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Games on graphs provide a natural model for reactive non-terminating systems. In such games, the
interaction of two players on an arena results in an infinite path that describes a run of the system.
Different settings are used to model various open systems incomputer science, as for instance turn-
based or concurrent moves, and deterministic or stochastictransitions. In this paper, we are interested
in turn-based games, and specifically in deterministic parity games and stochastic reachability games
(also known as simple stochastic games). We present a simple, direct and efficient reduction from
deterministic parity games to simple stochastic games: it yields an arena whose size is linear up to a
logarithmic factor in size of the original arena.

Keywords. Stochastic games, parity objectives, reachability objectives.

1 Introduction

Graph games.Graph games are used to model reactive systems. A finite directed graph, whose vertices
represent states and edges represent transitions, models the system. Its evolution consists in interactions
between a controller and the environment, which is naturally turned into a game on the graph between
two players, Eve and Adam. In the turn-based setting, in eachstate of the system, either the controller
chooses the evolution of the system (the corresponding vertex is then controlled by Eve), or the system
evolves in an uncertain way, then aiming at the worst-case scenario Adam controls the corresponding
vertex. This defines a 2-player arena as a finite directed graph and a partition of the vertex set into Eve
and Adam vertices. However, in many applications, systems are randomized, leading to the definition of
stochastic arenas: in addition to Eve and Adam vertices, thegraph also has random vertices where the
evolution is chosen according to a given probability distribution.

A pebble is initially placed on the vertex representing the initial state of the system, then Eve, Adam
and random move this pebble along the edges, constructing aninfinite sequence of vertices. The sequence
built describes a run of the system: Eve tries to ensure that it satisfies some specification of the system,
while Adam tries to spoil it.

Parity objectives. The theory of graph games withω-regular winning conditions is the foundation for
modelling and synthesizing reactive processes with fairness constraints. Theparity objectives provide
an adequate model, as the fairness constraints of reactive processes areω-regular, and everyω-regular
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winning condition can be specified as a parity objective [8].We consider 2-player games with parity
objectives: deciding the winner in polynomial time is a longstanding open question, despite many efforts
from a large community. The best known upper-bound is UP∩coUP [6].

Simple stochastic games.Considering probabilistic games instead of deterministicallows the descrip-
tion much more reactive systems by modelling uncertainty, but leads to higher complexity for corre-
sponding decision problems. We consider stochastic games with reachability objectives: a given vertex
is distinguished, and Eve tries to reach it. Those games wereintroduced by Condon, and named simple
stochastic games [4]. We consider the following decision problem: can Eve ensure to reach the target
vertex with probability more than half? As for the above decision problem, the best known upper-bound
is NP∩coNP [4].

Reduction: from parity games to simple stochastic games.The notion of reduction between games
is an important aspect in the study of games as it allows to understand which classes of games are
subsumed by others. A classical reduction of 2-player parity games to simple stochastic games is through
a sequence of three reductions: (a) from 2-player parity games to 2-player mean-payoff (or limit-average)
games [6]; (b) from 2-player mean-payoff games to 2-player discounted-payoff games [9]; and (c) from
2-player discounted-payoff games to stochastic reachability games [9]. The sequence of reductions yields
the following result: given a 2-player parity game withn vertices,m edges, and a parity objective with
d priorities, the simple stochastic game obtained through the sequence of reductions hasn+m vertices,
includingm probabilistic ones, 4·medges and the size of the arena isO(m·d · log(n)).

Our results: we present a direct reduction of 2-player parity games to simple stochastic games, and thus
show that one can discount the step of going through mean-payoff and discounted games. Moreover, our
reduction is more efficient: given a 2-player parity game with n vertices,medges, and a parity objective
with d priorities, the simple stochastic game obtained by our direct reduction hasn+m vertices among
which m are probabilistic, 3·m edges and the size of the arena isO(m· log(n)). Finally, we conclude
following proof ideas from [5] that the decision problem forsimple stochastic games is in UP∩ coUP,
and from [2, 3] we obtain that the decision problems in stochastic parity, mean-payoff and discounted
games all are in UP∩coUP.

2 Definitions

Given a finite setA, a probability distributionµ onA is a functionµ : A→ [0,1] such that∑a∈A µ(a) = 1.
We denote byD(A) the set of all probability distributions onA.

