
A. Rensink & E. Zambon (Eds.): Graphs as Models 2015 (GaM’15)
EPTCS 181, 2015, pp. 1–15, doi:10.4204/EPTCS.181.1

c© A.J. Wijs
This work is licensed under the
Creative Commons Attribution License.

Confluence Detection for Transformations of Labelled
Transition Systems

Anton Wijs
Department of Mathematics and Computer Science

Eindhoven University of Technology
P.O. Box 513, 5600 MB, Eindhoven, The Netherlands

A.J.Wijs@tue.nl

The development of complex component software systems can be made more manageable by first
creating an abstract model and then incrementally adding details. Model transformation is an ap-
proach to add such details in a controlled way. In order for model transformation systems to be
useful, it is crucial that they are confluent, i.e. that when applied on a given model, they will always
produce a unique output model, independent of the order in which rules of the system are applied on
the input. In this work, we consider Labelled Transition Systems (LTSs) to reason about the seman-
tics of models, and LTS transformation systems to reason about model transformations. In related
work, the problem of confluence detection has been investigated for general graph structures. We
observe, however, that confluence can be detected more efficiently in special cases where the graphs
have particular structural properties. In this paper, we present a number of observations to detect
confluence of LTS transformation systems, and propose both a new confluence detection algorithm
and a conflict resolution algorithm based on them.

1 Introduction

In Model-Driven Software Development, model transformation is a well-known technique to incremen-
tally construct complex, often concurrent systems through manageable steps. It allows reasoning about a
system at a high level of abstraction, and incrementally adding more information until a model has been
constructed from which source code can be automatically derived. Some transformations add details
or components to an existing model of a system under development, others refactor a model to make it
easier to interpret, or translate a model to one written in a different modelling language. To reason about
model transformations, often graph transformation is chosen as the underlying mechanism [7, 23].

It is crucial, though, that transformations are verifiable, i.e. that the definitions of transformations
can be qualitatively analysed. Much work has been done on verifying model transformations, e.g. [10,
16], using many different techniques [1, 22]. In earlier work, we have developed a formal verification
technique to determine whether the definition of a model transformation preserves specific safety or
liveness properties, regardless of the model it is applied on [6, 24–26]. It is applicable on any modelling
language with a formal semantics that can be captured by Labelled Transition Systems (LTSs), i.e. it
must be action (or event) based. For example, in our research we focus on the visual modelling language
SLCO [5], which allows the specification and development of concurrent and distributed systems by
defining sets of (interacting) finite state machines.

In our setting, the semantics of models is captured by LTSs, and the semantics of transformations is
captured by systems of pairs of LTSs, describing which patterns in an input LTS should be transformed
into which new patterns. By applying the technique from [6, 24–26] on those pairs of LTSs, we are able
to determine whether transformation is guaranteed to preserve the structure of any LTS w.r.t. a particular

http://dx.doi.org/10.4204/EPTCS.181.1
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Confluence Detection for Transformations of Labelled Transition Systems

C0

receive(m)compute

r0

0

1

receive#1

0

1

receive#1

postprocess#1

T (C0)

receive(m)

postprocess(m)

compute

Figure 1: Example of an LTS transformation

temporal logic formula expressing a desired functional property. If that is the case, then models for which
this property holds can be safely transformed.

For example, consider the LTS C0 on the left in Figure 1. It describes a system that can alternatingly
receive messages m and perform computations. The transformation rule r0 in the middle defines that
after each receiving of a message, a postprocessing step should be added. The result of applying the rule
on the LTS on the left in the figure, produces the LTS T (C0) on the right. More interesting cases involve
multiple LTSs describing the semantics of different components running concurrently, and interaction
between those components is taken into account.

This setting allows to formally reason about model transformations, which has a number of practical
applications. For instance, if one desires to develop a system running on specific hardware, then an
abstract model can be transformed to make it compatible with that hardware. In [24], a transformation
rule system is given to transform multi-party communication in models, i.e. involving more than two
parties at once, into a number of two-party communications following a specific protocol. Multi-party
communication can be useful in modelling languages to reason about system behaviour at an abstract
level, but if the eventual implementation cannot use it, then such a transformation rule system is useful to
automatically remove it at some point in the development process. The ability to verify the transformation
rule system in isolation means that we are able to determine that it will always produce a correct output
model when applied on a correct input model. Other elaborate examples of LTS transformations are
given in [25, 26].

