
A. Rensink & E. Zambon (Eds.): Graphs as Models 2015 (GaM’15)
EPTCS 181, 2015, pp. 129–144, doi:10.4204/EPTCS.181.9

c© Luc Moreau
This work is licensed under the
Creative Commons Attribution License.

Aggregation by Provenance Types: A Technique for
Summarising Provenance Graphs∗

Luc Moreau
Web and Internet Science

Electronics and Computer Science
University of Southampton, Southampton, UK

l.moreau@ecs.soton.ac.uk

As users become confronted with a deluge of provenance data, dedicated techniques are required to
make sense of this kind of information. We present Aggregation by Provenance Types, a provenance
graph analysis that is capable of generating provenance graph summaries. It proceeds by converting
provenance paths up to some length k to attributes, referred to as provenance types, and by grouping
nodes that have the same provenance types. The summary also includes numeric values representing
the frequency of nodes and edges in the original graph. A quantitative evaluation and a complexity
analysis show that this technique is tractable; with small values of k, it can produce useful summaries
and can help detect outliers. We illustrate how the generated summaries can further be used for
conformance checking and visualization.

1 Introduction

In the world of art, the notion of provenance is well understood. A piece of art sold in an auction is
typically accompanied by a paper trail, documenting the chain of ownership of this artifact, from its
creation by the artist to the auction. This documentation is referred to as the provenance of the artifact.
Provenance allows experts to ascertain the authenticity of the artifact, which in turn influences its price.
This paper is concerned with an electronic representation of provenance for data, documents, and in
general things in the world.

Provenance is a record that describes how entities, activities, and agents have influenced a piece of
data [22]. It can help users make trust judgements about data. PROV is a set of W3C specifications [12]
aiming to facilitate the representation and exchange of provenance on the Web. PROV is a graph-based
data model that is domain-agnostic and has been applied to a wide range of applications, including
climate assessment1, legal notices2, crowd sourcing [14], and disaster response [8].

As PROV gets broader adoption, increasing numbers of applications3 continuously generate prove-
nance, leaving users with a “provenance data deluge” making it challenging for them to make sense of
this information. Users are confronted to questions such as Q1: “What is the essence of the provenance
presented to me?”, Q2: “Is today’s behaviour conformant to yesterday’s provenance" or Q3: “Are there
anomalies or outliers in an execution that deserve further investigation?". Such questions become very
quickly untractable as provenance traces grow, and their graphical representation fills entire screens.

∗This document’s provenance can be found at http://eprints.soton.ac.uk/364726/63/provenance.ttl using
<http://openprovenance.org/documents#700668f6-83c7-4364-9e53-9f4219d1e546> as prov:has_anchor.

1http://nca2014.globalchange.gov/report
2https://www.thegazette.co.uk/
3https://sites.google.com/site/provbench/provbench-at-bigprov-13.

http://dx.doi.org/10.4204/EPTCS.181.9
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://eprints.soton.ac.uk/364726/63/provenance.ttl
<http://openprovenance.org/documents#700668f6-83c7-4364-9e53-9f4219d1e546 >
http://nca2014.globalchange.gov/report
https://www.thegazette.co.uk/
https://sites.google.com/site/provbench/provbench-at-bigprov-13

130 Aggregation by Provenance Types

Network analysis techniques can effectively process graphs; for instance, graph clustering seems a
particularly relevant approach to address question Q1 [25]. However, these techniques usually rely on
statistical measures [26] and result in representations where the meaning of provenance is lost.

Research in semi-structured databases [3, 24, 10] offers partial answers to our problem. Notions of
graph schemas that can be extracted from graph data [24, 10] can be used to summarise such data, offer-
ing an explanation about their structure, or helping formulate SPARQL queries [4, 15]. Unfortunately,
no approach is provenance-specific and capable of generating a summary that exposes the meaning of
provenance relations. However, the concept of conformance to a schema [3] is particularly relevant to
addressing question Q2.

Visualization techniques use node size and line thickness for quantitative comparisons and for con-
veying a sense of salience of nodes and edges [28]. While our focus is not on visualization, the idea of a
weight to describe the importance of an aspect is relevant. This is a critical element that can help identify
outliers in large data sets [2], and can be the basis of a solution to Question Q3.

Meanwhile, there is a general trend of developing reusable and composable provenance graph trans-
formations, for many purposes, including normalization [5], obfuscation [20]. Our aim is to define a
summarization functionality as a transformation, which can be used further, e.g., for visualization or
conformance check. Specifically, we seek to generate a summary that has the following key characteris-
tics:

1. A summary needs to preserve the meaning of provenance. Humans tend to aggregate historically
distant entities, regarding them as “similarly blurred in the past”. But also a summary needs to
distinguish entities that were obtained by distinct historical paths, since such paths may affect
their trustworthiness.

2. A summary needs to contain numerical information about the frequency of elements of provenance
graphs to enable outliers detection.

Thus, we decided that “provenance paths”, i.e. successions of provenance relations, should play a
central role in our approach. For instance, an entity derived from an entity attributed to an agent is a path
of length 2. The intuition of our solution is to regard a provenance path of length k leading to a node as
a “provenance type” for that node. Then, we construct a summary by aggregating all nodes that have the
same provenance types, and likewise for edges, and by counting their occurrences. The method, named
Aggregation by Provenance Types, APT(k), is parametric in the maximum path length. Specifically, the
contributions of this paper are the following.

1. A provenance graph analysis and transformation APT that creates a summary of a provenance
graph; this summary itself is built using the same provenance vocabulary, but should be seen as a
provenance graph “schema” decorated with frequency information.

2. A complexity analysis of this algorithm, followed by a quantitative evaluations of the technique,
showing its tractability, and by a discussion further showing its ability to expose salient properties
of provenance graphs.

3. An illustration of how APT can be used in two applications such as visualization and conformance
checking.

The rest of this paper is structured as follows. First, we identify the requirements that a summari-
sation technique is expected to meet (Section 2). Then, we define the notion of provenance type and
the technique of “aggregation by provenance types” (Section 3). It is followed by a complexity analysis
of the approach (Section 4). We then illustrate two different applications of APT (Section 5). This is
followed by a quantitative evaluation of the approach (Section 6) and a discussion (Section 7). Related
work appears in Section 8 and the paper finishes with concluding remarks (Section 9).

Luc Moreau 131

2 User Requirements for Summarisation

The three questions of Section 1 form key user requirements that a provenance summarisation tech-
nique should satisfy. The first requirement is inspired by Q1 of Section 1 and some well-known re-
quirements captured by the W3C Incubator group (see http://www.w3.org/2005/Incubator/prov/
wiki/User_Requirements#Use) identifying the need to make provenance information understandable.
The following two requirements reflect directly Questions 2 and 3 of Section 1.

