
Giovanna D’Agostino, Salvatore La Torre (Eds.):
Proceedings of the Second International Symposium on
“Games, Automata, Logics and Formal Verification” (GandALF2011)
EPTCS 54, 2011, pp. 162–177, doi:10.4204/EPTCS.54.12

c© Laura Bozzelli
This work is licensed under the
Creative Commons Attribution License.

New results on pushdown module checking
with imperfect information

Laura Bozzelli
Technical University of Madrid (UPM), 28660 Boadilla del Monte, Madrid, SPAIN

Model checking of open pushdown systems (OPD) w.r.t. standard branching temporal logics (push-
down module checkingorPMC) has been recently investigated in the literature, both in the context of
environments with perfect and imperfect information aboutthe system (in the last case, the environ-
ment has only a partial view of the system’s control states and stack content). For standardCTL,PMC

with imperfect information is known to be undecidable. If the stack content is assumed to bevisible,
then the problem is decidable and 2EXPTIME-complete (matching the complexity ofPMC with per-
fect information againstCTL). The decidability status ofPMC with imperfect information against
CTL restricted to the case where the depth of the stack content isvisible is open. In this paper, we
show that with this restriction,PMC with imperfect information againstCTL remains undecidable.
On the other hand, we individuate an interesting subclass ofOPDs with visible stack content depth
such thatPMC with imperfect information against the existential fragment of CTL is decidable and
in 2EXPTIME. Moreover, we show that theprogram complexityof PMC with imperfect information
and visible stack content againstCTL is 2EXPTIME-complete (hence, exponentially harder than the
program complexity ofPMC with perfect information, which is known to be EXPTIME-complete).

1 Introduction

Verification of open systems.In the literature, formal verification of open systems is in general formu-
lated as two-players games (between the system and the environment). This setting is suitable when the
correctness requirements on the behavior of the system are formalized by linear-time temporal logics.
In order to take into account also requirements expressiblein branching-time temporal logics, recently,
Kupferman, Vardi, and Wolper [13, 16] introduce themodule checkingframework for the verification
of finite-state open systems. In such a framework, the open finite-state system is described by a labeled
state-transition graph calledmodule, whose set of states is partitioned into a set ofsystem states(where
the system makes a transition) and a set ofenvironment states(where the environment makes a transi-
tion). Given a moduleM describing the system to be verified, and a branching-time temporal formula
ϕ specifying the desired behavior of the system, themodule checking problemasks whether for all pos-
sible environments,M satisfiesϕ . In particular, it might be that the environment does not enable all
the external nondeterministic choices. Module checking thus involves not only checking that the full
computation treeTM obtained by unwindingM (which corresponds to the interaction ofM with a
maximal environment) satisfies the specificationϕ , but also that every tree obtained from it by pruning
children of environment nodes (this corresponds to disablepossible environment choices) satisfyϕ . In
[14] module checking for finite-state systems has been extended to a setting where the environment has
imperfect informationabout the states of the system (see also [17, 9] for related work regarding im-
perfect information). In this setting, every state of the module is a composition ofvisible and invisible
variables where the latter are hidden to the environment. Thus, the composition of a moduleM with
an environment with imperfect information corresponds to atree obtained fromTM by pruning children
of environment nodes in such a way that the pruning is consistent with the partial information available

http://dx.doi.org/10.4204/EPTCS.54.12
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

Laura Bozzelli 163

to the environment. One of the results in [14] is thatCTL finite-state module checking with imperfect
information has the same complexity asCTL finite-state module checking with perfect information, i.e.,
it is EXPTIME-complete, but itsprogram complexity(i.e., the complexity of the problem in terms of the
size of the system) is exponentially harder, i.e. EXPTIME-complete.

Pushdown module checking. An active field of research is model-checking of pushdown systems.
These represent an infinite-state formalism suitable to model the control flow of recursive sequential
programs. The model checking problem of (closed) pushdown systems against standard regular tempo-
ral logics (such asLTL, CTL, CTL∗, or the modalµ-calculus) is decidable and it has been intensively
studied in recent years leading to efficient verification algorithms and tools (see for example [18, 4, 3]).
Recently, in [7, 2, 11], the module checking framework has been extended to the class ofopen pushdown
systems(OPD), i.e. pushdown systems in which the set of configurations ispartitioned (in accordance
with the control state and the symbol on the top of the stack) into a set ofsystem configurationsand a set
of environment configurations. Pushdown module checking(PMC, for short) against standard branching
temporal logics, likeCTL andCTL∗, has been investigated both in the context of environments with per-
fect information [7] and imperfect information [2, 11] about the system (in the last case, the environment
has only a partial view of the system’s control states and stack content). For the perfect information set-
ting, as in the case of finite-state systems,PMC is much harder than standard pushdown model checking
for bothCTL andCTL∗. For example, forCTL, while pushdown model checking is EXPTIME-complete
[19], PMC with perfect information is 2EXPTIME-complete [7] (however, the program complexities of
the two problems are the same, i.e., EXPTIME-complete [6, 7]). For the imperfect information setting,
PMC againstCTL is in general undecidable [2], and undecidability relies onhiding information about
the stack content. The decidability status for the last problem restricted to the class ofOPDs where the
stack content depthis visible is left open in [2]. On the other hand,PMC with imperfect information
againstCTL restricted to the class ofOPDs with imperfect information about the internal control states,
but a visible stack content, is decidable and has the same complexity asPMC with perfect information.
However, its program complexity is open: it lies somewhere between EXPTIME and 2EXPTIME [2].

Our contribution. We establish new results onPMC with imperfect information againstCTL. More-
over, we also consider a subclass ofOPDs, we callstableOPDs, where the transition relation is consis-
tent with the partial information available to the environment. Our main results are the following.

• The program complexityof PMC with imperfect information againstCTL restricted to the class
of OPDs with visible stack contentis 2EXPTIME-hard,1 even for a fixed formula of the existential
fragmentECTL of CTL (hence, exponentially harder than the program complexity of PMC with
perfect information againstCTL, which is known to be EXPTIME-complete [7]). The result is
obtained by a polynomial-time reduction from the acceptance problem for EXPSPACE-bounded
Alternating Turing Machines, which is known to be 2EXPTIME-complete [8].

• PMC with imperfect information againstCTL restricted to the class ofOPDs with visible stack
content depthis undecidable, even if theCTL formula is assumed to be in the fragment ofCTL

using only temporal modalitiesEF andEX, and their duals, and theOPD is assumed to bestable
and having only environment configurations. The result is obtained by a reduction from the Post’s
Correspondence Problem, a well known undecidable problem [12].

• PMC with imperfect information against theexistential fragmentECTL of CTL restricted to the
class ofstableOPDs with visible stack content depthand having only environment configurations

1hence, 2EXPTIME-complete, sincePMC with imperfect information againstCTL restricted to the class ofOPDs with
visible stack contentis known to be 2EXPTIME-complete [2]

164 New results on pushdown module checking with imperfect information

is instead decidable and in 2EXPTIME. The result is proved by a reduction to non-emptiness of
Büchi alternating visible pushdown automata (AVPA) [5], which is 2EXPTIME-complete [5].

The full version of this paper can be asked to the author by e-mail.

2 Preliminaries

Let N be the set of natural numbers. A treeT is a prefix closed subset ofN∗. The elements ofT
are callednodesand the empty wordε is the root of T. For x ∈ T, the set ofchildren of x (in T)
is children(T,x) = {x · i ∈ T | i ∈ N}. For x ∈ T, a (full) path of T from x is a maximal sequence
π = x1,x2, . . . of nodes inT such thatx1 = x and for each 1≤ i < |π|, xi+1 ∈ children(T,xi) . In the
following, for a path ofT, we mean a path ofT from the rootε . For an alphabetΣ, aΣ-labeled tree is a
pair 〈T,V〉, whereT is a tree andV : T→ Σ maps each node ofT to a symbol inΣ. Given twoΣ-labeled
trees〈T,V〉 and〈T ′,V ′〉, we say that〈T,V〉 is contained in〈T ′,V ′〉 if T ⊆ T ′ andV ′(x) =V(x) for each
x∈ T. In order to simplify the notation, sometimes we write simply T to denote aΣ-labeled tree〈T,V〉.

