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Games on graphs provide a natural model for reactive nonitating systems. In such games, the
interaction of two players on an arena results in an infinéthghat describes a run of the system.
Different settings are used to model various open systerosnputer science, as for instance turn-
based or concurrent moves, and deterministic or stocheatisitions. In this paper, we are interested
in turn-based games, and specifically in deterministidpgames and stochastic reachability games
(also known as simple stochastic games). We present a sidipdet and efficient reduction from
deterministic parity games to simple stochastic gameseltly an arena whose size is linear up to a
logarithmic factor in size of the original arena.
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1 Introduction

Graph games.Graph games are used to model reactive systems. A finita@irgcaph, whose vertices
represent states and edges represent transitions, mbdelgstem. Its evolution consists in interactions
between a controller and the environment, which is natutalined into a game on the graph between
two players, Eve and Adam. In the turn-based setting, in statle of the system, either the controller
chooses the evolution of the system (the correspondingwestthen controlled by Eve), or the system
evolves in an uncertain way, then aiming at the worst-casaas® Adam controls the corresponding
vertex. This defines a 2-player arena as a finite directechgrad a partition of the vertex set into Eve
and Adam vertices. However, in many applications, systemsamdomized, leading to the definition of
stochastic arenas: in addition to Eve and Adam verticesgtaph also has random vertices where the
evolution is chosen according to a given probability disttion.

A pebble is initially placed on the vertex representing thigal state of the system, then Eve, Adam
and random move this pebble along the edges, constructimdimite sequence of vertices. The sequence
built describes a run of the system: Eve tries to ensure tisatisfies some specification of the system,
while Adam tries to spoil it.

Parity objectives. The theory of graph games with-regular winning conditions is the foundation for
modelling and synthesizing reactive processes with fagre@nstraints. Thparity objectives provide
an adequate model, as the fairness constraints of reactcegses are-regular, and evergw-regular
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winning condition can be specified as a parity objective [8je consider 2-player games with parity
objectives: deciding the winner in polynomial time is a letajding open question, despite many efforts
from a large community. The best known upper-bound is1¢BUP [6].

Simple stochastic gamesConsidering probabilistic games instead of determinisiliaws the descrip-
tion much more reactive systems by modelling uncertainty,léads to higher complexity for corre-
sponding decision problems. We consider stochastic gantkseachability objectives: a given vertex
is distinguished, and Eve tries to reach it. Those games iwgoeluced by Condon, and named simple
stochastic games$i[4]. We consider the following decisianbj@m: can Eve ensure to reach the target
vertex with probability more than half? As for the above dari problem, the best known upper-bound
is NPNcoNP [4].

Reduction: from parity games to simple stochastic gamesThe notion of reduction between games
is an important aspect in the study of games as it allows terstand which classes of games are
subsumed by others. A classical reduction of 2-playerygdmes to simple stochastic games is through
a sequence of three reductions: (a) from 2-player parityegaim?2-player mean-payoff (or limit-average)
games|[6]; (b) from 2-player mean-payoff games to 2-playsralinted-payoff games|[9]; and (c) from
2-player discounted-payoff games to stochastic readhapdmes[[9]. The sequence of reductions yields
the following result: given a 2-player parity game witlvertices,m edges, and a parity objective with
d priorities, the simple stochastic game obtained throughstquence of reductions has m vertices,
including m probabilistic ones, 4m edges and the size of the aren®ign-d - log(n)).

Our results: we present a direct reduction of 2-player parity games t@kstochastic games, and thus
show that one can discount the step of going through meaoffayd discounted games. Moreover, our
reduction is more efficient: given a 2-player parity gameéwivertices,m edges, and a parity objective
with d priorities, the simple stochastic game obtained by ourctlireduction has+ m vertices among
which m are probabilistic, 3m edges and the size of the arendign-log(n)). Finally, we conclude
following proof ideas from([b] that the decision problem &mple stochastic games is in URoUP,
and from [2) 8] we obtain that the decision problems in stetibgarity, mean-payoff and discounted
games all are in UR coUP.

