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This paper deals with the problem of point-to-point reachability in multi-linear systems. These sys-
tems consist of a partition of the Euclidean space into a finite number of regions and a constant
derivative assigned to each region in the partition, which governs the dynamical behavior of the sys-
tem within it. The reachability problem for multi-linear systems has been proven to be decidable for
the two-dimensional case and undecidable for the dimensionthree and higher. Multi-linear systems
however exhibit certain properties that make them very suitable for topological analysis. We prove
that reachability can be decided exactly in the 3-dimensional case when systems satisfy certain con-
ditions. We show with experiments that our approach can be orders of magnitude more efficient than
simulation.

1 Introduction

During the last decades a lot of devices have been developed that consist of computers interacting with
a physical environment. Computers perform discrete operations, while a physical environment has con-
tinuous dynamics. Such systems are called hybrid systems. Many of the applications of hybrid systems,
such as intelligent highway systems, air traffic managementsystems and others aresafety criticaland
require the guarantee of a safe operation.

Formally verifying safety properties of hybrid systems consists of building a set of reachable states
and checking if this set intersects with a set of unsafe states. Therefore one of the most fundamental
problems in the analysis of hybrid systems is thereachabilityproblem.

The reachability problem is known as being difficult. It has been shown to be decidable for special
kinds of hybrid automata [1, 7, 9, 10, 11] including timed automata [1], some classes of rectangular
hybrid automata [7] and o-minimal hybrid automata [9].

Since only certain kinds of hybrid systems allow for the exact computation of the reachable set,
approaches for safety verification include the approximation of reachability analysis and abstraction
techniques. But these techniques are easy to fail when applied to large systems since the complexity
rises up very quickly with an increase in system size.

One of the drawbacks of approximation and propagation techniques is that too little attention is paid
to the geometric properties of the systems under analysis [3]. There are two main approaches in this
direction: 1) methods that use topological properties of the plane [12], and 2) techniques based on the
existence of integrals and the ability to compute them [5].

In this paper we considermulti-linear systems(ML) also often calledpiecewise constant derivative
systems(PCDs) in the literature. They are a special kind of hybrid system, where the number of dimen-
sions refers to the number of continuous variables. Such systems satisfy the following restrictions: A
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discrete state is defined by a set of linear constraints and discrete transitions do not change continuous
variables. ML systems have been proven to be decidable for the two-dimensional case [12], whereas the
results presented in [2] state that such systems are undecidable for the dimension three and higher.

The decidability results for the 2-dimensional case rely onthe existence of a periodic trajectory after
a finite number of steps. This property does not hold for higher dimensions. Nevertheless, 3-dimensional
systems also feature some sort of regularity. And, as in the 2-dimensional case, 3-dimensional multi-
linear systems exhibit certain properties that make them very suitable for topological analysis.

Contribution. We consider a subclass of multi-linear systems, that we call multi-linear λ -systems.
These systems satisfy the following property: If there is a cyclic trajectory, then the the points of each
cycle iteration intersecting the same boundary element of apolyhedron lie on a straight line. A straight-
forward consequence of this assumption is that the distances between the corresponding boundary points
of different rounds are proportional (λ -property). We introduce the notion of a hypercycle, a generaliza-
tion of a cycle. The infinity criterion for 2-dimensional case, refer to [12], has an analog in 3 dimensions.
We show that theλ -property holds also for hypercycles, and the reachabilitycan be decided exactly if
the derived infinity criterion for 3 dimensions holds for a hypercycle.

We have implemented our approach and compared it with simulation. As soon as our algorithm de-
tects a cycle (or a hypercycle) for which the given infinity criterion holds, the algorithm requires constant
number of steps. While the number steps for simulation growsexponentially with the distance between
points. Algorithms for computing reachable states are often based on floating point computations that
involve rounding errors and the correctness of such algorithms can be violated. Since our algorithm takes
significantly less steps, it leads to more exact computations.

A complete version of the paper containing all proofs and thedetails of the benchmarks is available
at [14].

2 Multi-Linear Systems

Multi-linear systems consist of a partition of the Euclidean space into a finite number of regions and a
constant derivative assigned to each region in the partition. In this section we define these systems in a
way similar to [12].