Stochastic arena. A stochastic (or 21/2-player) arenaG = ((V,E),(VE ,VA,VR),δ ) consists of a finite
directed graph(V,E) with vertex setV and edge setE, a partition(VE,VA,VR) of the vertex setV and a
probabilistic transition functionδ :VR→D(V) that given a vertex inVR gives the probability of transition
to the next vertex. Eve chooses the successor of vertices inVE, while Adam chooses the successor of
vertices inVA; vertices inVR are random vertices and their successor is chosen accordingto δ . We assume
that for allu∈VR andv∈V we have(u,v) ∈ E if and only if δ (u)(v)> 0. We assume that the underlying
graph has no deadlock: every vertex has a successor. The special case whereVR = /0 corresponds to
2-player arenas (for those we omitδ from the description of the arena).

Size of an arena.The size of a stochastic arenaG=((V,E),(VE,VA,VR),δ ) is the number of bits required
to store it:

size(G) = log(n)︸ ︷︷ ︸
vertices

+2·m· log(n)︸ ︷︷ ︸
edges

+n+nR · log(n)︸ ︷︷ ︸
vertex partition

+ size(δ )︸ ︷︷ ︸
probabilistic transitions



76 From parity games to simple stochastic games

wheren= |V|, m= |E|, nR = |VR| and size(δ ) = ∑u∈VR ∑v∈V |δ (u)(v)|, where|δ (u)(v)| is the length of
the binary representation ofδ (u)(v).

Plays and strategies.A play π in a stochastic arenaG is an infinite sequence〈v0,v1,v2, . . .〉 of vertices
such that for alli ≥ 0 we have(vi ,vi+1) ∈ E. We denote byΠ the set of all plays. Astrategyfor a
player is a recipe that prescribes how to play,i.e, given a finite history of play, a strategy defines the next
move. Formally, a strategy for Eve is a functionσ : V∗ ·VE →V such that for allw∈V∗ andv∈VE we
have(v,σ(w · v)) ∈ E. We define strategies for Adam analogously, and denote byΣ andΓ the set of all
strategies for Eve and Adam, respectively. A strategy ismemoryless, or positional if it is independent
of the history of play and only depends on the current vertex,i.e, for all w,w′ ∈V∗ andv∈VE we have
σ(w ·v) = σ(w′ ·v). Hence a memoryless strategy can be described as a functionσ : VE →V.

Once a starting vertexv∈V and strategiesσ for Eve andτ for Adam are fixed, the outcome of the
game is a random walkπ(v,σ ,τ) for which the probabilities of events are uniquely defined, where an
eventA ⊆ Π is a measurable set of plays. For an eventA ⊆ Π, we writePσ ,τ

v (A ) for the probability
that a play belongs toA if the game starts from the vertexv and the players follow the strategiesσ and
τ . In case of 2-player arenas, if we fix positional strategiesσ , τ , and a starting vertexv, then the play
π(v,σ ,τ) obtained is unique and consists in a simple path〈v0,v1, . . .vl−1〉 and a cycle〈vl ,vl+1, . . . ,vk〉
executed infinitely often,i.e, the play is a “lasso-play”:〈v0,v1, . . . ,vl−1〉 · 〈vl ,vl+1, . . . ,vk〉

ω .

Qualitative objectives. We specifyqualitativeobjectives for the players by providing a set ofwinning
playsΦ ⊆ Π for each player. We say that a playπ satisfiesthe objectiveΦ if π ∈ Φ. We study only zero-
sum games, where the objectives of the two players are complementary,i.e, if Eve has the objectiveΦ,
then Adam has the objectiveΠ\Φ.

• Reachability objectives.Given a setT ⊆V of “target” vertices, the reachability objective requires
that some vertex ofT be visited. The set of winning plays is Reach(T) = {〈v0,v1,v2, . . .〉 ∈ Π |
vk ∈ T for somek≥ 0}.

• Parity objectives.Let p : V → N be a function that assigns apriority p(v) to every vertexv∈V.
For a playπ = 〈v0,v1, . . .〉 ∈ Π, we define Inf(π) = {v ∈ V | vk = v for infinitely manyk} to be
the set of vertices that occur infinitely often inπ. Theparity objectiveis defined as Parity(p) =
{π ∈ Π | min(p(Inf(π))) is even}. In other words, the parity objective requires that the minimum
priority visited infinitely often is even.

