the abstract concept of a tensor product.

A. Di Pierro, H. Wiklicky 153

2.3 Probabilistic Abstraction

The analysis technique we present in this paper will make useof a particular notion of abstraction of the
state space (given as a vector space) which is formalised in terms of Moore-Penrose pseudo-inverse [19].

Definition 1 LetC andD be two finite dimensional vector spaces, and letA : C → D be a linear map
between them. The linear mapA† = G : D → C is theMoore-Penrose pseudo-inverseof A iff

A ◦G = PA and G◦A = PG

wherePA andPG denote orthogonal projections onto the ranges ofA andG.

An operator or matrix is anorthogonal projectionif P∗ = P2 = P where.∗ denotes theadjoint which for
real matrices correspond simply to the transpose matrixP∗ = Pt [19, Ch 10].

For invertible matrices the Moore-Penrose pseudo-inverseis the same as the inverse. A special
example is theforgetful abstractionA f which corresponds to a mapf : X →{∗} which maps all elements
of X onto a single abstract one. It is represented by a|X|×1 matrix containing only 1, and its Moore-
Penrose pseudo-inverse is given by 1×|X| matrix with all entries 1

|X| .
The Moore-Penrose pseudo-inverse allows us to construct the closest, in a least square sense (see

for example [5, 3]), approximationF# : D → D of a concrete linear operatorF : C → C for a given
abstractionA : C → D as

F# = A† ·F ·A = G ·F ·A = A ◦F◦G.

This notion of probabilistic abstraction is central in the Probabilistic Abstract Interpretation (PAI) frame-
work. For further details we refer to e.g. [10]. As we will usethis notion later for abstracting branching
probabilities, it is important here to point out the guarantees that such abstractions are able to provide. In
fact, these are not related to any correctness notion in the classical sense. The theory of the least-square
approximation [7, 3] tells us that ifC andD be two finite dimensional vector spaces,A : C 7→ D a linear
map between them, andA† = G : D 7→ C its Moore-Penrose pseudo-inverse, then the vectorx0 = y ·G
is the one minimising the distance betweenx·A, for any vectorx in C , andy, i.e.

inf
x∈C

‖x·A −y‖= ‖x0 ·A −y‖.

This guarantees that our probabilistic abstractions correspond to theclosestapproximations in a
metric sense of the concrete situations, as they are constructed using the Moore-Penrose pseudo-inverse.

3 Data-Flow Analysis

Data-flow analysis is based on a statically determined flow relation. This is defined in terms of two
auxiliary operations, namelyinit : Stmt → Lab andfinal : Stmt → P(Lab), defined as follows:

init([skip]ℓ) = ℓ
init([v := e]ℓ) = ℓ
init([v ?= e]ℓ) = ℓ
init(S1;S2) = init(S1)
init(if [b]ℓ then S1 else S2 fi) = ℓ
init(while [b]ℓ do Sod) = ℓ

final([skip]ℓ) = {ℓ}
final([v := e]ℓ) = {ℓ}
final([v ?= e]ℓ) = {ℓ}
final(S1;S2) = final(S2)
final(if [b]ℓ then S1 else S2 fi) = final(S1)∪final(S2)
final(while [b]ℓ do Sod) = {ℓ}.

154 Equational Data Flow

The control flowF (S) in S∈ Stmt is defined via the functionflow : Stmt → P(Lab ×Lab):

flow([skip]ℓ) = flow([v := e]ℓ) = flow([v ?= e]ℓ) = /0
flow(S1;S2) = flow(S1)∪flow(S2)∪{(ℓ, init(S2)) | ℓ ∈ final(S1)}

flow(if [b]ℓ then S1 else S2 fi) = flow(S1)∪flow(S2)∪{(ℓ, init(S1)),(ℓ, init(S2))}

flow(while [b]ℓ do Sod) = flow(S)∪{(ℓ, init(S))}∪{(ℓ′, ℓ) | ℓ′ ∈ final(S)}

The definition of flow only records that a certain control flow step is possible. For testsb in condition-
als and loops we indicate the branch corresponding to the case when the test is successful by underlining
it. We identify a statementSwith the block[S]ℓ that contains it and with the (unique) labelℓ associated
to the block. We will denote byBlock = Block(P) the set of all the blocks occurring inP, and use
indistinctly Block andLab to refer to blocks.

3.1 Monotone Framework

The classical data-flow analysis is made up of two components: a “local” part which describes how the
information representing the analysis changes when execution passes through a given block/label, and
a “global” collection part which describes how informationis accumulated when a number of different
control flow paths (executions) come together.

This is formalised in a general scheme, called Monotone Framework in [18, Section 2.3], where a
data-flow analysis is defined via a number of equations over the latticeL modelling the property to be
analysed. For every program labelℓ we have two equations: one describing the generalised ‘entry’ in
terms of the generalised ‘exit’ of the block in question, andthe other describing ‘exit’ in terms of ‘entry’
– for forward analysis we have◦=entry and•=exit, for a backward analysis the situation is reversed.