Requirement 1 (Essence of Provenance) A provenance summary should capture the essence of the
provenance graph that it summarises.

Requirement 2 (Conformance) It should be possible to decide whether a provenance graph is compat-
ible, or conformant, with a provenance summary.

Requirement 3 (Outliers) It should be possible to detect anomalies or outliers in a provenance sum-
mary.

We satisfy Requirement 1 by adopting the same language for summaries as for provenance graphs.
As we aggregate nodes and edges, we keep a count of the nodes and edges that were collapsed; such
numerical values can help a user or system detect outliers. Finally, given that summaries are based
on the same language as provenance graphs, it becomes easy to check whether one is compatible with
the other; for instance, techniques such as simulations from process algebra [13] can be applied to this
problem [3].

Every day processes illustrate that we focus on more or less recent past, according to how discrim-
inating we want to be. For instance, a selective graduate school may admit PhD applicants who have a
first-class degree from a reputable University. A more selective graduate school will also require good
transcripts from secondary school, or extra-curricula activity related to the subject. However, older infor-
mation, such as performance in primary school, is generally not used as discriminator. In manufacturing
or food production, the country of origin is deemed to be the place of last substantial change. However, to
avoid misleading food labels, the origin of the primary ingredient should also be considered. These two
examples show that individuals are distinguished according to their past — more or less recent. Thus,
the distance in the past can abstracted by a parameter k, which we use in our aggregation method.

3 Aggregation by Provenance Types

The purpose of this section is to define Aggregation by Provenance Types, abbreviated by APT. To do so,
we first introduce the notion of provenance type.

A provenance type is defined as a category of things that have common characteristics from a prove-
nance perspective. Provenance types are parameterised by an integer indicating the length of provenance
paths used to characterise things. A level-0 provenance type is one of the core type predefined in PROV:
prov:Entity, prov:Activity, and prov:Agent, or any user-defined type. A level-k+ 1 provenance
type is an expression describing the category of things one PROV-relation away from things that have a
level-k provenance type.

For instance, in :a0 prov:used :e1, if :e1 is assigned level-k provenance type τk, then :a0 is
assigned level-k+ 1 provenance type used(τk), meaning that :a0 belongs to the category of things that
used something of type τk. Likewise, in :e2 prov:wasDerivedFrom :e1, if :e1 is assigned level-k
provenance type τk, then :e2 is assigned level-k+1 provenance type wdf (τk), meaning that :e2 belongs
to the category of things that were derived from something of type τk.

http://www.w3.org/2005/Incubator/prov/wiki/User_Requirements#Use
http://www.w3.org/2005/Incubator/prov/wiki/User_Requirements#Use
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#wasDerivedFrom

132 Aggregation by Provenance Types

Definition 1 A provenance type of level k, noted τk, is defined as follows.

τ0 ::= Entity | Activity | Agent | user-defined type
τk+1 ::= label(τk)

where ‘label’ is a PROV property label defined as follows.

Label PROV property Label PROV property
used prov:used wsb prov:wasStartedBy
wgb prov:wasGeneratedBy web prov:wasEndedBy
wdf prov:wasDerivedFrom wifb prov:wasInformedBy
waw prov:wasAssociatedWith mem prov:hadMember
wat prov:wasAttributedTo spec prov:specializationOf
aobo prov:actedOnBehalfOf alt prov:alternate
wib prov:wasInvalidatedBy

Note that Definition 1 lists forward properties of PROV only, but could also consider PROV inverse
properties [18]. Provenance types with forward properties refer to what led to that node (i.e., the past of
the node), whereas provenance types with inverse properties refer to what happened to that node (i.e., its
future).

We introduce the properties ann:pType0, ann:pType1, . . . that associate a resource with its prove-
nance types of level 0, 1, . . . , respectively. A given resource may be the subject of multiple provenance
types properties. Figure 1 displays a template of SPARQL query to compute provenance types.

PREFIX prov: <http://www.w3.org/ns/prov#>
PREFIX ann: <http://provenance.ecs.soton.ac.uk/annotate/ns/#>

CONSTRUCT { ?y ?pType_kp1 ?provenanceType. }
WHERE {

{
?y prov:wasDerivedFrom ?x.
?x ?pType_k ?t.
BIND (CONCAT("wdf(",?t,")") AS ?provenanceType)

}
UNION
{

?y prov:used ?x.
?x ?pType_k ?t.
BIND (CONCAT("used(",?t,")") AS ?provenanceType)

}
// and similarly for other prov relations

}

Figure 1: Pattern of SPARQL Query to Compute Provenance Types of Level k+1. Provenance types are
expressed as a string encoding of Definition 1.

In the query template, variables ?pType_k and ?pType_kp1 have to be instantiated to the properties
reflecting the value k of interest: for instance, ann:pType3 and ann:pType4, respectively, for k =
3. A provenance type for level k = 0 is computed by the SPARQL query of Figure 2, which assigns
ann:pType0 to each resource of type prov:Entity, prov:Activity, or prov:Agent. We assume that
RDFS-reasoning has inferred PROV core types.

The graph transformation Level-k Aggregation by Provenance Types, written APT(k), constructs a
provenance summary by grouping all the nodes that have the same provenance types τi for any i such
that 0≤ i≤ k, and then merging all edges, as specified in Definitions 2 and 3.

http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#wasStartedBy
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasEndedBy
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#wasInformedBy
http://www.w3.org/ns/prov#wasAssociatedWith
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#wasAttributedTo
http://www.w3.org/ns/prov#specializationOf
http://www.w3.org/ns/prov#actedOnBehalfOf
http://www.w3.org/ns/prov#alternate
http://www.w3.org/ns/prov#wasInvalidatedBy
http://provenance.ecs.soton.ac.uk/annotate/ns/#pType0
http://provenance.ecs.soton.ac.uk/annotate/ns/#pType1
http://provenance.ecs.soton.ac.uk/annotate/ns/#pType3
http://provenance.ecs.soton.ac.uk/annotate/ns/#pType4
http://provenance.ecs.soton.ac.uk/annotate/ns/#pType0
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Agent

Luc Moreau 133

PREFIX prov: <http://www.w3.org/ns/prov#>
PREFIX ann: <http://provenance.ecs.soton.ac.uk/annotate/ns/#>

CONSTRUCT { ?x ann:pType0 ?provenanceType. }
WHERE {

{
?x a prov:Entity.
?x rdf:type ?b.
BIND (CONCAT("",strafter(STR(?b),"#")) AS ?provenanceType)

}
UNION
// and similarly for prov:Agent and prov:Activity

}

Figure 2: Pattern of SPARQL Query to Compute Provenance Types of Level 0

Definition 2 (Node Aggregation) Given a PROV document D, node aggregation for a value k is a set of
types T = {t0, t1, ...,} and a type assignment f : Node→ T , such that the following hold:

• If f (x) = f (y) then φ(x,k) = φ(y,k), for any node x,y ∈ D.