Quantitative objectives. A quantitativeobjective is specified as a measurable functionf : Π → R. In
zero-sum games the objectives of the players are functionsf and− f , respectively. We consider two
classes of quantitative objectives, namely, mean-payoff and discounted-payoff objectives.

• Mean-payoff objectives.Let r :V →R be a real-valued reward function that assigns to every vertex
v the rewardr(v). Themean-payoffobjective MeanPayoff(r) assigns to every play the “long-run”
average of the rewards appearing in the play. Formally, for aplay π = 〈v0,v1,v2, . . .〉 we have

MeanPayoff(r)(π) = lim inf
n→∞

1
n+1

·
n

∑
i=0

r(vi)

• Discounted-payoff objectives.Let r : V → R be a reward function and 0< λ < 1 be a discount
factor, the discounted-payoff objective DiscPayoff(λ , r) assigns to every play the discounted sum
of the rewards in the play. Formally, for a playπ = 〈v0,v1,v2, . . .〉 we have

DiscPayoff(λ , r)(π) = (1−λ ) · lim
n→∞

n

∑
i=0

λ i · r(vi)
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Values and optimal strategies.Given objectivesΦ ⊆ Π for Eve andΠ \Φ for Adam, and measurable
functions f and− f for Eve and Adam, respectively, we define thevaluefunctions〈E〉 and〈A〉 for Eve
and Adam, respectively, as the following functions from thevertex spaceV to the setR of reals: for all
verticesv∈V, let

〈E〉(Φ)(v) = sup
σ∈Σ

inf
τ∈Γ

Pσ ,τ
v (Φ); 〈E〉( f )(v) = sup

σ∈Σ
inf
τ∈Γ

Eσ ,τ
v [ f ];

〈A〉(Π\Φ)(v) = sup
τ∈Γ

inf
σ∈Σ

Pσ ,τ
v (Π\Φ); 〈A〉(− f )(v) = sup

τ∈Γ
inf
σ∈Σ

Eσ ,τ
v [− f ].

In other words, the values〈E〉(Φ)(v) and〈E〉( f )(v) give the maximal probability and expectation
with which Eve can achieve her objectivesΦ and f from vertexv, and analogously for Adam. The
strategies that achieve those values are called optimal: a strategyσ for Eve isoptimal from the vertexv
for the objectiveΦ if 〈E〉(Φ)(v) = infτ∈ΓP

σ ,τ
v (Φ); andσ is optimalfrom the vertexv for f if 〈E〉( f )(v) =

infτ∈ΓE
σ ,τ
v [ f ]. The optimal strategies for Adam are defined analogously.

Theorem 1(Memoryless determinacy [9]). For all stochastic arenas,

1. For all objectivesΦ such thatΦ is either a reachability or a parity objective, for all vertices v we
have

〈E〉(Φ)(v)+ 〈A〉(Π\Φ)(v) = 1.

Memoryless optimal strategies exist for both players from all vertices. Furthermore, for the case
of 2-player arena, then for all v∈V, 〈E〉(Φ)(v) ∈ {0,1}.

2. For all objectives f: Π → R such that f is either a mean-payoff or discounted-payoff objective,
for all vertices v we have

〈E〉( f )(v)+ 〈A〉(− f )(v) = 0.

Memoryless optimal strategies exist for both players from all vertices.

Games.A stochastic game is given by an arena and an objective. As a special case, a 2-player game is
given by a 2-player arena and an objective. For instance, a 2-player parity game is a couple(G,Parity(p)),
whereG is a 2-player arena, and a stochastic reachability game is a couple(G,Reach(T)), whereG is a
stochastic arena.

We define simple stochastic games to be special case of stochastic reachability game whereV con-
tains two distinguished absorbing vertices vwin and vlose and the reachability set isT = {vwin}. Once
a play reached one of the two vertices vwin or vlose, the game is stopped as its outcome is fixed. A
simple stochastic game has the stopping property if for all strategiesσ and τ and all verticesv ∈ V,
P

σ ,τ
v (Reach{vwin,vlose}) = 1.

Decision problems for games.Given an arenaG, an objectiveΦ, a starting vertexv∈V and a rational
thresholdq∈Q, the decision problem we consider is whether〈E〉(Φ)(v)≥ q. It follows from Theorem 1
that in 2-player arenas, with a parity objective Parity(p), for a vertexv we have〈E〉(Parity(p))(v) ∈
{0,1}. If the value is 1, then we say that Eve is winning, otherwise Adam is winning.