2.1 Module checking with imperfect information

In this paper we consideropen systems, i.e. systems that interact with their environment and whose be-
havior depends on this interaction. Moreover, we consider the case where the environment has imperfect
information about the states of the system. This is modeled by an equivalence relation∼= on the set of
states. States that are indistinguishable by the environment, because the difference between them is kept
invisible by the system, are equivalent according to∼=. We describe an open system by anopenKripke
structure (called alsomodule[16]) M = 〈AP,S= Ssy∪Sen,s0,R,L,∼=〉, whereAP is a finite set of atomic
propositions,S is a (possibly infinite) set of states partitioned into a setSsy of systemstates and a setSen

of environmentstates, ands0 ∈ S is a designated initial state. Moreover,R⊆ S×S is a transition relation,
L : S→ 2AP maps each states to the set of atomic propositions that hold ins, and∼= is an equivalence
relation on the set of statesS. Since the designation of a state as an environment state is obviously known
to the environment, we require that for all statess,s′ such thats∼= s′, s∈ Sen iff s′ ∈ Sen. For eachs∈ S,
we denote byvis(s) the equivalence class ofsw.r.t.∼=. Intuitively, vis(s) represents what the environment
“sees” ofs. A successor ofs is a states′ such that(s,s′) ∈ R. States is terminal if it has no successor.
When the moduleM is in a non-terminalsystemstates∈ Ssy, then all the successors ofs are possible
next states. On the other hand, whenM is in a non-terminalenvironmentstates∈ Sen, then the environ-
ment decides, based on the visible part of each successor ofs, and of the history of the computation so
far, to which of the successor states the computation can proceed, and to which it can not. Additionally,
we consider environments that cannot block the system, i.e.not all the transitions from a non-terminal
environment state are disabled. For a states of M , let TM ,s be thecomputation tree ofM from s, i.e.
theS-labeled tree obtained by unwindingM starting froms in the usual way. Note thatTM ,s describes
the behavior ofM under themaximalenvironment, i.e. the environment that never restricts theset of
next states. The behavior ofM under a specific environment (possibly different from the maximal one)
is formalized by the notion ofstrategy treeas follows. For a nodex of the computation treeTM ,s, let
s1, . . . ,sp be the sequence of states labeling the partial path from the root to nodex. We denote byvis(x)
the sequencevis(s1), . . . ,vis(sp), which represents the visible part of the (partial) computation s1, . . . ,sp

associated with nodex. A strategy tree from sis a S-labeled tree obtained from the computation tree
TM ,s by pruning fromTM ,s subtrees whose roots are children of nodes labeled by environment states.
Additionally, we require that such a pruning is consistent with the partial information available to the

Laura Bozzelli 165

environment: if two nodesx1 andx2 of TM ,s are indistinguishable, i.e.vis(x1) = vis(x2), then the subtree
rooted atx1 is pruned iff the subtree rooted atx2 is pruned as well. Formally, a strategy tree ofM from
a states∈ S is aS-labeled treeST such thatST is contained inTM ,s and the following holds:

• for each nodex of ST labeled by asystemstate,children(ST,x) = children(TM ,s,x);

• for each nodex of ST labeled by anenvironmentstate,children(ST,x) 6= /0 if children(TM ,s,x) 6= /0;

• for all nodesx1 andx2 of TM ,s such thatvis(x1) = vis(x2), x1 is a node ofST iff x2 is a node ofST.
Note that ifx1 is a child of an environment node, then so isx2.

For a nodex of ST, state(x) denotes theS-state labelingx. A strategy tree ofM is a strategy tree ofM
from the initial state. In the following, a strategy treeST is seen as a 2AP-labeled tree, i.e. taking the label
of a nodex to beL(state(x)). We also consider a restricted class of modules. A moduleM is stable
(w.r.t. visible information) iff for all statess1 ands2 s.t. vis(s1) = vis(s2) and boths1 ands2 have some
successor, it holds that: for each successors′1 of s1, there is a successors′2 of s2 s.t. vis(s′1) = vis(s′2).
Note that this notion is similar to that given in [17] for standard imperfect information games.

CTL Module Checking: as specification logical language, we consider the standardbranching temporal
logic CTL [10], whose formulasϕ overAPare assumed to be in positive normal form, i.e. defined as:

ϕ := true | prop|¬prop|ϕ ∨ϕ |ϕ ∧ϕ |EXϕ |AXϕ |E(ϕ Uϕ) |A(ϕ Uϕ) |E(ϕ Ũϕ) |A(ϕ Ũϕ)

whereprop∈ AP, E (resp.,A) is the existential (resp., universal) path quantifier,X andU are the next
and until temporal operators, and̃U is the dual ofU . We use classical shortcuts:EFϕ is forE(trueUϕ)
(“existential eventually”) andAFϕ is for A(trueUϕ) (“universal eventually”), and their dualsAGϕ :=
¬EF¬ϕ andEGϕ := ¬AF¬ϕ . We also consider the universal (resp., existential) fragmentACTL (resp.,
ECTL) of CTL obtained by disallowing the existential (resp., universal) path quantifier, and the fragment
CTL(EF,EX,AG,AX) using only temporal modalitiesEF andEX, and their duals. For a definition of the
semantics ofCTL (which is given with respect to 2AP-labeled trees) see [10].

For a moduleM and aCTL formulaϕ overAP, M reactively satisfiesϕ , denotedM |=r ϕ , if all the
strategy trees ofM (from the initial state) satisfyϕ . Note thatM 6|=r ϕ is not equivalent toM |=r ¬ϕ .
Indeed,M 6|=r ϕ just states that there is some strategy treeST satisfying¬ϕ .

2.2 Pushdown Module Checking with Imperfect Information

In this paper we consider Modules induced by Open Pushdown Systems (OPD, for short), i.e., Pushdown
systems where the set of configurations is partitioned (in accordance with the control state and the symbol
on the top of the stack) into a set of environment configurations and a set of system configurations.

An OPD is a tupleS = 〈AP,Q,q0,Γ, ♭,∆,µ ,Env〉, whereAP is a finite set of propositions,Q is a
finite set of control states,q0 ∈ Q is the initial control state,Γ is a finite stack alphabet,♭ /∈ Γ is the
special stack bottom symbol, ∆⊆ (Q×Q)∪ (Q×Q×Γ)∪ (Q× (Γ∪{♭})×Q) is the transition relation,
µ : Q× (Γ∪{♭})→ 2AP is a labeling function, andEnv⊆ Q× (Γ∪{♭}) is used to specify the set of

environment configurations. A transition of the form(q,q′,γ), written q
push(γ)
−−−−→ q′, is a push transition,

whereγ 6= ♭ is pushed onto the stack (and the control changes fromq to q′). A transition of the form

(q,γ ,q′), written q
pop(γ)
−−−→ q′, is a pop transition, whereγ is popped from the stack. Finally, a transition

of the form(q,q′), written q−→ q′, is aninternal transition, where the stack is not used. We assume that
Q⊆ 2I∪H , whereI andH are disjoint finite sets ofvisibleandinvisible control variables, andΓ⊆ 2IΓ∪HΓ ,
whereIΓ andHΓ are disjoint finite sets ofvisibleandinvisible stack content variables.