We consider ann-dimensional Euclidean spaceRn with a metric d and points in it denoted byx
andy. In the following, we specify the position of any point in 3-dimensional space by three Cartesian
coordinates. Alinear half spaceis a set of all point inRn satisfyingAx+B⊲⊳ 0, where⊲⊳∈ {<,≤,>,≥},
A is a rational vector andB is a rational number. A polyhedron is a subset ofRn obtained by intersecting
a finite number of linear half spaces. Since we have a finite number of linear half spaces that divide the
completen-dimensional Euclidean space, there are polyhedra that arenot bounded from all sides.

Definition 2.1 (Polyhedral partition) Given a finite set of linear half spacesS = {Aix+Bi ⊲⊳ 0,1≤
i ≤ n}, we say thatP(S ) = {P1, . . . ,Pm} is a polyhedral partition ofRn by S if: 1)

⋃m
i=1 Pi = Rn,

and2) Pi ∩Pj = /0 for distinct i, j ∈ {1, . . . ,m}.

When it is convenient we will useP instead ofP(S ) to denote a polyhedral partition. Given a poly-
hedral partitionP(S ), we define the set of its boundary points as

Bd(P(S )) = {y∈R
n | ∃(Ax+B ⊲⊳ 0) ∈S : Ay+B= 0}.

For each polyhedronP∈P(S ), we define the set of the boundary points as

Bd(P) = Bd(P(S ))∩P.
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a) b)

Figure 1: a) A simple 3-ML and b) a possible trajectory

Note that, depending on the partition, the set of boundary points of some polyhedra can be empty.

Definition 2.2 (Boundary element) Given a polyhedral partitionP(S ) and a polyhedron P∈P(S ),
we say that e is a boundary element of P if the following holds.

(1) e⊆ Bd(P), and

(2) There is(Ax+B ⊲⊳ 0) ∈S such that if y∈ e then Ay+B= 0.

An n-dimensional multi-linear system consists of a partitioning P(S ) = {P1, . . . ,Pm} of the space
Rn into a finite set of polyhedral regions and a constant derivative ci assigned to each regionPi. We
define such systems and a trajectory similar to [12].

Definition 2.3 (Multi-linear system) We define a multi-linear system onRn as a pairH = (P, f ),
whereP is a polyhedral partition ofRn and f : P →Rn is a function that assigns a vector c to each
P∈P.

In the following we concentrate on 3-dimensional multi-linear systems. A simple 3-dimensional
multi-linear system is depicted in Figure 1. The trajectories of such systems are sequences of line seg-
ments, where the break points belong to the boundaries of polyhedra. Multi-linear systems are determin-
istic in a sense that for each initial point there is exactly one corresponding trajectory.

We assume that the assigned derivative vectors of two neighboring polyhedra may not be directed
towards the same boundary, since this would lead to Zeno behavior when a system performs infinitely
many transitions in a finite period of time.

In the rest of the paper we use the following notations. Byε we denote the empty sequence. We use
s1.s2 to denote the concatenation of sequencess1 ands2, (si)m

i=1 is a shortcut for the sequences1. . . . .sm.
Given a sequences, we denote bys⋆ a (possibly infinite) sequences.s. . . . if s is repeated at least two
times. Bys1 ⊏ s2 we mean thats2 = s′2.s1.s′′2 for some sequencess1,s2,s′2,s

′′
2 and at most one ofs′2 and

s′′2 is not the empty sequence.
In the following definitions for simplicity and without lossof generality we can assume that a trajec-

tory always starts at a boundary element.

Definition 2.4 (Trajectory ) LetH be a ML, and x0 ∈X be a point.

1. A trajectory starting at x0 is a sequenceτ = x0.x1.x2. . . . where for i≥ 0 there is Pi ∈P such that
xi ∈ Bd(Pi) and for y∈]xi−1,xi [ there is no P′ ∈P such that y∈ Bd(P′). We denote by Tr(H ) the
set of all trajectories ofH .
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Figure 2: A schematic representation of a hypercycle

2. A sub-trajectory ofτ , written asτs
⊏ τ , is a finite (possibly empty) sequenceτs = xi .xi+1. . . . .x j .

We denote by Trs the set of all sub-trajectories ofH .