Analysis•(ℓ) = fℓ(Analysis◦(ℓ))

Analysis◦(ℓ) =

{

ι , if ℓ ∈ E
⊔

{Analysis•(ℓ
′) | (ℓ′, ℓ) ∈ F},otherwise

For the typical classical analyses, such as Live VariableLV and Reaching DefinitionRD, the property
latticeL is often the power-set of some underlying set (likeVar as in the case of the LV analysis). For a
may-analysis the collecting operation⊔ of L is represented by set union∪ and for must-analysis it is the
intersection operation∩. The flow relationF can be the forward or backward flow.ι specifies the initial
or final analysis information on “extreme” labels inE, whereE is {init(S⋆)} or final(S⋆), and fℓ is the
transfer function associated withBℓ ∈ Block(S) [18, Section 2.3].

3.2 Live Variable Analysis

We will illustrate the basic principles of the equational approach to data flow analysis by considering
Live Variable analysis (LV) following the presentation in [18, Section 2.1]. The problem is to identify at
any program point those variables which arelive, i.e. which may later be used in an assignment or test.

There are two phases of classicalLV analysis: (i) formulation of data-flow equations as set equations
(or more generally over a property latticeL), (ii) finding or constructing solutions to these equations, for
example, via a fixed-point construction. In the classical analysis we associate to every program point or
labelℓ – to be precise the entry and the exit of each label – the information which describes (a super-set
of) those variables which are alive at this program point.

Based on the auxiliary functionsgenLV : Block →P(Var) andkill LV : Block→P(Var) which only
depend on the syntax of the local block[B]ℓ and are defined as

A. Di Pierro, H. Wiklicky 155

kill LV([x := a]ℓ) = {x}
kill LV([x ?= ρ]ℓ) = {x}
kill LV([skip]ℓ) = /0

kill LV([b]
ℓ) = /0

genLV([x := a]ℓ) = FV(a)
genLV([x ?= ρ]ℓ) = /0
genLV([skip]

ℓ) = /0
genLV([b]

ℓ) = FV(b)

we can define the transfer functions for theLV analysisf LV
ℓ : P(Var ⋆)→ P(Var⋆) by

f LV
ℓ (X) = X \kill LV([B]

ℓ)∪genLV([B]
ℓ)

This allows us to define equations over the property spaceL = P(Var), i.e. set equations, which
associate to every label entry and exit the analysis information LVentry : Lab → P(Var) andLVexit :
Lab → P(Var). These set equations are of the general form for a backward may analysis:

LVentry(ℓ) = f LV
ℓ (LVexit(ℓ))

LVexit(ℓ) =
⋃

(ℓ,ℓ′)∈flow
LVentry(ℓ

′)

At the beginning of the analysis (i.e. for final labels, as this is a backward analysis) we setLVexit(ℓ) = /0.

Example 1 Consider the following program:

[x ?= {0,1}]1; [y ?= {0,1,2,3}]2; [x := x+y mod 4]3;
if [x> 2]4 then [z:= x]5 else [z:= y]6 fi

Although the program is probabilistic we still can perform aclassical analysis by considering non-zero
probabilities simply as possibilities. The flow is given by{(1,2),(2,3),(3,4),(4,5),(4,6)}.

With the auxiliary functionskill LV andgenLV we can now specify the data-flow equations:

genLV(ℓ) kill LV(ℓ)
1 /0 {x}
2 /0 {y}
3 {x,y} {x}
4 {x} /0
5 {x} {z}
6 {y} {z}

LVentry(1) = LVexit(1)\{x}

LVentry(2) = LVexit(2)\{y}

LVentry(3) = LVexit(3)\{x}∪{x,y}

LVentry(4) = LVexit(4)∪{x}

LVentry(5) = LVexit(5)\{z}∪{x}

LVentry(6) = LVexit(6)\{z}∪{y}

LVexit(1) = LVentry(2)

LVexit(2) = LVentry(3)

LVexit(3) = LVentry(4)

LVexit(4) = LVentry(5)∪LVentry(6)

LVexit(5) = /0

LVexit(6) = /0

Then the classicalLV analysis of our program gives the solutions:

LVentry(1) = /0

LVentry(2) = {x}

LVentry(3) = {x,y}

LVentry(4) = {x,y}

LVentry(5) = {x}

LVentry(6) = {y}

LVexit(1) = {x}

LVexit(2) = {x,y}

LVexit(3) = {x,y}

LVexit(4) = {x,y}

LVexit(5) = /0

LVexit(6) = /0.

156 Equational Data Flow

4 The Probabilistic Setting

In order to specify a probabilistic data flow analysis using the analogue of the classical equational ap-
proach (as presented in the previous sections), we have to define the main ingredients of the analysis
in a probabilistic setting namely a vector space as propertyspace (replacing the property latticeL), a
linear operator representing the transfer functionsfℓ, and a method for the information collection (in
place of the

⊔

operation of the classical monotone framework). Moreover,as we will work with proba-
bilistic states, the second point implies that the control-flow graph will be labelled by some probability
information.

As aproperty spacewe consider distributionsDist(L)⊆ V (L) over a setL, e.g. the corresponding
classical property space. For a relational analysis, wherethe classical property lattice corresponds to
L = L1× L2 (cf [11]), the probabilistic property space will be the tensor productV (L1)⊗V (L2); this
allows us to represent properties via joint probabilities which are able to express the dependency or
correlation between states.