A configuration or stateof S is a pair(q,α), whereq ∈ Q andα ∈ Γ∗ · ♭ is a stack content. We
denote bytop(α) thetop of the stack contentα , i.e. the leftmost symbol ofα . For a control stateq∈Q,

166 New results on pushdown module checking with imperfect information

the visible part of qis vis(q) = q∩ I . For a stack symbolγ ∈ Γ, if γ ⊆ HΓ andγ 6= /0, we setvis(γ) = ε ,
otherwise we setvis(γ) = γ∩ IΓ. By settingvis(γ) = ε wheneverγ consists entirely of invisible variables,
we allow the system to completely hide a push operation. Thevisible part of a configuration(q,α) is
(vis(q),vis(α)), where forα = γ0 . . .γn · ♭, vis(α) = vis(γ0) . . .vis(γn) · ♭. The stack content(resp., the
control) is visible if HΓ = /0 (resp.,H = /0). Moreover, thestack content depth is visibleif vis(γ) 6= ε
for each stack symbolγ ∈ Γ. Since the designation of anOPD state as an environment state is known
to the environment, we require that for all states(q,α) and (q′,α ′) such that(vis(q),vis(top(α))) =
(vis(q′),vis(top(α ′))), (q,top(α)) ∈ Env iff (q′,top(α ′)) ∈ Env. TheOPD S induces an infinite-state
moduleMS = 〈AP,S= Ssy∪Sen,s0,R,L,∼=〉, defined as follows:

• Ssy∪Sen is the set of configurations ofS , andSen is the set of states(q,α) s.t. (q,top(α)) ∈ Env;

• s0 = (q0, ♭) is the initial configuration (initially, the stack is empty);

• ((q,α),(q′,α ′))∈R iff: or (1) q−→ q′ ∈ ∆ andα ′ = α , or (2)q
push(γ)
−−−−→ q′ ∈ ∆ andα ′ = γ ·α , or (3)

q
pop(γ)
−−−→ q′ ∈ ∆, and eitherα ′ = α = γ = ♭ or γ 6= ♭ andα = γ ·α ′ (note that every pop transition

that removes♭ also pushes it back);

• L((q,α)) = µ((q,top(α))) for all (q,α) ∈ S;

• for all (q,α),(q′,α ′) ∈ S, we have that(q,α)∼= (q′,α ′) iff (vis(q),vis(α)) = (vis(q′),vis(α ′)).
A strategy tree ofS is a strategy tree ofMS from the initial state. Given(q,γ) ∈Q× (Γ∪{♭}), (q,γ)

is non-terminal(w.r.t. S) iff: or q−→ q′ ∈ ∆ or q
pop(γ)
−−−→ q′ ∈ ∆ or q

push(γ ′)
−−−−−→ q′ ∈ ∆ for someq′ ∈Q and

γ ′ ∈Γ. Note that a state(q,α) of S has some successor (inMS) iff (p,top(α)) is non-terminal. We also
consider a subclass ofOPD. An OPD S = 〈AP,Q,q0,Γ, ♭,∆,µ ,Env〉 is stableiff for all non-terminal
pairs(q1,γ1),(q2,γ2) ∈Q× (Γ∪{♭}) s.t. vis(q1) = vis(q2) andvis(γ1) = vis(γ2), the following holds:

• if q1−→ q′1 ∈ ∆, then there isq2−→ q′2 ∈ ∆ such thatvis(q′1) = vis(q′2);

• if q1
push(γ)
−−−−→ q′1∈∆, then there isq2

push(γ ′)
−−−−−→ q′2∈∆ such thatvis(q′1)= vis(q′2) andvis(γ) = vis(γ ′);

• if q1
pop(γ1)
−−−−→ q′1 ∈ ∆, then there isq2

pop(γ2)
−−−−→ q′2 ∈ ∆ such thatvis(q′1) = vis(q′2).

Remark 1. Note that for aOPD S with visible stack content depth,S is stable iffMS is stable.

In the rest of this paper, we considerOPD S where each state is labeled by a singleton in 2AP (for a
given setAPof atomic propositions), hence, the strategy trees can be seen asAP-labeled trees.

Thepushdown module checking problem(PMC) with imperfect information againstCTL is to de-
cide, for a givenOPD S and aCTL formulaϕ , whetherMS |=r ϕ .

3 Pushdown module checking forOPD with visible stack content

In this section, we prove the following result.

Theorem 1. Theprogram complexityof PMC with imperfect information againstCTL restricted to the
class ofOPDs with visible stack contentis 2EXPTIME-hard, even for a fixedECTL formula.2

Theorem 1 is proved by a polynomial-time reduction from the acceptance problem for EXPSPACE-
boundedalternating Turing Machines(TM) with a binary branching degree, which is known to be
2EXPTIME-complete [8]. In the rest of this section, we fix such a TM machine T = 〈A,Q = Q∀ ∪

2for program complexity, we mean the complexity of the problem in terms of the size of theOPD, for a fixedCTL formula

Laura Bozzelli 167

Q∃,q0,δ ,F〉, whereA is the input alphabet containing the blank symbol #,Q∃ (resp.,Q∀) is the set of exis-
tential (resp., universal) states,q0 is the initial state,δ : Q×A→ (Q×A×{←,→})×(Q×A×{←,→})
is the transition function, andF ⊆ Q is the set of accepting states. Thus, in each step,T overwrites the
tape cell being scanned, and the tape head moves one positionto the left (←) or right (→). We fix an
input win ∈ A∗ and consider the parametern = |win| (we assume thatn > 1). SinceT is EXPSPACE-
bounded, we can assume thatT uses exactly 2n tape cells when started on the inputwin. Hence, a
TM configuration (ofT over win) is a wordC = w1 · (a,q) ·w2 ∈ A∗ · (A×Q) ·A∗ of length exactly
2n denoting that the tape content isw1 · a ·w2, the current state isq, and the tape head is at position
|w1|+ 1. C is acceptingif the associated stateq is in F . We denote bysuccL(C) (resp.,succR(C))
the TM successor ofC obtained by choosing the left (resp., right) triple inδ (q,a). The initial config-
urationCin is (win(0),q0),win(1), . . . ,win(n− 1),#,#, . . . ,#, where the number of blanks at the right of
win(n−1) is 2n−n . For a TM configurationC =C(0), . . . ,C(2n−1), the ‘value’ui of the i-th symbol
of succL(C) (resp.,succR(C)) is completely determined by the valuesC(i− 1), C(i) andC(i + 1) (tak-
ing C(i + 1) for i = 2n− 1 andC(i − 1) for i = 0 to be some special symbol, say⊥). We denote by
nextL(C(i− 1),C(i),C(i + 1)) (resp.,nextR(C(i− 1),C(i),C(i + 1))) our expectation forui (these func-
tions can be trivially obtained from the transition function δ of T).

We prove the following result, hence, Theorem 1 follows (note thatECTL is the dual ofACTL).

Theorem 2. One can construct in polynomial time(in the sizes ofT and win) anOPD S with visible
stack contentsuch thatT acceptswin iff there is a strategy tree ofS satisfying afixed computable
ACTL formulaϕ (independent onT and win).

In the following, first we describe a suitable encoding of acceptance ofT over win. Then, we
illustrate the construction of theOPD of Theorem 2 based on this encoding.

Preliminary step: encoding of acceptance ofT over win. We use the following setΓ of symbols
(which will correspond to the stack alphabet of theOPD S of Theorem 2):3

Γ = Λ∪{L,R,0,1,∃,∀}∪ ({♮}×{⊥,1, . . . ,n})
whereΛ consists of the triples(up,u,us) such thatu ∈ A∪ (A×Q) and up,us ∈ A∪ (A×Q)∪ {⊥}.
Intuitively, up,u,us represent three consecutive symbols in a TM configurationC, whereup = ⊥ (resp.,
us=⊥) iff u is the first (resp., the last) symbol ofC. First, we describe the encoding of TM configurations
C=C(0), . . . ,C(2n−1) by finite words overΓ. Intuitively, the encoding ofC is a sequence of 2n blocks,
where thei-th block (0≤ i≤ 2n−1) keeps tracks of the triple(C(i−1),C(i),C(i+1)) and the binary code
of positioni (cell number). Note that the cell numbers are in the range[0,2n−1] and can be encoded by
usingn bits. Formally, aTM blockis a word overΓ of lengthn+2 of the formbl = t,bit1, . . . ,bitn,(♮, l⊥),
wheret ∈ Λ, bit1, . . . ,bitn ∈ {0,1}, andl⊥ is the positioni of the first bitbiti (from left to right) such that
biti = 0 if such a 0-bit exists, andl⊥ =⊥ otherwise. ThecontentCON(bl) of bl is t and theblock number
ID(bl) of bl is the integer in[0,2n−1] whose binary code isbit1, . . . ,bitn (we assume that the first bit is
the least significant one). Fix apseudoTM configurationC = C(0), . . . ,C(k− 1) with k > 1, which is
defined as a TM configuration with the unique difference that the lengthk of C is not required to be 2n.
We say thatC is initial if C corresponds to the initial TM configurationCin with the unique difference
that the number of blanks at the right ofwin(n−1) is not required to be 2n−n. A TM pseudo codeof C
is a wordwC = bl0 · . . . ·blk−1 · tag overΓ satisfying the following, whereC(−1),C(k) =⊥:

• tag∈ {∃,∀} andtag= ∃ iff C is existential(i.e., the associated TM state is inQ∃);

• eachbli is a TM block such thatCON(bli) = (C(i−1),C(i),C(i +1));

3Since the stack content ofS is visible, we assume that each stack symbol inΓ consists exactly of a visible stack content
variable. Hence, we identify the setΓ of stack symbols with the set of visible stack content variables.