For model transformation, it is crucial that the transformation is always terminating and confluent,
i.e. that transformation is guaranteed to finish, and that it always leads to the same solution, i.e. reduct,
independent of the order in which matches are processed. This is important, since a user defining how a
particular system should be transformed typically has a specific resulting model in mind. Therefore, if
a rule system is not confluent, it usually means that the user made some mistake. Both termination and
confluence of transformation systems has been studied before; for instance, in [3], criteria are given to
determine whether a system is terminating or not.

Confluence has been the subject of research in for example [12, 13, 19–21]. From term rewriting,
we know that a rewrite system is confluent if it is both terminating and locally confluent [9]. A system
is locally confluent iff all possible conflicts between two transformation applications, i.e. direct trans-
formations, can be resolved according to the Critical Pair Lemma [19–21]. For a terminating system,
determining confluence therefore boils down to doing two operations: firstly, to construct so-called crit-
ical pairs representing possible conflicts between two direct transformations, and secondly, to try to
resolve all constructed critical pairs.

In earlier work on critical pair detection, general graphs have always been considered, meaning that
vertices and edges may or may not have labels, edges may or may not be directed, and graphs can
consist of several disconnected subgraphs. Such a general approach is of course very useful, but when
considering a more restricted setting, it may be possible to detect critical pairs more efficiently. The
complexity of standard critical pair detection for general graph structures is exponential in the number of

A.J. Wijs 3

vertices and edges in the left patterns of two transformation rules, since all possible overlappings between
the two left patterns need to be taken into account. In [12], it is demonstrated that if one transformation
rule deletes elements and the other does not, a check with a linear complexity can be obtained, and when
both rules do not delete elements, a check with quadratic complexity is possible.

The contributions of this paper follow from the observation that in our setting, graphs are directed,
edge-labelled graphs, i.e. LTSs, with all vertices connected with each other via edges (ignoring the di-
rection). These structural properties can be exploited further, along the reasoning of [12], to find critical
pairs more efficiently; the presence of edge labels allows to check in constant time in some cases, and
furthermore, we are also able to define a check for critical pairs with quadratic complexity for the case
that two rules both delete elements. The main conclusion for our setting is that transitions, as opposed to
states, turn out to play a crucial role in the detection of critical pairs.

Contribution In this paper, we propose a new critical pair detection algorithm when working with
LTSs as opposed to general graphs. When formally reasoning about model transformations as transfor-
mations of LTSs, we can immediately benefit from the new algorithm since it can handle many cases
more efficiently than existing detection techniques [12,13,19–21]. It uses a novel approach, constructing
partial morphisms between LTSs. Whenever such a partial morphism meets certain requirements, a con-
flict can be directly derived from it. Although the worst-case complexity of the algorithm is comparable
to that of algorithms proposed in related work, it is very efficient in particular cases. The circumstances
of those cases are explained in detail. Besides that, we also propose an algorithm to try to resolve detected
conflicts, which is based on observations made in [21], but we focus on our particular setting.

Roadmap Section 2 presents the basic notions, in particular LTS and LTS transformation. In Section 3,
we investigate conflict detection. From this, we construct a conflict detection algorithm in Section 4 and a
conflict resolution algorithm in the same section. Finally, Section 5 contains our conclusions and pointers
for future work.

2 Background

In this paper, we focus on action-based semantics of (concurrent) systems. Such semantics are often
captured using Labelled Transition Systems (LTSs), indicating how a system as a whole or an individual
component in a system can change state by performing particular actions.

Definition 1 (Labelled Transition System) An LTS G is a tuple 〈SG , AG , TG〉, where SG is a (finite)
set of states, AG is a set of actions, and TG ⊆ SG ×AG ×SG is a transition relation. Actions in AG are
denoted by a, b, c, etc. We use s1

a−→G s2 to denote 〈s1,a,s2〉 ∈ TG . If s1
a−→G s2, this means that in G, an

action a can be performed in state s1, leading to state s2.