We can define probabilistictransfer functions by using the linear representation of the classical
fℓ, i.e. a matrixFℓ = F fℓ as introduced above in Section 2.2. In general, we will definea probabilistic
transfer function by means of an appropriate abstraction ofthe concrete semantics[[[B]ℓ]] of a given block
[B]ℓ according to PAI, i.e.Fℓ = A†[[[B]ℓ]]A for the relevant abstraction matrixA.

In the classical analysis we treat testsb non-deterministically, to avoid problems with the potential
undecidability of predicates. Moreover, we take everything which is possible i.e. the collection of
what can happen along the different execution paths, e.g. the two branches of anif statement. In the
probabilistic setting wecollect information by means of weighted sums, where the ‘weights’ are the
probabilities associated to each branch. These probabilities come from an estimation of the (concrete
or abstract) branch probabilities and are propagated alongthe control flow graph representing theflow
relation.

4.1 Control Flow Probabilities

If we execute a program in classical statess which have been chosen randomly according to some prob-
ability distributionρ then this also induces a probability distribution on the possible control flow steps.

Definition 2 Given a program Sℓ with init(Sℓ) = ℓ and a probability distributionρ on State, the proba-
bility pℓ,ℓ′(ρ) that the control is flowing fromℓ to ℓ′ is defined as:

pℓ,ℓ′(ρ) = ∑
s

{

p·ρ(s) | ∃s′ s.t. 〈Sℓ,s〉 ⇒p
〈

Sℓ′ ,s
′
〉}

.

In other words, if we provide with a certain probabilityρ(s) a concrete execution environment or
classical states for a programSℓ, then the control flow probabilitypℓ,ℓ′(ρ) is the probability that we end
up with a configuration〈Sℓ′ , . . .〉 for whatever state in the successor configuration.

Example 2 Consider the program:[x ?= {0,1}]1; if [x> 0]2 then [skip]3 else [x := 0]4 fi. We can
have two possible states at label2, namely s0 = [x 7→ 0] and s1 = [x 7→ 1]. After the first statement has
been executed in one of two possible ways (with any intial state s):

〈

[x ?= {0,1}]1; if [x> 0]2 then [skip]3 else [x := 0]4 fi,s
〉

⇒ 1
2

⇒ 1
2

〈

if [x> 0]2 then [skip]3 else [x := 0]4 fi,s0
〉

or
〈

[x ?= {0,1}]1; if [x> 0]2 then [skip]3 else [x := 0]4 fi,s
〉

⇒ 1
2

⇒ 1
2

〈

if [x> 0]2 then [skip]3 else [x := 0]4 fi,s1
〉

A. Di Pierro, H. Wiklicky 157

the distribution over states is obviouslyρ = {
〈

s0,
1
2

〉〈

s1,
1
2

〉

}. However, in each execution path we have
at any moment a definite value for x (the distributionρ describes a property of the set of all executions,
not of one execution alone).

The branch probability in this case (independently of the state s and of any distributionρ) is simply
p1,2(ρ) = 1 because, although there are two possible execution steps, the successor configurations are
‘coincidently’ equipped with the same programif [x> 0]2 then [skip]3 else [x := 0]4 fi.

The successive control steps from label2 to 3 and4, respectively, both occur with probability1 as in
each state s0 and s1 the value of x is a definite one.

〈

if [x> 0]2 then [skip]3 else [x := 0]4 fi,s0
〉

⇒1
〈

[x := 0]4,s0
〉

and
〈

if [x> 0]2 then [skip]3 else [x := 0]4 fi,s1
〉

⇒1
〈

[skip]3,s1
〉

Thus the branch probabilities withρ = {
〈

s0,
1
2

〉

,
〈

s1,
1
2

〉

} are p2,3(ρ)= 1
2 and p2,4(ρ)= 1

2. In general
for anyρ = {〈s0, p0〉 ,〈s1, p1〉} we have p2,3(ρ)= p1 and p2,4(ρ)= p0 despite the fact that the transitions
are deterministic. It is the randomness in the probabilistic state that determines in this case the branch
probabilities.

For all blocks in a control flow graph – except for the testsb – there is always only one next statement
Sℓ′ so that the branch probabilitypℓ,ℓ′(ρ) is always 1 for allρ . For testsb in if andwhile statements
we have only two different successor statements, one corresponding to the case where[b]ℓ evaluates to
true and one forfalse. As the corresponding probabilities must sum up to 1 we only need to specify the
first case which we denote bypℓ(ρ).

The probability distributions over states at every execution point are thus critical for the analysis as
they determine the branch probabilities for tests, and we need to provide them. The problem is, of course
that analysing these probabilities is nearly as expensive as analysing the concrete computation or program
executions. It is therefore reasonable to investigate abstract branch probabilities, based on classes of
states, or abstract states. It is always possible to lift concrete distributions to ones over (equivalence)
classes.

Definition 3 Given a probability distributionρ on Stateand an equivalence relation∼ on states then
we denote byρ# = ρ#

∼ the probability distribution on the set of equivalence classesState# = State/∼
defined by

ρ#([s]∼) = ∑
s′∈[s]∼

ρ(s′)

where[s]∼ denotes the equivalence classes of s wrt∼.