168 New results on pushdown module checking with imperfect information

• ID(bl0) = 0 andID(blk−1) = 2n−1. Moreover, for each 0≤ h< k−1, ID(blh) 6= 2n−1.

If k= 2n and additionally, for eachi, ID(bli) = i, then we say that the wordwC is the TMcodeof the TM
configurationC. Given a non-empty sequenceν = C1, . . . ,Cp of pseudo TM configurations, apseudo
sequence-code ofν is a word overΓ∪{♭} (recall that♭ is the special bottom stack symbol of anOPD) of
the formwν = ♭ ·wC1 ·dir2 ·wC2 · . . . ·dirp ·wCp such thatdir2, . . . ,dirp ∈ {L,R} and eachwCi is a pseudo
code ofCi . The wordwν is initial if C1 is initial, and isacceptingif Cp is accepting and eachCj with j < p
is not accepting. Moreover, if, additionally, eachCi is a TM configuration andwCi is a code ofCi, then we
say thatwν is asequence-code. Furthermore,wν is faithful to the evolution ofT if Ci = succdir i (Ci−1)
for each 2≤ i ≤ p. We encode the acceptance ofT over win as follows, where aΓ∪{♭}-labeled tree
is minimal if the children of each node have distinct labels. Anaccepting pseudo tree-codeis a finite
minimal Γ∪{♭}-labeled treeT such that for each pathπ of T, the word labelingπ, written wπ , is an
initial and accepting pseudo sequence-code (of some sequence of pseudo TM configurations) and:

• each internal node labeled by∃ (existential choice node) has at most two children: one, if any, is
labeled byL, and the other one, if any, is labeled byR;

• each internal node labeled by∀ (universal choice node) has exactly two children: one is labeled
by L, and the other one is labeled byR.

If for each pathπ of T, wπ is asequence-code, then we say thatT is anaccepting tree-code. More-
over, if for each pathπ of T, wπ is faithful to the evolution ofT , then we say thatT is fair.

Remark 2. T accepts win iff there is an accepting fair tree-code.

Construction of the OPD S of Theorem 2. We construct theOPD S in a modular way, i.e.S is
obtained by putting together threeOPD S0,S1, andS2. Intuitively, the firstOPD S0 does not use
invisible information and ensures that the set of itsfinite strategy trees is precisely the set of accepting
pseudo tree-codes. The secondOPD S1, which does not use invisible information, is used to check,
together with a fixedACTL formula, that an accepting pseudo tree-code is in fact an accepting tree-code.
The lastOPD S2, which is the unique ‘component’ which uses invisible information, is used to check,
together with a fixedACTL formula, that an accepting tree-code is fair. First, we consider theOPDs S0

andS1. For a finite wordw, we denote bywR the reverse ofw.

Lemma 1. One can build in polynomial time(in the sizes ofT and win) anOPD S0 with no invisible
information, stack alphabetΓ, set of propositionsΓ∪{♭}, and specialterminal4 control state pf in s.t.
S0 has only push transitions and the set of itsfinite strategy trees ST is the set of accepting pseudo tree-
codes. Moreover, for each node x of ST, the stack content ofstate(x) is thereverseof the word labeling
the partial path from the root to x, andstate(x) has control state pf in and it is a system state if x is a leaf.

Lemma 2. One can build in polynomial time(in the sizes ofT and win) an OPD S1 with no invisi-
ble information, stack alphabetΓ, and set of propositions{main1,check1,good1} s.t.S1 has only pop
transitions and for each state s= (p0,αR) such that p0 is the initial control state andα is a TMpseudo
sequence-code, the following holds: s is labeled by main1, there is a unique strategy tree ST from s, ST is
finite, andα is asequence codeiff ST satisfies the fixedACTL formulaϕcheck1 =AG(check1→AFgood1).

Lemma 3. One can build in polynomial time(in the sizes ofT and win) anOPD S2 with invisible infor-
mationandvisible stack content, stack alphabetΓ, and set of propositions AP= {main2,check2,select2,
good2}, s.t. S2 has only pop transitions and for each state s= (p0,αR), where p0 is the initial control
state andα is a TMsequence-code, the following holds: state s is labeled by main2, each strategy tree of
S2 from s is finite, andα is faithful to the evolution ofT iff there is a strategy tree ST from s satisfying
the fixedACTL formulaϕcheck2 = AG

(
check2→ [((AXcheck2)∨ (AXselect2))∧AFgood2]

)
.

4a terminal control state is a control state from which there is no transition

Laura Bozzelli 169

Proof. We informally describe the construction ofS2, which additionally satisfies the following: (1)
the labeling function can be seen as a mappingµ : P→ AP, whereP is the set of control states, and (2)
for each control statep, vis(p) = µ(p). Assume that initiallyS2 is in state(p0,αR), wherep0 is the
initial control state andα is a sequence-code. Note thatα is faithful to the evolution ofT iff for each
subword5 of αR of the form(blR1 ·β R

1) ·dir ·β R
2 such thatβ1 ·bl1 is a prefix of a TM code,bl1 is a TM block

with CON(bl1) = (u1,p,u1,u1,s), andβ2 is a TM code, the following holds:u1 = nextdir (u2,p,u2,u2,s),
where(u2,p,u2,u2,s) = CON(bl2) and bl2 is the unique TM block ofβ2 such thatID(bl2) = ID(bl1).
Then, starting from themain2-state(p0,αR), themain2-copy of S2 popsαR (symbol by symbol) and
terminates its computation (amain2-state is labeled bymain2) with the additional ability to start by
internal nondeterminism(i.e., the choices are made by the system)n auxiliary copies (each of them in
a check2-state) whenever the popped symbol is in{♮}×{⊥,1, . . . ,n}. Let l1

⊥ be the currently popped
symbol in {♮}× {⊥,1, . . . ,n}. Hence, the current stack content is of the formblR1 ·α ′, wherebl1 is
a TM block. Assume thatα ′ contains some symbol in{L,R} (the other case being simpler), hence
α ′ is of the formβ R

1 · dir ·β R
2 ·α ′′ such thatβ1 ·bl1 is a prefix of a TM code,bl1 is a TM block with

CON(bl1) = (u1,p,u1,u1,s), andβ2 is a TM code. Then, thei-th check2 copy (1≤ i ≤ n), which visits
states labeled bycheck2, deterministically pops the stack (symbol by symbol) untilthe symboldir and
memorizes by its finite control thei-th bit bit1

i of bl1 and the symbolu1 in the contentCON(bl1) of
bl1. When the symboldir ∈ {L,R} is popped, then thei-th check2 copy popsβ R

2 and terminates its
computation with the additional ability to start byexternalnondeterminism (i.e., the choices are made
by the environment) an auxiliary copy ofS2 in a select2-state (i.e., a state labeled byselect2) whenever
the first symbol of the reverse of a TM blockbl2 of β2 is popped. Theselect2-copy, which keeps track of
bit1

i , u1, anddir, deterministically popsblR2 and memorizes by its finite control thei-th bit bit2
i of bl2 and

CON(bl2). WhenCON(bl2) = (u2,p,u2,u2,s) is popped, then theselect2-copy terminates its computation,
and moves to agood2-stateiff bit2

i = bit1
i andu1 = nextdir (u2,p,u2,u2,s).