• If f (x) 6= f (y) then φ(x,k) 6= φ(y,k), for any node x,y ∈ D.

where φ(x,k) = {τi|τi is a provenance type of level i for x, such that 0≤ i≤ k}.
Further, Nodes : T →N, the weight of each summary type, is defined as Nodes(t) = | {x | f (x) = t} |.

Definition 3 (Edge Aggregation) Let D be a PROV document. Let T be a set of types {t0, t1, ...,} and
f : Node→ T be a type assignment obtained by node aggregation for some k. Let ψ(t0, t1, lab) be a set
of edges {x→lab y ∈ D | f (x) = t0 and f (y) = t1}. Edge aggregation results in a weighted set of labeled
edges, defined as follows: Edges : T×T×Label→N, with Edges(t0, t1, lab) = |ψ(t0, t1, lab)| for any t0,
t1, lab.

From Definitions 2 and 3, we can now define APT.

Definition 4 (Aggregation by Provenance Types) Let D be a PROV document and level k ≥ 0 be a
natural number. Aggregation by Provenance Type, APT(k)(D) is a summary S such that:

• vertices of S are the set T = {t0, t1, ...,} obtained by node aggregation for k, with type assignment
f mapping nodes of D to S, and weight Nodes.

• a weighted set of labeled edges Edges obtained by edge aggregation for type assignment f .

As type labels (t0, . . .) are generated by APT, summaries that only differ by type labels are regarded as
equivalent. Hence, we consider summary equivalence up to type naming.

Provenance summaries are also graphs whose nodes and edges are expressed according to PROV.
However, summaries in general are not valid [5] provenance graphs: indeed, collapsing nodes that have
the same provenance types may introduce cyclic derivations or specializations, which are invalid [5]. For
instance, if a summary contains a triple :T prov:wasDerivedFrom :T, it should be understood as: an
entity of type :T was derived from another entity of type :T.

Inspired by the notion of conformance of a graph to a schema [3], we can define a notion of confor-
mance to a summary. (We assume that some nodes have been identified as “root”, from which all other
nodes can be reached.)

http://www.w3.org/ns/prov#wasDerivedFrom

134 Aggregation by Provenance Types

Definition 5 (Conformance to a Summary) A provenance graph instance G conforms to a provenance
graph summary S, in notation G� S, if there exists a simulation from G to S, i.e. a binary relation� from
the nodes of G to those of S satisfying (1) the root nodes of G and S are in the relation �, (2) whenever
u� u′ and u→a v is an edge labeled a in G, then there exists some edge between u′ and v′ for label a in
S, i.e. Edges(u′,v′,a)> 0, such that v� v′.

Lemma 1 A provenance graph is conformant to any summary produced by APT(k) for any k.

Proof is straightforward since the type assignment f of Definition 2 provides a simulation from the graph
to its summary.

4 Complexity Analysis

Following Definition 1, the length of τk+1 is bounded by the length of τk plus a constant. Thus, if CI is
the maximum number of incoming edges per node, N the number of nodes, and c a constant, then the
cost of computing all annotations for all nodes is:

cost(all τk)< N(CI)
k + c

This means that computing provenance types is linear in the size of the graph, but exponential in
the analysis’ level-k. In the presence of graphs with cycles (even valid graphs [5]) the size of type
information may become exponentially large with k. Figure 3 illustrates how provenance types grow as
CI is 2 > 1, while the summary remains homomorphic to the original graph.

:e1 a prov:Entity.
:e2 a prov:Entity.
:a a prov:Activity.
:ag a prov:Agent.
:e1 prov:wasGeneratedBy :a.
:e2 prov:wasGeneratedBy :a.
:a prov:used :e1.
:a prov:used :e2.
:e1 prov:wasAttributedTo :ag.
:e2 prov:wasDerivedFrom :e1.

a

e1

use

e2

use

gen

ag

att

gen

der

provenance types for a
τ0 = Activity
τ1 = {used(Entity)}
τ2 = {used(wat(Agent)),

used(wdf (Entity))}
used(wgb(Activity))}

. . .
τ4 = {wdf (wgb(used(wat(Agent)))),

wdf (wgb(used(wdf (Entity)))),
wdf (wgb(used(wgb(Activity)))),
wgb(used(wdf (wat(Agent)))),
wgb(used(wdf (wgb(Activity)))),
wgb(used(wgb(used(Entity))))}

. . .

Figure 3: A Valid Provenance Graph with a Cycle and its Provenance Types

Note that this kind of complexity is typical of database graph schema techniques (see Section 8).
Furthermore, while PROV allows for some valid graphs to be cyclic, this case is not so frequent. In
addition, in Section 6, we show that APT complexity is practical. First, for a given level k, APT is linear
in the size of the input graph. Second, summaries produced for k = 1 and k = 2 are shown to be very
usable. Third, we demonstrate that the size of the summary saturates when k is greater than the longest
chain of directed edges in the graph (see Hypothesis 2).

In our proof of concept implementation, computation of provenance types uses the SPARQL queries
of Figures 1 and 2. Generation of summaries and SVG representation rely on ProvToolbox (http:
//lucmoreau.github.io/ProvToolbox/). Ontology generation uses the OWL-API.

http://lucmoreau.github.io/ProvToolbox/
http://lucmoreau.github.io/ProvToolbox/

Luc Moreau 135

5 Applications of APT — Illustration

In this section, we provide two different applications of APT: interactive visualization and conformance
check. We discuss them in turn.

5.1 Visualization for Exploring Provenance

Visualization tools for interactively exploring provenance could leverage summaries. While designing
and implementing a summary-based visualization tool is beyond the scope of this paper, one can outline
the appearance of a summary, and the modes of interaction that it would support in a visualization tool.

Figure 7 (right) illustrates how a a summary be visualized. There, the thickness of edges is deter-
mined by the relative value of their weight as computed in the summary. In a real implementation, the
size of nodes would also be indicative of their respective frequencies.

As far as a visualization tool interface is concerned, we envisage two adjacent windows: on the
left-hand side, a summary representation, and on the right-hand side, a graph instance. Selection of
nodes/edges in the summary would automatically highlight corresponding nodes/edges in instance.

5.2 Conformance Check

We revisit Requirement 2. A provenance-enabled application generates a provenance trace, out of which
a summary is generated by APT. The next day, the application continues to run, producing provenance
again. An expert user may wonder whether the behaviour on the second say is conformant with the
application’s behaviour on the first day. Conformance to a summary is defined in Definition 5.