4.2 Estimating Abstract Branch Probabilities

In order to determine concrete or abstract branch probabilities we need to investigate – as we have seen
in Example 2 – the interplay between distribution over states and the test[b]ℓ we are interested in. We
need for this the linear representationPb of the test predicateb as defined in Section 2.2, which for a
given distribution over states determines a sub-distribution of those states that lead into one of the two
branches by filtering out those states where this happens.

Example 3 Consider the simple programif [x>= 1]1 then [x := x−1]2 else [skip]3 fi and assume
that x has values in{0,1,2} (enumerated in the obvious way). Then the test b= (x>= 1) is represented

158 Equational Data Flow

by the projection matrix:

P(x>= 1) =





0 0 0
0 1 0
0 0 1



 and P(x>= 1)⊥ =





1 0 0
0 0 0
0 0 0



= P(x= 0)

For any given concrete probability distribution over states ρ = {〈0, p0〉 ,〈1, p1〉 ,〈2, p2〉} = (p0, p1, p2)
we can easily compute the probabilities to go from label1 to label 2 as ρP(x>= 1) = (0, p1, p2) and
thus

p1,2(ρ) = ‖ρ ·P(x>= 1)‖1 = p1+ p2,

where‖.‖1 is the 1-norm of vectors, i.e.‖(xi)i‖ = ∑i |xi |, which we use here to aggregate the total
probabilities. Similarly, for the else branch, withP⊥ = I −P:

p1,3(ρ) = ‖ρ ·P⊥(x>= 1)‖1 = p0.

In general, the branching behaviour at a testb is described by the projection operatorP(b) and its
complementP⊥(b) = P(¬b). For a branching point[b]ℓ with (ℓ,ℓ′),(ℓ,ℓ′′) ∈ flow, we denoteP(b) by
P(ℓ,ℓ′) andP(¬b) = P(b)⊥ by P(ℓ,ℓ′′). Each branch probability can be computed for any given input
distribution aspℓ,ℓ′(ρ) = ‖ρP(ℓ,ℓ′)‖1 andpℓ,ℓ′′(ρ) = ‖ρP(ℓ,ℓ′′)‖1, respectively.

Sometimes it could be useful or practically more appropriate to consider abstract branch probabilities.
These can be obtained by means of abstractions on the state space corresponding to classificationsc :
State→ State# that, as explained in Section 2.2, can be lifted toclassification matrices. Given an
equivalence relation∼ on the states and its matrix representationA∼, we can compute the individual
chance of abstract states (i.e. equivalence classes of states) to take thetrue or falsebranch of a test by
multiplying the abstract distributionρ# by an abstract versionP(b)# of P(b) that we can use to select
those classes of states satisfyingb. In doing so we must guarantee that:

ρP(b)A = ρ#P#(b)

ρP(b)A = ρAP#(b)

P(b)A = AP#(b)

In order to give an explicit description ofP# we only would need to multiply the last equation from the
left with A−1. However,A is in general not a square matrix and thus not invertible. So we use instead
the Moore-Penrose pseudo-inverse to have the closest, least-square approximation possible.

A†P(b)A = A†AP#(b)

A†P(b)A = P#(b)

The abstract test matrixP#(b) contains all the information we need in order to estimate theabstract
branch probabilities. Again, we denote byP(ℓ,ℓ′)# = P#(b) and P(ℓ,ℓ′′)# = P#(¬b) = P#(b)⊥ for a
branching point[b]ℓ with (ℓ,ℓ′),(ℓ,ℓ′′) ∈ flow.

Branch prediction/predictors in hardware design has long history [16, 20]. It is used at test points[b]ℓ

to allow pre-fetching of instructions of the expected branch before the test is actually evaluated. If the
prediction is wrong the prefetched instructions need to be discarded and the correct ones to be fetched.
Ultimately, wrong predictions “just” lead to longer running times, the correctness of the program is not
concerned. It can be seen as a form of speculative optimisation. Typical applications or cases where
branch prediction is relevant is for nested tests (loops or ifs). Here we get exactly the interplay between
different tests and/or abstractions. We illustrate this inthe following example.

A. Di Pierro, H. Wiklicky 159

Example 4 Consider the following program that counts the prime numbers.

[i := 2]1; while [i < 100]2 do if [prime(i)]3 then [p := p+1]4 else [skip]5 fi; [i := i +1]6 od

Within our framework we can simulate to a certain degree a history dependent branch prediction. If
the variable p has been updated in the previous iteration it is highly unlikely it will so again in the next –
in fact that only happens in the first two iterations. One can also interpret this as follows: For i even the
branch probability p3,4(ρe) at label3 is practically zero for any reasonable distribution, e.g. auniform
distribution ρe, on evens. To see this, we need to investigate only the form of

P(prime(i))# = A†
eP(prime(i))Ae,

where Ae is the abstraction corresponding to the classification in even and odd.

In order to understand how an abstract property interacts with the branching in the program, as in the
previous example we look atA†P(b)A in order to evaluate how good a branch prediction is for a certain
predicate/testb if it is based on a certain abstraction/propertyA. This is explained in the following
example where we consider two properties/abstractions andcorresponding tests.