Let ST be a strategy tree ofS2 from state(p0,αR). For eachcheck2-nodex of ST, let main(x) be
the lastmain2-node in the partial path from the root tox. Let x andy be two distinctcheck2-nodes of
ST which have the same distance from the root and such thatmain(x) = main(y). First, we observe that
the stack contents ofx andy coincide, andx andy are associated with two distinctcheck2-copies. Since
for all control statesp, vis(p) = µ(p), it follows that for eachp∈ {check2,select2}, x has ap-child iff y
has ap-child. Assume thatST satisfies the fixedACTL formulaϕcheck2. Let x be an arbitrary main node
of ST such that the stack content ofx is of the form(blR1 ·β R

1) ·dir ·β R
2 ·α ′, wherebl1 is a TM block,

β1 ·bl1 is the prefix of a TM code,dir ∈ {L,R}, andβ2 is a TM code. LetCON(bl1) = (u1,p,u1,u1,s).
By construction, it follows that for each 1≤ i ≤ n, x has acheck2-child xi such that the subtree rooted at
xi is a chain which leads to a TMselect2-block bl i2 of β2 followed by agood2-node such that thei-th bit
of bl i2 coincides with thei-th bit of bl1 andu1 = nextdir (u2,p,u2,u2,s), where(u2,p,u2,u2,s) = CON(bl i2).
Moreover, by the observation above, it follows that all then check2-copies associated with then check2-
children ofx select the same TM blockbl2 of β2. Since thei-th bit of bl2 coincides with thei-th bit of
bl1 for each 1≤ i ≤ n, bl2 is precisely the TM block ofβ2 have the same cell number asbl1. It follows
thatα is faithful to the evolution ofT . Vice versa, ifα is faithful to the evolution ofT , it easily follows
that there is a strategy tree from(p0,αR) satisfyingϕcheck2.

Let S0,S1, andS2 be theOPDs of Lemmata 1, 2, and 3, respectively. W.l.o.g. we assume that
the sets of visible and invisible control variables of theseOPDs are pairwise disjoint. Hence, their sets
of control states are pairwise disjoint as well. TheOPD S satisfying Theorem 2 is obtained from

5given a wordw, a finite wordw′ is asubwordof w if w can be written in the formw= w1 ·w′ ·w2

170 New results on pushdown module checking with imperfect information

S0,S1, andS2 as: (1) the set of control states is the union of the sets of control states ofS0,S1,
and S2, and the initial control state is the initial control state of S0, (2) the transition relation con-
tains all the transitions ofS0,S1, andS2 and, additionally, twointernal transitions from the special
terminal control statepf in of S0 to the initial control states ofS1 andS2, respectively, and (3) the la-
beling function and the partitioning in environment and system states are obtained from those ofS0,S1,
andS2 in the obvious way. Letϕcheck1 andϕcheck2 be the fixedACTL formulas of Lemmata 2 and 3,
and letϕ f inite = AF(AX¬true) be the fixedACTL formula asserting that a (finitely-branching) tree is
finite.6 Note that a state ofS is a state ofS0 iff it is not labeled by any proposition inPropf ixed =
{main1,main2,check1,check2,good1,good2,select2}. By Lemmata 1, 2, and 3, we easily obtain that

Claim: there is an accepting fair tree-code (i.e.,T acceptswin) iff there is a strategy tree ofS satisfying
the fixedACTL formulaϕ f inite ∧ AG

(
[
∧

p∈Propf ixed
¬p] −→ [

∧i=2
i=1AX(maini → ϕchecki)]

)
.

By the claim above, Theorem 2 follows, which concludes.

4 Pushdown module checking forOPD with visible stack content depth

4.1 Undecidability results

In this subsection, we establish the following result.

Theorem 3. PMC with imperfect information againstCTL restricted toOPDs with visible stack content
depthis undecidable, even if theCTL formula is assumed to be in the fragmentCTL(EF,EX,AG,AX)
and theOPD is assumed to be stable and having only environment configurations.

Theorem 3 is proved by a reduction from the Post’s Correspondence Problem (PCP, for short) [12].
An instanceI of PCP is a tupleI = ((u1

1, . . . ,u
1
n),(u

2
1, . . . ,u

2
n)), wheren≥ 1 and for each 1≤ i ≤ n,

u1
i and u2

i are non-empty finite words over an alphabetA. Let [n] = {1, . . . ,n}. A solution of I is
a non-empty sequencei1, i2, . . . , ik of integers in[n] such thatu1

i1 · u
1
i2 · . . . · u

1
ik = u2

i1 · u
2
i2 · . . . · u

2
ik. PCP

consists in checking for a given instanceI , whetherI admits a solution. This problem is known to be
undecidable [12]. In the rest of this section, we fix a PCP instanceI = ((u1

1, . . . ,u
1
n),(u

2
1, . . . ,u

2
n)) and

prove the following result, hence Theorem 3 follows.

Theorem 4. One can build astableOPD S with visible stack content depthand having only environ-
ment configurations, and aCTL(EF,EX,AG,AX) formulaϕ such thatI hasnosolutioniff MS |=r ϕ .

In order to prove Theorem 4, first we describe a suitable encoding of the set of solutions ofI . Some
ideas in the proposed encoding are taken from [1], where emptiness of alternating automata on nested
trees is shown to be undecidable.

Preliminary step: encoding of the set of solutions ofI . We use the following setAP of atomic
propositions:AP= A∪ [n]∪ ([n]×{♮})∪{♭,end1,end2, prev,succ,nomatch,match,⊤1,⊤2,⊥1,⊥2,♦}.

We denote byMAX the maximum of the sizes of the words inI and byAMAX the set of wordsw∈ A+

such that|w| ≤MAX. Let i1, . . . , ik ∈ [n]+ (i.e., a non-empty sequence of integers in[n]) andw∈ A+ (i.e.,
a non-empty finite word overA). A marked(i1, . . . , ik,w)-word is a finite wordv overAP obtained from
the word♭ · i1 · . . . · ik ·end1 ·wR·end2 by replacing at most one integer occurrencei j , where 1≤ j ≤ k, with
(i j , ♮). The marked(i1, . . . , ik,w)-word v is good if it contains exactly one marked integer occurrence.
A (good)marked wordis a (good) marked(i1, . . . , ik,w)-word for somei1, . . . , ik ∈ [n]+ andw∈ A+. A
marked tree Tmarked is aminimal AP-labeled tree satisfying the following:

6note that a strategy tree of aOPD is finitely-branching, i.e. the set of children of any node isfinite.

Laura Bozzelli 171

• each finite path ofTmarked is labeled by a marked word;

• for all i1, . . . , ik ∈ [n]+ andw∈ A+, if there is a finite path ofTmarked labeled by a marked(i1, . . . , ik,
w)-word, then for each marked(i1, . . . , ik,w)-word v, there is a path ofTmarked labeled byv.

• each infinite path ofTmarked is labeled by a word in{♭}· [n]ω ∪{♭}· [n]∗ · [n]×{♮}· [n]ω ∪{♭}· [n]∗ ·
[n]×{♮} · [n]∗ · {end1} ·Aω .7.

Note thati1, . . . , ik is a solution ofI iff there is a wordw∈ A+ which can be factored intou1
i1 ·u

1
i2 · . . . ·u

1
ik

and similarly intou2
i1 ·u

2
i2 · . . . ·u

2
ik . In order to express this condition, we define suitable extensions of the

marked trees. First, we need additional definitions.
For eacht = 1,2, at-witness forw is afinite minimal AP-labeled treeTt

w satisfying the following:Tt
w

consists of amain pathlabeled by a word of the form⊥t ·w1 ·⊤t · . . . ·⊤t ·wl ·⊤t such that:

• w1, . . . ,wl ∈ AMAX andw1 · . . . ·wl = w;

• each⊤t-node has an additional childx, which does not belong to the main path, such that the
subtree rooted atx is a finite chain (calledsecondary chain), whose nodes are labeled by♦.

Let xi be theith ⊤t -node along the main path, where 1≤ i ≤ l : we denote bylength(xi) the length of
the associated secondary chain, byword(xi) the wordwi, and bysuffix(xi) the (possibly empty) word
wi+1, . . . ,wl . An extensionof a t-witnessTt

w for w is a finite minimal AP-labeled treeETt
w obtained

from Tt
w by extending each secondary chain ofTt

w with an additional (leaf) node labeled by a symbol in
{prev,succ,nomatch,match}. We say thatTt

w is thesupportof ETt
w. For p∈ {prev,succ,nomatch,match},

we say that a⊤t-node ofETt
w is of type pif the secondary chain associated withx lead to ap-node. Given

a good marked(i1, . . . , ik,w)-word v= ♭ · i1 · . . . · i j−1 · (i j , ♮) · . . . · ik ·end1 ·wR ·end2, we say thatETt
w is

compatible withv iff for each⊤t-nodex along the main path ofETt
w, the following holds:

• length(x) ∈ {|suffix(x)|+ 1, . . . , |suffix(x)|+ k}. Moreover, if length(x) > |suffix(x)|+ k− j + 1
(resp.,length(x)< |suffix(x)|+k− j +1), thenx is of type ‘prev’ (resp., ‘succ’);

• if length(x) = |suffix(x)|+ k− j + 1 andword(x) = ut
i j

(resp.,word(x) 6= ut
i j
), thenx is of type

‘match’ (resp., ‘nomatch’).

