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Model checking of open pushdown syster@$D) w.r.t. standard branching temporal logipsish-
down module checkingr PMC) has been recently investigated in the literature, bothécbntext of
environments with perfect and imperfect information altbetsystem (in the last case, the environ-
ment has only a partial view of the system’s control statelsséack content). For standatd 'L, PMC
with imperfect information is known to be undecidable. I tstack content is assumed to\bsible,
then the problem is decidable and @& IME-complete (matching the complexity BMC with per-
fect information againsETL). The decidability status d?MC with imperfect information against
CTL restricted to the case where the depth of the stack contsitilide is open. In this paper, we
show that with this restrictiorRMC with imperfect information again&TL remains undecidable.
On the other hand, we individuate an interesting subclagsP@¥s with visible stack content depth
such thatPMC with imperfect information against the existential fragrhef CTL is decidable and

in 2EXPTIME. Moreover, we show that tigrogram complexitgpf PMC with imperfect information
and visible stack content agairGT L is 2ExpTIME-complete (hence, exponentially harder than the
program complexity oPMC with perfect information, which is known to bexBTIME-complete).

1 Introduction

Verification of open systems.In the literature, formal verification of open systems is émgral formu-
lated as two-players games (between the system and themmeént). This setting is suitable when the
correctness requirements on the behavior of the systenoaralized by linear-time temporal logics.
In order to take into account also requirements expressgidbeanching-time temporal logics, recently,
Kupferman, Vardi, and Wolper [13, 16] introduce thmodule checkindramework for the verification
of finite-state open systems. In such a framework, the opée-Btate system is described by a labeled
state-transition graph calledodule whose set of states is partitioned into a setysftem state@vhere
the system makes a transition) and a setmfironment stateGvhere the environment makes a transi-
tion). Given a module# describing the system to be verified, and a branching-timpoéeal formula

¢ specifying the desired behavior of the system,rttadule checking problersks whether for all pos-
sible environments,# satisfiesg. In particular, it might be that the environment does notbémall
the external nondeterministic choices. Module checkings timvolves not only checking that the full
computation tre€l , obtained by unwinding# (which corresponds to the interaction .of with a
maximal environment) satisfies the specificatiipnbut also that every tree obtained from it by pruning
children of environment nodes (this corresponds to dispbisible environment choices) satigfy In
[14] module checking for finite-state systems has been detio a setting where the environment has
imperfect informationabout the states of the system (see dlso [[17, 9] for relateld vegarding im-
perfect information). In this setting, every state of thedule is a composition ofisible andinvisible
variables where the latter are hidden to the environmentus;Tthe composition of a moduleZ with

an environment with imperfect information corresponds teea obtained fronT_, by pruning children
of environment nodes in such a way that the pruning is cagistith the partial information available
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to the environment. One of the results [in{[14] is tRALL finite-state module checking with imperfect
information has the same complexity @$L finite-state module checking with perfect information,,i.e
it is EXPTIME-complete, but itprogram complexityi.e., the complexity of the problem in terms of the
size of the system) is exponentially harder, i.&PEIME-complete.

Pushdown module checking. An active field of research is model-checking of pushdowrtesys.
These represent an infinite-state formalism suitable toentiae control flow of recursive sequential
programs. The model checking problem of (closed) pushdgstesis against standard regular tempo-
ral logics (such a&TL, CTL, CTL*, or the modalu-calculus) is decidable and it has been intensively
studied in recent years leading to efficient verificatiorodathms and tools (see for example [18] 4, 3)).
Recently, in[[7} 2, 111], the module checking framework hanbextended to the classgben pushdown
systemqOPD), i.e. pushdown systems in which the set of configuratiormititioned (in accordance
with the control state and the symbol on the top of the statk)a set okystem configuratiorsnd a set

of environment configuration®ushdown module checkittBMC, for short) against standard branching
temporal logics, likeCTL andCTL*, has been investigated both in the context of environmeittsper-
fect information [[7] and imperfect information![2,111] alidhe system (in the last case, the environment
has only a partial view of the system'’s control states anckstantent). For the perfect information set-
ting, as in the case of finite-state systef|C is much harder than standard pushdown model checking
for bothCTL andCTL*. For example, foCTL, while pushdown model checking iXETIME-complete
[19], PMC with perfect information is 2EPTIME-complete [[7] (however, the program complexities of
the two problems are the same, i.exFEIME-complete [[6| [7]). For the imperfect information setting,
PMC againstCTL is in general undecidablél[2], and undecidability relieshading information about
the stack content. The decidability status for the last lerotrestricted to the class &fPDs where the
stack content deptls visible is left open in[[2]. On the other hanBMC with imperfect information
againstCTL restricted to the class @PDs with imperfect information about the internal control st
but a visible stack content, is decidable and has the samplerity asPMC with perfect information.
However, its program complexity is open: it lies somewhessveen KPTIME and 2ExPTIME [2].

Our contribution. We establish new results dtMC with imperfect information againsITL. More-
over, we also consider a subclass0#Ds, we callstableOPDs, where the transition relation is consis-
tent with the partial information available to the enviroemt Our main results are the following.

e The program complexityof PMC with imperfect information againsETL restricted to the class
of OPDs with visible stack conteris 2EXPT|ME-hard even for a fixed formula of the existential
fragmentECTL of CTL (hence, exponentially harder than the program compleXityMC with
perfect information againgETL, which is known to be EpTIME-complete [[7]). The result is
obtained by a polynomial-time reduction from the acceptapmblem for KPSPACEbounded
Alternating Turing Machines, which is known to be &rime-complete [[8].

e PMC with imperfect information againsETL restricted to the class @PDs with visible stack
content depths undecidable, even if th€TL formula is assumed to be in the fragmentFL
using only temporal modalitieSF andEX, and their duals, and tH@PD is assumed to bstable
and having only environment configurations. The result isioled by a reduction from the Post’s
Correspondence Problem, a well known undecidable protil@h [

e PMC with imperfect information against thexistential fragmenECTL of CTL restricted to the
class ofstableOPDs with visible stack content deptnd having only environment configurations

lhence, 2&PTIME-complete, sinceMC with imperfect information againsETL restricted to the class @dPDs with
visible stack conteris known to be 2EPTIME-completel[2]
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is instead decidable and in ETIME. The result is proved by a reduction to non-emptiness of
Biichi alternating visible pushdown automa#&/PA) [5], which is 2ExPTIME-complete [[5].