To provide an illustration of conformance checking, we converted an APT-summary into an OWL2
ontology (discarding all the frequency information). In Figure 4, we find two defined classes Execution-
Step_5 and T_9 from the example of Figure 7 (right). The lines marked with (†) include basic types and
definitions of edges, as displayed in Figure 7: for instance, T_9 is the source of a prov:wasGeneratedBy
edge to either ExecutionStep_1 or ExecutionStep_5.

Conformance checking is performed under the closed world assumption: we consider here that we
have complete knowledge. If a statement cannot be found in a provenance graph, it is considered not to
be true. Hence, the defined classes are extended with the clauses (?) requiring the corresponding edges
to be absent (maximum cardinality is zero). Similar clauses need to be generated for instances, to express
that there is no other possible instances that can be asserted. Finally, all classes are defined to be mutually
disjoint.

Hence, an instance of activity ExecutionStep_5 is expected to have used a Building834.1_2 and a
Route2324.0_13, and be associated with User_6. The class ExecutionStep_5 is distinct from Execution-
Step514_12 which has no usage, but a similar association with User_6.

6 Evaluation

In this section, we develop several hypotheses that we validate by applying APT to a set of provenance
graphs and examining the results. For the purpose of evaluation, we consider provenance graphs gener-
ated by the following applications.

1. Atomic Orchid (ATO) [AtomicOrchid] is a real-time location-based serious game to explore coordi-
nation and agile teaming in disaster response scenarios [8]. Provenance in AtomicOrchid includes
location and activities of participants, and orders issued by the headquarter.

http://www.w3.org/ns/prov#wasGeneratedBy

136 Aggregation by Provenance Types

ExecutionStep_5 ≡ ∃ used Building834.1_2 (†)

u ∃ used Route2324.0_13 (†)

u ∃ wasAssociatedWith User_6 (†)

u ≤ 0 used¬(Building834.1_2 t Route2324.0_13) (?)

u ≤ 0 wasAssociatedWith ¬User_6 (?)

T _9 ≡ Vote (†)

u ∃ wasDerivedFrom Building834.1_2 (†)

u ∃ wasGeneratedBy (ExecutionStep_1 t ExecutionStep_5) (†)

u ≤ 0 wasDerivedFrom ¬(Building834.1_2) (?)

u ≤ 0 wasGeneratedBy ¬(ExecutionStep_1 t ExecutionStep_5) (?)

Figure 4: OWL2 Definition for ExecutionStep_5 and T9 from Figure 7 (right)

2. CollabMap (COL) [CollabMap] is an application that crowd-sources evacuation routes in a geo-
graphical area (with a view of simulating evacuations under various conditions) [14]. CollabMap
provenance describes how all artifacts, i.e., building, routes, route sets, and votes, have been cre-
ated.

3. Patina of Notes (PON) [Patina] is an application for collecting notes about archaeological artifacts,
with a view to build, possibly multiple, interpretations of these artifacts [16]. The provenance
includes the notes, their structures, and how they evolve over time.

4. The Provenance Challenge 1 (PC1) [PC1] workflow is representative of FMRI applications build-
ing brain atlases. It was the basis of the provenance challenge series and early provenance inter-
operability efforts [21].

5. The PROV Primer (PRI) [Primer] describes the activities around the editing of a document [9].

6. Linear Derivation (LIN) [Linear] is a synthetic provenance graph exhibiting a linear sequence of
successive derivations.

The APT graph transformation outputs a summary. Our first investigation, captured by Hypothesis 1,
is concerned with the size of APT’s output. Intuitively, in the worst case, when no node of the original
graph can be aggregated by APT, the output has the same size as the input. In the best case, all nodes can
be merged in a single one; compression is then maximum.

Hypothesis 1 (Compression) Given a provenance graph G, APT results in a summary whose number
of nodes is smaller than or equal to the number of nodes in the original graph G.

Method We apply APT to the selected set of provenance graphs, and compare the number of types
produced by APT with the number of input nodes, for types entity, activity, and agent. To be able to
compare the relative performance of APT on the different graphs and different types, we plot the ratio
“number of types : number of input nodes”. Figure 5 plots such a ratio for APT(2).
Analysis We see a significant reduction in size (compression ratio between 3 and 10) for applications
ATO, COL, LIN, PC1, PON, except for agents (which happen to be in small number for some graphs
and cannot be aggregated further). The exception is PRI, which describes a fairly unstructured series of
human activities related to editing a document: very few nodes can be aggregated together, resulting in a
small compression rate.2

Luc Moreau 137

ATO COL LIN PC1 PON PRI

 activity
 agent
 entity

Applications

nu
m

be
r

of
 ty

pe
s/

nu
m

be
r

of
 n

od
es

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

9
/58

2
/11

15
/185

4
/17

1
/10

10
/26

1
/1

2
/16

6
/15

1
/1

8
/33

3
/42

1
/1

4
/38

3
/5

2
/2

6
/10

Figure 5: Ratio “number of output types : number of input nodes” for APT(2). The smaller the more
compressed. Above each bar, we find the ratio x/y, where x denotes the absolute number of output types,
whereas y denotes the absolute number of input nodes. Plot can also be found online.

Figure 5 plots one point in the space of possible outputs of APT. As APT level increases, the analysis
is better able to discriminate nodes that have a different history: thus, the number of types also increases,
until it saturates, as expressed by Hypothesis 2. This hypothesis relies on a graph metrics, Maximum
Finite Distance, MFD4 [7], which is a provenance-specific variant of graph diameter.

Hypothesis 2 (Monotonic) The number of output types of APT(k) is a monotonically increasing function
of k that plateaus once k reaches the graph’s Maximum Finite Distance (MFD).

Method We apply APT to the selected set of provenance graphs, and compare the total number of types
produced by APT(k) with the total number of input nodes. Figure 6 plots the ratio “number of types :
number of input nodes”, for increasing values of k.

Analysis For each application, APT(k) reaches a plateau for a given value of k. The table in Figure 6
records this value as well as the MFD measure of the corresponding graph, computed according to [7].
We see that the plateau is reached for a value of k smaller than the graph’s MFD. Intuitively, this can
be explained by the fact that no distinct provenance type can be propagated on chains longer than the
Maximum Finite Distance.