A marked tree with witnesses WTmarked is aminimal AP-labeled tree such that there is a marked tree
Tmarkedso thatWTmarked is obtained fromTmarkedas follows:

• for each leafx of Tmarked(note thatx is anend2-node), letv be the marked word labeling the partial
path from the root tox. Then, ifv is good, we add two childrenx1 andx2 to x such that for each
t = 1,2, the subtree rooted atxt is an extension of at-witness compatible withv;

• well-formedness requirement: let w ∈ A+ and i1, . . . , ik ∈ [n]+, andx andy be twoend2-nodes of
WTmarked such that the associated marked words are good(i1, . . . , ik,w)-marked words. Then, we
require that for eacht = 1,2, the two subtrees rooted at the⊥t-child of x andy, respectively, (which
are extensions oft-witnesses) have the same support.

Proposition 1. I admits a solutioniff there is amarked tree with witnessesWTmarked having some
end2-node and such that for each⊥t-node x (t= 1,2), the subtree ETxw rooted at x satisfies the following:

• ETx
w has no ‘nomatch’-nodes and there is exactly one node of ETx

w which is labeled by ‘match’;

• no⊤t-node of type ‘match’ or ‘succ’ is strictly followed by a⊤t-node of type ‘match’ or ‘prev’.

7this last condition is irrelevant in the encoding of the set of solutions ofI . It just reflects, as we will see, the behavior of
theOPD of Theorem 4

172 New results on pushdown module checking with imperfect information

By Proposition 1, we easily deduce the following.

Proposition 2. One can construct aCTL(EF,EX,AG,AX) formulaψI such thatI admits a solutionif
and only ifthere is amarked tree with witnessesWTmarkedwhich satisfiesψI .

SinceCTL(EF,EX,AG,AX) is closed under negation, Theorem 4 directly follows from Proposition 2
and the following lemma.

Lemma 4. One can construct astableOPD S with visible stack content depthand having only envi-
ronment configurations, and aCTL(EF,EX,AG,AX) formulaφ such that the set of strategy trees ofS

which satisfyφ corresponds to the set of marked trees with witnesses.

Proof. We informally describe the construction of the stableOPD S = 〈AP,Q,q0,Γ, ♭,∆,µ ,Env〉. Each
state ofS is an environment state, i.e.Env= Q× (Γ∪{♭}), and the labeling functionµ can be seen as
mappingµ : Q→ AP. The setsIΓ andHΓ of visible and invisible stack content variables are given by
IΓ = A∪ [n] andHΓ = {♮}. Then,Γ is given byΓ = {{γ} | γ ∈ IΓ}∪{{i, ♮} | i ∈ [n]}. We identify{γ}
with γ and{i, ♮} with (i, ♮). Hence,Γ corresponds to the setA∪ [n]∪ ([n]×{♮}). Note thatvis(γ) 6= ε for
eachγ ∈ Γ. Hence, the stack content depth ofS is visible and:

• Property A: for all γ ,γ ′ ∈ Γ, vis(γ) = vis(γ ′) iff either γ = γ ′ or γ ,γ ′ ∈ {i,(i, ♮)} for somei ∈ [n].

Furthermore, the definition ofµ andP ensures the following:

• Property B: for all q,q′ ∈P, vis(q) = vis(q′) iff: (1) or µ(q) = µ(q′), or (2)µ(q),µ(q′)∈ {i,(i, ♮)}
for somei ∈ [n], or (3) µ(q),µ(q′) ∈ {nomatch,match, prev,succ}.8

First phase: generation of marked words.Starting from the initial configuration (whose stack content
and propositional label is♭), theOPD S generates symbol by symbol,9 by external nondeterminism,
marked words. Whenever a symbol inA∪ [n]∪ ([n]×{♮}) is generated, at the same time it is pushed
onto the stack. Symbols in{end1,end2} are generated by internal transitions that do not modify thestack
content. TheOPD S keeps track by its finite control whether there is a marked integer in the prefix of
the guessed marked word generated so far. In such a way,S can ensure that during the generation of
a marked word, at most one integer occurrence in[n] is marked. Letϒ be the set ofAP-labeled treesT
such that there is a strategy treeST of S so thatT is obtained fromST by pruning the subtrees rooted at
the children ofend2-nodes. Then, Properties A and B above ensure thatϒ is theset of marked trees.

Second phase: generation of extensions of t-witnesses, where t = 1,2. Assume thatS is in anend2-state
s associated with some nodexs of the computation tree ofS from the initial state. By construction,
the partial path from the root toxs is labeled by some marked wordv. If v is not good, thens has no
successors. Now, assume thatv is good, hence,v is of the form♭ · i1 · . . . · (i j , ♮) · . . . · ik ·end1 ·wR ·end2,
wherew∈ A+ andi1, . . . , ik ∈ [n]+. By construction, the stack content ins is given byw · ik · . . . · (i j , ♮) ·
. . . · i1 · ♭. Then, from states, S splits in two copies: the first one moves to a configurations1 labeled by
⊥1 and the second one moves to configurations2 labeled by⊥2 (in both cases the stack content is not
modified). Fixt = 1,2. From statest , S generates by external nondeterminism extensions oft-witnesses
compatible with the marked wordv as follows. Finite words of the formw1 ·⊤t · . . . ·⊤t ·wl ·⊤t , where
w1, . . . ,wl ∈ AMAX andw1 · . . . ·wl = w, labeling main paths oft-witnesses, are generated as follows. The
symbol⊤t is generated by internal transitions which do not modify thestack content. Whenever the
symbol⊥t (resp.,⊤t) is generated,S pops (resp., can pop) the stack symbol by symbol and generates

8In fact, in order to ensure thatS is stable, Property B is slightly more complicated.
9i.e., the transitions in this phase lead to configurations labeled by propositions in{end1,end2}∪A∪ [n]∪ ([n]×{♮})

Laura Bozzelli 173

the current popped symbol (with the restriction that a symbol can be popped iff it is inA). At the same
time, S keeps track by its finite control of the stringws ∈ AMAX popped so far. When|ws| = MAX,
thenS deterministically moves to a⊤t-configuration (without changing the stack content). If instead
|ws|< MAX, thenS either continues to pop the stack content (if the top of the stack content is inA) or
moves to a⊤t-configuration (without changing the stack content). Additionally, from a⊤t-configuration,
S can also choose to move to a♦-configurations♦ without changing the stack content. Ins♦, S keeps
track in the control state of the wordws∈AMAX (popped from the stack) and associated with the previous
⊤t-configuration. Starting froms♦, S deterministically pops the stack symbol by symbol remaining in
s♦. When every symbol inA has been popped (hence, the stack content isik · . . . · (i j , ♮) · . . . · i1 · ♭), S can
choose to continue to pop the stack symbol by symbol by movingat each step to♦-configurations and
by keeping track in its finite control of the stringws and whether a marked integer in[n] has been already
popped. Additionally, whenever a symbol in[n]∪ [n]×{♮} is popped,S can choose to move without
changing the stack content to a terminalp-configuration, wherep ∈ {prev,succ,match,nomatch}, such
that the following holds:p= succ(resp.,p= prev) if an integer in[n] is popped and no (resp., some)
marked integer has been previously popped, andp= match(resp.,p= nomatch) if a marked integer(h, ♮)
(note thath= i j) is popped andws= ut

h (resp.,ws 6= ut
h).

We use the followingCTL(EF,EX,AG,AX) formula φ in order to select strategy trees ofS such
that: (1) eachend2-node has two children (i.e., a child labeled by⊥1 and a child labeled⊥2), and (2)
for eacht = 1,2, the subtree rooted at any⊥t-node is an extension of at-witness. In order to fulfill the
second requirement, first, we need to ensure that from each⊥t node (t = 1,2), there is a unique main
path. Note that this last condition is equivalent to requirethat eacha-node witha∈A in a⊥t-node rooted
subtree has exactly one child (this can be easily expressed in CTL(EF,EX,AG,AX), since the strategies
trees ofS areminimal AP-labeled trees). Second, we need to ensure that each⊤t-node has a♦-child x
such that the subtree rooted atx is a finite chain. Hence, formulaφ is given by

AG(end2→
∧

t=1,2EX(⊥t ∧AG[(
∨

a∈A a→ψunique)∧ (⊤t→EX♦)∧ (♦→ (ψunique∧EFAX¬true))]))

whereψunique=
∨

p∈APAXp. By Properties A and B above it easily follows that the strategy trees ofS
satisfying theCTL(EF,EX,AG,AX) formula φ , also satisfy the well-formedness requirement. Hence,
the set of strategy trees ofS satisfyingφ is the set of marked trees with witnesses.