2 Definitions

Given a finite sef, a probability distributionu onAis a functionu : A— [0,1] such thaty ;A p4(a) = 1.
We denote byZ(A) the set of all probability distributions oh.

Stochastic arena. A stochastic (or 2/>-player) arenaG = ((V,E), (Ve,Va,Vr),0) consists of a finite
directed graphV, E) with vertex selV and edge seE, a partition(Vg,Va,Vr) of the vertex se¥ and a
probabilistic transition functiod : VR — Z(V ) that given a vertex iNg gives the probability of transition
to the next vertex. Eve chooses the successor of vertices, iwhile Adam chooses the successor of
vertices inVy; vertices invg are random vertices and their successor is chosen accaodigVe assume
that for allu € Vg andv € V we have(u,v) € E if and only if 5(u)(v) > 0. We assume that the underlying
graph has no deadlock: every vertex has a successor. Thialspese wherd/gr = 0 corresponds to
2-player arenas (for those we omifrom the description of the arena).

Size of an arena.The size of a stochastic areGa= ((V,E), (V&,Va,VRr), 0) is the number of bits required
to store it:

sizeG) =log(n) +2-m-log(n)+n+ng-log(n) + sizgd)

vertices edges vertex partition probabilistic transitions
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wheren = |V |, m= |E|, ngr = |Vg| and siz€d) = 3 e, Svev |0(U)(V)|, where|5(u)(v)] is the length of
the binary representation é{u)(v).

Plays and strategiesA play 1T in a stochastic aren@ is an infinite sequencév,vi,Vs,...) of vertices
such that for all > 0 we have(v;,vi+1) € E. We denote byl the set of all plays. Astrategyfor a
player is a recipe that prescribes how to plag,given a finite history of play, a strategy defines the next
move. Formally, a strategy for Eve is a function V*-Vg — V such that for allv € V* andv € Vg we
have(v,o(w-Vv)) € E. We define strategies for Adam analogously, and denote d&myd[" the set of all
strategies for Eve and Adam, respectively. A strategynésnorylessor positionalif it is independent
of the history of play and only depends on the current veitexfor all w,w' € V* andv € Ve we have
o(w-v) = g(w -v). Hence a memoryless strategy can be described as a fumctigp — V.

Once a starting vertexe V and strategieg for Eve andr for Adam are fixed, the outcome of the
game is a random walki(v, o, 1) for which the probabilities of events are uniquely definetiere an
evente C I is a measurable set of plays. For an eveht_ N, we writePy"* (.7) for the probability
that a play belongs tey if the game starts from the vertexand the players follow the strategiesand
1. In case of 2-player arenas, if we fix positional strategies, and a starting vertey, then the play
(v, 0, T) obtained is unique and consists in a simple pathvi,...vi—1) and a cycle(vi,Vi;1,...,Vk)
executed infinitely often,e, the play is a “lasso-play”{vo,V1,...,Vi—1) - (M, Vi41, ..., Vk)®.

Qualitative objectives. We specifyqualitative objectives for the players by providing a setvahning
plays® C I for each player. We say that a playsatisfieghe objectived if me ®. We study only zero-
sum games, where the objectives of the two players are comeplary,i.e, if Eve has the objective,
then Adam has the objective\ ®.

e Reachability objectivesGiven a sefl CV of “target” vertices, the reachability objective requires
that some vertex of be visited. The set of winning plays is Re&€h = {(vo,v1,V2,...) € |
vk € T for somek > 0}.

e Parity objectives.Let p:V — N be a function that assignspaiority p(v) to every vertex € V.
For a playm = (vp,v1,...) € I, we define Infrr) = {v € V | v = v for infinitely manyk} to be
the set of vertices that occur infinitely often in The parity objectiveis defined as Parityp) =
{mre N | min(p(Inf(m))) is ever}. In other words, the parity objective requires that the mimnin
priority visited infinitely often is even.