Example 5 Let us consider two tests for numbers in the range i= 0,1,2,3, . . . ,n):

Pe = (P(even(n)))ii =

{

1 if i = 2k
0 otherwise

Pp = (P(prime(n)))ii =

{

1 if prime(i)
0 otherwise

Likewise we can consider two corresponding abstractions (j∈ {1= true,2= false}):

(Ae)i j =







1 if i = 2k+1 ∧ j = 2
1 if i = 2k ∧ j = 1
0 otherwise

(Ap)i j =







1 if prime(i) ∧ j = 2
1 if ¬prime(i) ∧ j = 1
0 otherwise

Then we can useP# and its orthogonal complement,(P#)⊥ = I −P# to determine information about
the quality of a certain property or its corresponding abstraction via the number of false positives. In
fact, this will tell us how precise the abstraction is with respect to tests (such as those controlling a loop
or conditional). With rounding the values to 2 significant digits we get, for example the following results
for different concrete ranges of the concrete values0, . . . ,n.

A†
ePpAe A†

eP⊥
p Ae A†

pPeAp A†
pP⊥

e Ap

n= 10

(

0.20 0.00
0.00 0.60

) (

0.80 0.00
0.00 0.40

) (

0.25 0.00
0.00 0.67

) (

0.75 0.00
0.00 0.33

)

n= 100

(

0.02 0.00
0.00 0.48

) (

0.98 0.00
0.00 0.52

) (

0.04 0.00
0.00 0.65

) (

0.96 0.00
0.00 0.35

)

n= 1000

(

0.00 0.00
0.00 0.33

) (

1.00 0.00
0.00 0.67

) (

0.01 0.00
0.00 0.60

) (

0.99 0.00
0.00 0.40

)

n= 10000

(

0.00 0.00
0.00 0.25

) (

1.00 0.00
0.00 0.75

) (

0.00 0.00
0.00 0.57

) (

1.00 0.00
0.00 0.43

)

Note that the positive and negative versions of these matrices always add up to the identity matrixI .
Also, the entries in the upper left corner ofA†

ePpAe give us information about the chances that an even

160 Equational Data Flow

number is also a prime number: For small n the percentage is a fifth (indeed2 is a prime and it is
one out of5 even numbers under10); the larger n gets the less relevant is this single even prime. With
A†

pPeAp we get the opposite information: Among the prime numbers{2,3,5,7} smaller than10 there is
one which is even, i.e. 25%; again this effect diminishes forlarger n. Finally, the lower right entry in
these matrices gives us the percentage that a non-prime number is odd and/or that an odd number is not
prime, respectively.

4.3 Linear Equations Framework

A general framework for our probabilistic data-flow analysis can be defined in analogy with the classical
monotone framework by defining the following linear equations:

Analysis•(ℓ) = Analysis◦(ℓ) ·Fℓ

Analysis◦(ℓ) =

{

ι , if ℓ ∈ E
∑{Analysis•(ℓ

′) ·P(ℓ′, ℓ)# | (ℓ′, ℓ) ∈ F},otherwise

The first equation is a straight forward generalisation of the classical case, while the second one is
defined by means of the linear sums over vectors. A simpler version is obtained by considering static
branch prediction:

Analysis◦(ℓ) = ∑{pℓ′,ℓ ·Analysis•(ℓ
′) | (ℓ′, ℓ) ∈ F}

with pℓ′,ℓ is a numerical value representing astaticbranch probability.
We have as many variables in this systems of equations as there are individual equations. As a result

we get unique solutions rather than least fix-points as in theclassical setting.
This general scheme must be extended to include a preliminary phase of probability estimation if one

wants to improve the quality of the branch prediction. In this case, the abstract state should carry two
kinds of information: One,Prob, to provide estimates for probabilities, the other,Analysis, to analyse the
actual property in question. The same abstract branch probabilities P(ℓ′, ℓ)# – which we obtain viaProb
– can then be used in both cases, but we have different information or properties and different transfer
functions forProb andAnalysis.

4.4 Probabilistic Live Variable Analysis

We can use the previously defined probabilistic setting for adata flow analysis, to define a probabilis-
tic version of the Live Variable analysis extending the one in [18] in order to also cover for random
assignments and to provide estimates for ‘live’ probabilities.

The transfer functions, which describe how the program analysis information changes when we pass
through a block[B]ℓ, is for the classical analysis given via the two auxiliary functionsgenLV andkill LV
(cf. Example 1). Probabilistic versions of these operations can be defined as follows. Consider two
propertiesd for ‘dead’, andl for ‘live’ and the spaceV ({0,1}) = V ({d, l}) = R

2 as the property space
corresponding to a single variable. On this space define the operators:

L =

(

0 1
0 1

)

and K =

(

1 0
1 0

)

.

The matrixL changes the “liveliness” of a variable from whatever it is (dead or alive) into alive, while
K does the opposite. The local transfer operators

Fℓ = FLV
ℓ : V ({0,1})⊗|Var | → V ({0,1})⊗|Var |

A. Di Pierro, H. Wiklicky 161

for the block[x := a]ℓ can thus be defined as (withI the identity matrix)

Fℓ =
⊗

xi∈Var
X i with X i =







L if xi ∈ FV(a)
K if xi = x ∧ xi 6∈ FV(a)
I otherwise.

and similarly for tests[b]ℓ

Fℓ =
⊗

xi∈Var
X i with X i =

{

L if xi ∈ FV(b)
I otherwise.