Definition 2.5 (Signature of a trajectory) Let H be a ML, and x0 ∈ X be a point. We assume a
trajectory τ = x0.x1.x2. . . . . We say that a sequence of boundary elementsσ(τ) = e0.e1.e2. . . . is a
signature ofτ if xi ∈ ei for i ≥ 0. We denote byΣ(H ) the set of signatures of all trajectories ofH and
by Σs(H ) the set of signatures of all sub-trajectories ofH .

Definition 2.6 (Simple trajectory) Let H be a ML. We say thatτ ∈ Trs(H ) is a simple trajectory if
σ(τ ′).σ(τ ′) 6⊏ σ(τ) for eachτ ′ ∈ Trs(H ) such thatσ(τ ′)⊏ σ(τ) andτ ′ 6= ε . We denote byTr(H ) the
set of all simple trajectries and byΣ(H ) the set of signatures of all simple trajectories ofH .

For each multi-linear system, the number of polyhedra in thecorresponding polyhedral partition is
finite. Hence, we conclude that the number of signatures corresponding to the simple trajectories is also
finite.

Lemma 2.7 For each MLH , Σ(H ) is a finite set.

The notion of a cycle plays an important role in the next section. Due to the finiteness of the number
of polyhedra in the polyhedral partition of each multi-linear system, each trajectory either reaches a
region it never leaves or its subtrajectories form cycles ofboundary elements.

Definition 2.8 (Cycle) LetH be a ML. We say thatτ , a (sub)trajectory ofH , is a cycle if Sign(τ) = σ ⋆

for σ ∈ Σ(H ). We denote by C(H ) the set of all cycles ofH .

Multi-linear systems for the dimension two have a nice property that makes the analysis simpler:
Each trajectory has an ultimately periodic structure, i.e.after finite number of steps it forms a cycle in
terms of visited boundary elements. This property does not hold for higher dimensions. Therefore, we
introduce a notion of a hypercycle. This is a generalizationof a cycle in the following sense: a hypercycle
contains (several) cycles adjoined by simple trajectories. In each iteration of the hypercycle the number
of passes through each cycle may vary but the sequence of visited boundary elements is preserved.

Definition 2.9 (Hypercycle) Let H = (P, f ) be a multi-linear system. We say that a trajectoryτ is a
hypecycle ifσ(τ) = (σ ′1.σ ⋆

1 . . . . .σ ′m.σ ⋆
m)

⋆ for m≥ 1, σi ∈ Σ(H ) andσ ′i ∈ Σ(H )∪{ε} and at least one
of the following holds.
• There is1≤ i ≤m such thatσ ′i 6= ε ,

• m≥ 2.
We denote by Ch(H ) the set of all hypercycles ofH .

In fact, the notion of a hypercycle can be generalized further by considering cycles of hypercycles.
But in this paper we restrict the class of systems under consideration to the systems such that each
trajectory is either a cycle or a hypercycle after finite number of steps.
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Figure 3: λ -cycle: a)d1/d2 = d2/d3, and b)d1/d2 = d′1/d′2

3 Deciding Reachability for a Special Class of Multi-LinearSystems

In this section we analyze topological properties of a subclass of multi-linear systems. This subclass is
defined by a generalization of properties of 2-dimensional ML systems.

Namely, we assume that if there is a cyclic trajectory, then the points of each cycle iteration in-
tersecting the same boundary element of a polyhedron lie on astraight line, called theλ -property. A
straightforward consequence of this assumption is that thedistances between the corresponding bound-
ary points of different rounds are proportional.

If there is a cyclic trajectory, then the points of each cycleiteration intersecting the same boundary
element of a polyhedron not necessarily lie on a straight line. In general case, even the angle between
the corresponding line segments is not preserved. Nevertheless, we tend to think that for sufficiently
many systems, especially for systems having some symmetry in their description, the trajectories obey
theλ -property.

3.1 The Reachability Problem

In the following to be able to perform exact computations, weassume that all coefficients in a system are
rationals.

Since a solution of a differential equation is unique for a given initial point in combination with
rationality of coefficients, we obtain the following property. Given a multi-linear system and a rational
initial point x, it is possible to compute the pointy reachable fromx after time interval∆t exactly.

Definition 3.1 (Reachability problem) Given a multi-linear systemH = (P, f ) and two points x and
y, the problem of point-to-point reachability Reach(H ,x,y) is stated as follows: Given two points x,y∈
R3, is there a trajectoryτ(H ,x) such that y∈ τ(H ,x).