In some cases, such as LIN, the types identified by APT have a direct connection with the nodes
of the input graph. In such circumstances, with a value of k that is large enough, APT is capable of
distinguishing all nodes, and therefore does not aggregate any. In other cases, such as PC1, no level of

4Specifically, we define MFD as the maximum of MFD entity to entity, MFD activity to entity, and MFD agent to entity.

https://eprints.soton.ac.uk/364726/7/compression-2.pdf

138 Aggregation by Provenance Types

APT level k

nu
m

be
r

of
 ty

pe
s/

nu
m

be
r

of
 n

od
es

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

●
●

● ●

137/254

15/53

17/17

17/49

29/81

13/17

●

●

●

Apps

ATO
COL
LIN
PC1
PON
PRI

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

app plateau for k MFD [7]
ATO 24 24
COL 2 4
LIN 14 15
PC1 4 6
PON 7 8
PRI 2 4

Figure 6: Ratio “number of output types : number of input nodes” for APT(k), for increasing values of k.
We also express the ratio x/y when APT plateaus (where x denotes the number of output types, whereas
y denotes the number of input nodes). Plot can also be found online.

APT is able to distinguish some input nodes. Indeed, the workflow operates over a collection of images
(3 in this specific instance). Given that their treatment is uniform, no APT analysis can distinguish them,
unless they are explicitly assigned some distinct base types.2

The reason why APT is capable of compressing the input graph (see Hypothesis 1) is that APT can
represent repeated graph patterns in a more compact manner in the summary. Hypothesis 3 relates
numeric values in the summary to the repeat of patterns in the original graph.

Hypothesis 3 (Repeated Patterns) Types produced by APT(k) with occurrences > k are likely to be
members of graph patterns repeated more than k times.

Method After applying APT to a provenance graph, we plot the number of nodes for each type identified
by APT. The types with number of nodes > k are candidate nodes of repeated patterns.
Analysis We note that APT itself does not detect patterns, but instead APT helps identify types that occur
in repeated patterns. Due to space shortage, we focus on COL only; the analysis could be performed
on other graphs with a similar outcome. Figure 7 (left) illustrates a provenance summary produced by
APT(1) on COL, and the corresponding scatter plot (types vs node occurrences). Figure 7 (right) displays
a provenance summary, in which the thickness of edges is proportional to the number of edges in the
original graph instance. Figure 8 displays examples of repeated patterns. We see that there are 6 and 7
occurrences for types ExecutionStep_1, ExecutionStep_5 and T_9, respectively, in Figure 7 (left),
whereas there are 6 and 10 occurrences for nodes of type T_4 and User_6, respectively.2

https://eprints.soton.ac.uk/364726/15/all-compression.pdf

Luc Moreau 139

Type

N
um

be
r

of
 n

od
es

 Route2324.0_13

 UpVote2326.0_11

 Building834.0_7

 Building834.1_2

 Exe
cu

tio
nStep514_12

 UpVote_10

 Exe
cu

tio
nStep_8

 T_4

 Exe
cu

tio
nStep_1

 T_9
 T_3

 Exe
cu

tio
nStep_5

 Use
r_6

2
4

6
8

10

ExecutionStep_8

Building834.0_7

use

ExecutionStep_5

Route2324.0_13

use

Building834.1_2

use

ExecutionStep_1

use

ExecutionStep514_12

gen
der

T_9
gen gen

der

UpVote_10
gen

gen der

UpVote2326.0_11

gen

der

der

gen

gen

der

der

T_4

T_3

gen
der

der

User_6

assoc
assoc assoc

assoc

Figure 7: The scatter plot on the left-hand side displays the various types against the number of nodes
for each types. The provenance summary on the right-hand side is obtained by application of APT(1) to
COL. The thicker the edge in the summary, the more edge instances between nodes with corresponding
types. Left and right sides are available online here and here, respectively.

7 Discussion

The APT transformation results in a summary that includes nodes and edges frequencies. Figure 7 (right)
illustrates this information in a simple graphical way. We believe that this information could be the basis
of a provenance visualization tool, but developing such a tool would require substantial work beyond
the scope of this paper. Instead, we had a discussion with the provenance expert behind the generation
of COL provenance, explaining APT and discussing some graphical illustrations, including the one in
Figure 7 (right). This section summarises some highlights of the discussion, which was centered around
the need to make provenance understandable (see Section 2).

Building834.1_2

ExecutionStep_1

use

T_9

der

gen

ExecutionStep_5

T_4 User_6

assoc

Figure 8: Example of Two Graph Patterns Occurring 6 Times in COL

https://eprints.soton.ac.uk/364726/16/scatter.pdf
https://eprints.soton.ac.uk/364726/17/collabmap-visual-1.pdf

140 Aggregation by Provenance Types

APT output is helpful to derive a narrative from a provenance graph. The bold edges are useful to
express a narrative. “A building (Building834.0_7) is identified (ExecutionStep514_12), and voted
upon (ExecutionStep_8); a route (Route2324.0_13) drawn and voted upon (ExecutionStep_5);
and, a route set (Building834.1_2) defined and voted upon (ExecutionStep_1).” A visualization
tool leveraging APT but also application types would be able to expose such a narrative in a compelling
way. Thus, we conclude that APT provides solid foundations to address the introduction’s Question Q1,
reflected in Requirement 1.

APT helps get a good insight in the way provenance is modelled. As we were discussing the high-
level narrative, our attention was drawn to an activity type (ExecutionStep_8) that results in a vote
(UpVote_10) and a route (Route2324.0_13). Upon further investigation, it was discovered that this
type encompasses two different kinds of activities (voting and drawing route, respectively) of the orig-
inal provenance graph, but there was nothing to distinguish those activities since they have the same
provenance type: namely, they they use a building and are associated with some user, according to some
plan. Given that all the plans are aggregated as entities that do not have any ancestor, they all appear as
a simple type (T_8). By distinguishing these types of plans, distinct activity types would be produced in
place of ExecutionStep_8. Again, this discussion shows that APT helps address Requirement 1.

APT helps detect outliers. Large edges in the provenance summary are indicative of repeated patterns
(Hypothesis 3). Hence, occurrence of a thin edge within a repeated pattern is highlighting the pres-
ence of an unusual phenomenon. For instance, in Figure 7 (right), T_9 is suspiciously generated from
ExecutionStep_5 with a thin edge. An investigation shows that this edge links a negative vote on a
route set to a voting activity on a route: when a route is voted negatively, so is the route set it is con-
tained in. Such phenomenon reveals something special that occurred at execution time, or alternatively it
highlights some specific provenance modelling by the implementer. Hence, the weights included in APT

summaries are a good mechanism to address the introduction’s Question Q3 (i.e. Requirement 3).