For [skip]ℓ and random assignments[x ?= ρ]ℓ we simply haveFℓ =
⊗

xi∈Var I .
In the following example we demonstrate the use of our general framework for probabilistic data-flow

analysis by defining a probabilisticLV analysis for the program in Example 1.

Example 6 For the program in Example 1 we present aLV analysis based on concrete branch proba-
bilities. That means that in the first phase of the analysis (which determines the branch probabilities) we
will not abstract the values of x and y (and ignore z all together). If the concrete state of each variable
is a value in{0,1,2,3}, then the probabilistic state is an element inV ({0,1,2,3})⊗3 = R

43
= R

64. The
abstraction we use when we compute the concrete branch probabilities is I ⊗ I ⊗A f , i.e. z is ignored.
This allows us to reduce the dimensions of the probabilisticstate space from64 down to just16. The
abstract transfer functions for the first3 statements are given in the Appendix.

We can now compute the probability distribution at label4 for any given input distribution. The
abstract transfer functionsF#

5 andF#
6 are the identity as we have restricted ourselves only to the variables

x and y.
We can now set the linear equations for the joint distributions over x and y at the entry and exit to

each of the labels:

Probentry(1) = ρ
Probentry(2) = Probexit(1)

Probentry(3) = Probexit(2)

Probentry(4) = Probexit(3)

Probentry(5) = Probexit(4) ·P#
4

Probentry(6) = Probexit(4) · (I −P#
4)

Probexit(1) = Probentry(1) ·F#
1

Probexit(2) = Probentry(1) ·F#
2

Probexit(3) = Probentry(1) ·F#
3

Probexit(4) = Probentry(4)

Probexit(5) = Probentry(5)

Probexit(6) = Probentry(6)

These equations are easy to solve. In particular we can explicitly determine

Probentry(5) = ρ ·F#
1 ·F

#
2 ·F

#
3 ·P

#
4

Probentry(6) = ρ ·F#
1 ·F

#
2 ·F

#
3 ·P

#
4,

that give us the static branch probabilities p4,5(ρ)= ‖Probentry(5)‖1 =
1
4 and p4,6(ρ)= ‖Probentry(6)‖1 =

3
4. These distributions can explicitly be computed and do not depend on the initial distributionρ .

We then perform a probabilisticLV analysis using these probabilities as required. Using the abstract
property space and the auxiliary operators we get:

162 Equational Data Flow

LVentry(1) = LVexit(1) · (K ⊗ I ⊗ I)

LVentry(2) = LVexit(2) · (I ⊗K ⊗ I)

LVentry(3) = LVexit(3) · (L ⊗L ⊗ I)

LVentry(4) = LVexit(4) · (L ⊗ I ⊗ I)

LVentry(5) = LVexit(5) · (L ⊗ I ⊗K)

LVentry(6) = LVexit(6) · (I ⊗L ⊗K)

LVexit(1) = LVentry(2)

LVexit(2) = LVentry(3)

LVexit(3) = LVentry(4)

LVexit(4) = p4,5LVentry(5)+ p4,6LVentry(6)

LVexit(5) = (1,0)⊗ (1,0)⊗ (1,0)

LVexit(6) = (1,0)⊗ (1,0)⊗ (1,0)

And thus the solutions for the probabilisticLV analysis are given by:

LVentry(1) = (1,0)⊗ (1,0)⊗ (1,0)

LVentry(2) = (0,1)⊗ (1,0)⊗ (1,0)

LVentry(3) = 0.25· (0,1)⊗ (0,1)⊗ (1,0)+

+ 0.75· (0,1)⊗ (0,1)⊗ (1,0)

= (0,1)⊗ (0,1)⊗ (1,0)

LVentry(4) = 0.25· (0,1)⊗ (1,0)⊗ (1,0)+

+ 0.75· (0,1)⊗ (0,1)⊗ (1,0)

LVentry(5) = (0,1)⊗ (1,0)⊗ (1,0)

LVentry(6) = (1,0)⊗ (0,1)⊗ (1,0)

LVexit(1) = (0,1)⊗ (1,0)⊗ (1,0)

LVexit(2) = (0,1)⊗ (0,1)⊗ (1,0)

LVexit(3) = 0.25· (0,1)⊗ (1,0)⊗ (1,0)+

+ 0.75· (0,1)⊗ (0,1)⊗ (1,0)

LVexit(4) = 0.25· (0,1)⊗ (1,0)⊗ (1,0)+

+ 0.75· (1,0)⊗ (0,1)⊗ (1,0)

LVexit(5) = (1,0)⊗ (1,0)⊗ (1,0)

LVexit(6) = (1,0)⊗ (1,0)⊗ (1,0)

This means that, for example, at the beginning label4, i.e. the test x> 2 there are two situations: It
can be with probability1

4 that only the variable x is alive, or with probability34 both variables x and y
are alive. One could say that x for sure is alive and y only witha 75% chance. At the exit of label4 the
probabilistic LV analysis tells us that with 25% chanceonly x is alive and with 75% that y is theonly
live variable. To say that x is alive with probability0.25 and y with0.75 probability would be wrong: It
is either x or y which is alive and this is reflected in the jointdistributions represented as tensors, which
we obtain as solution. This illustrates that the probabilistic property space cannot be justV ({x,y,z})
but that we need indeedV ({d, l})⊗3.