Quantitative objectives. A quantitativeobjective is specified as a measurable functiarfl — R. In
zero-sum games the objectives of the players are functiomsd — f, respectively. We consider two
classes of quantitative objectives, namely, mean-payaffdiscounted-payoff objectives.

e Mean-payoff objectived.etr : V — R be areal-valued reward function that assigns to everyxerte
vthe reward (v). Themean-payoffobjective MeanPayoff ) assigns to every play the “long-run”
average of the rewards appearing in the play. Formally, fdag = (vo,v1,V2,...) we have

o 1 &
MeanPayoffr) () = liminf i 'i;f(w)

e Discounted-payoff objectived.etr : V — R be a reward function andQ A < 1 be a discount
factor, the discounted-payoff objective DiscPayaffr) assigns to every play the discounted sum
of the rewards in the play. Formally, for a play= (vo,v1,V2,...) we have

n

DiscPayoffA,r)(m) = (1~ A)- lim Alor(v)
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Values and optimal strategies.Given objectivesb C I for Eve andr\ @ for Adam, and measurable
functionsf and— f for Eve and Adam, respectively, we define tf@uefunctions(E) and (A) for Eve
and Adam, respectively, as the following functions from tieetex spac& to the sefR of reals: for all
verticesv € V, let

(E)(®)(v) = supinf Py (®); (E)(f)(v) = supinf ETT[f];
oez 1€ oe>TE

(AM\®)(V) = supint PYT(M\@);  (A)(=F)(v) = supinf EJ"[—1].
Telr o€ Telr o€

In other words, the value&E)(®)(v) and (E)(f)(v) give the maximal probability and expectation
with which Eve can achieve her objectivésand f from vertexv, and analogously for Adam. The
strategies that achieve those values are called optim#iategy o for Eve isoptimalfrom the vertexv
for the objectived if (E)(®)(v) = inf;cr PV (P); ando is optimalfrom the vertex for f if (E)(f)(v) =
infrer EY'T[f]. The optimal strategies for Adam are defined analogously.

Theorem 1(Memoryless determinacy|[Q])}or all stochastic arenas,

1. For all objectivesd such that® is either a reachability or a parity objective, for all vecgs v we
have

(E)(®) (V) + (A)(M\ @) (v) = L.

Memoryless optimal strategies exist for both players fréiwextices. Furthermore, for the case
of 2-player arena, then for all & V, (E)(®P)(v) € {0,1}.

2. For all objectives f. T — R such that f is either a mean-payoff or discounted-payofécibje,
for all vertices v we have

(E)(F)(V) + (A)(=F)(v) =0.

Memoryless optimal strategies exist for both players frdmextices.

Games. A stochastic game is given by an arena and an objective. As@arase, a 2-player game is
given by a 2-player arena and an objective. For instancelay&r parity game is a coup(&, Parity(p)),
whereG is a 2-player arena, and a stochastic reachability gamedsle(G, Reac{T)), whereGis a
stochastic arena.

We define simple stochastic games to be special case of stacheachability game whehké con-
tains two distinguished absorbing verticegavand \pse and the reachability set i = {vyin}. Once
a play reached one of the two verticegnvor Vigse, the game is stopped as its outcome is fixed. A
simple stochastic game has the stopping property if fortedtegieso and T and all verticess € V,
P§"" (ReacH Vyin, Viose} ) = 1.

Decision problems for gamesGiven an aren&, an objectived, a starting vertex € V and a rational
thresholdg € Q, the decision problem we consider is whetkEer(®d)(v) > g. It follows from Theoreni L
that in 2-player arenas, with a parity objective Paiity for a vertexv we have(E)(Parity(p))(v) €
{0,1}. If the value is 1, then we say that Eve is winning, otherwiska is winning.

3 Adirect reduction

In this section, we present a direct reduction to show thigrdening the winner in 2-player parity games
can be reduced to the decision problem of simple stochaatieeg with the thresholé. Specifically,
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Figure 1: From parity games to simple stochastic games

from a 2-player parity gamgG, Parity(p)) and a starting vertex we show how to construct in polyno-
mial time a stochastic area(G) with a reachability objective Reafhyin) such that Eve is winning in
G from v for the parity condition if and only ifE) (Reaclivyin))(v) > % in R(G).