3.2 Reachability for Multi-Linear λ -Systems

Now we define formally a subclass of multi-linear systems we consider.

Definition 3.2 (λ -cycle andλ -line) LetH = (P, f ) be a ML. Suppose forτ ∈ Trs the following holds.

• τ = (x j
1. . . . .x

j
s)

t
j=1 where for1≤ i ≤ s,1≤ j ≤ t there are Pi ∈P and ei ∈Bd(Pi) such that xji ∈ ei .

•
−−−→
x j

i x
j+1
i = λi ·

−−−→
x j−1

i x j
i for x j−1

i ,x j
i ,x

j+1
i , 1≤ i ≤ s,1< j < t.

Then we say thatτ is aλ -cycle. We say that a line Li is aλ -line ofτ with respect to ei if x j−1
i ,x j

i ,x
j+1
i ∈ Li ,

1≤ i ≤ s,1< j < t.
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d1 d2 d3

Figure 4: λ -hypercycle: The ratio of the distances betweenλ -lines of consequitive rounds of a hyper-
cycle is preserved:d1/d2 = d2/d3

The notion ofλ -cycle can be extended to a hypercycle. In the following, given two parallel lines
L1 and L2, we denote by Dist(L1,L2) the distance between L1 and L2, i.e. the length of a line segment
[x1,x2] such thatx1 ∈ L1, x2 ∈ L2 and[x1,x2]⊥ L1.

Definition 3.3 (λ -hypercycle) Let H = (P, f ) be a ML. Suppose a trajectoryτ is a hypercycle, i.e.
σ(τ) = (σ ′1.σ ⋆

1 . . . . .σ ′m.σ ⋆
m)

⋆ for σi,σ ′i ∈ Σ(H ). Let for1≤ i ≤m, e∈ σi, and Lb−2, Lb−1, Lb and Lb+1

are λ -lines for e of the corresponding consecutive rounds b−2, b−1, b and b+1 of τ . We say thatτ is
a λ -hypercycle if

db−1

db
=

db

db+1
,

where da = Dist(La−1,La), b−2< a≤ b+1.

Definition 3.4 (λ -system) Let H = (P, f ) be a ML. We say thatH is a λ -system if for eachτ the
following holds: 1) Ifτ is a cycle thenτ is a λ -cycle. 2) Ifτ is a hypercycle thenτ is a λ -hypercycle.

As the next step, we define computable properties that would allow us to check whether a system is
a λ -system. Lemma 3.5 defines conditions sufficient for a cycle to be aλ -cycle: As soon as three points
of consecutive cycle iterations lie on a straight line, the ratio of the distances between consecutive points
of different rounds is preserved.

Lemma 3.5 Let H = (P, f ) be a ML. Supposeσ(τ) = σ ⋆ for τ ∈ Trs and σ ∈ Σ(H ). Assume that
x1,x2,x3 ∈ e, e∈ σ , are consecutive points of intersection ofτ and e. If x1,x2,x3 ∈ L for some line L then
τ is a λ -cycle.

As we see in Lemma 3.6, it is sufficient for theλ -property to hold for two distinct trajectories going
through the same cycle of boundary elements. Then it holds for each cycling trajectory going through
the same cycle. Note that it is sufficient to compute for each trajectory whether three points of the
consecutive rounds are in one line.

Lemma 3.6 LetH = (P, f ) be a ML. Supposeσ(τi) = σ ⋆ for a trajectoryτi, 1≤ i ≤ 3. Assume that
τ1 andτ2 are λ -cycles. Then the following holds.

• τ3 is a λ -cycle.

• Le
1 || L

e
2 || L

e
3, where Lei is a λ -line of τi with respect to e for each e∈ σ .