3 A direct reduction

In this section, we present a direct reduction to show that determining the winner in 2-player parity games
can be reduced to the decision problem of simple stochastic games with the threshold12. Specifically,
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u v

If v is even u v
1−Pv

Pv

If v is odd u v
1−Pv

Pv

Figure 1: From parity games to simple stochastic games

from a 2-player parity game(G,Parity(p)) and a starting vertexv we show how to construct in polyno-
mial time a stochastic arenaR(G) with a reachability objective Reach(vwin) such that Eve is winning in
G from v for the parity condition if and only if〈E〉(Reach(vwin))(v)≥ 1

2 in R(G).

Construction of the stochastic arena.We now present the construction of a stochastic arenaR(G):

R(G) = ((V ⊎E⊎{vwin,vlose},E
′),(VE ⊎{vwin},VA⊎{vlose},E),δ ) ,

where⊎ denotes the disjoint union. The set of edges and the transition function is as follows:

E′ = {(u,(u,v));((u,v),v);((u,v),vwin ) | (u,v) ∈ E, p(v) even}
∪ {(u,(u,v));((u,v),v);((u,v),vlose) | (u,v) ∈ E, p(v) odd}
∪ {(vwin,vwin);(vlose,vlose)}

.

The transition functionδ is defined as follows: ifp(v) is even,δ ((u,v))(vwin)=Pv andδ ((u,v))(v) =
1−Pv, if p(v) is odd,δ ((u,v))(vlose) = Pv andδ ((u,v))(v) = 1−Pv. We will describePv as reals in the
interval(0,1) satisfying certain conditions, and we will prove correctness of the reduction as long as the
conditions are satisfied.

We present a pictorial description of the reduction in Figure 1: for each edge(u,v) ∈ E, we consider
the simple gadget, ifp(v) is even (resp. odd), that has an edge to the sink vwin (resp. vlose) with probability
Pv, and follows the original edge otherwise with probability 1−Pv. Hexagonal vertices can be either Eve’s
or Adam’s and triangle vertices are random vertices. vwin will be depicted by a smiling face and vlose by
a sad face.

The new arena simulates the initial arena, and additionallyfeatures two absorbing vertices vwin and
vlose. To simulate a transition fromu to v, the new arena includes a random vertex that follows the
transition with high probability 1−Pv or stops the game by going to vwin or vlose with small probability
Pv. The intuition is that ifv has even priority, then Eve is rewarded to visit it by having asmall yet
positive chance of winning, and symmetrically ifv has odd priority for Adam.

Playing forever inR(G), the outcome of the play will be favorable for Eve (i.e reach vwin) if she
manages to see even priorities many times. Furthermore, thereward a player receives for visiting a
vertex with good priority must depend on this priority: seeing a very small even priority gives more
chance to win than a higher one. Indeed, if different priorities are seen infinitely often, the outcome of
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v0 vl

vl+1

Figure 2: General shape of a play in 2-player game where Eve and Adam play positionally

the play must be in favor of the parity of the lowest priority.This leads to the following assumptions on
the probabilitiesPv’s.

Assumptions on the transition function.We consider the following assumptions onPv’s:

∑
v∈V

Pv ≤
1
6

(A0)

and for allv∈V, let J>v
odd= {u | p(u) odd, p(u) > p(v)} andJ>v

even= {u | p(u) even, p(u) > p(v)}:

∑
u∈J>v

odd

Pu ≤
2
3
·Pv (A1) ∑

u∈J>v
even

Pu ≤
2
3
·Pv (A2)

We provide the reader with intuitions on the three assumptions (A0)− (A2). The assumption(A0)
ensures that probabilities are small enough such that playsin R(G) will last enough to take into account
the priorities seen infinitely often, and not only the first ones. The assumptions(A1) and(A2) ensure that
if v has the lowest priority and is seen infinitely often, no matters how often higher priorities are seen,
the outcome will only depend on the priority ofv and not on the others.

We present a sequence of properties to prove correctness of the reduction given the three assumptions
(A0)− (A2) hold.

First note that the set{vwin,vlose} is reached with probability 1, since at each step there is a positive
probability to reach it. Another remark is that there is a one-to-one correspondence between strategies in
G andR(G), so we identify strategies inG orR(G).