We use operations on LTSs such as intersection and difference in the usual graph-theoretical way.
Finally, an LTS is weakly connected iff the undirected version of an LTS is a single connected component
(from each state, there is path to each other state).

In the context of systems consisting of a finite number of concurrent components, we actually rep-
resent system semantics as networks of LTSs [14], where the potential behaviour of each component is
described by a separate LTS, and a synchronisation mechanism is defined describing the potential for
those LTSs to interact. For example, consider the network on the left in Figure 2, which besides LTS
C0 from Figure 1 also contains the potential behaviour of a component C1 that can at any time send a

4 Confluence Detection for Transformations of Labelled Transition Systems

C1

send(m)

C0

receive(m)compute

<send, receive>→ comm

r1

0

1

send#1

0

1

send#1

wait

T (C1)

send(m)wait

Figure 2: Transforming networks of LTSs

message. Below the LTSs, a synchronisation rule is defined stating that send and receive actions can
synchronise, leading to a comm action in the LTS of the system. For this to be possible, the parameters
of send and receive must be identical, i.e. they must involve the same message m.

When considering transformation rule systems applicable on networks of LTSs, confluence depends
on whether the rules in the rule system do not give rise to conflicts in either of the individual LTSs, so it
again boils down to considering single LTSs. For this reason, we do not consider networks of LTSs in
most of this paper.

Transformation In our setting, changes applied on a concurrent system model are represented by LTS
transformation rules applied on the semantics of the components of the model, i.e. on their LTSs. We
only consider weakly connected LTSs as the semantics of components, since naturally, the possible states
that components can be in should be reachable from their initial state. To reason about the changes, we
define the notions of a rule, and matches of rules on component LTSs. But first, we introduce the notion
of LTS morphisms.

Definition 2 (LTS morphism) An LTS morphism f : G0→G1 between two LTSs G0 = 〈SG0 , AG0 , TG0〉,
G1 = 〈SG1 ,AG1 ,TG1〉 is a pair of functions f = 〈 fS : SG0 →SG1 , fT : TG0 →TG1〉 which preserve sources,
targets, and transition labels, i.e. for all s a−→G0 s′, we have fT(s

a−→G0 s′) = fS(s)
a−→G1 fS(s′).

We denote the existence of an injective LTS morphism f from an LTS G0 to an LTS G1, meaning that
fS and fT are injective, by G0 v G1, and say that G0 and G1 are isomorphic, denoted by G0 ' G1, iff there
exists a morphism f : G0→G1 such that both fS and fT are bijections. An LTS inclusion i : G0→G1 is
an LTS morphism with for all s ∈ SG0 , iS(s) = s, and for all s a−→G0 s′, iT(s

a−→G0 s′) = s a−→G1 s′. LTS G0
is a sub-LTS of G1, denoted by G0 ⊆ G1, iff there exists an LTS inclusion i : G0→G1. Finally, we denote
the fact that a morphism is undefined for a particular state or transition with ⊥, for example fS(s) =⊥
means that fS(s) is undefined.

Definition 3 (Transformation Rule) A transformation rule r = 〈L f←−K g−→R〉 consists of two LTS mor-
phisms f :K→L, g :K→R, where K→L is an inclusion. LTSs L andR are both weakly connected,
and are called the left and right patterns of r. LTS K is the interface.

We consider injective transformation rules, meaning that K→R is injective. With SL\K, we refer
to the states s in L that are not represented in K, i.e. f−1

S (s) =⊥. A similar convention is used for the
functions fT , gS , and gT . States s ∈ SL for which f−1

S (s) is defined are called glue-states.

Definition 4 (Rule Match) A transformation rule r = 〈L f←− K g−→ R〉 has a match m : L → G on an
LTS G = 〈SG ,AG ,TG〉 iff m : L→ G is an injective LTS morphism and ∀s ∈ SL\K, p ∈ SG :

• mS(s)
a−→G p =⇒ ∃s′ ∈ SL.s

a−→L s′∧mS(s′) = p;

A.J. Wijs 5

KL R

G D H

f g

m m′

Figure 3: Double-pushout diagram

• p a−→G mS(s) =⇒ ∃s′ ∈ SL.s′
a−→L s∧mS(s′) = p.