8 Related Work

There are relevant summarization techniques for general graphs, without focus on provenance. A Data-
Guide [10] consists of a dynamically-generated summary of a graph-structured database. A DataGuide
for a source object s is an object d such that every label path of s has exactly one data path instance
in d (conciseness), and every label path of d is a label path of s (accuracy). Incremental and non-
incremantal algorithms are proposed to compute DataGuides, and their performance is studied. Also,
techniques to optimise queries based on DataGuides are investigated. By construction DataGuides never
include information that does not exist in the data. On the other hand, APT aggregate nodes that have the
same provenance types, hereby potentially creating loops in the output: such loops could correspond to
arbitrarily long paths in the original graph, a fundamental difference between the two approaches. Like
APT, the construction of DataGuides has an exponential upper bound for cyclic graphs.

DataGuide’s ancestor, Representative Objects (RO) [23], is a form of summary that could be com-
puted for a given graph database. One of its variants is a k-representative, which limits the summary to
path expressions of length k+ 1. While the definition of RO(k) is totally different from APT(k), both
have in common the focus on paths of length k.

In subsequent work, Goldman and Widom [11] consider Approximate DataGuides, by lifting the
accuracy constraint in the definition, and hereby not requiring every label path of d to be a label path

Luc Moreau 141

of s. They use a notion of set similarity based on the idea that two similar sets have a proportion of
common elements above some threshold. Wang et al. [27] study a variant of Approximate DataGuides
by maximising a utility function over a clustering of nodes. Related to our work is their taking into
account of incoming and outgoing edge labels, though they focus on the size of label sets, rather than the
labels themselves.

To optimise queries for the data web, Jarrar and Dikaiakos [15] introduce two notions of graph
signature: the O-Signature (resp. I-Signature) is a summary of a graph such that nodes that have the
same outgoing (resp. incoming) paths are grouped together. This notion is similar to a 1-Index [19], a
computationally-efficient refinement over a language equivalence relation. The key differentiator is that
paths of arbitrary length are considered in [15, 19], whereas APT limits itself to paths of length k.

Buneman et al. [3] define the notion of graph schema for a graph database. They further introduce
the notion of a database conforming to a schema by a generalization of similarity. Intuitively, the set of
label paths in a schema is a superset of label paths in the original graph.

Nestorov et al. [24] introduce the notion of approximate typing, and a measure in terms of defects
(number of edges ignored or to be added to be able to check conformance). In that sense, the summary
produced by APT is perfect. They also use a clustering technique to reduce the number of types, while
keeping the number of defects minimum.

Observing that existing graph summarization methods are mostly statistical (e.g., degree distribution,
distance, and clustering coefficients [25]), Tian et al. [26] propose two graph summarization techniques
allowing resolutions of summaries to be better controlled. SNAP produces a summary graph by grouping
nodes based on user-selected node attributes and relationships. SNAP produces a graph partitioning
where all nodes in a grouping are homogeneous in terms of some user-selected attributes and relations;
the partitioning is optimal in the sense that it contains a minimal number of nodes. A variant of this
operation, k-SNAP require most nodes (as opposed to all) of a grouping to be involved in the selected
relation, whereas they still all have the same attributes; users can select the number k of groups in the
summary. APT proceeds by converting provenance-related relations into provenance-type attributes. The
grouping produced by APT is then equivalent to a SNAP operation over provenance-type attributes. The
originality of APT is that it considers relation paths of lengh k, whereas SNAP focuses on direct relations.

Approximations, such as those described in [26, 24, 11, 27, 19], could be considered if the number
of types produced by APT is too large. But all come with non-trivial computational overheads.

In the context of Business Activity Monitoring, process mining consists of extracting information
about processes from transaction logs. Transactions logs typically are a strict subset of provenance
information. The type of processes that can be extracted can be represented as Petri Nets [1].

Semantic substrates is a technique to group nodes into rectangular regions, and lay them within each
region according to user-chose attributes. Node aggregation [2] is used to replace all the nodes in a grid
cell with a single metanode. Likewise, PivotGraph [28] is a technique to visualize graph according to at-
tributes selected by users. The techniques [2, 28] are complementary with APT: APT exposes provenance
types as attributes, and these techniques empower the user to select which attributes to render, and offer
original layouts. Koop et al. [17] propose a method to summarise graph collections: they use domain-
specific comparison functions to collapse similar nodes and edges, with the aim Âğof producing more
compact representations of such collections. An interesting study would be to focus on the suitability of
all these visualization methods for provenance.

Means of abstracting provenance traces have been considered. “User views”, defined as a partition
of tasks in a workflow specification [6], provide the means to selectively identify what aspect of a prove-
nance trace should be exposed to users. This approach differs from our work since our summaries are
construted automatically without requiring an explicit workflow. Likewise, “abstract provenance graph”

142 Aggregation by Provenance Types

[29] are derived by static analysis of workflows. In addition, techniques are proposed to further sum-
marise provenance graphs, based on time information and the structure of the worklow. Provenance
graph abstraction by node grouping [20] is a technique by which a set of nodes in a PROV-compliant
provenance graph is replaced by a new abstract node with a view to obfuscate provenance; privacy poli-
cies are used to identify the nodes to group.

9 Concluding Remarks and Future Work

In this paper, we have presented a summarisation technique for provenance graphs. The approach con-
sists of converting provenance paths, up to some length k to node attributes (referred to as provenance
types), and grouping nodes that have the same provenance types. The summary also contains numeric
values representing the frequency of nodes and edges in the original graph.

A complexity analysis of the algorithm shows that it is linear in the size of the graph, and potentially
exponential in the maximum path length k. Such a type of complexity is typical of related work. The
positive side of our work is that our quantitative evaluation shows that the algorithm is perfectly tractable
since useful summary graphs can be obtained with small values of k, and it was shown that for k greater
than the Maximum Finite Distance, the size of the summary saturates.

We also introduced a notion of conformance to a summary, which captures the idea that the sum-
mary includes all possible traversals that can be performed in a graph. We have illustrated how such
conformance can be implemented by means of an OWL2 consistency check.

A qualitative discussion of the approach, based on a sample visualization based on the summariza-
tion, has shown that the approach has a good potential to detect anomalies and outliers. Overall, we have
demonstrated that APT suitably addresses three use cases, formulated as questions in the introduction of
the paper and expressed as requirements for summarisation.

With this paper, we have opened up a whole area of research in summarization techniques for prove-
nance graphs, and their application to conformance checking and visualization. Our future work will
seek to develop efficient algorithms for conformance checking. In addition, we will seek to investigate
the incremental aspect of the approach: being able to adjust summaries and being able to check confor-
mance incrementally as provenance graphs are extended. Furthemore, an issue that is particularly related
is to find mechanisms to help users identify base types to construct provenance types. Finally, while the
approach is developed in the context of provenance, it could have potential applications for any form of
graphs; future research would have to clarify the intuition associated with so-called provenance types.