Lemma 3.7 Let H = (P, f ) be a ML. Suppose eachτ ∈ C(H ) is a λ -cycle. Then eachτ ′ ∈ Ch(H )
is a λ -hypercycle.
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Algorithm 1 POINT-TO-POINT REACHABILITY

Input: pointsx0,y∈R3, ML systemH , maximal simulation stepsn∈N

Output: ∃τ(H ,x0) = x0,x1, . . . ,y

1: y′ = H (y) {y∈ Pi andy′ ∈ Bd(Pi) for some partitioni}
2: x← x0 k← 0
3: while k≤ n do
4: x←H (x) k← k+1
5: if cycleζ = (xi , . . . ,xi+s)

⋆ detectedthen
6: if Bd(y′) = Bd(xb) ∈ ζ then {boundary element ofy is in cycle}

7: if y′ = x1
b+ t ·

−−→
x1

bx2
b for t = 1−λ k

b
1−λb
|k∈N + then

8: return true
9: end if

10: end if{y′ is not reached by cycleζ}
11: if isinfinite(ζ ) then
12: return false
13: else
14: x← exitPoint(ζ )
15: end if
16: end if{cycle detected}
17: end while
18: return y′ ∈ τ(H ,x0)

Theorem 3.8 LetH = (P, f ) be a multi-linear system. Then it is decidable whetherH is aλ -system.

Proof By Lemma 2.7, the setΣ(H ) is finite. By Lemmas 3.5, 3.6 and 3.7 it is sufficient to performthe
following steps: 1) For eachσ ∈ Σ to choose two distinctτ1 andτ2 such thatσ(τ1) =σ ⋆ andσ(τ2) = σ ⋆.
2) To compute three consecutive points of intersection ofτ1 andτ2 with e∈ σ . 3) To check whether these
points are in one line.

We have shown that if each cycle is aλ -cycle then the given system is aλ -system. The algorithm
to check whether a (hyper)cycle is infinite is presented in the next section and it is an extension of the
2-dimensional case from [12].

4 Algorithm for Point-to-Point Reachability

First we need to introduce some further notations. Lete= Bd(x)|x∈R3 denote the border element
esuch thatx∈ Pi ∩e for some partitioni ande∈ Bd(Pi). An edgee is given in the form of

e= {v+κ ·~u|v,~u∈R
3; l ≤ κ ≤ h : l ,h∈R}.

Furthermore, given a cycleζ = (x j
i , . . . ,x

j
i+s)

k
j=1, let xa

b denote the point reached by the cycle in theath

iteration on border element Bd(xb). Then{x1
b+ t ·

−−→
x1

bx2
b} for t ∈R is the line through the trajectory points

on Bd(xb) (λ -line), called a trace in the following.
Algorithm 1 decides for a ML systemH and a starting pointx0 ∈R3 whether a pointy∈R3 can be

reached by a trajectoryτ(H ,x0) = x0,x1, . . . ,y throughH . The algorithm is allowed to performn∈N

simulations ofH , note thatk can be much larger thann as our experiments will show.
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Algorithm 2 INFINITY TEST

Input: cycleζ = (x j
i , . . . ,x

j
i+s)

3
j=1

Output: ζ is infinite cycle

1: for all x j
b ∈ ζ do

2: for all e∈ Bd(Pb) do

3: if e∩{x1
b+ t ·

−−−−−−−−→
x1

bx2
b|t ∈R+} 6= /0 then {trace intersectse}

4: if λb≥ 1 then
5: return false
6: else
7: if x∞

b = x1
b+

1
1−λb
·
−−→
x1

bx2
b /∈ Pb then

8: return false
9: end if

10: end if
11: end if
12: end for
13: end for
14: return true

While the maximum number of evaluations is not reached,H is simulated stepwise until eithery is
reached or a cycle is detected. In our implementation we use the cycle detection algorithm due to Brent
[4] which requiresO(µ +λ ) system evaluations.1

If a cycleζ = (x j
i , . . . ,x

j
i+s)

k
j=1 is detected, several cases have to be distinguished:

a) Bd(y′) is not part of the cycle.2 If ζ is infinite according to Algorithm 2,y will never be reached.

b) Bd(y′) = Bd(xb) for someb∈ [i, i+s] and hence is element of the cycle. In this case it needs to be
checked whether∃a∈N such thaty′ = xa

b. If so theny′ should be in

{x1
b+ t ·

−−→
x1

bx2
b}

for somety ∈R+. For allxa
b,

ta =
a

∑
i=1

λ i
b =

1−λ i
b

1−λb
,

therefore

ay =
log(1− ty(1−λb))

log(λb)

is in N + iff y′ is reached by a cycle iteration. Ify′ is not reached byζ and the cycle is infinite,y
is never reached byH from x0.

c) y′ is not reached byζ and the cycle isfinite. We calculate the pointxe whereζ is abandoned
according to algorithm 3 and continue simulation and cycle detection there.