The full version of this paper can be asked to the author byag-m

2 Preliminaries

Let N be the set of natural numbers. A tréeis a prefix closed subset &f*. The elements of
are callednodesand the empty word is theroot of T. Forx € T, the set ofchildren of x (in T)
is children(T,x) = {x-i € T |i € N}. Forxe T, a (full) path of T from x is a maximal sequence
TT= X1,Xp,... of nodes inT such thatx; = x and for each K i < |, X1 € children(T,x) . In the
following, for a path ofT, we mean a path of from the roote. For an alphabel, aZ-labeled tree is a
pair (T,V), whereT is atree and : T — X maps each node df to a symbol inz. Given twoZ-labeled
trees(T,V) and(T’,V’), we say tha{T,V) is contained in(T’,V') if T C T’ andV'(x) =V (x) for each
x € T. In order to simplify the notation, sometimes we write signplto denote &-labeled treeT,V).

2.1 Module checking with imperfect information

In this paper we considepen systems.e. systems that interact with their environment and \eHues-
havior depends on this interaction. Moreover, we consitecase where the environment has imperfect
information about the states of the system. This is modejednbequivalence relatio® on the set of
states. States that are indistinguishable by the envirofjyrbecause the difference between them is kept
invisible by the system, are equivalent according=toWe describe an open system byapenKripke
structure (called alsmodule[16]) .# = (AP, S= SyU S, %, R, L,=), whereAP is a finite set of atomic
propositions Sis a (possibly infinite) set of states partitioned into a%gof systenstates and a s&,

of environmenstates, ang, € Sis a designated initial state. MoreovBrC Sx Sis a transition relation,

L : S— 2P maps each stateto the set of atomic propositions that holdgnand=2 is an equivalence
relation on the set of stat&s Since the designation of a state as an environment stab@isusly known

to the environment, we require that for all stages such thas=>~ ¢, sc S, iff § € S Foreachse S

we denote byis(s) the equivalence class sfv.r.t.=. Intuitively, vis(s) represents what the environment
“sees” ofs. A successor of is a states' such that(s,s') € R. Statesis terminalif it has no successor.
When the module# is in a non-terminabystenstates € S;y, then all the successors shre possible
next states. On the other hand, whehis in a non-terminaénvironmenstates € Sy, then the environ-
ment decides, based on the visible part of each successpaondl of the history of the computation so
far, to which of the successor states the computation casepdy and to which it can not. Additionally,
we consider environments that cannot block the systemnoeall the transitions from a non-terminal
environment state are disabled. For a stavé .7, let T , s be thecomputation tree of#Z from s i.e.

the Slabeled tree obtained by unwinding’ starting fromsin the usual way. Note that , s describes
the behavior of# under themaximalenvironment, i.e. the environment that never restrictsstteof
next states. The behavior o under a specific environment (possibly different from thexamsal one)

is formalized by the notion oftrategy treeas follows. For a node& of the computation tre& , s, let
s1,...,Sp be the sequence of states labeling the partial path fronothteé@ nodex. We denote byis(X)

the sequenceis(s,),...,vis(Sp), which represents the visible part of the (partial) compoitesy, . .., sp
associated with node. A strategy tree from $ a Slabeled tree obtained from the computation tree
T 4 s by pruning fromT , s subtrees whose roots are children of nodes labeled by emment states.
Additionally, we require that such a pruning is consisterthwhe partial information available to the
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environment: if two nodes; andx; of T 4 s are indistinguishable, i.&is(x1) = vis(x2), then the subtree
rooted atx; is pruned iff the subtree rootedstis pruned as well. Formally, a strategy tree 4f from
a states€ Sis aSlabeled treeST such thatST is contained irT_, s and the following holds:

e for each node of ST labeled by asystemnrstate children(ST,x) = children(T_ 4 s, X);
e for each nodex of ST labeled by anvironmenstate children(ST,x) # 0 if children(T 4 s, X) # 0;

e for all nodesx; andx; of T 4 s such thawis(x;) = vis(x2), X1 is a node ofSTiff x, is a node ofST.
Note that ifx; is a child of an environment node, then sods

For a nodex of ST, state(x) denotes th&-state labeling. A strategy tree of# is a strategy tree of/
from the initial state. In the following, a strategy tr8& is seen as &?-labeled tree, i.e. taking the label
of a nodex to beL(state(x)). We also consider a restricted class of modules. A moddles stable
(w.r.t. visible informatioh iff for all statess; ands; s.t. vis(s;) = vis(s,) and boths; ands, have some
successor, it holds that: for each succes§af s;, there is a successdj of s, s.t. vis(s]) = vis(s)).
Note that this notion is similar to that given in |17] for stimd imperfect information games.

CTL Module Checking: as specification logical language, we consider the starimtartching temporal
logic CTL [10], whose formulag overAP are assumed to be in positive normal form, i.e. defined as:

¢ :=true|prop|-prop[¢ V¢ [ NP |EXP[AXP[E(PU)[A(¢U¢)|E(9UG)|A(PUD)

whereprop € AP, E (resp.,A) is the existential (resp., universal) path quantifieand U are the next
and until temporal operators, atdlis the dual ofU . We use classical shortcutSF ¢ is for E(trueU ¢)
(“existential eventually”) and\F¢ is for A(true U ¢) (“universal eventually”), and their duafsG¢ :=
—EF-¢ andEG¢ .= -AF—¢. We also consider the universal (resp., existential) fragrACTL (resp.,
ECTL) of CTL obtained by disallowing the existential (resp., univérpath quantifier, and the fragment
CTL(EF,EX,AG, AX) using only temporal modalitisF andEX, and their duals. For a definition of the
semantics o€ TL (which is given with respect to*#-labeled trees) sek [10].

For amodule# and aCTL formula¢ overAP, .# reactively satisfie$, denoted# =, ¢, if all the
strategy trees af# (from the initial state) satisf$. Note that# £, ¢ is notequivalent ta# =, —¢.
Indeed,.# %, ¢ just states that there is some strategy B&esatisfying—¢.

2.2 Pushdown Module Checking with Imperfect Information

In this paper we consider Modules induced by Open Pushdowte®yg OPD, for short), i.e., Pushdown
systems where the set of configurations is partitioned @om@ance with the control state and the symbol
on the top of the stack) into a set of environment configunatiand a set of system configurations.