The conditions in Def. 4 correspond with the gluing conditions of the double-pushout (DPO) method
[4] for graph transformation, preventing so-called dangling transitions, which are transitions where only
the source or target state will be removed, but not both. It expresses that for a state s to be removed, all
connected transitions must be removed as well.

Let G, H be LTSs, and m : L → G a match for rule r. Then G directly transforms H by r and m,
denoted by G ⇒r,m H, iff there are two pushouts as in Figure 3.

Direct transformation is defined as follows, with m′ :R→H a match between the right pattern and
the result of the transformation.

Definition 5 (Direct Transformation) The direct transformation G ⇒r,mH of an LTS G = 〈SG ,AG ,TG〉
according to a rule r and a given match m : L→ G is defined asH= 〈SH,AH,TH〉, where

• SH = (SG \{mS(s) | s ∈ (SL\K)})∪ (SR\K);
• TH = (TG \{mT(〈s,a,s′〉) | s

a−→L\K s′})∪{m′T(〈s,a,s′〉) | s
a−→R\K s′};

• AH = {a | ∃〈s,a,s′〉 ∈ TH}.

The new set of states SH consists of SG without the states that correspond to the states in the left
pattern that are not represented in the interface, i.e. the removed states, and with new representatives,
here represented in the match m′, of the states in the right pattern that are not represented in the interface,
i.e. the newly added states. In a similar way, TH consists of the transitions in TG without the transitions
corresponding to left pattern transitions that are not represented in the interface, and with transitions
corresponding to right pattern transitions that are not represented in the interface.

An example of a transformation rule introducing a new action is given in the middle of Figure 1.
Black states with the same index correspond with each other, i.e. for two such states s ∈ SL, t ∈ SR, we
have gS(f−1

S (s)) = t. This also holds for the highlighted transition labelled receive(m).
It is crucial to note at this point that we expect transformation rules to be well-specified, i.e. that they

specify that input is actually altered, and not replaced by something that can be considered equivalent.
In particular, we assume that a transition s a−→G s is not replaced by a new transition between states s
and s′ with the same label a, nor that a state s is replaced by another state ŝ without transforming any of
the transitions connected to s (note that LTSs to be transformed are weakly connected, so s always has
connected transitions).

Sets of rules together make up a rule system Σ. Transformation of an LTSs G according to a rule
system Σ involves identifying all possible matches for each r ∈ Σ on G, and applying transformation on
those matches. A transformation from G to H is a sequence of direct transformations G = G0⇒ . . .⇒
Gn =H, with n≥ 0. We denote this by G ⇒∗

Σ
H.

Figure 2 presents a transformation rule r1 which can only be applied on C1, leading to LTS T (C1).
When combining r1 with r0 into a rule system Σ, it is clear that Σ is confluent w.r.t. the network given in
Figure 2, since r0 and r1 are not applicable on the same LTSs. The question that remains is whether Σ is
confluent for arbitrary single LTSs as well.

6 Confluence Detection for Transformations of Labelled Transition Systems

3 Conflicts Between Direct Transformations

By Newman’s Lemma [17], a terminating transformation system is confluent iff it is locally confluent,
i.e. if for all direct transformationsH0⇐r0,m0 G ⇒r1,m1 H1, there is a common reductH withH0⇒∗Σ H
and H1 ⇒∗Σ H. To determine local confluence, first of all, it has been shown [19] that if two direct
transformations are parallel independent, then they are locally confluent. In the following, we reason
about two LTS transformation rules r0 = 〈Lr0 ,Rr0〉 and r1 = 〈Lr1 ,Rr1〉.

Definition 6 (Parallel Independence) Direct transformations H0 ⇐r0,m0 G ⇒r1,m1 H1 are parallel in-
dependent iff

m0(Lr0)∩m1(Lr1)⊆ m0(Kr0)∩m1(Kr1)

The intuition behind Def. 6 is that if two matches of one or two rules on an LTS only overlap w.r.t.
the interfaces of those two rules, then the related direct transformations are parallel independent since
applying one direct transformation does not invalidate the match for the other direct transformation. We
say that two direct transformations are in conflict iff they are not parallel independent. The presence
of a conflict can cause the transformation system to be not locally confluent (specifically, if the two
derivations do not lead to a common reduct [4]). Informally, the conflict is caused because r0 deletes
something that r1 uses and/or r1 deletes something that r0 uses. A concrete conflict can be represented
by a critical pair, which defines an LTS on which two matches of the given pair of rules exist that imply
derivations that are in conflict. Clearly, in such an LTS, the two matches must overlap.