1µ denoting the first occurrence of the cycle,λ indicating the cycle length.
2y′ is the border element reached fromy by simulatingH , see algorithm 1 step 1.
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Algorithm 3 EXIT POINT

Input: cycleζ = (x j
i , . . . ,x

j
i+s)

3
j=1

Output: point xe∈R3 where cycleζ is abandoned

1: PQ← PriorityQueue :N ×R3

2: for all x j
b ∈ ζ do

3: if λb < 1∨x∞
b ∈ Pb then

4: skip
5: end if
6: for all e∈ Bde(Pb) do

7: te←
(
−→
x1

bv×~u)·(
−−→
x1

bx2
b×~u)

||
−−→
x1

bx2
b×~u||

2

8: end for
9: t←mine∈Bde

(Pb)
te

10: if λb 6= 1 then
11: n← ⌊ log(1−t(1−λb))

log(λb)
⌋

12: t← 1−λn
b

1−λb

13: else
14: t← n← ⌊t⌋
15: end if
16: xe← x1

b+ t ·
−−→
x1

bx2
b

17: PQ.put(n,xe)
18: end for
19: return PQ.pop()

The infinity test (Algorithm 2) checks for every partitionPb in cycleζ whether the trace line{x1
b+ t ·

−−→
x1

bx2
b} intersects with somee∈Bd(Pb). If a intersection pointxISb,e exists andλb≥ 1 thenζ must abandon

Pb after some number of iterations and therefore can not be infinite. If no intersection occurs orλb < 1
and the convergence point

x∞
b = x1

b+
∞

∑
i=1

λ i
b ·
−−→
x1

bx2
b = x1

b+
1

1−λb
·
−−→
x1

bx2
b

lies beforexISb,e on the trace line,Pb is never abandoned. If no partition within the cycle is ever abandoned
thenζ is infinite.

For a finite cycleζ , Algorithm 3 determines the exit pointxe from ζ . Recall that an edge can be
represented ase= {v+κ ·~u|l ≤ κ ≤ h}. For everye∈ Bd(Pb) the intersection pointxISb,e with the trace
line is determined.

The intersection point with the smallest distancet to x1
b is the exit point toPb. The number of cycle

iterations fully contained inPb is given by

nb =
⌊ log(1− t(1−λb))

log(λb)

⌋

with point

xe,b = x1
b+

1−λ n
b

1−λb
·
−−→
x1

bx2
b.
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Figure 5: Example ML systems with trajectories. The convergence line ofH2 is highlighted in red.
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(a)xOyplane

x

y

(b) xOzplane

y

z

(c) yOzplane

Figure 6: Projections of trajectory inH1. In c), the dashed black line indicates the trajectory if thepoints
were to be on one line.

Special consideration is given toλb = 1, refer to Algorithm 3. The overall exit point to cycleζ can
therefore be determined byxe = xe,k with k= argminb∈[1,t] nb.

5 Experiments

The experiments were performed on a server with two dual-core 2.8 GHz CPUs and 3 GB main memory
under RedHat Linux. We implemented the algorithms in Java using the JAMA library for linear algebra
operations [8]. The source code of our implementation is available at [13].

Two sample ML systems were used in our experiments and are depicted in Figure 5 alongside a
sample trajectory for each. The details of the examples can be found in [14].

All partitions in H1 are unbounded in theOy dimension. ThexOzplane is divided into four inner
partitions and 8 outer ones. In the inner partitions the trajectory “rotates” around the center with increas-
ing radius, whereas the radius decreases in the outer partitions. Not all choices ofy result in aλ -system.
Note that in figure 6 the points of a trace through one border element (depicted in red) lie on one line for
2 projections (xOyandxOz), but violate the line criterion for theyOzprojection.
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x

z

Figure 7: Projection onxOzplane of trajectory inH2. With each iteration of the hyper cycle, more iter-
ations of the simple cycle through the four 3 dimensional polyhedra are required to reachP1. Therefore
no infinite simple cycle exits inH2.

SystemH2 consists of 5 two dimensional polygons and 4 unbounded threedimensional polyhedra. In
the unbounded regions the system “rotates” around theOzaxis in ever shrinking circles until it reaches
P1. H2 then traverses all two dimensional polygons until it reaches P5 where it is ejected into to the
unbounded space again. With each iteration more and more rotations are required in the unbounded
space to reachP1 and the trajectory throughP3 converges towards theOx axis. Therefore the system
never reaches an infinite simple cycle as illustrated in figure 7.