Construction of the stochastic arenaWe now present the construction of a stochastic apé(@):
R(G) = ((VWE W {Vuin,Viose}, E'), (VE W {Vwin},VaW {Viose}, E),d)
wherew denotes the disjoint union. The set of edges and the tranditinction is as follows:
E’ { (U, (U, v)); (U, v),v); ((U, V), Vwin) | (U,V) € E, p(v) every

u {(u, (u,v)); ((u,v),v); (U, V), Viose) | (U,V) € E, p(v) odd}
U {(Vwin,Vwin); (Viose, Viose) }

The transition functio is defined as follows: ip(v) is even,d((u,V))(Vwin) = R, andd((u,v))(v) =
1-R, if p(v) is odd,d((u,v))(Viese) = R, @andd((u,v))(v) = 1— R,. We will describeR, as reals in the
interval (0, 1) satisfying certain conditions, and we will prove correstef the reduction as long as the
conditions are satisfied.

We present a pictorial description of the reduction in Fegdir for each edgéu,v) € E, we consider
the simple gadget, if(v) is even (resp. odd), that has an edge to the sik(vesp. Yose) With probability
R,, and follows the original edge otherwise with probability B,. Hexagonal vertices can be either Eve’s
or Adam’s and triangle vertices are random verticgg, will be depicted by a smiling face anghy by
a sad face.

The new arena simulates the initial arena, and additiofieijures two absorbing verticeg;y and
Viosee 10 Simulate a transition frora to v, the new arena includes a random vertex that follows the
transition with high probability - R, or stops the game by going tQ,¥ or Viese With small probability
R,. The intuition is that ifv has even priority, then Eve is rewarded to visit it by havingnzall yet
positive chance of winning, and symmetricallyihas odd priority for Adam.

Playing forever infk(G), the outcome of the play will be favorable for Eviee(reach win) if she
manages to see even priorities many times. Furthermoreietisgrd a player receives for visiting a
vertex with good priority must depend on this priority: se&pia very small even priority gives more
chance to win than a higher one. Indeed, if different prigsitare seen infinitely often, the outcome of
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Figure 2: General shape of a play in 2-player game where Edé&dam play positionally

the play must be in favor of the parity of the lowest prioritihis leads to the following assumptions on
the probabilitieR,’s.

Assumptions on the transition function. We consider the following assumptions Bys:
1
; R < 5 (Ao)
ve

and for allve V, let 3oy, = {u | p(u) odd p(u) > p(v)} andJgn= {u| p(u) even p(u) > p(v)}:
Z Puﬁ%'Pv (Al) Z Puﬁg'Pv (AZ)

uegy ucJgien

We provide the reader with intuitions on the three assumptidy) — (A2). The assumptionAg)
ensures that probabilities are small enough such that pia}$G) will last enough to take into account
the priorities seen infinitely often, and not only the firseenThe assumptiorig) and(A;) ensure that
if v has the lowest priority and is seen infinitely often, no nratteow often higher priorities are seen,
the outcome will only depend on the priority wand not on the others.

We present a sequence of properties to prove correctndss duction given the three assumptions
(Ao) — (A2) hold.

First note that the sdtvwin, Viose} IS reached with probability 1, since at each step there isdip®
probability to reach it. Another remark is that there is a-tm@ne correspondence between strategies in
G andfR(G), so we identify strategies iB or 53(G).

We will prove that for allv € V, Eve wins fromv if and only if (E) (Reachivyin))(v) > %

Thanks to Theorernl 1, there are memoryless optimal stratégiboth games: from now on, we
considero and 1 two memoryless strategies. Theyproperty is that the resulting play= (vo,v1,...)
has a simple shape (shown in Figlie 2): the play consists im@les path<? from vq to vi, and then a
simple cycle? is executed forever. Letbe the lowest priority infinitely visited,

TT= (Vo,V1,..-,Vi—1) - (M, Vi1, .., Vitg-1)*

wherep(vi;1) =¢, & ={Vo,V1,...Vi_1} and¥ = {Vi,Vi11,...,Vi1q-1} are pairwise disjoint.