Definition 7 (Critical Pair) Direct transformations H0⇐r0,m0 G ⇒r1,m1 H1 form a critical pair iff they
are not parallel independent and G = m0(Lr0)∪m1(Lr1).

Furthermore, we require that m0 6= m1 if r0 = r1, and we equate isomorphic critical pairs, which
informally means that two critical pairs are different if either there exists no isomorphism between their
G’s, or their matches m0, m1 are different.

The main task when detecting conflicts is to construct a suitable conflict situation G for pairs of rules
r0, r1 that gives rise to a conflict. Such a G should be minimal, in the sense that there does not exist an
LTS G′ with G′ ⊂ G and matches m′0 : Lr0 →G′, m′1 : Lr1 →G′ such thatH′0⇐r0,m′0

G′⇒r1,m′1
H′1 is also

a critical pair.
In this section, we focus on how to construct a suitable G efficiently. First, we establish that in order

to have a conflict in G, m0(Lr0) and m1(Lr1) must at least overlap in one transition. This relies on the
fact that our LTSs G are weakly connected. If a rule specifies that all states matched on a left pattern
state s should be removed, then so must all transitions that connect with those states. By the fact that
such transitions always exist (G is weakly connected) and Def. 4, it follows that the rule must also specify
explicitly that these transitions must be removed. Hence, a conflict between rules concerning the removal
of states also must involve the removal of transitions.

Lemma 1 Direct transformationsH0⇐r0,m0 G ⇒r1,m1 H1 are parallel independent iff

Tm0(Lr0)∩m1(Lr1) ⊆ Tm0(Kr0)∩m1(Kr1)

Proof. The if case is trivial. If the LTS m0(Lr0)∩m1(Lr1) is contained in the LTS m0(Kr0)∩m1(Kr1),
then all transitions of m0(Lr0)∩m1(Lr1) are contained in m0(Kr0)∩m1(Kr1).

For the only if case, we reason towards a contradiction. Assume that the direct transformations
are not parallel independent, i.e. m0(Lr0)∩m1(Lr1) 6⊆ m0(Kr0)∩m1(Kr1), but that Tm0(Lr0)∩m1(Lr1) ⊆

A.J. Wijs 7

r0

0

1

2

a

b

0

1

2

a

c

r1

0

1

2

a

d
a

0

1

2

a

e

G

a

d
a

b

⇐
r0a

d
a

c

⇒
r1 a

e

b

Figure 4: Two rules r0 and r1 with a possible conflict situation G

Tm0(Kr0)∩m1(Kr1). Then, we must have that Sm0(Lr0)∩m1(Lr1) 6⊆ Sm0(Kr0)∩m1(Kr1). We will prove that this can-
not be the case by reasoning towards a contradiction. Let p ∈ Sm0(Lr0)∩m1(Lr1) and p 6∈ Sm0(Kr0)∩m1(Kr1).
Then, there must exist s∈SLr0 with m0,S(s)= p and t ∈SLr1 with m1,S(t)= p. Since p 6∈ Sm0(Kr0)∩m1(Kr1),
we have s 6∈ SKr0 and t 6∈ SKr1 . Because G is weakly connected and r1 is well-specified, p must have
at least one in- or outgoing transition which will be removed by the direct transformation G ⇒r1,m1 H1.
Let us assume that this is an incoming transition p̂ a−→G p (the case of an outgoing transition is simi-
lar). Since m1(t) = p and t ∈ SLr1\Kr1 , by Def. 4, there must be a transition t̂ a−→Lr1 t, with m1,S(t̂) = p̂,
and m1,T(t̂

a−→Lr1 t) = p̂ a−→G p. Similarly, there must be an ŝ ∈ SLr0 with ŝ a−→Lr0 s, m0,S(ŝ) = p̂ and
m0,T(ŝ

a−→Lr0 s) = p̂ a−→G p. This means that both p̂ a−→m0(Lr0) p and p̂ a−→m1(Lr1) p. Also, since p̂ a−→G p is
set for removal, we must have 〈p̂,a, p〉 6∈ Tm0(Kr0) and 〈p̂,a, p〉 6∈ Tm1(Kr1). But then, Tm0(Lr0)∩m1(Lr1) 6⊆
Tm0(Kr0)∩m1(Kr1), and we have a contradiction. �

The following lemma expresses that parallel independence of rules r0, r1 can be concluded if the sets
of transition labels of r0 and r1 satisfy certain conditions. We use AL|K to refer to the labels for which
there exists at least one transition in L that is not represented in K, i.e. there exists an s a−→L s′ for which
f−1
T (s a−→L s′) =⊥.

Lemma 2 Direct transformationsH0⇐r0,m0 G ⇒r1,m1 H1 are parallel independent ifALr0 |Kr0 ∩ALr1 =
/0 and ALr1 |Kr1 ∩ALr0 = /0.

Proof. By reasoning towards a contradiction. Assume that (ALr0 |Kr0)∩ALr1 = /0 and (ALr1 |Kr1)∩
ALr0 = /0, but that the direct transformations are not parallel independent. From Lemma 1, it follows
that Tm0(Lr0)∩m1(Lr1) must be non-empty. So, there must exist a transition s a−→m0(Lr0)∩m1(Lr1) s′ that
is not in m0(Kr0)∩m1(Kr1). From this, it follows that a ∈ ALr0 , a ∈ ALr1 and a 6∈ AKr0 . But then,
ALr0 |Kr0 ∩ALr1 6= /0, and we have a contradiction. �

Lemma 2 will be used as a first check in a conflict detection algorithm in the next section. If for two
rules, the mentioned intersection of action sets of left patterns is empty, then it is not possible to construct
critical pairs. Since this can be checked in linear time, assuming that set membership can be checked in
constant time, it helps to avoid more involved conflict detection for many cases in practice.

Consider the example illustrated in Figure 4. For the two rules r0, r1, we have ALr0 |Kr0 = {b} and
ALr1 = {a,d}, henceALr0 |Kr0 ∩ALr1 = /0, butALr1 |Kr1 = {a,d} andALr0 = {a,b}, soALr1 |Kr1 ∩ALr0 =
{a}. This means that there is potential for a conflict situation, and a valid conflict situation is actually
illustrated on the right in Figure 4. In the given LTS G, applying the direct transformation defined by
Lr1 matched on the lower part of G results in an LTS on which Lr0 can still be matched. However, note
that Lr0 can be matched on G involving the curved a-transition and the b-transition. Since r0 removes
the matched a-transition, this means that the possible match of Lr1 on G is removed when applying the
direct transformation of r0.

Next, we concentrate on constructing minimal conflict situations G for pairs of rules r0, r1. We will
do so by constructing a relation between states s ∈ SLr0 , t ∈ SLr1 that expresses the potential to match

8 Confluence Detection for Transformations of Labelled Transition Systems

s
· · · a0, . . . ,an

· · · b0, . . . ,bn′

t
· · · c0, . . . ,cm

· · · d0, . . . ,dm′

p
· · ·

a0, . . . ,an,

c0, . . . ,cm, . . .

· · ·
b0, . . . ,bn′ ,

d0, . . . ,dm′ , . . .

LTSLr0 (s)⊑ LTSG(p)∧LTSLr1 (t)⊑ LTSG(p)

s
· · · a0, . . . ,an

· · · b0, . . . ,bn′

t
· · · a0, . . . ,an, . . .

· · · b0, . . . ,bn′ , . . .

p
· · ·

a0, . . . ,an, . . .

· · ·
b0, . . . ,bn′ , . . .

LTSLr1 (t)⊑ LTSLr0 (s)⊑ LTSG(p)

Figure 5: Matching rule left pattern states on the same LTS states

them on the same state p in an arbitrary LTS. If a non-empty relation can be constructed, then a conflict
situation can be derived from it.

Two states s ∈ SLr0 , t ∈ SLr1 can only be matched on the same state p if their in- and outgoing
transitions are in some sense compatible. Since Lr0 and Lr1 are weakly connected, we know that s and t
must have in- and/or outgoing transitions. To reason about these, we define the notion of a context LTS
of a state.