Acknowledgements This work is funded in part by the EPSRC SOCIAM (EP/J017728/1) and OR-
CHID (EP/I011587/1) projects, the FP7 SmartSociety (600854) project, and the ESRC eBook (ES/K007-
246/1) project. Thanks to Trung Dong Huynh for feedback on a draft of this paper.

References

[1] Wil van der Aalst, Ton Weijters & Laura Maruster (2004): Workflow Mining: Discovering Process Mod-
els from Event Logs. IEEE Transactions on Knowledge and Data Engineering 16(9), pp. 1128–1142,
doi:10.1109/TKDE.2004.47.

[2] A. Aris & Ben Shneiderman (2008): A Node Aggregation Strategy to Reduce Complexity of Network
Visualization using Semantic Substrates. Available at http://www.cs.umd.edu/localphp/hcil/
tech-reports-search.php?number=2008-10.

http://dx.doi.org/10.1109/TKDE.2004.47
http://www.cs.umd.edu/localphp/hcil/tech-reports-search.php?number=2008-10
http://www.cs.umd.edu/localphp/hcil/tech-reports-search.php?number=2008-10

Luc Moreau 143

[3] Peter Buneman, Susan B. Davidson, Mary F. Fernandez & Dan Suciu (1997): Adding Structure to Unstruc-
tured Data. In: Proceedings of the 6th International Conference on Database Theory, ICDT ’97, Springer-
Verlag, London, UK, UK, pp. 336–350, doi:10.1007/3-540-62222-5_55.

[4] S. Campinas, T.E. Perry, D. Ceccarelli, R. Delbru & G. Tummarello (2012): Introducing RDF Graph Sum-
mary with Application to Assisted SPARQL Formulation. In: Database and Expert Systems Applications
(DEXA’12), pp. 261–266, doi:10.1109/DEXA.2012.38.

[5] James Cheney, Paolo Missier, Luc Moreau (eds.) & Tom De Nies (2013): Constraints of the PROV Data
Model. W3C Recommendation REC-prov-constraints-20130430, World Wide Web Consortium. Available
at http://www.w3.org/TR/2013/REC-prov-constraints-20130430/.

[6] Sarah Cohen-Boulakia, Olivier Biton, Shirley Cohen & Susan Davidson (2008): Addressing the Prove-
nance challenge using ZOOM. Concurrency and Computation: Practice and Experience 20(5), pp. 497–506,
doi:10.1002/cpe.1232.

[7] Mark Ebden, Trung Dong Huynh, Luc Moreau, Sarvapali Ramchurn & Roberts Stephen (2012): Network
Analysis on Provenance Graphs from a Crowdsourcing Application. In: 4th International Provenance and
Annotation Workshop (IPAW’12), Springer-Verlag, doi:10.1007/978-3-642-34222-6_13.

[8] J. Fischer, W. Jiang & S. Moran (2012): AtomicOrchid: A Mixed Reality Game to Investigate Coordination
in Disaster Response. In: Entertainment Computing - ICEC 2012, Lecture Notes in Computer Science 7522,
Springer, pp. 572–577, doi:10.1007/978-3-642-33542-6_75.

[9] Y. Gil & S. Miles (eds.) (2013): PROV Model Primer. W3C Working Group Note NOTE-prov-primer-
20130430, World Wide Web Consortium. Available at http://www.w3.org/TR/prov-primer/.

[10] R. Goldman & J. Widom (1997): DataGuides: Enabling Query Formulation and Optimization in Semistruc-
tured Databases. In: 23rd International Conference on Very Large Data Bases (VLDB 1997). Available at
http://ilpubs.stanford.edu:8090/232/.

[11] R. Goldman & J. Widom (1999): Approximate DataGuides. Technical Report 1999-56, Stanford InfoLab.
Available at http://ilpubs.stanford.edu:8090/412/.

[12] Paul Groth & Luc Moreau (eds.) (2013): PROV-Overview. An Overview of the PROV Family of Docu-
ments. Technical Report, World Wide Web Consortium. Available at http://www.w3.org/TR/2013/
NOTE-prov-overview-20130430/.

[13] Monika Rauch Henzinger, Thomas A. Henzinger & Peter W. Kopke (1995): Computing Simulations on
Finite and Infinite Graphs. In: 36th Annual Symposium on Foundations of Computer Science, Milwaukee,
Wisconsin, 23-25 October 1995, pp. 453–462, doi:10.1109/SFCS.1995.492576.

[14] Trung Dong Huynh, Mark Ebden, Matteo Venanzi, Sarvapali Ramchurn, Stephen Roberts & Luc Moreau
(2013): Interpretation of Crowdsourced Activities Using Provenance Network Analysis. In: Conference
on Human Computation and Crowdsourcing (HCOMP’13). Available at http://www.aaai.org/ocs/
index.php/HCOMP/HCOMP13/paper/view/7388.

[15] Mustafa Jarrar & Marios D. Dikaiakos (2012): A Query Formulation Language for the Data Web. IEEE
Transactions on Knowledge and Data Engineering 24(5), pp. 783–798, doi:10.1109/TKDE.2011.41.

[16] Michael O. Jewell, Enrico Costanza, Tom Frankland, Graeme Earl & Luc Moreau (2012): The Xeros Data
Model: Tracking Interpretations of Archaeological Finds. In: 4th International Provenance and Annotation
Workshop (IPAW’12), doi:10.1007/978-3-642-34222-6_11.

[17] David Koop, Juliana Freire & Cláudio T. Silva (2013): Visual summaries for graph collections. In: IEEE Pa-
cific Visualization Symposium, PacificVis 2013, February 27 2013-March 1, 2013, Sydney, NSW, Australia,
pp. 57–64, doi:10.1109/PacificVis.2013.6596128.