An OPD is a tuple.” = (APQ,qo,I",b,A, 1, Env), whereAP is a finite set of propositionQ is a
finite set of control statesyy € Q is the initial control statel” is a finite stack alphabeb, ¢ I is the
special stack bottom symbdl C (Qx Q)U(Qx Qx T U (Qx (Fu{b}) x Q) is the transition relation,
u:Qx (Tu{b}) — 22 is a labeling function, an@&nvC Q x (I U {b}) is used to specify the set of

environment configurations. A transition of the fofmd', y), writtenq % d, is a push transition,

wherey # b is pushed onto the stack (and the control changes famg). A transition of the form

(a,y,d), writtenq M g, is a pop transition, whergis popped from the stack. Finally, a transition

of the form(q,d'), writteng — ¢, is aninternal transition, where the stack is not used. We assume that
Q C 2'YM wherel andH are disjoint finite sets ofisible andinvisible control variablesandl C 2'rVHr
wherelr andHr are disjoint finite sets ofisible andinvisible stack content variables

A configuration or stateof . is a pair(q,a), whereqe Q anda € I'*-b is a stack content. We
denote bytop(a) thetop of the stack contemt, i.e. the leftmost symbol afi. For a control statg € Q,
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the visible part of gs vis(q) = qN 1. For a stack symbof € I, if y C Hr andy # 0, we sewis(y) = &€,
otherwise we saetis(y) = ynIr. By settingvis(y) = € whenevely consists entirely of invisible variables,
we allow the system to completely hide a push operation. vigible part of a configuratior{q, o) is
(vis(g),vis(a)), where fora = yp... ¥ b, vis(a) = vis(W)...vis(yn) -b. Thestack conten{resp., the
control) is visibleif Hr = 0 (resp.,H = 0). Moreover, thestack content depth is visiblé vis(y) # €

for each stack symbagl € I'. Since the designation of @PD state as an environment state is known
to the environment, we require that for all statesa) and (¢, a’) such that(vis(q), vis(top(a))) =
(vis(d'),vis(top(a’))), (a,top(a)) € Enviff (d,top(a’)) € Env. TheOPD .¥ induces an infinite-state
module.Zy» = (AR, S= S;yU Sn, S, R, L,=2), defined as follows:

e SyUSnis the set of configurations of’, andSen is the set of state&), a) s.t. (g,top(a)) € Eny,

S = (o, ) is the initial configuration (initially, the stack is empty)

((g,0),(d,a’)) e Riff: or (1) q— d € Aanda’ = a, or (2)q push(y), g e Aanda’=y-a, or (3)

q LU g €A, and eitherr’ = a =y=b ory#b anda = y-a’ (note that every pop transition

that removes also pushes it back);
L((a,a)) = u((a,top(a))) forall (g,a) € §
forall (g,a),(q,a’) € S we have thatg,a) = (d,a’) iff (vis(q),vis(a)) = (vis(q),vis(a’)).

A strategy tree of” is a strategy tree ofZ, from the initial state. Givetiq,y) € Qx (FTU{b}), (q,y)

is non-terminal(w.r.t. ) iff. or q— ¢ € Aorq Forl), gelorq M g € Afor someq € Qand

y €. Note that a staté, a) of . has some successor (i) iff (p,top(a)) is non-terminal. We also
consider a subclass 6&PD. An OPD . = (ARQ, 0o, I,b,A, u,Env is stableiff for all non-terminal
pairs(qr, 1), (a2, o) € Q x (TU{b}) s.t. vis(an) = vis(az) andvis(y1) = vis(y2), the following holds:

e if g1 — g € A, then there is), — ), € A such thawis(q;) = vis(d});

o it gr 2Y ¢ e A, then there isp 222 o, € A such thavis(q) = vis(cf) andvis(y) = vis(y):;

o if qu 22U, g € A, then there is 22" g, € A such thawis(q),) = vis(ch).

Remark 1. Note that for aOPD .& with visible stack content deptly’ is stable iff.# » is stable.

In the rest of this paper, we considePD . where each state is labeled by a singleton’ii @or a
given setAP of atomic propositions), hence, the strategy trees candre &&\P-labeled trees.

The pushdown module checking problé\/C ) with imperfect information against 7L is to de-
cide, for a giverOPD . and aCTL formula¢, whether.Z » =, ¢.

3 Pushdown module checking folOPD with visible stack content

In this section, we prove the following result.

Theorem 1. Theprogram complexityof PMC with imperfect information against 7L restricted to the
class ofOPDs with visible stack content 2ExPTIME-hard, even for a fixedCTL formuIaE

Theorentl is proved by a polynomial-time reduction from tbeeptance problem for¥PspPACE
boundedalternating Turing MachinegTM) with a binary branching degree, which is known to be
2ExpTIME-complete [[8]. In the rest of this section, we fix such a TM maeh? = (A/Q = QyU

2for program complexity, we mean the complexity of the prabie terms of the size of th&PD, for a fixedCTL formula
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Q3,00,9,F), whereAis the input alphabet containing the blank symbdD#(resp. Q) is the set of exis-
tential (resp., universal) stategp, is the initial statep : Q x A— (Qx Ax {+—, = }) X (Qx Ax {+—,—})
is the transition function, anl C Q is the set of accepting states. Thus, in each stépyverwrites the
tape cell being scanned, and the tape head moves one pdsitiba left &) or right (—). We fix an
input wi, € A* and consider the parameter= |wi,| (we assume that > 1). Since.7 is EXPSPACE
bounded, we can assume th#t uses exactly 2tape cells when started on the inpmt,. Hence, a
TM configuration (of.7 overwi,) is a wordC = ws - (a,q) - W, € A*- (A x Q) - A* of length exactly
2" denoting that the tape contentws - a-w,, the current state ig, and the tape head is at position
lwi| + 1. C is acceptingif the associated statgis in F. We denote bysucg (C) (resp.,suc(C))
the TM successor df obtained by choosing the left (resp., right) tripled(g,a). The initial config-
urationCi, is (Win(0),do),Win(1),...,Win(n—1),##,... #, where the number of blanks at the right of
Win(n—1) is 2'—n. For a TM configuratiorC = C(0),...,C(2" — 1), the ‘value’y; of thei-th symbol
of sucg (C) (resp.,sucg(C)) is completely determined by the valu€é — 1), C(i) andC(i + 1) (tak-
ing C(i+1) fori =2"—1 andC(i — 1) for i = 0 to be some special symbol, say. We denote by
next (C(i — 1),C(i),C(i+ 1)) (resp.,nexk(C(i — 1),C(i),C(i + 1))) our expectation fou; (these func-
tions can be trivially obtained from the transition functid of .77).

We prove the following result, hence, Theorgim 1 follows énibiatECTL is the dual ofACTL).

Theorem 2. One can construct in polynomial tinfen the sizes of7 and w,) an OPD . with visible
stack contensuch that.7 acceptsw, iff there is a strategy tree of” satisfying afixed computable
ACTL formula ¢ (independent ot and wp).

In the following, first we describe a suitable encoding ofegtance of7 over wi,. Then, we
illustrate the construction of thePD of Theoreni 2 based on this encoding.