4.2 Decidability results

The main result of this subsection is as follows.

Theorem 5. PMC with imperfect information againstECTL restricted to stableOPDs with visible stack
content depth and having only environment configurations isdecidable and in2EXPTIME.

Theorem 5 is proved by a reduction to non-emptiness of Büchialternating visible pushdown automata
(AVPA) [5], which is 2EXPTIME-complete [5]. First, we briefly recall the framework ofAVPA. Then,
we establish some additional decidability results. Finally, we prove Theorem 5.

Büchi AVPA: A pushdown alphabetΣ is a finite alphabet which is partitioned in three disjoint finite
alphabetsΣcall , Σret, andΣint , whereΣcall is a set ofcalls, Σret is a set ofreturns, andΣint is a set of
internal actions. An AVPA is a standard alternating pushdown automaton on words over apushdown
alphabetΣ, which pushes onto (resp., pops) the stack only when it readsa call (resp., a return), and does
not use the stack on internal actions. For a formal definitionof the syntax and semantics ofAVPA see [5].
Given a BüchiAVPA A overΣ, we denote byL (A) the set of nonempty finite or infinite words overΣ
accepted byA (we assume thatA is equipped with both a Büchi acceptance condition for infinite words
and a standard acceptance condition for finite words).

174 New results on pushdown module checking with imperfect information

Preliminary decidability results: For a moduleM , a minimal strategy treeSTmin of M is a strategy
tree satisfying the following: for each strategy treeSTof M if ST is contained inSTmin, thenST=STmin.
Given aCTL formulaϕ , we say thatM minimally reactively satisfiesϕ , denotedM |=r,min ϕ , if all the
minimalstrategy trees ofM satisfyϕ . Let M be astablemodule having only environment states and
ST be a minimal strategy tree ofM . For eachi ≥ 0, letΛi be the set of nodesx of ST at distancei from
the root, i.e., such that|x| = i. SinceST is minimal, it easily follows that for alli ≥ 0 andx,x′ ∈ Λi ,
vis(state(x)) = vis(state(x′)). Now, let us consider a stableOPD S = 〈AP,Q,q0,Γ, ♭,∆,µ ,Env〉 with
visible stack content depth and having only environment configurations. By Remark 1,MS is stable. Let
ST be a minimal strategy tree ofS and for eachi ≥ 0, letΛi be defined as above (w.r.t. strategyST). By
the above observation, it easily follows that for eachi ≥ 0 such thatΛi+1 6= /0, there areXi ⊆ I (whereI is
the set of visible control state variables ofS) andXi,Γ ⊆ IΓ (whereIΓ is the set of visible stack content
variables ofS) such that one of the following holds:

• each nodex in Λi+1 is obtained from the parent node by an internal transition (depending onx) of
the formq−→ q′ such thatvis(q′) = Xi;

• each nodex in Λi+1 is obtained from the parent node by a push transition (depending onx) of the

form q
push(γ)
−−−−→ q′ such thatvis(q′) = Xi andvis(γ) = Xi,Γ;

• each nodex in Λi+1 is obtained from the parent node by a pop transition (depending onx) of the

form q
pop(γ)
−−−→ q′ such thatvis(q′) = Xi.

Let ΣS be the pushdown alphabet defined as follows:Σcall
S

= {(push,X,XΓ) | X = vis(q) andXΓ =
vis(γ) for someq∈ Q andγ ∈ Γ}, Σint

S
= {(int,X) | X = vis(q) for someq∈Q}, andΣret

S
= {(pop,X) |

X = vis(q) for someq∈ Q}. Thus, we can associate to each finite (resp., infinite) minimal strategy tree
ST of S a finite (resp., infinite) word overΣS , denoted byw(ST). Moreover, for each wordw overΣS ,
there is at most one minimal strategy treeST of S such thatw(ST) = w. This observation leads to the
following theorem, wherêΣS is the pushdown alphabetΣS ∪{push, pop}, with pushbeing a call, and
popa return.

Theorem 6. Given a stableOPD S with visible stack content depth and having only environment
configurations and aCTL formulaϕ , one can construct in linear-time a BüchiAVPA A over Σ̂S such
that there is aminimal strategy tree ofS satisfyingϕ iff L (A) 6= /0.

Proof. The proposed construction is a generalization of the standard alternating automata-theoretic ap-
proach toCTL model checking [15]. Here, we informally describe the main aspects of the construc-
tion. LetS = 〈AP,P, po,Γ, ♭,∆,µ ,Env〉. W.l.o.g. we assume that the initial configuration ofS is non-
terminal. For a wordw overΣS , we denote byext(w) the word over̂ΣS obtained fromw by replacing
each occurrence of a return symbol(pop,X) in w with the word(pop,X), pop, push. We construct a
BüchiAVPA A over Σ̂S such that for each non-empty word̂w over Σ̂S , A has an accepting run over
ŵ if and only if ŵ = ext(w) for some wordw over ΣS and there is a minimal strategy treeST of S

such thatw = w(ST) andST satisfiesϕ . Essentially, for each wordw over ΣS associated with some
minimal strategy treeST of S , an accepting runr of A overext(w) encodesST as follows: the nodes
of r associated with thei-th symbol ofw correspond to the nodes ofST at distancei from the root.
However, for each nodex of ST, there can be many copies ofx in the runr. Each of such copies has the
same stack content asx, but its control state is equipped with additional information including one of the
subformulas ofϕ which holds at nodex of ST.

TheAVPA A has the same stack alphabet asS . Its set of control states is instead given by the set of
tuples of the form(p,γ ,ψ , f), where(p,γ)∈P×(Γ∪{♭}), ψ is a subformula ofϕ , and f is an additional

Laura Bozzelli 175

state variable in{sim, pop, push}. Intuitively, p represents the current control state ofS andγ represents
the guessed top symbol of the current stack content. Furthermore, f is used to check that the input word
is an extension of some word overΣS . The additional symbolspopandpushin Σ̂S are instead used to
check that the guessγ is correct. The behavior ofA as follows. Assume that a copy ofA is in a control
state of the form(p′,γ ′,ψ ′,sim) and the current input symbol isσ , wherep′ is the current control state of
S andγ ′ is the top symbol of the current stack content (initially,A is in the control state(p0, ♭,ϕ ,sim)).
If σ ∈ {pop, push}, then the input is rejected. If insteadσ is call (resp., an internal action) inΣS , then
the considered copy ofA simulate push (resp., internal) transitions ofS from the current configuration
(of the form(p′,α) such thattop(α) = γ ′) consistent withσ if such transitions exist by splitting in one
or more copies (depending on the number of simulated transitions and the structure ofψ), each of them
moving to a control state of the form(p,γ ,ψ ,sim). Note that in this case,A can ensure that the guess
γ is correct. Now, assume thatσ is a return inΣS . Then, the considered copy ofA guesses a stack
symbol γ ∈ Γ∪ {♭} and simulate pop transitions ofS from the current configuration consistent with
σ (if such transitions exist) by splitting in one or more copies (depending on the number of simulated
transitions and the structure ofψ), each of them moving to a control state of the form(p,γ ,ψ , pop). In
the next step, the input symbol must bepop (otherwise, the input is rejected). Thus, the current copy
in control state(p,γ ,ψ , pop) pops the stack and check whether the guessγ is correct. If the guess is
correct, then the copy moves to the control state(p,γ ,ψ , push) (otherwise, the run is rejecting). In the
next step, the input symbol must bepush(otherwise, the input is rejected). Thus, the considered copy
re-pushesγ onto the stack and moves to control state(p,γ ,ψ ,sim). Assuming that the input word is
ext(w) for some nonempty wordw overΣS , the above behavior ensures, in particular, that whenever an
input symbol inΣS is read,A is in a control state of the form(p,γ ,ψ ,sim), whereγ is the top symbol
of the current stack content. Finally,A checks whetherw is associated with some minimal strategy tree
of S as follows. First, we observe that a nonempty wordw over ΣS is not associable to any minimal
strategy tree ofS iff the following holds. There is a proper prefixw′ of w of length i for somei ≥ 0
such thatw′ is the prefix ofw(ST) for some minimal strategy treeST of S such that: there is a node
x of ST at distancei + 1 from the root whose configuration(p,α) has some successor, but there is no
transition from(p,α) which is consistent with thei +1-th symbol ofw. Thus, whenever a copy ofA
reads a symbolσ ∈ ΣS , hence the considered copy is in a control state of the form(p,γ ,ψ ,sim) (where
p is the current control state ofS andγ is the top symbol of the current stack content),A rejects the
input string if: the current configuration ofS has some successor (i.e.,(p,γ) is non-terminal), but there
is no transition from the current configuration which is consistent with the current input symbolσ .

