We prove that adding upwards closed first-order dependency atoms to first-order logic with team semantics does not increase its expressive power (with respect to sentences), and that the same remains true if we also add constancy atoms. As a consequence, the negations of functional dependence, conditional independence, inclusion and exclusion atoms can all be added to first-order logic without increasing its expressive power.
Furthermore, we define a class of bounded upwards closed dependencies and we prove that unbounded dependencies cannot be defined in terms of bounded ones. |