In H1 placing the initial pointx0 at any distancen from the inner four partitions results inΘ(n)
simulation steps until the inner portion is reached. Our algorithm reduces the complexity toO(µ +λ ) in
general, consideringH1 even toO(1). Only three cycle iterations are required to calculateλb for each
xb ∈ ζ = (xi , . . . ,xi+s)

⋆ and determine the exit point of the cycle. Experimental datais shown in table 1
and figure 8a. We attribute the decrease in running time of ouralgorithm in the first two iterations to the
Java just in time compiler, optimizing code dynamically as it is executed [6]. Thereafter the algorithm
exhibits constant execution time as anticipated.

Modifying H1 to H ′
1 so that the rotation radius decreases in the outer partitions as well as in the

inner partitions,3 produces a convergence line for all partitions atCl = {(C, ·,C)}. Simulation alone may
neverdetermine whethery∈Cl is reached, whereas our algorithm requires again three cycle iterations
of length at most 12 to determine the reachability ofy.

ML systemH2 exhibits a similar behavior. With each pass through the two dimensional partitions the
number of required rotations to reach theOzaxis again increases to infinity. Therefore the reachability
of y on or close to the convergence line of the system is not feasibly determined by simulation alone. If
y is reached aftern hyper cycle iterations, at leastΘ(n2) simulation steps were required. Our algorithm
reduces the complexity toO(n(µ + λ )). With improved hyper cycle handling the complexity ought to
be further reduced toO(c · (µ +λ )), since three passes of the simple cycle to reach theOzaxis suffice
to determine the convergence line of the hyper cycle. Again,experimental data is shown in table 1 and
figure 8b. The data exhibits the same behavior as forH1 regarding the Java just in time compilation. Due
to its positionx0 = (108,108,C−C/108) reachesP2 beforeP1 and therefore requires fewer simulation
steps thanx0 = (107,107,C−C/107).

3Specifically settingc1 to ( 1
2 ,y1,−1).
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x0 = (5,0,−x)
Steps Simulation PTPR

x
101 10 10 24
102 154 98 18
103 1594 1421 6
104 15994 2082 6
105 159994 22609 5
106 1599994 188276 5
107 15999994 1952252 5
108 159999994 19700805 7

(a) H1: y is first point to be reached in the inner four par-
titions.

x0 = (x,x,C−C/x)
Steps Simulation PTPR

x
101 10 10 12
102 59 20 13
103 83 17 3
104 111 23 4
105 135 26 4
106 149 30 3
107 161 33 3
108 143 29 3

(b) H2: y= (0,0,C−C/x).

Table 1: Comparison of our algorithm to pure simulation to decide reachability ofy givenx0. Column
stepslists the number of simulation steps required to reachy. ColumnssimulationandPTPRgive the
time in [ms] required to decide reachability by simulation and our algorithm, respectively.
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Figure 8: Comparison of our algorithm (PTPR) to pure simulation to decide reachability ofy givenx0.

6 Conclusions

The complexity of safety critical systems has increased dramatically over last decades. The safety prop-
erties of such systems can often not be checked exactly either due to theoretical boundaries or due to too
large computational efforts required. One of the drawbacksof recent techniques is that too little attention
is paid to the geometric properties of the systems under analysis.

A hybrid system (a hybrid automaton) is a formalism that can be used for modeling safety critical
systems. ML systems constitute a rather simple class of hybrid systems but yet they are on the boundary
of decidable and undecidable systems.

ML systems have certain properties that make them very suitable for a topological analysis. We
have shown that on the one hand there are systems with acyclicbehavior, and on the other hand if
some properties of 2-dimensional systems hold in three dimensions then it is possible to answer exactly
whether a pointy is reachable from a pointx. We have presented a prototype implementation of our
approach for solving the reachability problem for a subclass of multi-linear systems which we have called
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λ -systems. We compared our approach with simulation. The results suggest, that using geometrical
properties of the systems can lead to orders of magnitude more efficient techniques than simulation.
As soon as our algorithm detects a cycle (or a hypercycle) forwhich the infinity criterion holds, the
algorithm requires constant number of steps. While the number steps for simulation grows exponentially
with the distance between points. Also our algorithm can lead to more exact computations because of
less rounding errors during the computation.

