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Speculative optimisation relies on the estimation of thebpbilities that certain properties of the
control flow are fulfilled. Concrete or estimated branch @tulities can be used for searching and
constructing advantageous speculative and bookkeegingformations. We present a probabilistic
extension of the classical equational approach to datadhmalysis that can be used to this purpose.
More precisely, we show how the probabilistic informatiotréduced in a control flow graph by
branch prediction can be used to extract a system of linasatems from a program and present a
method for calculating correct (numerical) solutions.

1 Introduction

In the last two decades probabilistic aspects of softwave baecome a particularly popular subject of
research. The reason for this is arguablyegonomicaland resource consciouguestions involving
modern computer systems. While program verification andysisaoriginally focused on qualitative
issues, e.g. whether code is correct or if compiler optitiiaa are valid, the focus is now more often
also on the costs of operations.

Speculative optimisation is part of this trend; it plays exportant role in the design of modern
compiler and run time architectures. A speculative apgrdeas been adopted in various models where
cost optimisation claims for a more optimistic interpriatof the results of a program analysis. It is in
fact often the case that possible optimisations are disecab@cause the analysis cannot guarantee their
correctness. The alternative to this sometimes overlyimestec analysis is to speculatively assume in
those cases that optimisations are correct and then ellgritaaktrack and redo the computation if at a
later check the assumption turns out to be incorrect.

Speculative optimisation relies on the optimal estimabbithe probabilities that certain properties
of the control flow are fulfilled. This is different from theadsical (pessimistic) thinking where one aims
in providing bounds for what can happen during execution [8]

A number of frameworks and tools to analyse systems'’s pibiiidbaspects have been developed,
which can be seen as probabilistic versions of classichhigoes such as model checking and abstract
interpretation. To provide a basis for such analysis vargemantical model involving discrete and con-
tinuous time and also non-deterministic aspects have beeslaped (e.g. DTMCs, CTMCs, MDPs,
process algebraic approaches etc.). There also exist smwverfpl tools which implement these meth-
ods, e.g. PRISM[14], just to name one.

Our own contribution in this area has been a probabilistisiva of the abstract interpretation frame-
work [6], called Probabilistic Abstract InterpretationAIP[L2] [9]. This analysis framework, in its basic
form, is concerned with purely probabilistic, discretegimodels. Its purpose is to give optimal esti-
mates of the probability that a certain property holds natitven providing probabilities bounds. As such,
we think it is well suited as a base for speculative optinosat
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S ::= skip S ::= [skip]
x:=e(x1,...,xn) [X:=e(X1,...,Xn)]Z
X?=p [x 7= p]
S ¥

if [0’ then Sj else S fi
while [b] do Sod

ifbthen S else S fi
while bdo Sod

\
|
} S; S
|

Table 1: The syntax

The aim of this paper is to provide a framework for a probatidi analysis of programs in the
style of a classical data flow approach[[18, 1]. In particulee are interested in a formal basis for
(non-static) branch prediction. The analysis techniquepresent consists of three phases: (i) abstract
branch prediction, (ii) specification of the actual datavferuations based on the estimates of the branch
probabilities, and (iii) finding solutions. We will use vecspace structures to specify the properties and
analysis of a program. This allows for the construction disons via numerical (linear algebraic)
methods as opposed to the lattice-theoretic fixed-poinstcoction of the classical analysis.

2 A Probabilistic Language

2.1 Syntax and Operational Semantics

We use as a reference language a simple imperative langlagge wyntax is given in Tallé 1. Following
the approach in_[18] we extend this syntax with unique pnogtabels? € Lab in order to be able to
refer to certain program points during the analysis.

The dummy statemerkip has no computational effect. For the arithmetxpressions (&, ..., Xn)
on the right hand side (RHS) of the assignment as well as &ttt = b(xy,...,X,) in if andwhile
statements, we leave the details of the syntax open as taéyealevant for our treatment. The RHS of a
random assignmemnt?= p is a distributionp over some set of values with the meaning thietassigned
one of the possible constant valuewith probability p(c).

An operational semantics in the SOS style is given in Tlallle Phis defines a probabilistic transition
relation on configurations i€onf = Stmt x State with Stmt the set of all statements in our language
together withstop which indicates termination arfstate= Var — Value. The details of the semantics
of arithmetic and boolean expressidia§ = &' (a) and[b]] = & (b) respectively are again left open in our
treatment here and can be found(in![10].

2.2 Computational States

In any concrete computation or execution — even when it ighifing probabilistic elements — the com-
putational situation is uniquely defined by a mappinyar — Value to which we refer to as elassical
state Every variable irar has a unique value Malue possibly includingl € Value to indicate unde-
finedness. We denote [8tatethe set of all classical states.