Definition 8 (Context LTS) Given an LTS G, we say that for a state p∈SG , the context LTS LTSG(p) =
〈Sp,Ap,Tp〉 is defined as follows:

• Sp = {p′ | ∃a ∈ AG .p
a−→G p′∨ p′ a−→G p}∪{p};

• Ap = {a | ∃p′ ∈ SG .p
a−→G p′∨ p′ a−→G p};

• Tp = {〈p,a, p′〉 | p a−→G p′}∪{〈p′,a, p〉 | p′ a−→G p}.

Figure 5 shows the conditions under which we are able to match two left pattern states on the same
state. On the left, the case where both states are glue is covered. In the figure, glue-states are coloured
black. The figure expresses that any two glue-states s and t can be matched on a state p as long as p has
matchable transitions for all the transitions of s and t. Say that state s has n+1 incoming transitions with
labels a0, . . . ,an, and n′+ 1 outgoing transitions with labels b0, . . . ,bn′ , and state t has m+ 1 incoming
transitions with labels c0, . . . ,cm, and m′+ 1 outgoing transitions with labels d0, . . . ,dm′ , then p should
have matchable transitions with all those labels. Of course, some transitions of s and t may be matched
on common transitions of p, i.e. the two matches together could be non-injective.

Below the figure on the left, this condition is formalised as follows: we must have that LTSLr0 (s)v
LTSG(p)∧LTSLr1 (t) v LTSG(p). This directly follows from the fact that matches are injective LTS
morphisms (Def. 4).

On the right in Figure 5, the condition for the possibility to match two states on the same state is
given for the case that at least one of those states is non-glue. In the figure, non-glue states are coloured
grey, and state t may be either non-glue or glue. The condition expresses that for all incoming and
outgoing transitions of t, s must have corresponding transitions with the same label. This is formalised
as LTSLr1 (t) v LTSLr0 (s) v LTSG(p). The idea is that if t has transitions that s does not have, then
matching s and t on the same state p would not be possible due to the gluing conditions. Again, the fact
that LTSLr0 (s)v LTSG(p) and LTSLr1 (t)v LTSG(p) should hold follows from the fact that matches are
injective LTS morphisms. That LTSLr1 (t)v LTSLr0 (s) needs to hold follows from the following lemma.

Lemma 3 Let s ∈ SLr0\Kr0 , t ∈ SLr1 be states. Then there can be no matches m0 :Lr0 →G, m1 :Lr1 →G
on an arbitrary LTS G with m0,S(s) = p and m1,S(t) = p for some p ∈ SG if LTSLr1 (t) 6v LTSLr0 (s).

A.J. Wijs 9

Proof. By reasoning towards a contradiction. Assume that LTSLr1 (t) 6vLTSLr0 (s) holds, and that we have
matches m0 : Lr0 → G, m1 : Lr1 → G with m0,S(s) = p and m1,S(t) = p. Since LTSLr1 (t) 6v LTSLr0 (s)
and Lr0 and Lr1 are weakly connected, we must have that at least one transition in LTSLr1 (t) cannot
be mapped on a transition in LTSLr0 (s). Say that this is an incoming transition of t. The case that
it is an outgoing transition of t is similar. We refer to this transition as t ′ a−→Lr1 t. Since, by Def. 8,
LTSLr1 (t) ⊆ Lr1 , and since m1 is an injective LTS morphism, m1,S(t ′) and m1,T(t ′

a−→Lr1 t) must be
defined. Let us say that m1,S(t ′) = p′, and m1,T(t ′

a−→Lr1 t) = p′ a−→G p. By the fact that LTSLr0 (s)
contains all the incoming and outgoing transitions of s (Def. 8), and by the facts that t ′ a−→Lr1 t cannot be
mapped on a transition in LTSLr0 (s) and LTSLr0 (s)⊆Lr0 , it follows that p′ and p′ a−→G p are not matched
by the LTS morphism m0. But, since s ∈ SLr0\Kr0 and p′ a−→G m0,S(s), by Def. 4, we must have that there
exists an s′ ∈ SLr0 such that m0,S(s′) = p′, and we have a contradiction. �

Note that the condition on the right in Figure 5 implies what needs to hold if both s and t are non-
glue. If s is non-glue, we must have that LTSLr1 (t)v LTSLr0 (s)v LTSG(p), but if t is non-glue, we must
have LTSLr0 (s)v LTSLr1 (t)v LTSG(p), i.e. we must have that LTSLr0 (s)' LTSLr1 (t).