Preliminary step: encoding of acceptance of7 over wi,. We use the following sef of symbols
(which will correspond to the stack alphabet of theD .~ of Theorenﬂzﬁ
r=AU{L,R0,1,3,VIU({a} x{L,1,...,n})

where\ consists of the triplegup,u, us) such thatu € AU (A x Q) andup,us € AU(Ax Q)U{L}.
Intuitively, up, u, us represent three consecutive symbols in a TM configura@iowhereu, = L (resp.,
us= 1) iff uisthe first (resp., the last) symbol©f First, we describe the encoding of TM configurations
C=C(0),...,C(2"—1) by finite words over . Intuitively, the encoding of is a sequence of"blocks,
where tha-th block (0<i < 2"—1) keeps tracks of the tripl€(i — 1),C(i),C(i+1)) and the binary code
of positioni (cell number). Note that the cell numbers are in the rd0g&' — 1] and can be encoded by
usingn bits. Formally, ar'M blockis a word ovef” of lengthn+- 2 of the formbl =t bit, .. ., bit,, (g,1.),
wheret € A, bity, ..., bit, € {0,1}, andl, is the position of the first bitbit; (from left to right) such that
bit; = 0 if such a 0-bit exists, anld = L otherwise. TheontentCON(bl) of bl ist and theblock number
ID(bl) of bl is the integer ir0, 2" — 1] whose binary code isits, ..., bit, (we assume that the first bit is
the least significant one). Fix@seudoTM configurationC = C(0),...,C(k— 1) with k > 1, which is
defined as a TM configuration with the unique difference thatléngthk of C is not required to be™2
We say thatC is initial if C corresponds to the initial TM configuratid@, with the unique difference
that the number of blanks at the rightwf,(n— 1) is not required to be™-n. A TM pseudo codef C
is awordwec =blg-...-bl_1 -tagoverl satisfying the following, wher€(—1),C(k) = L:

e tage {3,V} andtag= 3 iff Cis existential(i.e., the associated TM state is@y);

e eachbl; is a TM block such tha€ON(bl;) = (C(i — 1),C(i),C(i + 1));

3Since the stack content of is visible, we assume that each stack symbdl ronsists exactly of a visible stack content
variable. Hence, we identify the setof stack symbols with the set of visible stack content vdeshb
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e ID(blp) = 0 andID(blk_1) = 2" — 1. Moreover, for each & h < k— 1, ID(bl,) # 2" — 1.

If k=2"and additionally, for each ID(bl;) =i, then we say that the wowk is the TMcodeof the TM
configurationC. Given a non-empty sequenee= Cy,...,C, of pseudo TM configurations, @seudo
sequence-code ofis a word ovel” U {b} (recall that is the special bottom stack symbol of @R D) of
the formw, = b-wg, -dirz-We, - ... - dirp - we, such thadiry,. .., dirp € {L,R} and eachw, is a pseudo
code ofC;. The wordw, isinitial if Cy is initial, and isacceptingf C, is accepting and ea€ly with j < p
is not accepting. Moreover, if, additionally, eaChs a TM configuration andy, is a code oG, then we
say thatw, is asequence-codd~urthermorey, is faithful to the evolution of7 if C; = sucgi, (Ci—1)
for each 2<i < p. We encode the acceptance.gf over wi, as follows, where & U {b}-labeled tree
is minimal if the children of each node have distinct labels. @tepting pseudo tree-codke a finite
minimal ' U {b}-labeled treel such that for each patit of T, the word labelingr, written wy, is an
initial and accepting pseudo sequence-code (of some segépseudo TM configurations) and:

e each internal node labeled By(existential choice nogéhas at most two children: one, if any, is
labeled byL, and the other one, if any, is labeled Ry

e each internal node labeled by(universal choice nodehas exactly two children: one is labeled
by L, and the other one is labeled By

If for each pathrr of T, wy is asequence-codéhen we say thdl is anaccepting tree-codeMore-
over, if for each pathr of T, wy; is faithful to the evolution of7, then we say thar is fair.

Remark 2. .7 accepts y iff there is an accepting fair tree-code.

Construction of the OPD .~ of Theorem[2. We construct th®©PD .& in a modular way, i.e. is
obtained by putting together thr&PD .%,.71, and.,. Intuitively, the firstOPD .#; does not use
invisible information and ensures that the set offiitite strategy trees is precisely the set of accepting
pseudo tree-codes. The secddBD .1, which does not use invisible information, is used to check,
together with a fixedCTL formula, that an accepting pseudo tree-code is in fact agpdiog tree-code.
The lastOPD ., which is the unique ‘component’ which uses invisible imf@tion, is used to check,
together with a fixed\CTL formula, that an accepting tree-code is fair. First, we @®sheOPDs .#
and.#;. For a finite wordw, we denote by® the reverse ofv.

Lemma 1. One can build in polynomial tim@n the sizes of7 and wy,) an OPD %, with no invisible
information stack alphabef’, set of proposition$ U {b}, and specialtermindﬂ control state piy S.t.

%o has only push transitions and the set offitste strategy trees ST is the set of accepting pseudo tree-
codes. Moreover, for each node x of ST, the stack contemt{x) is thereverseof the word labeling

the partial path from the root to x, andate(x) has control state g, and it is a system state if x is a leaf.

Lemma 2. One can build in polynomial timén the sizes of7 and w,) an OPD .7 with no invisi-

ble information stack alphabefl’, and set of propositiongmain,check,good } s.t..#1 has only pop
transitions and for each state=s (o, aR) such that p is the initial control state andr is a TM pseudo
sequence-codé¢he following holds: s is labeled by mairthere is a unique strategy tree ST from s, ST is
finite, anda is asequence cod# ST satisfies the fixedlCTL formula¢checy = AG(check — AFgood; ).

Lemma 3. One can build in polynomial tim@n the sizes of and w;,) an OPD ., with invisible infor-
mationand visible stack contenstack alphabel, and set of propositions AR {mairn,, check, select,
gooa }, s.t. ., has only pop transitions and for each state-$po, aR), where p is the initial control
state andx is a TM sequence-codé¢he following holds: state s is labeled by maisach strategy tree of
¥, from s is finite, andx is faithful to the evolution of7 iff there is a strategy tree ST from s satisfying
the fixedACTL formula dchecs = AG(check — [((AXcheck) v (AX select)) A AFgoodb]).