In order to keep the mathematical treatment simple we wsllage here that every variable can take
values in a finite setalue. These sets can be nevertheless quite large and coveraimpé, all finitely
representable integers on a given machine.
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RO (stop,S)=-1(stop,S) R4, (SL,9=p(S.,5)
R1 (skip,s)=1(stop,s) (S1:92,9=p(S:S,9)
R2 (v:=es)=1(stop,sv— &(e)s)) R (S1,5)=>p(stop,S)
R3  (v?=p,8)=pq)(stop, SV r1]) 4 (S1;9,9=p(S,9)
R5; (if bthen S else & fi,5)=1(S1,9S) if &(b)s=true

R5, (if bthen S else $£i,5)=1(S,9) if &£(b)s=false

R6; (while bdo Sod,s)=1(S whilebdo Sod,s) if &(b)s=true

R6, (whilebdo Sod,s)=1(stop,S) if &(b)s=false

Table 2: The rules of the SOS semantics

For a finite seiX we denote by (X) the power-set oK and by 7 (X) the free vector space over
X, i.e. the set of formal linear combinations of elements<in We represent vectors via their coor-
dinates(xy,...,x,) as rows, i.e. elements iR* with |X| denoting the cardinality oK and use post-
multiplication with matrices representing linear maps, A(x) = x-A. The seDist(X) of distributions
onX —i.e.p: X —[0,1] andy; p(x) =1 — clearly correspond to a sub-set5fX). We will also use a
tuple notation for distributionsp = {(a,3),(b, %), (c, )} will denote a distribution where has prob-
ability p(a) = % andb andc both have probabilit)%. For uniform distributions we will simply specify
the underlying set, e.da, b, c} instead of(a, $),(b,1),(c,3)}.

The tensor product is an essential element of the desarigtigorobabilistic states. The tensor
produdﬂ of two vectors(xy, ..., X,) and(yi, ..., Ym) iS given by(xiy1, ..., X1ym, - - -, Xa¥1, - - - , XnYm) @annm
dimensional vector. Similarily for matrices. The tensooguct of two vector space$ ® # can be
defined as the formal linear combinations of the tensor prsdy® w; with v andw; base vectors i’
and”, respectively. For further details we refer e.g[to [19, CHa}j.

Importantly, the isomorphisrit’ (X xY) =7 (X) @ 7 (Y) allows us to identify set of all distributions
on the cartesian product of two sets with the tensor produitteospaces of distributions dtandy.

We define aprobabilistic statec as any probability distribution over classical states, i@ €
Dist(State). This can also be seenas: ¥ (State) = 7 (Var — Value) = 7 (Value V&'l = 7 (Value)®"
thev-vold tensor product of (Value) with v = |Var|.

In our setting we represent (semantical) functions andipaées or tests as linear operators on the
probabilistic state space, i.e. as matrices. For any fondti: X — Y we define a linear representation
IX| x |Y| matrix by:

1 if f(x) =y,
0 otherwise

(F)ij = (F(F))ij = (F)ij = {

where we assume some fixed enumeration on Bo#mdY. For an equivalence relation ofiwe can
also represent the function which maps every elemeXttmits equivalence class: x+— [x] in this way.
Such aclassification matrixcontains in every row exactly one non-zero entry 1. Clasgifio matrices
(modulo reordering of indices) are in a one-to-one corredpace with the equivalence relations on a set
X and we will use them to define probabilistic abstractionsofaranalysis (cf. Sectidn 4.2). A predicate
p: X — {true,false} is represented by a diagorjl| x |X| matrix:

1 ifi=jandp(x)=true
0 otherwise

(Poli = (PP = (Pl = {

IMore precisely, the Kronecker product — the coordinate dhasesion of the abstract concept of a tensor product.
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2.3 Probabilistic Abstraction

The analysis technique we present in this paper will makeotiagarticular notion of abstraction of the
state space (given as a vector space) which is formalisedritstof Moore-Penrose pseudo-inverse [19].

Definition 1 Let% and & be two finite dimensional vector spaces, anddets” — 2 be a linear map
between them. The linear mag = G : 2 — ¥ is theMoore-Penrose pseudo-inverseA iff

AoG=Pp and GoA =Pg

wherePp and P denote orthogonal projections onto the range®\adnd G.

An operator or matrix is anrthogonal projectiorif P* = P? = P where.* denotes thadjoint which for
real matrices correspond simply to the transpose mBtrix P' [19, Ch 10].

For invertible matrices the Moore-Penrose pseudo-inverdbe same as the inverse. A special
example is théorgetful abstractiomA 1 which corresponds to a médp X — {x} which maps all elements
of X onto a single abstract one. It is represented fY|a< 1 matrix containing only 1, and its Moore-
Penrose pseudo-inverse is given by [IX| matrix with all entriesﬁ.