We now consider the corresponding situatiodifG): the random walkit = m(vp, 0, T) mimics 1t
until it takes an edge tow Or Viese, Stopping the game. We denote fiythe random variable for thi&
vertex of 7i. Since the starting vertex and the strategies are fixed, WaltireviatePy, " by P.

We consider the possible different scenarios. There arepbsgsibilities to reachy, or vigse: the
firstis to reach it during the firdtstepsj.e during the simple path, the second is to reach it after tteat,
during the simple cycle, after the simple path has been edoss

Notations for events.We define, fov € {Vyin, Viose}, K, ] > 0 the following measurable events.
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e The event Readly, j) denotes that has been reached withjrstepsj.e, Reactty, j) = {r| 7f, = v}
(note that this is equivalent ot | Ji < j, 7§ = v}).

e The event Crogg) denotes that neitheky, nor Vigse has been reached withijnstepsij.e,
Crosgj) = {m| /7-\[1 ¢ {Vwin, Viose} } -

e The event ReachPdth) denotes thav has been reached withinsteps,i.e, ReachPatfv) =
Reactiv,|).

e The event CrossPath denotes that neithgr wmor vigse has been reached withinsteps,i.e,
CrossPath= Crosgl).

e The event ReachLodp k) denotes that has been reached within- k- g stepsij.e,
ReachLoogv, k) = Reacltv,| +k-q): intuitively, v has been reached either during the path or one
of thek first crossings of the loop.

e The event CrossLodf) denotes that neithery, nor Vigse has been reached within- k- g steps,
i.e, CrossLooyk) = Crosgl +k-q): intuitively, during the path and tHefirst crossings of the loop
neither yin NOr Vigse has been reached.

We define the following probabilities:
e a = P(CrossPathis the probability to cross the patt?;

e (3 =P(ReachLoofvyin,1) | CrossPathis the probability to reachyy, while following the simple
cycle % for the first time, assuming the pati was crossed, and similarly

e y=DP(ReachLoopviese, 1) | CrossPath

We take two steps: the first step is to approxiniatReactivyin)) andP(Reachviese)) usinga, B and
y, and the second is to make use of assumptidg$— (A2) to evaluaten, 3 andy.

Approximations for P(Reaclivyin)) and P(Reacliviose)). We rely on the following four properties.
Property 1. For k > 1, we haveP(ReachLoopvyin,K) | CrossLoogk — 1)) = 3 and similarly
P(ReachLoofvipse, K) | CrossLoopk — 1)) = .

Proof. Sinceo andt are memoryless, the random waiks “memoryless”: fromv;, crossing the loop
for the first time or for thek-th time will give the same probability to escape {@\vor Vigse- [ ]

Property 2. We have, for all k> 1, P(CrossLoogk — 1) | CrossPath= (1— (B +y))* 1.
Proof. By induction onk > 1. The casé = 1 follows from CrossLoof0) = CrossPath. Let > 1:

P(CrossLooyk) | CrossPath
= [PP(CrossLoopk) | CrossLoopk — 1)) - P(CrossLoopk — 1) | CrossPath
= (1-pB-y)-P(CrossLoogk— 1) | CrossPath

The first equality is a restatement and the second is a refsBitoperty 1. We conclude thanks to the
induction hypothesis. [

Property 3. We haveP(Reachvyin) | CrossPath= BBTV and similarlyP(Reachivipse) | CrossPath=

v
B+y-



K. Chatterjee & N. Fijalkow 81

A simple intuition on this calculation is by referring to aotiping” game. Eve and Adam play a
game divided in possibly infinitely many rounds. Each rouadesponds to cross the loop once: while
doing so, Eve wins with probabilitg, Adam wins with probabilityy and the round is a draw otherwise,
with probability 1— (3 + y). In case of a draw, the game goes on another round. Once a playethe
game is stopped, which corresponds to reagh @r vigse. In this game, Eve wins with probabilitzﬁ—y

and Adam with probabilit%.