4a terminal control state is a control state from which thened transition
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Proof. We informally describe the construction of,, which additionally satisfies the following: (1)
the labeling function can be seen as a mappindg® — AP, whereP is the set of control states, and (2)
for each control stat@, vis(p) = p(p). Assume that initially.#, is in state(po, a®), wherepg is the
initial control state andr is a sequence-code. Note thwais faithful to the evolution of7 iff for each
subword of aR of the form(bIR- BR) - dir - BR such tha, - by is a prefix of a TM codebl; is a TM block
with CON(bly) = (uyp,U1,uss), andB; is a TM code, the following holdsu; = nextir (Uz p, Up, Uzs),
where (uz p, Uz, Uz s) = CON(blz) andbl; is the unique TM block of3; such thatiD(bly) = ID(bly).
Then, starting from thenain-state(po, a®), the mairp-copy of ., popsaR (symbol by symbol) and
terminates its computation (@ain-state is labeled bynairnp) with the additional ability to start by
internal nondeterminisnfi.e., the choices are made by the systenauxiliary copies (each of them in
a check-state) whenever the popped symbol is{i} x {L,1,...,n}. Letl! be the currently popped
symbol in{g} x {1,1,...,n}. Hence, the current stack content is of the fdstfi- a’, wherebl; is

a TM block. Assume thatr’ contains some symbol ifiL,R} (the other case being simpler), hence
a’ is of the formBR-dir - BR-a” such thatB; - bl; is a prefix of a TM codebl; is a TM block with
CON(bly) = (ugp,u1,u1s), and By is a TM code. Then, theth checl copy (1< i < n), which visits
states labeled bgheck, deterministically pops the stack (symbol by symbol) uthté symboldir and
memorizes by its finite control thieth bit biti1 of bl; and the symbolj in the contentCON(bl;) of
bl;. When the symbotlir € {L,R} is popped, then theth checl copy popsBzR and terminates its
computation with the additional ability to start lexternalnondeterminism (i.e., the choices are made
by the environment) an auxiliary copy of; in aselect-state (i.e., a state labeled bglect) whenever
the first symbol of the reverse of a TM blobk of [3; is popped. Thaelect-copy, which keeps track of
bit!, u;, anddir, deterministically pop®I5 and memorizes by its finite control tixh bit bit? of bl, and
CON(bl2). WhenCON(blz) = (up p, U, Uz s) is popped, then theeleci-copy terminates its computation,
and moves to good-stateiff bit? = bit! andu; = nextir (Uz,p, Uz, Uzs)-

Let ST be a strategy tree of, from state(po, aR). For eachcheck-nodex of ST, let main(x) be
the lastmain-node in the partial path from the root o Let x andy be two distinctcheck-nodes of
ST which have the same distance from the root and suchtlaix) = main(y). First, we observe that
the stack contents ofandy coincide, and andy are associated with two distincheck-copies. Since
for all control state9, vis(p) = u(p), it follows that for eactp € {check, select}, x has ap-child iff y
has ap-child. Assume thaST satisfies the fixedCTL formula ¢checy . Letx be an arbitrary main node
of ST such that the stack content »fis of the form (bR - BR) - dir - BR- a’, wherebl; is a TM block,
B - bly is the prefix of a TM codedir € {L,R}, andf; is a TM code. LetCON(bl1) = (uy p,U1,Uss).
By construction, it follows that for each<4 i < n, x has acheck-child x; such that the subtree rooted at
X; is a chain which leads to a TBElect-block bI‘2 of 3, followed by agood-node such that thieth bit
of bl}, coincides with the-th bit of bl; andu; = nextr (Uz,p, Uz, Uz s), Where(up p, Up, Ups) = CON(blb).
Moreover, by the observation above, it follows that all theheck-copies associated with timechecls-
children ofx select the same TM blodil, of 3,. Since the-th bit of bl, coincides with tha-th bit of
bl for each 1<i < n, bl is precisely the TM block off, have the same cell number bls. It follows
thata is faithful to the evolution of7. Vice versa, ifa is faithful to the evolution of7, it easily follows
that there is a strategy tree framo, aR) satisfying@cnecis- O

Let .%,.1, and.#» be theOPDs of Lemmatd L[ 2, and] 3, respectively. W.l.o.g. we assume that
the sets of visible and invisible control variables of th@d&Ds are pairwise disjoint. Hence, their sets
of control states are pairwise disjoint as well. TB€D .~ satisfying Theoreni]2 is obtained from

5given a wordw, a finite wordw’ is asubwordof w if w can be written in the forrw = wy - W - w»
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0,1, and ., as: (1) the set of control states is the union of the sets ofralostates of. 7, .71,
and ., and the initial control state is the initial control state.#p, (2) the transition relation con-
tains all the transitions of%,.#1, and.% and, additionally, twdnternal transitions from the special
terminal control stat@si, of .#p to the initial control states o, and.#, respectively, and (3) the la-
beling function and the partitioning in environment andiegsstates are obtained from thoses, .71,
and.”; in the obvious way. Lethchec and Penecis be the fixedACTL formulas of Lemmatal2 arid 3,
and let¢inte = AF(AX—true) be the fixedACTL formula asserting that a (finitely-branching) tree is
finite} Note that a state of” is a state of#; iff it is not labeled by any proposition iRropfixeq =
{mairn,mairp, check, checlg, good ,gooc, select}. By Lemmatd i 2, and 3, we easily obtain that

Claim: there is an accepting fair tree-code (i.€. acceptswiy) iff there is a strategy tree of” satisfying
the fixedACTL formula ¢+inite A AG([/\pepropﬁxedﬁp] — [NZ2AX(main — Pecheck)]) -

By the claim above, Theorem 2 follows, which concludes.

4 Pushdown module checking folOPD with visible stack content depth

4.1 Undecidability results

In this subsection, we establish the following result.

Theorem 3. PMC with imperfect information against 7L restricted toOPDs with visible stack content
depthis undecidable, even if th€ TL formula is assumed to be in the fragmentL(EF, EX,AG,AX)
and theOPD is assumed to be stable and having only environment confignsa

Theoreni B is proved by a reduction from the Post’s Correspoce Problem (PCP, for short) [12].
An instance.# of PCP is a tuple/ = ((ui,...,u}),(u2,...,u2)), wheren > 1 and for each X i <n,
ul andu? are non-empty finite words over an alphabdet Let [n] = {1,...,n}. A solution of .7 is
a non-empty sequendg, iz, ..., i of integers in[n] such that -ul-...-ut =u2-u2-...-u2. PCP
consists in checking for a given instangg whether.# admits a solution. This problem is known to be
undecidable[[12]. In the rest of this section, we fix a PCPaimst.# = ((ul,...,ul), (i2,...,u2)) and
prove the following result, hence Theoréin 3 follows.

Theorem 4. One can build asstableOPD .# with visible stack content deptéind having only environ-
ment configurations, and &TL(EF,EX,AG,AX) formula¢ such that# hasno solutioniff .Zy =, ¢.

In order to prove Theoref 4, first we describe a suitable éngaaf the set of solutions of’. Some
ideas in the proposed encoding are taken from [1], whereinag#t of alternating automata on nested
trees is shown to be undecidable.