References

[1] R. Alur & D. L. Dill (1994): A Theory of Timed Automata. Theor. Comput. Sci.126(2), pp. 183–235, doi:10.
1016/0304-3975(94)90010-8.

[2] E. Asarin, O. Maler & A. Pnueli (1995):Reachability Analysis of Dynamical Systems Having Piecewise-
Constant Derivatives. Theor. Comput. Sci.138(1), pp. 35–65, doi:10.1016/0304-3975(94)00228-B.

[3] E. Asarin, G. Schneider & S. Yovine (2007):Algorithmic analysis of polygonal hybrid systems, part I:
Reachability. Theor. Comput. Sci.379(1-2), pp. 231–265, doi:10.1016/j.tcs.2007.03.055.

[4] R. P. Brent (1980):An improved Monte Carlo factorization algorithm. BIT Numerical Mathematics20, pp.
176–184, doi:10.1007/BF01933190. 10.1007/BF01933190.

[5] M. Broucke (1999):A geometric approach to bisimulation and verification of hybrid systems. In: Hybrid
Systems: Computation and Control, volume 1569 of Lecture Notes in Computer Science. Springer-Verlag,
pp. 61–75, doi:10.1007/3-540-48983-5_9.

[6] T. Cramer, R. Friedman, T. Miller, D. Seberger, R. Wilson& M. Wolczko (1997): Compiling Java just in
time. Micro, IEEE17(3), pp. 36–43, doi:10.1109/40.591653.

[7] T. A. Henzinger, P. W. Kopke, A. Puri & P. Varaiya (1995):What’s decidable about hybrid automata?In:
STOC. pp. 373–382, doi:10.1145/225058.225162.

[8] J. Hicklin, C. Moler, P. Webb, R.F. Boisvert, B. Miller, R. Pozo & K. Remington (2000):Jama: A Java
matrix package. Website. Available athttp://math.nist.gov/javanumerics/jama.

[9] G. Lafferriere, G. J. Pappas & S. Sastry (2000):O-Minimal Hybrid Systems. Math. Control Signals Systems
13, pp. 1–21, doi:10.1007/PL00009858.

[10] G. Lafferriere, G. J. Pappas & S. Yovine (1999):A New Class of Decidable Hybrid Systems. In: HSCC. pp.
137–151, doi:10.1007/3-540-48983-5_15.

[11] G. Lafferriere, G.J. Pappas & S. Yovine (1999):Reachability Computation For Linear Hybrid Systems. In:
Proceedings of the 14th IFAC World Congress. E, pp. 7–12.

[12] O. Maler & A. Pnueli (1993):Reachability Analysis of Planar Multi-linear Systems. In: CAV. pp. 194–209,
doi:10.1007/3-540-56922-7_17.

[13] O. Tveretina & D. Funke (2011):3-Dimensional Multi-Linear Systems. Website. Available athttp://www.
stud.uni-karlsruhe.de/~uucom/ml_systems/index.html.

[14] O. Tveretina & D. Funke (2011):Deciding Reachability for a Subclass of 3-Dimensional Multi-Linear Sys-
tems. Technical Report 2011-19, Karlsruhe Institute of Technology.

http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1016/0304-3975(94)00228-B
http://dx.doi.org/10.1016/j.tcs.2007.03.055
http://dx.doi.org/10.1007/BF01933190
http://dx.doi.org/10.1007/3-540-48983-5_9
http://dx.doi.org/10.1109/40.591653
http://dx.doi.org/10.1145/225058.225162
http://math.nist.gov/javanumerics/jama
http://dx.doi.org/10.1007/PL00009858
http://dx.doi.org/10.1007/3-540-48983-5_15
http://dx.doi.org/10.1007/3-540-56922-7_17
http://www.stud.uni-karlsruhe.de/~uucom/ml_systems/index.html
http://www.stud.uni-karlsruhe.de/~uucom/ml_systems/index.html

	1 Introduction
	2 Multi-Linear Systems
	3 Deciding Reachability for a Special Class of Multi-Linear Systems 
	3.1 The Reachability Problem
	3.2 Reachability for Multi-Linear -Systems

	4 Algorithm for Point-to-Point Reachability
	5 Experiments
	6 Conclusions