Proof. We have the following equalities:

IP’(ReacvaW.n) | CrossPath
= Si.1P(ReachLoopvyin,k) N CrossLoogk — 1) | CrossPath

= Sr.1P(ReachLoopvyin, k) | CrossLoopk — 1)) - P(CrossLoogk — 1) | CrossPath

= YiaB (1= (B+y)t

_ B
B+y

The disjoint union Readl,in) N CrossPath= Wy-1(ReachLoopvyin, k) N CrossLoogk — 1)) gives the
first equality. The second is a restatement, the third egufaliows from Property P and Propefty 1. The
other equality is achieved by the same proof, replacing wy viose and using Properfyl 1 accordingi

Property 4. We haveP(Reachivyin)) > a - and similarlyP(Reactiviose)) > o - 5y

B+

The intuition behind these two equalities is that we try toage what happens while crossing the
path, as reaching eithegm or Viose iS Not correlated to the priorities seen infinitely oftentHis context,
the multiplicative constantr stands for the loss due to crossing the path. As soon as théspabssed,
what happens next will be correlated to the priorities saénitely often along the play. We will see that
the value of the looping game described above captures therog of the parity game.

+V

Proof. We have the following equalities:

P(Reachivwin)) = P(ReachPattvyin))+P(Reachvyin) N CrossPath
P(ReachPatfvyi,)) + P(CrossPath:- P(Reaclivyin ) | CrossPath
P(CrossPath: P(Reaclivyin) | CrossPath

B
o pry

v

From the disjoint union Reain) = ReachPattvyn) W (Reactivyin) N CrossPath follows the first
equality. The second is restatement, the inequality isgstifarward, the following equality is a restate-
ment and the last equality follows from Property 3 and definiof a. The other claim is achieved by
the same proof, replacing,y by Viese and using B accordingly. [ |

Approximations for a, 8 and y. Note that fori > 1, we haveP(7§ € {Vwin, Viose} | Ti—1 & {Vwin, Viose}) =
R, which follows from the construction k(G): taking an escape edge comes with probabiity

Property 5. Given the assumptiof?o) is satisfied, we have > g.

Intuitively, this property means that the loss due to cragshe path is bounded by a constant.
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Proof. Since the patt¥” is simple, each vertex is visited at most once. ILet{i | vi € 27} be the set of
vertices visited by this path. Then

~ ~ 1
l-o= Z]P)(Tﬂfl & {Vwin, Viose} N TE € {Vwin, Viose}) < vai < 5
i€ ic

The first equality follows from the disjoint union:

M\ CrossPath
= ReachPatfv|yse) U ReachPatfvy,)

= Wiar(Ti-1 & {Vwin, Viese} N 7§ € {Vwin, Viose})
The last inequality follows from assumptidAy). [ |

Property 6. Given the assumptiong\;) and (A;) are satisfied, if Eve wins the play(vo,0,7) in G,
then we have the following inequalities:

1) B
(2 vy

and similarly if Adam wins the plag(vo, 0, T) in G, then we have the following inequalities:

(1) Y > 2PVI+1
(2) B < §'PVI+1‘

IN IV
win
P

o

Intuitively, this property means that if Eve wins in the pagame, then the looping game is winning
for her with probability more thar%, and similarly if Adam wins in the parity game, then the loupi
game is winning for him with probability more th%}

Proof. We prove inequalities in both cases simultaneously.

1. It relies on the fact that the loop starts by gettingvto;, i.e that either, if Eve wins:Tj ; =
Vyin N CrossPatiC ReachLoopvyin, 1) N CrossPath, or if Adam wingg 1 = VjoseM CrossPattc
ReachLoofviese, 1) N CrossPath.