Preliminary step: encoding of the set of solutions of#. We use the following sefAP of atomic
propositions:AP =AU [nU ([n] x {}) U {b,end,end, prev succnomatch,match T1, T2, L1, L2, O}

We denote byMAX the maximum of the sizes of the words.ii and byAVAX the set of wordsv € A+
such thatw| < MAX. Letiy,...,ix € [n]T (i.e., a non-empty sequence of integergi andw € A* (i.e.,

a non-empty finite word ovek). A marked(is,...,ix,w)-word is a finite wordv over AP obtained from
the wordb -iy - ... -ix-end -wWR-end by replacing at most one integer occurrengevhere 1< j <k, with
(ij,h). The markediy,...,ix,w)-word v is goodif it contains exactly one marked integer occurrence.
A (good) marked words a (good) markedis, ..., ix,w)-word for somei,...,ix € [n]T andw e A*. A
marked tree FarkeqiS aminimal ARlabeled tree satisfying the following:

bnote that a strategy tree ofGPD is finitely-branching, i.e. the set of children of any nodéniste.
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e each finite path ol arkeqiS labeled by a marked word;

e foralliy,...,ix € [n]" andw € A", if there is a finite path ofnarkeglabeled by a marke@s, . . . ik,
w)-word, then for each marke(h, ..., ik, w)-wordv, there is a path oTmarkedlabeled byv.

e each infinite path oTmarkeqis labeled by a word igb} - [n|]* U {b}-[n]* - [n] x {g} - [N U{b} - [n]* -
[ x {} - [n]*- {end } - A% 01
Note thatiq, ..., ik is a solution of # iff there is a wordw € A" which can be factored inmﬂ1 . uil2 o uilk
and similarly intou? - u2 - ... - uZ . In order to express this condition, we define suitable esiers of the
marked trees. First, we need additional definitions.

For eacht = 1,2, at-witness forw is afinite minimal APRlabeled tredl, satisfying the following:T,
consists of anain pathlabeled by a word of the form.; -wy- T¢-...- T¢-w - T¢ such that:

o Wi, ..., w € A" Xandwy ... w =w;

e eachT-node has an additional chiki which does not belong to the main path, such that the
subtree rooted atis a finite chain (calledecondary chain whose nodes are labeled fy

Let x; be theit" T{-node along the main path, where<li < |: we denote bylength(x;) the length of
the associated secondary chain,viayd(x;) the wordw;, and bysuffix(x;) the (possibly empty) word
Wii1,...,W. An extensionof at-witnessT}, for w is afinite minimal ARlabeled treeE T}, obtained
from T}, by extending each secondary chainTgfwith an additional (leaf) node labeled by a symbol in
{prevsucc Namatch, Match. We say thafl, is thesupportof ET},. For p € { prevsuccnomatcn, match},
we say that & t-node ofE T}, is of type pif the secondary chain associated witlead to ap-node. Given
a good markediy, ... ,ix,w)-wordv=>-ig-...-ij_1-(ij,h)-...-ik-end -wR.end, we say thaE T}, is
compatible withv iff for each T{-nodex along the main path d& T}, the following holds:
o length(X) € {|suffix(X)| +1,...,|suffix(X)| + k}. Moreover, iflength(x) > |suffix(X)| +k— j+1
(resp.length(x) < |suffix(X)| 4+ k— j + 1), thenx is of type ‘preV (resp., ‘succ);
o if length(x) = |suffix(x)| +k— j+1 andword(x) = u (resp.,word(x) # ), thenx is of type
‘match (resp., NOmatch)-
A marked tree with witnesses Wzfkedis aminimal ARlabeled tree such that there is a marked tree
Tmarked SO thatW Tnarkeq 1S Obtained fromTmarkeq as follows:

o for each leak of Tmarked (NOte thatx is anend-node), letv be the marked word labeling the partial
path from the root tx. Then, ifvis good, we add two childrer; andx, to x such that for each
t = 1,2, the subtree rooted &tis an extension of &witness compatible with;

o well-formedness requirementet w € A™ andiy, ... ,ix € [n]7, andx andy be twoend-nodes of
W Tmarked SUcCh that the associated marked words are dood . ,ix, w)-marked words. Then, we
require that for each= 1, 2, the two subtrees rooted at the-child of x andy, respectively, (which
are extensions dfwitnesses) have the same support.

Proposition 1. .# admits a solutioniff there is amarked tree with witnessad T arkeq having some
enc-node and such that for each-node x (t= 1, 2), the subtree EJrooted at x satisfies the following:

e ETX has no ‘nehatch-nodes and there is exactly one node ofEAhich is labeled by ‘match’;

e no T¢-node of type ‘match’ or ‘succ’ is strictly followed byTa-node of type ‘match’ or ‘prev’.

this last condition is irrelevant in the encoding of the dega@utions of 7. It just reflects, as we will see, the behavior of
the OPD of Theoreni ¥
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By Propositiori ], we easily deduce the following.

Proposition 2. One can construct &TL(EF,EX,AG, AX) formulay » such that# admits a solutionf
and only ifthere is amarked tree with witness&¥ TnarkegWhich satisfiesp .

SinceCTL(EF,EX,AG,AX) is closed under negation, Theorem 4 directly follows fromg@sitior 2
and the following lemma.

Lemma 4. One can construct atableOPD . with visible stack content deptind having only envi-
ronment configurations, and @TL(EF,EX,AG,AX) formula @ such that the set of strategy trees &f
which satisfyp corresponds to the set of marked trees with witnesses.

Proof. We informally describe the construction of the sta®blD . = (AR.Q,qo,I",b,A, u,Env). Each
state of.” is an environment state, i.Env= Q x (I U{b}), and the labeling functiop can be seen as
mappingu : Q — AP. The setdr andHr of visible and invisible stack content variables are givgn b
Ir = AU[n] andHr = {4}. Then,l" is given byl = {{y} | ye Ir} U {{i,t} | i € [n]}. We identify {y}
with y and{i, s} with (i,f). Hence[" corresponds to the sa&tJ[n]U ([n] x {4}). Note thatvis(y) # ¢ for
eachy e I'. Hence, the stack content depth.#fis visible and:

e Property A: forall y,y €T, vis(y) = vis(y) iff eithery=y ory,y € {i,(i,f)} for somei € [n].
Furthermore, the definition gf andP ensures the following:

« Property B: for all q,q € P, vis(q) = vis(q) iff: (1) or p(q) = u(%’), or (2) (), u(df) € {i, (i,5)}
for somei € [n], or (3) u(q), U(q) € {NGmatch Match prev sucg

First phase: generation of marked wordStarting from the initial configuration (whose stack comten
and propositional label is), the OPD . generates symbol by symlﬂ)by external nondeterminism,
marked words. Whenever a symbolAu [nU ([n] x {4}) is generated, at the same time it is pushed
onto the stack. Symbols ifend,enc} are generated by internal transitions that do not modifystaek
content. TheOPD .7 keeps track by its finite control whether there is a markeegt in the prefix of
the guessed marked word generated so far. In such a.sfagan ensure that during the generation of
a marked word, at most one integer occurrencgjinis marked. Lety be the set oAP-labeled tree§
such that there is a strategy tr8€ of . so thatT is obtained fronST by pruning the subtrees rooted at
the children ofend-nodes. Then, Properties A and B above ensureMhistheset of marked trees