We will prove that for allv∈V, Eve wins fromv if and only if 〈E〉(Reach(vwin))(v)≥ 1
2.

Thanks to Theorem 1, there are memoryless optimal strategies in both games: from now on, we
considerσ andτ two memoryless strategies. Thekeyproperty is that the resulting playπ = 〈v0,v1, . . .〉
has a simple shape (shown in Figure 2): the play consists in a simple pathP from v0 to vl , and then a
simple cycleC is executed forever. Letc be the lowest priority infinitely visited,

π = 〈v0,v1, . . . ,vl−1〉 · 〈vl ,vl+1, . . . ,vl+q−1〉
ω

wherep(vl+1) = c, P = {v0,v1, . . .vl−1} andC = {vl ,vl+1, . . . ,vl+q−1} are pairwise disjoint.
We now consider the corresponding situation inR(G): the random walk̂π = π(v0,σ ,τ) mimicsπ

until it takes an edge to vwin or vlose, stopping the game. We denote byπ̂i the random variable for theith

vertex ofπ̂. Since the starting vertex and the strategies are fixed, we will abbreviatePσ ,τ
v0 by P.

We consider the possible different scenarios. There are twopossibilities to reach vwin or vlose: the
first is to reach it during the firstl steps,i.e during the simple path, the second is to reach it after that,i.e
during the simple cycle, after the simple path has been crossed.

Notations for events.We define, forv∈ {vwin,vlose},k, j ≥ 0 the following measurable events.



80 From parity games to simple stochastic games

• The event Reach(v, j) denotes thatv has been reached withinj steps,i.e, Reach(v, j) = {π | π̂ j = v}
(note that this is equivalent to{π | ∃i ≤ j, π̂i = v}).

• The event Cross( j) denotes that neither vwin nor vlose has been reached withinj steps,i.e,
Cross( j) = {π | π̂ j /∈ {vwin,vlose}}.

• The event ReachPath(v) denotes thatv has been reached withinl steps, i.e, ReachPath(v) =
Reach(v, l).

• The event CrossPath denotes that neither vwin nor vlose has been reached withinl steps, i.e,
CrossPath= Cross(l).

• The event ReachLoop(v,k) denotes thatv has been reached withinl +k ·q steps,i.e,
ReachLoop(v,k) = Reach(v, l +k ·q): intuitively, v has been reached either during the path or one
of thek first crossings of the loop.

• The event CrossLoop(k) denotes that neither vwin nor vlose has been reached withinl +k ·q steps,
i.e, CrossLoop(k) =Cross(l +k·q): intuitively, during the path and thek first crossings of the loop
neither vwin nor vlose has been reached.

We define the following probabilities:

• α = P(CrossPath) is the probability to cross the pathP;

• β = P(ReachLoop(vwin,1) | CrossPath) is the probability to reach vwin while following the simple
cycleC for the first time, assuming the pathP was crossed, and similarly

• γ = P(ReachLoop(vlose,1) | CrossPath).

We take two steps: the first step is to approximateP(Reach(vwin)) andP(Reach(vlose)) usingα , β and
γ , and the second is to make use of assumptions(A0)− (A2) to evaluateα , β andγ .

Approximations for P(Reach(vwin)) and P(Reach(vlose)). We rely on the following four properties.

Property 1. For k≥ 1, we haveP(ReachLoop(vwin,k) | CrossLoop(k−1)) = β and similarly
P(ReachLoop(vlose,k) | CrossLoop(k−1)) = γ .

Proof. Sinceσ andτ are memoryless, the random walkπ̂ is “memoryless”: fromvl , crossing the loop
for the first time or for thek-th time will give the same probability to escape to vwin or vlose.

Property 2. We have, for all k≥ 1, P(CrossLoop(k−1) | CrossPath) = (1− (β + γ))k−1.

Proof. By induction onk≥ 1. The casek= 1 follows from CrossLoop(0) = CrossPath. Letk> 1:

P(CrossLoop(k) | CrossPath)
= P(CrossLoop(k) | CrossLoop(k−1)) ·P(CrossLoop(k−1) | CrossPath)
= (1−β − γ) ·P(CrossLoop(k−1) | CrossPath)

The first equality is a restatement and the second is a result of Property 1. We conclude thanks to the
induction hypothesis.