The Moore-Penrose pseudo-inverse allows us to constraatitisest, in a least square sense (see
for example [[5/3]), approximatiof” : 2 — & of a concrete linear operati: ¥ — ¥ for a given
abstractiomA : ¢ — Z as

FF=AT.F-A=G.-F-A=AcFoG.

This notion of probabilistic abstraction is central in thelBabilistic Abstract Interpretation (PAI) frame-
work. For further details we refer to e.g. [10]. As we will ubgs notion later for abstracting branching
probabilities, it is important here to point out the guaesstthat such abstractions are able to provide. In
fact, these are not related to any correctness notion inléissical sense. The theory of the least-square
approximation([7, 3] tells us that # and Z be two finite dimensional vector spacés, ¢ — Z a linear
map between them, arAll = G : 2 — ¥ its Moore-Penrose pseudo-inverse, then the vegtery- G

is the one minimising the distance betweer\, for any vectoixin ¢, andy, i.e.

inf [[xX-A—y||=[X-A-Y].
Xe?

This guarantees that our probabilistic abstractions spmed to theclosestapproximations in a
metric sense of the concrete situations, as they are cotestrusing the Moore-Penrose pseudo-inverse.

3 Data-Flow Analysis

Data-flow analysis is based on a statically determined fldatiom. This is defined in terms of two
auxiliary operations, namelit : Stmt — Lab andfinal: Stmt — Z?(Lab), defined as follows:

init([skip]’) = final([skip]’) = {¢}

init([v :=¢) = E final([v :=€*) = {¢}

init([v7=¢’) =¢ final([v 7= €') = {¢}

init(Sy; Sg) init(Sy) final(Sy; Sg) = final(S)

init(if [b]’ then S else S fi) =/¢ final(if [b]’ then S else S £i) = final(S) U final(S,)
(

init(while [b]’ do Sod) =/ final(while [b]’ do Sod) = {/}.
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The control flow.# (S) in S€ Stmt is defined via the functiofiow : Stmt — #(Lab x Lab):

flow([skip]’) = flow([v := €*) = flow([v ?=¢*) = 0
flow(S1; S) = flow(S;) U flow(S) U { (¢, init(S)) | £ € final(S;) }
flow(if [0 then S; else S £i) = flow(Sy) U flow(S) U { (¢, init(Sy)), (4, init(S))}
flow(while [b]* do Sod) = flow(S) U {(¢,init(S))YU{(¢,¢) | ¢ € finalS)}

The definition of flow only records that a certain control fldeysis possible. For testsn condition-
als and loops we indicate the branch corresponding to tleewehsn the test is successful by underlining
it. We identify a statemerwith the block[S’ that contains it and with the (unique) laldehssociated
to the block. We will denote block = Block(P) the set of all the blocks occurring i, and use
indistinctly Block andLab to refer to blocks.

3.1 Monotone Framework

The classical data-flow analysis is made up of two componentecal” part which describes how the
information representing the analysis changes when execpasses through a given block/label, and
a “global” collection part which describes how informatisnaccumulated when a number of different
control flow paths (executions) come together.

This is formalised in a general scheme, called Monotone Evasrk in [18, Section 2.3], where a
data-flow analysis is defined via a number of equations owetatticeL modelling the property to be
analysed. For every program lal#elve have two equations: one describing the generalisedy'antr
terms of the generalised ‘exit’ of the block in question, #melother describing ‘exit’ in terms of ‘entry’

— for forward analysis we havwe=entry ande=exit, for a backward analysis the situation is reversed.

Analysig (¢) = f,(Analysis (¢))
. 1L,ifeE
Analysig(f) = { LI{Analysig (¢) | (¢,¢) € F},otherwise

For the typical classical analyses, such as Live Variabland Reaching DefinitioRD, the property
lattice L is often the power-set of some underlying set (N as in the case of the LV analysis). For a
may-analysis the collecting operationof L is represented by set unianand for must-analysis it is the
intersection operation. The flow relationF can be the forward or backward flowspecifies the initial
or final analysis information on “extreme” labels ) whereE is {init(S,)} or final(S,), and f, is the
transfer function associated wiBi € Block(S) [18, Section 2.3].