Second phase: generation of extensions of t-witnessegg whel, 2. Assume that” is in anend-state

s associated with some node of the computation tree of” from the initial state. By construction,
the partial path from the root tg; is labeled by some marked word If v is not good, thers has no
successors. Now, assume thias good, hencey is of the formb-iq-...- (ij,h) - . cik-end - wWR-end,
wherew € A* andiy,...,ix € [n]*. By construction, the stack contentsns given byw- iy ... - (ij, 1) -
...-i1-b. Then, from stats, .7 splits in two copies: the first one moves to a configuratiptabeled by

11 and the second one moves to configurasgtabeled by, (in both cases the stack content is not
modified). Fixt = 1,2. From states, . generates by external nondeterminism extensionsaitnesses
compatible with the marked wondas follows. Finite words of the formy - T¢-...- Ty-w; - T, where
wi,...,w € A% andw; - ...-w = w, labeling main paths dfwitnesses, are generated as follows. The
symbol T; is generated by internal transitions which do not modify steck content. Whenever the
symbol L; (resp., Ty) is generated,” pops (resp., can pop) the stack symbol by symbol and geserate

8|n fact, in order to ensure that’ is stable, Property B is slightly more complicated.
%i.e., the transitions in this phase lead to configuratiobslked by propositions ifiend,encd} UAU [n] U ([n] x {1})
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the current popped symbol (with the restriction that a syilncha be popped iff it is ifA). At the same
time, .7 keeps track by its finite control of the strivg, € AMAX popped so far. Whetws| = MAX,
then.” deterministically moves to @;-configuration (without changing the stack content). Ifiéasl
lws| < MAX, then. either continues to pop the stack content (if the top of thekstontent is irA) or
moves to al';-configuration (without changing the stack content). Aiddially, from aT¢-configuration,
. can also choose to move tajaconfigurations;, without changing the stack content. 4y, .7 keeps
track in the control state of the wowds € AMAX (popped from the stack) and associated with the previous
Tt-configuration. Starting froms, . deterministically pops the stack symbol by symbol remajnin
Sy. When every symbol il has been popped (hence, the stack contdptis. - (ij,b)-...-i1-b), # can
choose to continue to pop the stack symbol by symbol by mosireach step td>-configurations and
by keeping track in its finite control of the string and whether a marked integer|inj has been already
popped. Additionally, whenever a symbol|im U [n] x {4} is popped,” can choose to move without
changing the stack content to a termipatonfiguration, where € { prev succ matchnomatch}, such
that the following holds:p = succ(resp.,p = preV) if an integer in[n| is popped and no (resp., some)
marked integer has been previously popped, @admatch(resp.,p = Nomatcr) if @ marked integeth, 1)
(note thath = ij) is popped anavs = U, (resp.,ws # Ut ).

We use the followingCTL(EF, EX,AG,AX) formula ¢ in order to select strategy trees.of such
that: (1) eaclend-node has two children (i.e., a child labeled by and a child labeled.,), and (2)
for eacht = 1,2, the subtree rooted at any-node is an extension oftawitness. In order to fulfill the
second requirement, first, we need to ensure that from é¢actode { = 1,2), there is a unique main
path. Note that this last condition is equivalent to reqthia eacta-node witha € Ain a 1{-node rooted
subtree has exactly one child (this can be easily express€dli(EF, EX,AG,AX), since the strategies
trees of. areminimal ARlabeled trees). Second, we need to ensure that €aclode has &>-child x
such that the subtree rootedxas a finite chain. Hence, formul@is given by

whereyunique= V peap AXp. By Properties A and B above it easily follows that the sggteees of

satisfying theCTL(EF,EX,AG,AX) formula ¢, also satisfy the well-formedness requirement. Hence,
the set of strategy trees of satisfying@ is the set of marked trees with witnesses. O

4.2 Decidability results

The main result of this subsection is as follows.

Theorem 5. PMC with imperfect information againgECTL restricted to stableédPDs with visible stack
content depth and having only environment configurationte@dable and iIrREXPTIME.

Theoreni b is proved by a reduction to non-emptiness of Baltdinating visible pushdown automata
(AVPA) [5], which is 2ExPTIME-complete [[5]. First, we briefly recall the framework &VPA. Then,
we establish some additional decidability results. Finalie prove Theorer 5.

Bichi AVPA: A pushdown alphabeX is a finite alphabet which is partitioned in three disjoinitén
alphabetszc@! 5Tt and3" wherez® is a set ofcalls, = is a set ofreturns andX™ is a set of
internal actions An AVPA is a standard alternating pushdown automaton on words opasladown
alphabet, which pushes onto (resp., pops) the stack only when it readdl (resp., a return), and does
not use the stack on internal actions. For a formal definiticthe syntax and semantics AV PA seel[5].
Given a BUchiAVPA <7 overZ, we denote byZ(<7) the set of nonempty finite or infinite words over
accepted by (we assume that/ is equipped with both a Blichi acceptance condition for itdiwords
and a standard acceptance condition for finite words).
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Preliminary decidability results: For a module#, a minimal strategy treeSTn of .# is a strategy
tree satisfying the following: for each strategy t&€€of .# if STis contained irSTyin, thenST = STyn.
Given aCTL formula ¢, we say that# minimally reactively satisfie¢, denoted# = min ¢, if all the
minimal strategy trees of# satisfy ¢. Let .# be astablemodule having only environment states and
ST be a minimal strategy tree of7. For each > 0, letA; be the set of nodesof ST at distance from
the root, i.e., such thak| =i. SinceST is minimal, it easily follows that for all > 0 andx, X € A;,
vis(state(x)) = vis(state(x')). Now, let us consider a stab@PD .7 = (ARQ,do,l",b,A, u,Env) with
visible stack content depth and having only environmenfigarations. By Remark] 1/ is stable. Let
ST be a minimal strategy tree of and for each > 0, let/\; be defined as above (w.r.t. strategy). By
the above observation, it easily follows that for eaghO such that\; ;1 # 0, there are{ C | (wherel is
the set of visible control state variables.&f) and X C Ir (wherelr is the set of visible stack content
variables of¥’) such that one of the following holds:

e each node in A1 is obtained from the parent node by an internal transiti@péading orx) of
the formqg — ¢ such thatis(q') = X;;

e each nodein Ai,1 is obtained from the parent node by a push transition (deépgrahx) of the
form q 222, ¢f such thawis(q) = % andvis(y) = X

e each nodein Aj,1 is obtained from the parent node by a pop transition (dependinx) of the

form q 2™, ¢ such thais(q) = X;.