Property 3. We haveP(Reach(vwin) | CrossPath) = β
β+γ and similarlyP(Reach(vlose) | CrossPath) =

γ
β+γ .
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A simple intuition on this calculation is by referring to a “looping” game. Eve and Adam play a
game divided in possibly infinitely many rounds. Each round corresponds to cross the loop once: while
doing so, Eve wins with probabilityβ , Adam wins with probabilityγ and the round is a draw otherwise,
with probability 1− (β + γ). In case of a draw, the game goes on another round. Once a player won, the
game is stopped, which corresponds to reach vwin or vlose. In this game, Eve wins with probabilityβ

β+γ
and Adam with probability γ

β+γ .

Proof. We have the following equalities:

P(Reach(vwin) | CrossPath)
= ∑∞

k=1P(ReachLoop(vwin,k)∩CrossLoop(k−1) | CrossPath)

= ∑∞
k=1P(ReachLoop(vwin,k) | CrossLoop(k−1)) ·P(CrossLoop(k−1) | CrossPath)

= ∑∞
k=1 β · (1− (β + γ))k−1

= β
β+γ

The disjoint union Reach(vwin)∩CrossPath= ⊎k≥1(ReachLoop(vwin,k)∩CrossLoop(k−1)) gives the
first equality. The second is a restatement, the third equality follows from Property 2 and Property 1. The
other equality is achieved by the same proof, replacing vwin by vlose and using Property 1 accordingly.

Property 4. We haveP(Reach(vwin))≥ α · β
β+γ and similarlyP(Reach(vlose))≥ α · γ

β+γ .

The intuition behind these two equalities is that we try to ignore what happens while crossing the
path, as reaching either vwin or vlose is not correlated to the priorities seen infinitely often. Inthis context,
the multiplicative constantα stands for the loss due to crossing the path. As soon as the path is crossed,
what happens next will be correlated to the priorities seen infinitely often along the play. We will see that
the value of the looping game described above captures the outcome of the parity game.

Proof. We have the following equalities:

P(Reach(vwin)) = P(ReachPath(vwin))+P(Reach(vwin)∩CrossPath)
= P(ReachPath(vwin))+P(CrossPath) ·P(Reach(vwin) | CrossPath)
≥ P(CrossPath) ·P(Reach(vwin) | CrossPath)

= α · β
β+γ

From the disjoint union Reach(vwin) = ReachPath(vwin)⊎ (Reach(vwin)∩CrossPath) follows the first
equality. The second is restatement, the inequality is straightforward, the following equality is a restate-
ment and the last equality follows from Property 3 and definition of α . The other claim is achieved by
the same proof, replacing vwin by vlose and using 3 accordingly.

Approximations for α , β and γ . Note that fori ≥ 1, we haveP(π̂i ∈ {vwin,vlose} | π̂i−1 /∈ {vwin,vlose}) =
Pvi , which follows from the construction ofR(G): taking an escape edge comes with probabilityPvi .

Property 5. Given the assumption(A0) is satisfied, we haveα ≥ 5
6.

Intuitively, this property means that the loss due to crossing the path is bounded by a constant.
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Proof. Since the pathP is simple, each vertex is visited at most once. LetI = {i | vi ∈ P} be the set of
vertices visited by this path. Then

1−α = ∑
i∈I

P(π̂i−1 6∈ {vwin,vlose}∩ π̂i ∈ {vwin,vlose})≤ ∑
i∈I

Pvi ≤
1
6

The first equality follows from the disjoint union:

Π\CrossPath
= ReachPath(vlose)∪ReachPath(vwin)
= ⊎i∈I (π̂i−1 6∈ {vwin,vlose}∩ π̂i ∈ {vwin,vlose})

The last inequality follows from assumption(A0).

Property 6. Given the assumptions(A1) and (A2) are satisfied, if Eve wins the playπ(v0,σ ,τ) in G,
then we have the following inequalities:

(1) β ≥ Pvl+1

(2) γ ≤ 2
3 ·Pvl+1

and similarly if Adam wins the playπ(v0,σ ,τ) in G, then we have the following inequalities:

(1) γ ≥ Pvl+1

(2) β ≤ 2
3 ·Pvl+1.

Intuitively, this property means that if Eve wins in the parity game, then the looping game is winning
for her with probability more than23, and similarly if Adam wins in the parity game, then the looping
game is winning for him with probability more than23.

Proof. We prove inequalities in both cases simultaneously.