3.2 Live Variable Analysis

We will illustrate the basic principles of the equationapegach to data flow analysis by considering
Live Variable analysislL(V) following the presentation i [18, Section 2.1]. The pmtlis to identify at
any program point those variables which kve, i.e. which may later be used in an assignment or test.
There are two phases of classié®d analysis: (i) formulation of data-flow equations as set éqna
(or more generally over a property lattic (i) finding or constructing solutions to these equatidios
example, via a fixed-point construction. In the classicallysis we associate to every program point or
label ¢ — to be precise the entry and the exit of each label — the irdtiam which describes (a super-set
of) those variables which are alive at this program point.
Based on the auxiliary functiorgen,, : Block — 22 (Var) andkill . : Block — &2(Var) which only
depend on the syntax of the local blg&‘ and are defined as
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kil oy([x :=a) = {x} geny(x:=a") = FV(a)

kil oy (x 7= p]") = {x} geny(x7=pl’) = 0

kill v ([skip)!) = O geny([skipl’) = 0
kill v (b)) = © geny(lb]') = FV(b)

we can define the transfer functions for thé analysisf} : 22(Var,) — & (Var,) by
frY (X) = X\ kill v ([B]") U geny ([B]")

This allows us to define equations over the property spaee??(Var), i.e. set equations, which
associate to every label entry and exit the analysis infooma.Venyy : Lab — Z2(Var) and LV eyit
Lab — &2(Var). These set equations are of the general form for a backwaycamedysis:

Wenry(f) = ¥ (LWexit({))
LVexit(e) = U LVentry(gl)
(e,eeflow
At the beginning of the analysis (i.e. for final labels, as ihia backward analysis) we d&te,ii(¢) = 0.

Example 1 Consider the following program:

[x 7= {0,1}]%; [y ?={0,1,2,3}]%; [x :=x+y mod 43;
if [x>2]* then [z:=X° else [z:=V]® fi

Although the program is probabilistic we still can perforntlassical analysis by considering non-zero
probabilities simply as possibilities. The flow is given{l¥,2), (2,3),(3,4),(4,5),(4,6)}.
With the auxiliary functionill |, and gen,, we can now specify the data-flow equations:

geny (6 ) Kill (6 ) LVentf)’( 1) = Lvexit(l) \ {X} LVeXIt( 1) = LVentry(z)
1 0 {X} LVentry(z) = LVexit(2)\ {Y} LVeX|t(2) = LVentry(3)
g {xmy} gi WVenry(3) = LWVeit(3)\{X}U{Xy} LVext(3) = LVenuy(4)
4 {;(} 0 LVentry(4) = LVexit(4) U {X} LVeX|t(4) = LVentry(S) U LVentry(G)
5/ {x} {z} WVentry(5) = LVexit(5) \ {Z} U {x} WVexit(5) = 0
6 {yv {z} WVentry(6) = LVexit(6) \ {z} U{Y} Vexi(6) = 0

I—Ventry( 1) =0 WVexit(1) = {x}
I-Ventry( 2) = {x} WVexit(2) = {Xy}
LVentfy( 3) = {X> y} LVexit(3) = {X, Y}
WVenty(4) = {XY} WVexit(4) = {Xy}
WVenty(5) = {X} WVexit(5) = 0
Venty(6) = {y} LVexit(6) = 0.
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4 The Probabilistic Setting

In order to specify a probabilistic data flow analysis using &nalogue of the classical equational ap-
proach (as presented in the previous sections), we havdfitedbe main ingredients of the analysis
in a probabilistic setting namely a vector space as propgéace (replacing the property lattitg, a
linear operator representing the transfer functidnsand a method for the information collection (in
place of theg | operation of the classical monotone framework). Moreoasive will work with proba-
bilistic states, the second point implies that the corflimi+ graph will be labelled by some probability
information.

As aproperty spacewe consider distributionBist(L) C ¥'(L) over a set, e.g. the corresponding
classical property space. For a relational analysis, wharelassical property lattice corresponds to
L =L; x Ly (cf [11]), the probabilistic property space will be the tengroduct?’(L;) ® ¥'(L»); this
allows us to represent properties via joint probabilitielsicl are able to express the dependency or
correlation between states.

We can define probabilistitransfer functions by using the linear representation of the classical
f,, i.e. a matrixF, = Fy, as introduced above in Sectibnl2.2. In general, we will dedipeobabilistic
transfer function by means of an appropriate abstractidheofoncrete semantidB]‘]] of a given block
[B] according to PAl, i.eF, = AT[[[B]‘]|A for the relevant abstraction matrix.

In the classical analysis we treat tebtaon-deterministically, to avoid problems with the potehti
undecidability of predicates. Moreover, we take evenghivhich is possible i.e. the collection of
what can happen along the different execution paths, eegtvib branches of anf statement. In the
probabilistic setting weollect information by means of weighted sums, where the ‘weights’ are the
probabilities associated to each branch. These prohabiliome from an estimation of the (concrete
or abstract) branch probabilities and are propagated alwmgontrol flow graph representing thew
relation.