Since non-emptiness ofAVPA is 2EXPTIME-complete [5], by Theorem 6, we obtain the following.

Corollary 1. Checking whetherMS |=r,min ϕ , for a givenCTL formulaϕ and a given stableOPD S

with visible stack content depth and having only environment configurations, is in2EXPTIME.

Proof of Theorem 5: let ϕ be anECTL formula overAP. Note that for all 2AP-labeled treesT andT ′, if
T is contained inT ′ andT satisfiesϕ , thenT ′ satisfiesϕ as well. Note that for a given moduleM , each
strategy tree ofM contains some minimal strategy tree. Hence, for anECTL formulaϕ , M |=r ϕ if and
only if M |=r,min ϕ . Thus, Theorem 5 directly follows from Corollary 1. Finally, for completeness, we
observe that unrestrictedPMC with imperfect information againstACTL is trivially decidable. Indeed for
anACTL formulaϕ and moduleM , M |=r ϕ iff the maximalstrategy tree ofM (i.e., the computation
tree ofM starting from the initial state) satisfiesϕ . Hence,PMC with imperfect information against
ACTL is equivalent to standard pushdown model checking againstACTL, which is in EXPTIME [19].

Proposition 3. PMC with imperfect information againstACTL is in EXPTIME.

176 New results on pushdown module checking with imperfect information

5 Conclusion

There is an intriguing question left open. We have shown thePMC with imperfect information for stable
OPDs with visible stack content depth and having only environment configurations is undecidable for
the fragmentCTL(EF,EX,AG,AX) of CTL, and decidable for the fragmentsECTL andACTL of CTL.
Thus, it is open the decidability status of the problem abovefor the standardEF-fragment ofCTL (using
just the temporal modalityEF and its dualAG). We conjecture that the problem is decidable.

References

[1] R. Alur, S. Chaudhuri & P. Madhusudan (2006):Languages of Nested Trees. In: CAV’06, LNCS 4144,
Springer, pp. 329–342, doi:10.1007/11817963_31.

[2] B. Aminof, A. Murano & M.Y. Vardi (2007):Pushdown Module Checking with Imperfect Information. In:
CONCUR’07, LNCS 4703, Springer, pp. 460–475, doi:10.1007/978-3-540-74407-8_31.

[3] T. Ball & S. Rajamani (2000):Bebop: a symbolic model checker for boolean programs. In: 7th SPIN
Workshop, LNCS 1885, Springer, pp. 113–130, doi:10.1007/3-540-46419-0_21.

[4] A. Bouajjani, J. Esparza & O. Maler (1997):Reachability Analysis of Pushdown Automata: Appli-
cation to Model-Checking. In: CONCUR’97, LNCS 1243, Springer, pp. 135–150, doi:10.1007/

3-540-63141-0_10.

[5] L. Bozzelli (2007): Alternating Automata and a Temporal Fixpoint Calculus for Visibly Pushdown Lan-
guages. In: CONCUR’07, LNCS 4703, Springer, pp. 476–491, doi:10.1007/978-3-540-74407-8_32.

[6] L. Bozzelli (2007):Complexity results on branching-time pushdown model checking. Theor. Comput. Sci.
379(1–2), pp. 286–297, doi:10.1016/j.tcs.2007.03.049.

[7] L. Bozzelli, A. Murano & A. Peron (2010):Pushdown module checking. Formal Methods in System Design
36(1), pp. 65–95, doi:10.1007/s10703-010-0093-x.

[8] A.K. Chandra, D.C. Kozen & L.J. Stockmeyer (1981):Alternation. Journal of the ACM28(1), pp. 114–133,
doi:10.1145/322234.322243.

[9] K. Chatterjee & T.A. Henzinger (2005):Semiperfect-Information Games. In: FSTTCS’05, LNCS 3821,
Springer, pp. 1–18, doi:10.1007/11590156_1.

[10] E.M. Clarke & E.A. Emerson (1981):Design and Verification of Synchronization Skeletons usingBranching
Time Temporal Logic. In: Proceedings of Workshop on Logic of Programs, LNCS 131, Springer, pp. 52–71.

[11] A. Ferrante, A. Murano & M. Parente (2007):Enriched µ-Calculus Pushdown Module Checking. In:
LPAR’07, LNCS 4790, Springer, pp. 438–453, doi:10.1007/978-3-540-75560-9_32.

[12] J.E. Hopcroft & J.D. Ullman (1979):Introduction to Automata Theory, Languages and Computation.
Addison-Wesley.

[13] O. Kupferman & M.Y. Vardi (1996):Module Checking. In: CAV’96, LNCS 1102, Springer, pp. 75–86,
doi:10.1007/3-540-61474-5_59.

[14] O. Kupferman & M.Y. Vardi (1997):Module Checking Revisited. In: CAV’97, LNCS 1254, Springer, pp.
36–47, doi:10.1007/3-540-63166-6_7.

[15] O. Kupferman, M.Y. Vardi & P. Wolper (2000):An automata-theoretic approach to branching-time model
checking. Journal of the ACM47(2), pp. 312–360, doi:10.1145/333979.333987.

[16] O. Kupferman, M.Y. Vardi & P. Wolper (2001):Module Checking. Inf. Comput.164(2), pp. 322–344, doi:10.
1006/inco.2000.2893.

[17] J.H Reif (1984):The Complexity of Two-Player Games of Incomplete Information. J. Comput. Syst. Sci.
29(2), pp. 274–301, doi:doi:10.1016/0022-0000(84)90034-5.

http://dx.doi.org/10.1007/11817963_31
http://dx.doi.org/10.1007/978-3-540-74407-8_31
http://dx.doi.org/10.1007/3-540-46419-0_21
http://dx.doi.org/10.1007/3-540-63141-0_10
http://dx.doi.org/10.1007/3-540-63141-0_10
http://dx.doi.org/10.1007/978-3-540-74407-8_32
http://dx.doi.org/10.1016/j.tcs.2007.03.049
http://dx.doi.org/10.1007/s10703-010-0093-x
http://dx.doi.org/10.1145/322234.322243
http://dx.doi.org/10.1007/11590156_1
http://dx.doi.org/10.1007/978-3-540-75560-9_32
http://dx.doi.org/10.1007/3-540-61474-5_59
http://dx.doi.org/10.1007/3-540-63166-6_7
http://dx.doi.org/10.1145/333979.333987
http://dx.doi.org/10.1006/inco.2000.2893
http://dx.doi.org/10.1006/inco.2000.2893
http://dx.doi.org/doi:10.1016/0022-0000(84)90034-5

Laura Bozzelli 177

[18] I. Walukiewicz (1996): Pushdown processes: Games and Model Checking. In: CAV’96, LNCS 1102,
Springer, pp. 62–74, doi:10.1007/3-540-61474-5_58.

[19] I. Walukiewicz (2000):Model Checking CTL Properties of Pushdown Systems. In: FSTTCS’00, LNCS 1974,
Springer, pp. 127–138, doi:10.1007/3-540-44450-5_10.

http://dx.doi.org/10.1007/3-540-61474-5_58
http://dx.doi.org/10.1007/3-540-44450-5_10

	1 Introduction
	2 Preliminaries
	2.1 Module checking with imperfect information
	2.2 Pushdown Module Checking with Imperfect Information

	3 Pushdown module checking for OPD with visible stack content
	4 Pushdown module checking for OPD with visible stack content depth
	4.1 Undecidability results
	4.2 Decidability results

	5 Conclusion