1. It relies on the fact that the loop starts by getting tovl+1, i.e that either, if Eve wins:π̂l+1 =
vwin ∩CrossPath⊆ ReachLoop(vwin,1)∩CrossPath, or if Adam wins:̂πl+1 = vlose∩CrossPath⊆
ReachLoop(vlose,1)∩CrossPath.

2. Assume Eve wins, letJ = {i | vi ∈ C ∧ p(vi) odd} be the set of vertices with odd priority visited
by the loop. Then

γ = ∑
i∈J

P(π̂i−1 6= vlose∩ π̂i = vlose)≤ ∑
i∈J

Pvi

(A1) allows to conclude, sincevl+1 has the lowest priority of the loop, thusJ ⊆ J>vl+1
odd . Similarly,

if Adam wins, the same proof using assumption(A2) concludes.

It follows from Property 4, 5 and 6 that under assumptions(A0)− (A2), we have the desired equiva-
lence: Eve wins inG if and only if P(Reach(vwin))≥

1
2 in R(G).

Theorem 2. Under the three assumptions(A0)−(A2), we have: for all2-player arenas G equipped with
parity objectiveParity(p), R(G) equipped with reachability conditionReach(vwin) is a simple stochastic
game with the stopping property, and for all v∈V, Eve wins for the parity condition from v in G if and
only if 〈E〉(Reach(vwin))(v)≥ 1

2 in R(G).
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Transition probabilities. We now present transition probabilities satisfying the assumptions(A0)−(A2)
that can be described withO(log(n)) bits. Let p : V → N the priority function inG, we first build an
equivalent parity functionp′. We sort vertices with respect top and define the followingmonotone
mapping:

• the lowest priority becomes either 4 if it is even or 5 if odd;

• proceeding from the lowest to the greatest, a vertex is assigned the lowest integer greater than the
last integer used, matching its parity.

This ensures that all priorities are distinct, and the highest priority is at most 2n+ 2. Then, apply the
reductionR with Pj =

1
2j . We argue that the probability transition function satisfies (A0)− (A2). We

have

∑
v∈V

Pv ≤
1
24 +

1
25 + . . .=

1
8
≤

1
6

Hence(A0) is satisfied. For allv∈V,

∑
u∈J>v

odd

Pu ≤ Pv ·

(
1
2
+

1
2·22 +

1
2·24 + . . .

)
= Pv ·

1
2
·
4
3
=

2
3
·Pv

Hence(A1) is satisfied and a similar argument holds for(A2). Hence we have the following result.

Theorem 3. R is a polynomial-time reduction from2-player parity games to simple stochastic games.
Furthermore, for all2-player parity games(G,Parity(p)), the size of the stochastic arenaR(G) is O(|E| ·
log(|V|)).

4 Reducing parity games to simple stochastic games

In this section, we discuss related works. Deciding the winner in parity games is equivalent to the model-
checking problem of modal mu-calculus. A reduction from model-checking games to simple stochastic
games was defined in [7]. Another reduction, using a discounted mu-calculus, from concurrent parity
games to concurrent discounted games was presented in [1]. Our intend was to propose a direct and
simple reduction from 2-player parity games to simple stochastic games. In the first subsection, we
discuss its efficiency compared to the previously known three step reduction. In the second subsection,
we use remarks from [5] to prove that solving stochastic parity, mean-payoff, discounted-payoff games
as well as simple stochastic games is in UP∩coUP.

4.1 Discounting the discounted

In this subsection we present the classical sequence of reductions: from 2-player parity games to 2-player
mean-payoff games [6], from 2-player mean-payoff games to 2-player discounted-payoff games [9], and
from 2-player discounted games to simple stochastic games [9].

Parity games to mean-payoff games.A 2-player parity game withn vertices andd different priorities
can be reduced in polynomial time to a 2-player mean payoff game on the same arena using rewards
from the set{−nd, . . . ,nd}, such that Eve wins the parity game if and only if the value of Eve in the
mean-payoff game is at least 0 [6].

Mean-payoff games to discounted-payoff games.A 2-player mean payoff game withn vertices whose
reward function ranges from−B to B can be reduced in polynomial time to a discounted-payoff game on
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the same arena with discount factorλ such thatλ ≥ 1− B
4n3 such that the value of Eve in the mean-payoff

game is at least 0 if and only if the value of Eve in the discounted-payoff game is at least 0 [9].