4.1 Control Flow Probabilities

If we execute a program in classical stagaghich have been chosen randomly according to some prob-
ability distribution p then this also induces a probability distribution on thesgae control flow steps.
Definition 2 Given a program Swith init(S) = ¢ and a probability distributiorp on State, the proba-
bility py»(p) that the control is flowing froni to ¢’ is defined as:

Pre(P) =5 {pP-p(s) | IS st (S1,9) =p (S.8) }-

In other words, if we provide with a certain probabilip(s) a concrete execution environment or
classical statsfor a programS, then the control flow probabilitp, » () is the probability that we end
up with a configuratioSy, . ..) for whatever state in the successor configuration.

Example 2 Consider the programix ?= {0,1}]; if [x > 0]? then [skip]® else [x := 0]* £i. We can
have two possible states at lal#zlnamely § = [x — 0] and § = [x — 1]. After the first statement has
been executed in one of two possible ways (with any inti& sia

([x?={0,1}]*; if [x > 0] then [skip]® else [x := 0]* £1,s) =1
=1 (if [x> 0]? then [skip]® else [x := 0]* £i,5)
or ([x?={0,1}]%; if [x > 0] then [skip]® else [x := 0]* £i,s) =1

=1 (if [x>0]? then [skip]® else [x := 0]* £i,s;)

1
2
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the distribution over states is obviougty= {(so,3) (s1,3)}. However, in each execution path we have
at any moment a definite value for x (the distributpulescribes a property of the set of all executions,
not of one execution alone).

The branch probability in this case (independently of tlaéess and of any distributiop) is simply
p12(p) = 1 because, although there are two possible execution stepsuccessor configurations are
‘coincidently’ equipped with the same prograirf [x > 0] then [skip]3 else [x := 0]* f1i.

The successive control steps from labéb 3 and 4, respectively, both occur with probabilifyas in
each stategand g the value of x is a definite one.

(if [x > 0] then [skip]® else [

0 f1.%) =1 (x:=0f5)
and (if [x> 0]? then [skip|® else | 4

X:=
x:=0fis) =1 ([skip®s)

Thus the branch probabilities wih={(so,3),(s1,5)} are p3(p) = 3 and p4(p) = 3. In general
foranyp = {(so, po) , (S1, p1) } we have p3(p) = p1 and p.4(p) = po despite the fact that the transitions
are deterministic. It is the randomness in the probabdistiate that determines in this case the branch
probabilities.

For all blocks in a control flow graph — except for the tdststhere is always only one next statement
Sy so that the branch probability, ./ (p) is always 1 for allp. For tests in if andwhile statements
we have only two different successor statements, one @ameting to the case whefb]’ evaluates to
true and one forfalse. As the corresponding probabilities must sum up to 1 we oabdrto specify the
first case which we denote iy (p).

The probability distributions over states at every exegupoint are thus critical for the analysis as
they determine the branch probabilities for tests, and vee te provide them. The problem is, of course
that analysing these probabilities is nearly as expensiamalysing the concrete computation or program
executions. It is therefore reasonable to investigateratisbranch probabilities, based on classes of
states, or abstract states. It is always possible to liftia distributions to ones over (equivalence)
classes.

Definition 3 Given a probability distributiorp on State and an equivalence relation on states then
we denote by* = p# the probability distribution on the set of equivalence sksState’ = State/~
defined by

where[g).. denotes the equivalence classes of swrt

4.2 Estimating Abstract Branch Probabilities

In order to determine concrete or abstract branch proltiakikve need to investigate — as we have seen
in Example[2 — the interplay between distribution over stated the tesib]’ we are interested in. We
need for this the linear representatiBp of the test predicate as defined in Sectidn 2.2, which for a
given distribution over states determines a sub-disiobubf those states that lead into one of the two
branches by filtering out those states where this happens.

Example 3 Consider the simple programf [x >= 1]* then [x := x— 1] else [skip]® fi and assume
that x has values if0, 1,2} (enumerated in the obvious way). Then the test(lx >= 1) is represented
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by the projection matrix:

0 0O
Px>=1)=| 0 1 0 | andP(x>=1)* =
0 01

o o

00
0 0 | =P(x=0)
00
For any given concrete probability distribution over st = {(0, po), (1

(
we can easily compute the probabilities to go from labéb label 2 as pP(x >
thus

o

,P1),(2,P2)} = (Po, P1, P2)
=1 = (07 p17 p2) and

pr2(p) = lp-P(x>=1)[1=pr+ P2,
where||.||1 is the 1-norm of vectors, i.e||(x )il = 3;[x|, which we use here to aggregate the total
probabilities. Similarly, for the else branch, wih- = | — P:

PLa(p) = [l -P*(x>=1)[1 = po.