2. Assume Eve wins, let = {i | vi € € A p(v;) odd} be the set of vertices with odd priority visited
by the loop. Then

y= Zp(ﬁfl # VioseN = Viose) < Z_\ R
IS IS
(A1) allows to conclude, since., ;1 has the lowest priority of the loop, thusC Jo4"*. Similarly,
if Adam wins, the same proof using assumptiéa) concludes.

It follows from Property 4, b and]6 that under assumptiphg) — (A2), we have the desired equiva-
lence: Eve wins irG if and only if P(Reactviin)) > 3 in R(G).

Theorem 2. Under the three assumptioii8y) — (Az), we have: for alR-player arenas G equipped with
parity objectiveParity(p), R(G) equipped with reachability conditioReaclivyn ) is a simple stochastic

game with the stopping property, and for alEw , Eve wins for the parity condition from v in G if and
only if (E) (Reackivwin)) (V) > 3 in R(G).
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Transition probabilities. We now present transition probabilities satisfying theiagstions(Ag) — (A2)
that can be described witb(log(n)) bits. Letp:V — N the priority function inG, we first build an
equivalent parity functiorp’. We sort vertices with respect o and define the followingnonotone
mapping:

o the lowest priority becomes either 4 if it is even or 5 if odd;

e proceeding from the lowest to the greatest, a vertex is madithe lowest integer greater than the
last integer used, matching its parity.

This ensures that all priorities are distinct, and the higlpeiority is at most 8+ 2. Then, apply the
reductiontr with Pj = 2—1J We argue that the probability transition function satsfiay) — (A2). We

have
1 1

P<1+l+ =_<
V;V—% 22777876

Hence(Ap) is satisfied. Foral €V,

2
=3 R

NI =
wil b

1 1 1
uedzl

Hence(A;) is satisfied and a similar argument holds 85). Hence we have the following result.

Theorem 3. R is a polynomial-time reduction froi-player parity games to simple stochastic games.
Furthermore, for all2-player parity games$G, Parity(p)), the size of the stochastic arePG) is O(|E| -

log(|V))-

4 Reducing parity games to simple stochastic games

In this section, we discuss related works. Deciding the efirim parity games is equivalent to the model-
checking problem of modal mu-calculus. A reduction from elechecking games to simple stochastic
games was defined inl[7]. Another reduction, using a disemlintu-calculus, from concurrent parity

games to concurrent discounted games was presented in [f]in@nd was to propose a direct and
simple reduction from 2-player parity games to simple shstlc games. In the first subsection, we
discuss its efficiency compared to the previously knownetstep reduction. In the second subsection,
we use remarks from [5] to prove that solving stochastictpamiean-payoff, discounted-payoff games
as well as simple stochastic games is infUgdUP.

4.1 Discounting the discounted

In this subsection we present the classical sequence attreds: from 2-player parity games to 2-player
mean-payoff games|[6], from 2-player mean-payoff gamesptager discounted-payoff games [9], and
from 2-player discounted games to simple stochastic gafijes [

Parity games to mean-payoff gamesA 2-player parity game witlm vertices andl different priorities
can be reduced in polynomial time to a 2-player mean payafieggan the same arena using rewards
from the set{—n9, ... .n%}, such that Eve wins the parity game if and only if the value vé i the
mean-payoff game is at least/[0 [6].

Mean-payoff games to discounted-payoff game# 2-player mean payoff game withvertices whose
reward function ranges fromB to B can be reduced in polynomial time to a discounted-payoffeggam
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the same arena with discount facfosuch thath > 1— 4—‘5’]3 such that the value of Eve in the mean-payoff

game is at least 0 if and only if the value of Eve in the discedfayoff game is at least(0 [9].
Discounted-payoff games to simple stochastic gamesA 2-player discounted-payoff game with
vertices can be reduced in polynomial time to a simple s&tahgame using+ mvertices includingn
random vertices and-4n edges such that the value of Eve in the discounted-payofegamt least O if
and only if the value of Eve in the simple stochastic game ieaﬂt% [Ql.