5 Conclusions and Related Work

This paper highlights two important aspects of probabilistic program analysis in a data-flow style: (i) the
use of tensor products in order to represent the correlationbetween a number of variables, and (ii) the
use of Probabilistic Abstract Interpretation to estimate branch probabilities and to construct probabilistic
transfer functions. In particular, we argue that static program analysis does not mean necessarily con-
sideringstatic branch prediction. Instead – by extending single numberspℓ,ℓ′ as branch probabilities to
matrices as abstract branch probabilitiesP(ℓ,ℓ)# – the PAI framework allows us to express dynamic or
conditional aspects.

The framework presented here aims in providing a formal basis for speculative optimisation. Specu-
lative optimisation [15, 2] has been an element of hardware design for some time, in particular to branch
prediction [16] or for cache optimisation [17]. More recently, related ideas have also been discussed in
the context of speculative multi-threading [4] or probabilistic pointer analysis [9, 13].

A. Di Pierro, H. Wiklicky 163

The work we have presented in this paper concentrates on the conceptual aspects of probabilis-
tic analysis and not on optimal realisation of, for example,concrete branch predictors. Further work
should however include practical implementations of the presented framework in order to compare its
performance with the large number of predictors in existence. Another research direction concerns the
automatic construction of abstractions so that the inducedP(ℓ,ℓ)# are optimal and maximally predictive.

References

[1] A.V. Aho, M.S. Lam, R. Sethi & J.D. Ullman (2007):Compilers: Principles, Techniques, and Tools, second
edition. Pearson Education.

[2] A. A. Belevantsev, S. S. Gaisaryan & V. P. Ivannikov (2008): Construction of Speculative Optimization
Algorithms. Programming and Computer Software34(3), pp. 138–153, doi:10.1134/S036176880803002X.

[3] A. Ben-Israel & T.N.E. Greville (2003):Generalised Inverses, 2nd edition. Springer Verlag.

[4] A. Bhowmik & M. Franklin (2004): A General Compiler Framework for Speculative Multi-
threaded Processors. IEEE Transactions on Parallel and Distributed Syststems15(8), pp. 713–724,
doi:10.1109/TPDS.2004.26.

[5] S.L. Campbell & D. Meyer (1979):Generalized Inverse of Linear Transformations. Constable, London.

[6] P. Cousot & R. Cousot (1977):Abstract Interpretation: A Unified Lattice Model for StaticAnal-
ysis of Programs by Construction or Approximation of Fixpoints. In: POPL’77, pp. 238–252,
doi:10.1145/512950.512973.

[7] F. Deutsch (2001):Bet Approximation in Inner Product Spaces. CMS Books in Mathematics7, Springer
Verlag, New York — Berlin, doi:10.1007/978-1-4684-9298-9.

[8] A. Di Pierro, C. Hankin & H. Wiklicky (2007):Abstract Interpretation for Worst and Average Case Analysis.
In: Program Analysis and Compilation, Theory and Practice, LNCS 4444, Springer Verlag, pp. 160–174,
doi:10.1007/978-3-540-71322-78.

[9] A. Di Pierro, C. Hankin & H. Wiklicky (2007): A Systematic Approach to Probabilistic Pointer Anal-
ysis. In Z. Shao, editor: Proceedings of APLAS’07, LNCS 4807, Springer Verlag, pp. 335–350,
doi:10.1007/978-3-540-76637-723.

[10] A. Di Pierro, C. Hankin & H. Wiklicky (2010): Probabilistic Semantics and Analysis. In: Formal
Methods for Quantitative Aspects of Programming Languages, LNCS 6155, Springer Verlag, pp. 1–42,
doi:10.1007/978-3-642-13678-81.

[11] A. Di Pierro, P. Sotin & H. Wiklicky (2008):Relational Analysis and Precision via Probabilistic Abstract
Interpretation. In C. Baier & A. Aldini, editors:Proceedings of QAPL’08, Electronic Notes in Theoretical
Computer Science, Elsevier, pp. 23–42, doi:10.1016/j.entcs.2008.11.017.

[12] A. Di Pierro & H. Wiklicky (2000): Concurrent Constraint Programming: Towards Probabilistic Abstract
Interpretation. In: PPDP’00, pp. 127–138, doi:10.1145/351268.351284.

[13] M.-Y. Hung, P.-S. Chen, Y-S. Hwang, R. D.-C. Ju & J. K. Lee(2012): Support of Probabilistic Pointer
Analysis in the SSA Form. IEEE Transactions on Parallel Distributed Syststems23(12), pp. 2366–2379,
doi:10.1109/TPDS.2012.73.

[14] M.Z. Kwiatkowska, G. Norman & D. Parker (2004):PRISM 2.0: A Tool for Probabilistic Model Checking.
In: International Conference on Quantitative Evaluation of Systems (QEST 2004), IEEE Computer Society,
pp. 322–323, doi:10.1109/QEST.2004.10016.