In general, the branching behaviour at a test described by the projection opera@ib) and its
complement-(b) = P(—b). For a branching poinio]’ with (¢,£),(¢,¢") € flow, we denoteP(b) by
P(¢,¢") andP(=b) = P(b)* by P(¢,¢"). Each branch probability can be computed for any given input
distribution asp, ¢ (p) = ||oP(¢,¢')||1 andpy e (p) = ||pP(¢,£")||1, respectively.

Sometimes it could be useful or practically more appropriatconsider abstract branch probabilities.
These can be obtained by means of abstractions on the state sprresponding to classifications
State — Stat€’ that, as explained in Sectién 2.2, can be liftedclassification matrices Given an
equivalence relation- on the states and its matrix representatfon, we can compute the individual
chance of abstract states (i.e. equivalence classes e$)kstattake thérue or false branch of a test by
multiplying the abstract distributiop” by an abstract versioR(b)* of P(b) that we can use to select
those classes of states satisfylmgn doing so we must guarantee that:

pP(b)A = p*P¥(b)
pP(b)A = pAP*(b)
P(bA = AP*b)

In order to give an explicit description & we only would need to multiply the last equation from the
left with A—1. However,A is in general not a square matrix and thus not invertible. 8ase instead
the Moore-Penrose pseudo-inverse to have the closedtspaare approximation possible.

ATP(b)A = ATAP*(b)
ATP(b)A = P¥(b)

The abstract test matri*(b) contains all the information we need in order to estimateatberact
branch probabilities. Again, we denote By/, /') = P#(b) and P(¢,¢")* = P#(=b) = P#(b)* for a
branching poinfb]* with (¢,¢), (¢,¢") € flow.

Branch prediction/predictors in hardware design has lasigty [16,20]. It is used at test poinfts}’
to allow pre-fetching of instructions of the expected brabefore the test is actually evaluated. If the
prediction is wrong the prefetched instructions need toibeatided and the correct ones to be fetched.
Ultimately, wrong predictions “just” lead to longer rungitimes, the correctness of the program is not
concerned. It can be seen as a form of speculative optimisafiypical applications or cases where
branch prediction is relevant is for nested tests (loop$spr Here we get exactly the interplay between
different tests and/or abstractions. We illustrate thithanfollowing example.
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Example 4 Consider the following program that counts the prime nuraber
i :=2]; while [i < 1002 do if [prime(i)]® then [p := p+1]* else [skip]® £i; [i :=i+1]® od

Within our framework we can simulate to a certain degree #ohysdependent branch prediction. If
the variable p has been updated in the previous iteratios litighly unlikely it will so again in the next —
in fact that only happens in the first two iterations. One ctsoanterpret this as follows: For i even the
branch probability g4(pe) at label3 is practically zero for any reasonable distribution, e.guiform
distribution pe, 0n evens. To see this, we need to investigate only the form of

P(prime(i))* = AIP(prime(i))Ae,
where A is the abstraction corresponding to the classification iareand odd.

In order to understand how an abstract property interadtsthve branching in the program, as in the
previous example we look &'P(b)A in order to evaluate how good a branch prediction is for aaaert
predicate/tesb if it is based on a certain abstraction/propety This is explained in the following
example where we consider two properties/abstractioncamdsponding tests.

Example 5 Let us consider two tests for numbers in the range(,1,2,3,...,n):

1 ifi=2k
0 otherwise

1 if prime(i)
0 otherwise

Po = (Pleverin))s = { P (P(primem))s = {

Likewise we can consider two corresponding abstractions {1 = true, 2 = false}):

1 ifi=2k+1Aj=2 1 ifprime(i) A j=2
(Ae)ij = 1 ifi=2kAj=1 (Ap)ij = 1 if —primg(i) A j=1
0 otherwise 0 otherwise
Then we can use” and its orthogonal complemer*)- = | — P* to determine information about

the quality of a certain property or its corresponding albstiion via the number of false positives. In

fact, this will tell us how precise the abstraction is witlspect to tests (such as those controlling a loop
or conditional). With rounding the values to 2 significangith we get, for example the following results

for different concrete ranges of the concrete valQgs. , n.