Size of the resulting gamesWe now analyze the size of the games produced by the threecstegtion.
Let G a 2-player parity game havingvertices,m edges and distinct priorities. The first reduction to
a 2-player mean payoff game vyields a game witkiertices,m edges and rewards can be specified
with O(d-log(n)) bits. The second reduction to a discounted-payoff gameyial2-player game with

n vertices,m edges, rewards specified wi@(d - log(n)) bits and the discount factor specified with
O(d - log(n)) bits. Finally, the last reduction to a simple stochastic ganelds a game witin+ m
vertices, witmrandom vertices, 4nedges and each probability of transition specified Wit -log(n))
bits, thus the size of the transition functiond$m- (log(n+m)+d-log(n))) = O(m-d-log(n)). Since

d is O(n), in the worst case the size of the game obtained by the thepeaduction i€O(m-n-log(n)).

4.2 The complexity of stochastic games

Another motivation to present a clean and direct reductiomf2-player parity games to simple stochas-
tic games was to extend it from stochastic parity games t@lsiratochastic games. As for the de-
terministic case, such a reduction is known, but again tjmostochastic mean-payoff and stochastic
discounted-payoff, and is more involved [3]. Although wd dibt manage to adapt our proofs to extend
our direct reduction from stochastic parity games to singbehastic games, we believe it is possi-
ble. Our main difficulty is that the shape of a play, even iftbplayers play positionally, is no more a
“lasso-play”. Indeed, even if the parity condition is sidid with probability more than half, we cannot
guarantee that an even priority will be visited within a An@umber of steps.

In the remaining of this subsection, we gather several teanld make two very simple observations
of the result of Condori_[5] to prove that the decision probkemsimple stochastic games is in UP
coUP, in a similar fashion to the proof 6f [6], which was sthfigr the simpler case of 2-player discounted
games.

The reduction of stochastic parity to stochastic mean-fggmes was established i [3] and reduc-
tion of stochastic mean-payoff and discounted games tolsistpchastic games was established in [2].
The Figurd B summarizes all the reductions. We now arguestimle stochastic games can be decided
in UPN coUP.

Simple stochastic games itJPN coUP. First, it was shown in[]4] that simple stochastic games with
arbitrary rational transition probabilities can be redizepolynomial time to stopping simple stochastic
games where random vertices have two outgoing edges ealctpreivability half. Second, it follows
from the result of[[5] that the value vector ostppingsimple stochastic game is the unique solution of
the following equations set:

(E)(Vwin) =1
(E)(Viose) =0
(E)(v) = MaXyy)ee valg(V) if ve Ve
(E)(v) = miny,yce valg(V) if veVa
(E)(V) = 5 uw)ce O(wV) -vale(V)  if ve Vi
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9]

mean-payof discounted-payo

[6]

[9]
2-player

stochastic

stochastic parit simple stochastic ga@es

3] /5]
étochastic mean-pay [2] stochastic discounted-payoff

Figure 3: Reductions

Hence an algorithm can guess the value vector and checkt tbadtually the solution of the equation
set. To prove the desired result we need to show that the gaiespolynomial size and the verification
can be achieved in polynomial time. It follows from [4] that EBimple stochastic games withvertices
and all probabilities one half, the values are of the fguf, wherep,q are integers, & p,q < 4" 1,
Hence the length of the guess is at mostog(4"~1) = O(n?), which is polynomial. Thus the guess
is of polynomial size and the verification can be done in poiyial time. The unique solution implies
that simple stochastic games are in UP, and the coUP argusngymhmetric. Along with the reductions
of [2,[3] we obtain the following result.

Theorem 4 (Complexity of stochastic gameskor all stochastic arenas, for all objectivag such that
@ is a parity, mean-payoff, discounted-payoff or reachépitibjective, the decision problem of whether
(E)(@)(v) > q, for a rational number q is iPN coUP.

Acknowledgements. The second author thanks Florian Horn for his guidance apgati during the
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