[18] Timothy Lebo, Satya Sahoo, Deborah McGuinness (eds.), Khalid Behajjame, James Cheney, David Corsar,
Daniel Garijo, Stian Soiland-Reyes, Stephan Zednik & Jun Zhao (2013): PROV-O: The PROV Ontology.
W3C Recommendation REC-prov-o-20130430, World Wide Web Consortium. Available at http://www.
w3.org/TR/2013/REC-prov-o-20130430/.

http://dx.doi.org/10.1007/3-540-62222-5_55
http://dx.doi.org/10.1109/DEXA.2012.38
http://www.w3.org/TR/2013/REC-prov-constraints-20130430/
http://dx.doi.org/10.1002/cpe.1232
http://dx.doi.org/10.1007/978-3-642-34222-6_13
http://dx.doi.org/10.1007/978-3-642-33542-6_75
http://www.w3.org/TR/prov-primer/
http://ilpubs.stanford.edu:8090/232/
http://ilpubs.stanford.edu:8090/412/
http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/
http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/
http://dx.doi.org/10.1109/SFCS.1995.492576
http://www.aaai.org/ocs/index.php/HCOMP/HCOMP13/paper/view/7388
http://www.aaai.org/ocs/index.php/HCOMP/HCOMP13/paper/view/7388
http://dx.doi.org/10.1109/TKDE.2011.41
http://dx.doi.org/10.1007/978-3-642-34222-6_11
http://dx.doi.org/10.1109/PacificVis.2013.6596128
http://www.w3.org/TR/2013/REC-prov-o-20130430/
http://www.w3.org/TR/2013/REC-prov-o-20130430/

144 Aggregation by Provenance Types

[19] Tova Milo & Dan Suciu (1999): Index Structures for Path Expressions. In: Proceedings of the 7th In-
ternational Conference on Database Theory, ICDT ’99, Springer-Verlag, London, UK, UK, pp. 277–295,
doi:10.1007/3-540-49257-7_18.

[20] Paolo Missier, Jeremy Bryans, Carl Gamble, Vasa Curcin & Roxana Danger (2013): Provenance graph
abstraction by node grouping. Technical Report CS-TR-1393, University of Newcastle. Available at http:
//www.ncl.ac.uk/computing/research/publication/194432.

[21] Luc Moreau & Bertram Ludaescher (2008): The First Provenance Challenge. Concurrency and Computation:
Practice and Experience 20(5), pp. 409–418, doi:10.1002/cpe.1233.

[22] Luc Moreau & Paolo Missier (eds.) (2013): PROV-DM: The PROV Data Model. W3C Recommendation
REC-prov-dm-20130430, World Wide Web Consortium. Available at http://www.w3.org/TR/2013/
REC-prov-dm-20130430/.

[23] S. Nestorov, J. Ullman, J. Wiener & S. Chawathe (1997): Representative Objects: Concise Representations
of Semistructured, Hierarchical Data. In: 13th International Conference on Data Engineering (ICDE 1997),
doi:10.1109/ICDE.1997.581741.

[24] Svetlozar Nestorov, Serge Abiteboul & Rajeev Motwani (1998): Extracting Schema from Semistructured
Data. In: Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, SIG-
MOD ’98, ACM, New York, NY, USA, pp. 295–306, doi:10.1145/276304.276331.

[25] Mark Newman (2010): Networks: An Introduction. Oxford University Press, Inc., New York, NY, USA,
doi:10.1093/acprof:oso/9780199206650.001.0001.

[26] Yuanyuan Tian, Richard A. Hankins & Jignesh M. Patel (2008): Efficient Aggregation for Graph Summa-
rization. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’08, ACM, New York, NY, USA, pp. 567–580, doi:10.1145/1376616.1376675.

[27] Qiu Yue Wang, Jeffrey X. Yu & Kam-Fai Wong (2000): Approximate Graph Schema Extraction for Semi-
Structured Data. In: Proceedings of the 7th International Conference on Extending Database Technology,
EDBT ’00, Springer-Verlag, London, UK, pp. 302–316, doi:10.1007/3-540-46439-5_21.

[28] Martin Wattenberg (2006): Visual Exploration of Multivariate Graphs. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’06, ACM, New York, NY, USA, pp. 811–819,
doi:10.1145/1124772.1124891.

[29] Daniel Zinn & Bertram Ludaescher (2010): Abstract Provenance Graphs: Anticipating and Exploiting
Schema-Level Data Provenance. In: Provenance and Annotation of Data and Processes, 6378, Springer,
pp. 206–215, doi:10.1007/978-3-642-17819-1_23.

Dataset References
Provenance datasets referred to by this paper are listed below.

[Primer] The PROV Primer dataset, Yolanda Gil & Simon Miles (2014): Available at https://eprints.soton.ac.uk/
364726/12/pri.ttl .

[AtomicOrchid] Atomic Orchid provenance dataset, Trung Dong Huynh (2014): URL: https://eprints.soton.ac.uk/
364726/8/ato.ttl .

[CollabMap] CollabMap provenance dataset, Trung Dong Huynh (2014): URL: https://eprints.soton.ac.uk/
364726/9/col.ttl .

[Patina] Patina of Notes provenance dataset, Michael Jewell (2014): URL: https://eprints.soton.ac.uk/364726/10/
pon.ttl .

[PC1] The First Provenance Challenge dataset, Luc Moreau (2014): URL: https://eprints.soton.ac.uk/364726/11/
pc1.ttl .

[Linear] Synthetic Linear Derivation dataset, Luc Moreau (2014): URL: https://eprints.soton.ac.uk/364726/13/
lin.ttl .

http://dx.doi.org/10.1007/3-540-49257-7_18
http://www.ncl.ac.uk/computing/research/publication/194432
http://www.ncl.ac.uk/computing/research/publication/194432
http://dx.doi.org/10.1002/cpe.1233
http://www.w3.org/TR/2013/REC-prov-dm-20130430/
http://www.w3.org/TR/2013/REC-prov-dm-20130430/
http://dx.doi.org/10.1109/ICDE.1997.581741
http://dx.doi.org/10.1145/276304.276331
http://dx.doi.org/10.1093/acprof:oso/9780199206650.001.0001
http://dx.doi.org/10.1145/1376616.1376675
http://dx.doi.org/10.1007/3-540-46439-5_21
http://dx.doi.org/10.1145/1124772.1124891
http://dx.doi.org/10.1007/978-3-642-17819-1_23
https://eprints.soton.ac.uk/364726/12/pri.ttl
https://eprints.soton.ac.uk/364726/12/pri.ttl
https://eprints.soton.ac.uk/364726/8/ato.ttl
https://eprints.soton.ac.uk/364726/8/ato.ttl
https://eprints.soton.ac.uk/364726/9/col.ttl
https://eprints.soton.ac.uk/364726/9/col.ttl
https://eprints.soton.ac.uk/364726/10/pon.ttl
https://eprints.soton.ac.uk/364726/10/pon.ttl
https://eprints.soton.ac.uk/364726/11/pc1.ttl
https://eprints.soton.ac.uk/364726/11/pc1.ttl
https://eprints.soton.ac.uk/364726/13/lin.ttl
https://eprints.soton.ac.uk/364726/13/lin.ttl

	1 Introduction
	2 User Requirements for Summarisation
	3 Aggregation by Provenance Types
	4 Complexity Analysis
	5 Applications of APT — Illustration
	5.1 Visualization for Exploring Provenance
	5.2 Conformance Check

	6 Evaluation
	7 Discussion
	8 Related Work
	9 Concluding Remarks and Future Work