Discounted-payoff games to simple stochastic games.A 2-player discounted-payoff game withn
vertices can be reduced in polynomial time to a simple stochastic game usingn+mvertices includingm
random vertices and 4·m edges such that the value of Eve in the discounted-payoff game is at least 0 if
and only if the value of Eve in the simple stochastic game is atleast1

2 [9].

Size of the resulting games.We now analyze the size of the games produced by the three stepreduction.
Let G a 2-player parity game havingn vertices,m edges andd distinct priorities. The first reduction to
a 2-player mean payoff game yields a game withn vertices,m edges and rewards can be specified
with O(d · log(n)) bits. The second reduction to a discounted-payoff game yields a 2-player game with
n vertices,m edges, rewards specified withO(d · log(n)) bits and the discount factor specified with
O(d · log(n)) bits. Finally, the last reduction to a simple stochastic game yields a game withn+m
vertices, withmrandom vertices, 4·medges and each probability of transition specified withO(d· log(n))
bits, thus the size of the transition function isO(m· (log(n+m)+d · log(n))) = O(m·d · log(n)). Since
d is O(n), in the worst case the size of the game obtained by the three step reduction isO(m·n· log(n)).

4.2 The complexity of stochastic games

Another motivation to present a clean and direct reduction from 2-player parity games to simple stochas-
tic games was to extend it from stochastic parity games to simple stochastic games. As for the de-
terministic case, such a reduction is known, but again through stochastic mean-payoff and stochastic
discounted-payoff, and is more involved [3]. Although we did not manage to adapt our proofs to extend
our direct reduction from stochastic parity games to simplestochastic games, we believe it is possi-
ble. Our main difficulty is that the shape of a play, even if both players play positionally, is no more a
“lasso-play”. Indeed, even if the parity condition is satisfied with probability more than half, we cannot
guarantee that an even priority will be visited within a linear number of steps.

In the remaining of this subsection, we gather several results and make two very simple observations
of the result of Condon [5] to prove that the decision problemfor simple stochastic games is in UP∩
coUP, in a similar fashion to the proof of [6], which was stated for the simpler case of 2-player discounted
games.

The reduction of stochastic parity to stochastic mean-payoff games was established in [3] and reduc-
tion of stochastic mean-payoff and discounted games to simple stochastic games was established in [2].
The Figure 3 summarizes all the reductions. We now argue thatsimple stochastic games can be decided
in UP∩coUP.

Simple stochastic games inUP∩ coUP. First, it was shown in [4] that simple stochastic games with
arbitrary rational transition probabilities can be reduced in polynomial time to stopping simple stochastic
games where random vertices have two outgoing edges each with probability half. Second, it follows
from the result of [5] that the value vector of astoppingsimple stochastic game is the unique solution of
the following equations set:





〈E〉(vwin) = 1
〈E〉(vlose) = 0
〈E〉(v) = max(v,v′)∈E valE(v′) if v∈VE

〈E〉(v) = min(v,v′)∈E valE(v′) if v∈VA

〈E〉(v) = ∑(v,v′)∈E δ (v,v′) ·valE(v′) if v∈VR
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parity

mean-payoff discounted-payoff

simple stochastic gamesstochastic parity

stochastic mean-payoff stochastic discounted-payoff

[6]
[9]

[9]
R

[3]

[2]

[2]

2-player

stochastic

Figure 3: Reductions

Hence an algorithm can guess the value vector and check that it is actually the solution of the equation
set. To prove the desired result we need to show that the guessis of polynomial size and the verification
can be achieved in polynomial time. It follows from [4] that for simple stochastic games withn vertices
and all probabilities one half, the values are of the formp/q, wherep,q are integers, 0≤ p,q ≤ 4n−1.
Hence the length of the guess is at mostn · log(4n−1) = O(n2), which is polynomial. Thus the guess
is of polynomial size and the verification can be done in polynomial time. The unique solution implies
that simple stochastic games are in UP, and the coUP argumentis symmetric. Along with the reductions
of [2, 3] we obtain the following result.

Theorem 4 (Complexity of stochastic games). For all stochastic arenas, for all objectivesφ such that
φ is a parity, mean-payoff, discounted-payoff or reachability objective, the decision problem of whether
〈E〉(φ)(v) ≥ q, for a rational number q is inUP∩coUP.
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