[15] J. Lin, T. Chen, W.-C. Hsu, P.-C. Yew, R. D.-C. Ju, T.-F. Ngai & S. Chan (2003):A compiler framework for
speculative analysis and optimizations. In: Proceedings Conference on Programming Language Design and
Implementation (PLDI), pp. 289–299, doi:10.1145/781131.781164.

[16] S. McFarling (1993):Combining Branch Predictors. Technical Report WLR TN-36, Digital.

http://dx.doi.org/10.1134/S036176880803002X
http://dx.doi.org/10.1109/TPDS.2004.26
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.1007/978-1-4684-9298-9
http://dx.doi.org/10.1007/978-3-540-71322-7_8
http://dx.doi.org/10.1007/978-3-540-76637-7_23
http://dx.doi.org/10.1007/978-3-642-13678-8_1
http://dx.doi.org/10.1016/j.entcs.2008.11.017
http://dx.doi.org/10.1145/351268.351284
http://dx.doi.org/10.1109/TPDS.2012.73
http://dx.doi.org/10.1109/QEST.2004.10016
http://dx.doi.org/10.1145/781131.781164

164 Equational Data Flow

[17] D. Nicolaescu, B. Salamat & A.V. Veidenbaum (2006):Fast Speculative Address Generation and Way
Caching for Reducing L1 Data Cache Energy. In: Proceedings of the 24th International Conference on
Computer Design (ICCD 2006), IEEE, pp. 101–107, doi:10.1109/ICCD.2006.4380801.

[18] F. Nielson, H. Riis Nielson & C. Hankin (1999):Principles of Program Analysis. Springer Verlag, Berlin –
Heidelberg, doi:10.1007/978-3-662-03811-6.

[19] S. Roman (2005):Advanced Linear Algebra, 2nd edition. Springer Verlag.

[20] H. Styles & W. Luk (2004):Exploiting Program Branch Probabilities in Hardware Compilation. IEEE
Transaction on Computers53(11), pp. 1408–1419, doi:10.1109/TC.2004.96.

Appendix

For completeness, we present here the abstract transfer functions in the probabilistic analysis of Exam-
ple 6.

F#
1 =





























































1
2 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0
0 1

2 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0

0 0 1
2 0 0 0 1

2 0 0 0 0 0 0 0 0 0
0 0 0 1

2 0 0 0 1
2 0 0 0 0 0 0 0 0

1
2 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0
0 1

2 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0

0 0 1
2 0 0 0 1

2 0 0 0 0 0 0 0 0 0
0 0 0 1

2 0 0 0 1
2 0 0 0 0 0 0 0 0

1
2 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0
0 1

2 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0

0 0 1
2 0 0 0 1

2 0 0 0 0 0 0 0 0 0
0 0 0 1

2 0 0 0 1
2 0 0 0 0 0 0 0 0

1
2 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0
0 1

2 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0

0 0 1
2 0 0 0 1

2 0 0 0 0 0 0 0 0 0
0 0 0 1

2 0 0 0 1
2 0 0 0 0 0 0 0 0





























































F#
2 =





























































1
4

1
4

1
4

1
4 0 0 0 0 0 0 0 0 0 0 0 0

1
4

1
4

1
4

1
4 0 0 0 0 0 0 0 0 0 0 0 0

1
4

1
4

1
4

1
4 0 0 0 0 0 0 0 0 0 0 0 0

1
4

1
4

1
4

1
4 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1
4

1
4

1
4

1
4 0 0 0 0 0 0 0 0

0 0 0 0 1
4

1
4

1
4

1
4 0 0 0 0 0 0 0 0

0 0 0 0 1
4

1
4

1
4

1
4 0 0 0 0 0 0 0 0

0 0 0 0 1
4

1
4

1
4

1
4 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
4

1
4

1
4

1
4 0 0 0 0

0 0 0 0 0 0 0 0 1
4

1
4

1
4

1
4 0 0 0 0

0 0 0 0 0 0 0 0 1
4

1
4

1
4

1
4 0 0 0 0

0 0 0 0 0 0 0 0 1
4

1
4

1
4

1
4 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
4

1
4

1
4

1
4

0 0 0 0 0 0 0 0 0 0 0 0 1
4

1
4

1
4

1
4

0 0 0 0 0 0 0 0 0 0 0 0 1
4

1
4

1
4

1
4

0 0 0 0 0 0 0 0 0 0 0 0 1
4

1
4

1
4

1
4





























































http://dx.doi.org/10.1109/ICCD.2006.4380801
http://dx.doi.org/10.1007/978-3-662-03811-6
http://dx.doi.org/10.1109/TC.2004.96

A. Di Pierro, H. Wiklicky 165

F#
3 =

























































1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

























































P#
4 =

























































1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

























































	1 Introduction
	2 A Probabilistic Language
	2.1 Syntax and Operational Semantics
	2.2 Computational States
	2.3 Probabilistic Abstraction

	3 Data-Flow Analysis
	3.1 Monotone Framework
	3.2 Live Variable Analysis

	4 The Probabilistic Setting
	4.1 Control Flow Probabilities
	4.2 Estimating Abstract Branch Probabilities
	4.3 Linear Equations Framework
	4.4 Probabilistic Live Variable Analysis

	5 Conclusions and Related Work