Let = be the pushdown alphabet defined as follo®&! = {(pushX,Xr) | X = vis(q) andXr =
vis(y) for someq € Qandy € '}, 't = {(int, X) | X = vis(q) for someq € Q}, and="¢ = {(pop,X) |
X = vis(q) for someq € Q}. Thus, we can associate to each finite (resp., infinite) nahstrategy tree
ST of . afinite (resp., infinite) word ovex o, denoted byv(ST). Moreover, for each word/ over o,
there is at most one minimal strategy t®€ of . such thaw(ST) = w. This observation leads to the
following theorem, WheréAZy is the pushdown alphab&t, U { push pop}, with pushbeing a call, and
popa return.

Theorem 6. Given a stableOPD . with visible stack content depth and having only envirortmen
configurations and & TL formula ¢, one can construct in linear-time aiBhi AVPA .« overZ ., such
that there is aminimal strategy tree of” satisfying¢ iff £ (<) # 0.

Proof. The proposed construction is a generalization of the stdnaléernating automata-theoretic ap-
proach toCTL model checking([15]. Here, we informally describe the maipexts of the construc-
tion. Let. = (AR P, po,I",b,A, u,Env). W.l.0.g. we assume that the initial configuration.sfis non-
terminal. For a wordv overX o, we denote byext(w) the word overi/ obtained fromw by replacing
each occurrence of a return symiyglop, X) in w with the word(pogx) pop, push We construct a
Biichi AVPA o/ overz/ such that for each non-empty wordoverZ/, </ has an accepting run over
w if and only if W = ext(w) for some wordw over X o and there is a minimal strategy tr& of ./
such thatw = w(ST) and ST satisfies¢. Essentially, for each word over X~ associated with some
minimal strategy tre&T of ., an accepting run of <7 overext(w) encodesST as follows: the nodes
of r associated with théth symbol ofw correspond to the nodes &T at distance from the root.
However, for each nodeof ST, there can be many copies»oin the runr. Each of such copies has the
same stack content asbut its control state is equipped with additional inforfnatincluding one of the
subformulas ofp which holds at nod& of ST.

The AVPA <7 has the same stack alphabetééslts set of control states is instead given by the set of
tuples of the form(p, y, ¢, f), where(p,y) € Px (Tu{b}), Y is a subformula op, andf is an additional
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state variable ifsim pop push. Intuitively, p represents the current control states6fandy represents
the guessed top symbol of the current stack content. Fuontrer; f is used to check that the input word
is an extension of some word ovEE-. The additional symbolpopand pushin fy are instead used to
check that the guegsis correct. The behavior a¥ as follows. Assume that a copy of is in a control
state of the forn{p’, y, ¢/, sim) and the current input symbol &, wherep' is the current control state of
. andy is the top symbol of the current stack content (initially,is in the control statépg,b, ¢, sim)).

If o € {pop push, then the input is rejected. If insteadis call (resp., an internal action) K, then
the considered copy o simulate push (resp., internal) transitionssffrom the current configuration
(of the form(p/, a) such thatop(a) = y) consistent witho if such transitions exist by splitting in one
or more copies (depending on the number of simulated tiansiand the structure @f), each of them
moving to a control state of the forp, y, ¢, sim). Note that in this casey can ensure that the guess
y is correct. Now, assume thatis a return inX .. Then, the considered copy of guesses a stack
symboly € ' U {b} and simulate pop transitions of from the current configuration consistent with
o (if such transitions exist) by splitting in one or more cap{@depending on the number of simulated
transitions and the structure gf), each of them moving to a control state of the farmy, ¢, pop). In

the next step, the input symbol must pep (otherwise, the input is rejected). Thus, the current copy
in control state(p, y, Y, pop) pops the stack and check whether the guesscorrect. If the guess is
correct, then the copy moves to the control statey, , push (otherwise, the run is rejecting). In the
next step, the input symbol must lpeish(otherwise, the input is rejected). Thus, the considergry co
re-pushesy onto the stack and moves to control stagey, ¢/,sim). Assuming that the input word is
ext(w) for some nonempty wordl overX -, the above behavior ensures, in particular, that whenever a
input symbol inZ & is read,< is in a control state of the forrfp, y, Y, sim), wherey is the top symbol

of the current stack content. Finallyy checks whethew is associated with some minimal strategy tree
of .# as follows. First, we observe that a nonempty wardverZ .~ is not associable to any minimal
strategy tree of” iff the following holds. There is a proper prefix of w of lengthi for somei > 0
such thatw is the prefix ofw(ST) for some minimal strategy treé®T of . such that: there is a node
x of ST at distancd + 1 from the root whose configuratiaip, a) has some successor, but there is no
transition from(p, a) which is consistent with the+ 1-th symbol ofw. Thus, whenever a copy af
reads a symbab € X o, hence the considered copy is in a control state of the fquy, @, sim) (where

p is the current control state o andy is the top symbol of the current stack content},rejects the
input string if: the current configuration o has some successor (i.gp, y) is non-terminal), but there
is no transition from the current configuration which is detent with the current input symbeol. [

Since non-emptiness &VPA is 2ExPTIME-complete [[5], by Theoreil 6, we obtain the following.

Corollary 1. Checking whetherZy = min ¢, for a givenCTL formula¢ and a given stabl®©PD ./
with visible stack content depth and having only envirortngenfigurations, is iR EXPTIME.

Proof of Theorem[ let ¢ be anECTL formula overAP. Note that for all 2P-labeled tree§ andT’, if
T is contained inT’ andT satisfiesp, thenT’ satisfiesp as well. Note that for a given module, each
strategy tree of# contains some minimal strategy tree. Hence, foE@ L formula¢, .# =, ¢ if and
only if .#Z |=rmin @. Thus, Theorerh]5 directly follows from Corollary 1. Finalfgr completeness, we
observe that unrestrictdtM C with imperfect information again®tCTL is trivially decidable. Indeed for
anACTL formula¢ and module#, .# |=, ¢ iff the maximalstrategy tree of# (i.e., the computation
tree of .# starting from the initial state) satisfigs Hence,PMC with imperfect information against
ACTL is equivalent to standard pushdown model checking agai@$t, which is in EXPTIME [19].

Proposition 3. PMC with imperfect information againgtCTL is in EXPTIME.
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5 Conclusion

There is an intriguing question left open. We have showrPil& with imperfect information for stable
OPDs with visible stack content depth and having only environtrmanfigurations is undecidable for
the fragmenCTL(EF,EX,AG,AX) of CTL, and decidable for the fragmerE€TL andACTL of CTL.
Thus, it is open the decidability status of the problem abdovéhe standardF-fragment ofCTL (using
just the temporal modalitF and its dualAG). We conjecture that the problem is decidable.
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