AlPpAe AlPSA. ATPeAp ATPsAp

N_10 ( 020 000 0.80 000 0.25 000 0.75 000
a 0.00 060 0.00 040 0.00 067 0.00 033
n—100 ( ©02 Q00 0.98 000 0.04 000 0.96 000
- 0.00 048 0.00 052 0.00 065 0.00 035
n— 1000 [ 000 000 1.00 000 0.01 000 0.99 000
- 0.00 033 0.00 067 0.00 060 0.00 040
1 10000 ( ©-00 Q00 1.00 000 0.00 000 1.00 000
a 0.00 025 0.00 Q75 0.00 057 0.00 043

Note that the positive and negative versions of these neat@dways add up to the identity matiix
Also, the entries in the upper left corner;@iPpAe give us information about the chances that an even



160 Equational Data Flow

number is also a prime number: For small n the percentage idtla findeed2 is a prime and it is
one out of5 even numbers unddi0); the larger n gets the less relevant is this single even eriiwvith
AJ{)PeAp we get the opposite information: Among the prime numb2r3,5,7} smaller thanlOthere is
one which is even, i.e. 25%; again this effect diminisheddier n. Finally, the lower right entry in
these matrices gives us the percentage that a non-primeenimbdd and/or that an odd number is not
prime, respectively.

4.3 Linear Equations Framework

A general framework for our probabilistic data-flow anadysan be defined in analogy with the classical
monotone framework by defining the following linear equasio

Analysig(¢) = Analysis (¢)-Fy
Analysis () = Lif£eE
YSIRW =" s{Analysig(¢)-P(¢,0)* | (¢',£) € F},otherwise

The first equation is a straight forward generalisation efdlassical case, while the second one is
defined by means of the linear sums over vectors. A simplaiaeiis obtained by considering static
branch prediction:

Analysis,(¢) =y {pe¢- Analysig (¢') | (¢',0) € F}
with py, is a numerical value representingtatic branch probability.

We have as many variables in this systems of equations asdheindividual equations. As a result
we get unique solutions rather than least fix-points as irtldssical setting.

This general scheme must be extended to include a preliyngtease of probability estimation if one
wants to improve the quality of the branch prediction. Irstbase, the abstract state should carry two
kinds of information: OneProb, to provide estimates for probabilities, the othemalysis, to analyse the
actual property in question. The same abstract branch pilitles P(¢', ¢)* — which we obtain viéProb
— can then be used in both cases, but we have different infanmar properties and different transfer
functions forProb andAnalysis.

4.4 Probabilistic Live Variable Analysis

We can use the previously defined probabilistic setting fdat flow analysis, to define a probabilis-
tic version of the Live Variable analysis extending the ond1i8] in order to also cover for random
assignments and to provide estimates for ‘live’ probabedsit

The transfer functions, which describe how the programyaiminformation changes when we pass
through a blocKBJ’, is for the classical analysis given via the two auxiliarpdtionsgen,, andKkill |,
(cf. Examplel). Probabilistic versions of these operatioan be defined as follows. Consider two
propertiesd for ‘dead’, andl for ‘live’ and the space¥ ({0,1}) = ¥ ({d,l}) = R? as the property space
corresponding to a single variable. On this space definegbetors:

0 1 10
L:(O 1) and K:(l 0).

The matrixL changes the “liveliness” of a variable from whatever it isdd or alive) into alive, while
K does the opposite. The local transfer operators

Fo=FPY 17 ({0.1h)*Var — v ({o, 1}y Var
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for the block[x := a] can thus be defined as (withhe identity matrix)

L ifx eFV(a
Fo= X Xi with Xi={ K ifx=xA X% ¢FV(a)
xevar | otherwise.

and similarly for testsb]’

Fo= @ Xi with X;=

xeVar

L if x € FV(b)
| otherwise.

For [skip]’ and random assignmerits?= p]’ we simply haveF; = ®, .v/qr |-
In the following example we demonstrate the use of our géfrarmework for probabilistic data-flow
analysis by defining a probabilistid/ analysis for the program in Example 1.

Example 6 For the program in Examplel 1 we presenL¥ analysis based on concrete branch proba-
bilities. That means that in the first phase of the analyshli¢wdetermines the branch probabilities) we
will not abstract the values of x and y (and ignore z all toge}h If the concrete state of each variable
is a value in{0, 1,2, 3}, then the probabilistic state is an elementf{{0, 1,2,3})®3 = R¥ = R®4. The
abstraction we use when we compute the concrete branch Ipititiess is| ® | ® A¢, i.e. z is ignored.
This allows us to reduce the dimensions of the probabilstite space frond4 down to justl6. The
abstract transfer functions for the fir8tstatements are given in the Appendix.

We can now compute the probability distribution at laddior any given input distribution. The
abstract transfer functionsZ andFZ are the identity as we have restricted ourselves only tonables
xandy.

We can now set the linear equations for the joint distringi@ver x and y at the entry and exit to
each of the labels:

Probenty(1) = p Probexit(1) = Probentry(1)- F?f
Probentry(2) = Probexit(1) Probeyit(2) = Probenty(1)-F3
Probentry(3) = Probexit(2) Probeyit(3) = Probentry(1) - Fg
Probentry(4) = Probexit(3) Probeyit(4) = Probentry(4)
Probentry(5) = Probexit(4) - Pff Probeyit(5) = Probentry(5)
Probentry(6) = Probexit(4) - (I — Pﬁ) Probeyit(6) = Probentry(6)

These equations are easy to solve. In particular we cana@itpldetermine

Probentry(S) = p- F?f . Fg . Fg . Pﬁ
Probentry(B) = p . F?f . Fg . Fg . Pﬁ’

that give us the static branch probabilitiegg{0) = ||Probenuy(5) |1 = % and pi.6(p) = || Probenry(6) |1 =
%. These distributions can explicitly be computed and do epedd on the initial distributiom.

We then perform a probabilisticV analysis using these probabilities as required. Using thsti@act
property space and the auxiliary operators we get:
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LVentry(l) = LVexit(l) (K ®l® ) LVexit(l) LVentry(Z)

LVentry(z) = LVexit(Z) ( QK& ) LVexit(Z) = LVentry(3)

LVentry(?’) = LVexit(3) (L ®L®lI ) LVeXit(?’) = LVentry(A')

LVentry(4) = LVeit(4) - (L®I®]I) WVeit(4) = p4,5|—Ventry(5) + p4.6|—Ventry(6)
WVentry(5) = LVexit(5)- (L ® 1 ®K) WVeit(5) = (1,0)®(1,0)®(1,0)
LVentry(6) = LVexit(6)- (I ® L @ K) WVeit(6) = (1,0)®(1,0)®(1,0)

And thus the solutions for the probabilisti¢/ analysis are given by:

WVenry(1) = (1,0)®(1,0)®(1,0)

Wenry(2) = (0,1)®(1,0)@(1,0) EHQ _ Eg 3@33283
WVenry(3) = 0.25-(0,1)®(0,1)® (1,0) + Weit(3) = o,é5.(o 13@(1 0;®(1 0)+
+ 0.75-(0,1)®(0,1)®(1,0) i 0.75-(0’1)®(0’l)®(1’0)
= (0.1)®(0,1)®(1,0) Vexi(4) = 0.25-(0,1)@ (1,0)® (1,0) +
Venty(4) = 0.25-(0,1)®(1,0)®(1,0)+ + 0.75-(1,0)®(0,1) ® (1,0)
+ 075:-(0,1)®(0,1)®(1,0) Wet(5) = (1,0)@® (1,0)® (1,0)
Weny(5) = (0,1)®(1,0)@(1,0) WVexit(6) = (1,0)®(1,0)®(1,0)

WVenry(6) = (1,00®(0,1)® (1,0)

This means that, for example, at the beginning lahéle. the test x> 2 there are two situations: It
can be with probability% that only the variable x is alive, or with probabilit% both variables x and y
are alive. One could say that x for sure is alive and y only wiff6% chance. At the exit of lab&lthe
probabilistic LV analysis tells us that with 25% chanoaly x is alive and with 75% that y is thenly
live variable. To say that x is alive with probabili®/25 and y with0.75 probability would be wrong: It
is either x or y which is alive and this is reflected in the jaiigtributions represented as tensors, which
we obtain as solution. This illustrates that the probabitigroperty space cannot be jugt({x,y,z})
but that we need indeed ({d,1})%3.

5 Conclusions and Related Work

This paper highlights two important aspects of probalilistogram analysis in a data-flow style: (i) the
use of tensor products in order to represent the correldtdween a number of variables, and (i) the
use of Probabilistic Abstract Interpretation to estimagnich probabilities and to construct probabilistic
transfer functions. In particular, we argue that statiogpam analysis does not mean necessarily con-
sideringstatic branch predictioninstead — by extending single numbgxs: as branch probabilities to
matrices as abstract branch probabilitR{g, ¢)* — the PAI framework allows us to express dynamic or
conditional aspects.

The framework presented here aims in providing a formalsfasispeculative optimisation. Specu-
lative optimisation[[15, 2] has been an element of hardwasggth for some time, in particular to branch
prediction [16] or for cache optimisation [17]. More redgntelated ideas have also been discussed in
the context of speculative multi-threading [4] or probesit pointer analysis [9, 13].
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The work we have presented in this paper concentrates onotimeptual aspects of probabilis-
tic analysis and not on optimal realisation of, for examlencrete branch predictors. Further work
should however include practical implementations of thespnted framework in order to compare its
performance with the large number of predictors in existerfsnother research direction concerns the
automatic construction of abstractions so that the ind®éct)* are optimal and maximally predictive.
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Appendix

For completeness, we present here the abstract transfeicius in the probabilistic analysis of Exam-
ple[8.
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