Figure 5 gives rise to defining a relation between left patterns of rules, where states s and t are related
iff it is conceivable to construct a situation (in the form of an LTS) in which matches m0 and m1 relate s
and t to a common state p, and likewise for transitions. Having such a relation, it follows from Lemma 1
that if it at least relates two transitions of which at least one is not represented in the interface of the
corresponding rule, then the inferred situation is a conflict situation, i.e. there are direct transformations
that are in conflict. We will use such a relation later on to reason about all possible conflicts involving
two given rules, by iterating over all pairs of states from their left patterns.

Next, we define this relation between left patterns, and after that, we explain how a conflict situation
can be constructed from a concrete relation.

Definition 9 (Conflict Compatibility Morphism) Let s ∈ SLr0 , t ∈ SLr1 . A partial LTS morphism f :
Lr0 →Lr1 is a conflict compatibility morphism if it is injective and fS(s) = t implies that

• If s ∈ SLr0\Kr0 and t ∈ SLr1 then

– if t a−→Lr1 t ′ then s a−→Lr0 s′ with fS(s′) = t ′, fT(s
a−→Lr0 s′) = t a−→Lr1 t ′;

– if t a←−Lr1 t ′ then s a←−Lr0 s′ with fS(s′) = t ′, fT(s
a←−Lr0 s′) = t a←−Lr1 t ′.

• If s ∈ SLr0 and t ∈ SLr1\Kr1 then

– if s a−→Lr0 s′ then t a−→Lr1 t ′ with fS(s′) = t ′, fT(s
a−→Lr0 s′) = t a−→Lr1 t ′;

– if s a←−Lr0 s′ then t a←−Lr1 t ′ with fS(s′) = t ′, fT(s
a←−Lr0 s′) = t a←−Lr1 t ′.

• If s ∈ SLr0\Kr0 and t ∈ SLr1\Kr1 then

– if s a−→Lr0 s′ then t a−→Lr1 t ′ with fS(s′) = t ′, fT(s
a−→Lr0 s′) = t a−→Lr1 t ′;

– if s a←−Lr0 s′ and t a←−Lr1 t ′, then fS(s′) = t ′, fT(s
a←−Lr0 s′) = t a←−Lr1 t ′.

– if t a−→Lr1 t ′ then s a−→Lr0 s′ with fS(s′) = t ′, fT(s
a−→Lr0 s′) = t a−→Lr1 t ′;

– if s a←−Lr0 s′ then t a←−Lr1 t ′ with fS(s′) = t ′, fT(s
a←−Lr0 s′) = t a←−Lr1 t ′.

Note that Def. 9 does not state anything about the case that both s and t are glue-states. Unlike in the
other cases, in which the gluing conditions are relevant because at least one non-glue state is involved,
two glue-states can always be related to each other. This means that an LTS morphism which only
relates glue-states and no transitions is also a conflict compatibility morphism. However, by Lemma 1,
such a morphism does not directly represent a conflict situation. We are not interested in just any conflict
compatibility morphism, but those for which fT is defined for some transitions. In fact, given two left
patterns Lr0 , Lr1 and two states s ∈ SLr0 , t ∈ SLr1 , we are interested in the largest conflict compatibility

10 Confluence Detection for Transformations of Labelled Transition Systems

L0

s0

s1

s2s3

a

b

c

L1

t0

t1

t2 t3

a

d c

B = {s1}

C f

a

d c

b

c
L

Figure 6: A conflict compatibility morphism between left patterns L0, L1, and the corresponding conflict
situation C f

morphism f for which fS(s) = t, and its domain of definition, i.e. the part of Lr0 for which f is defined,
is a weakly connected LTS.

For example, consider the two LTSs L0 and L1 on the left in Figure 6. A conflict compatibility
morphism f with fS(s1) = t1 could be defined without relating any other states and transitions, but it
would not represent a conflict. Instead, the largest possible morphism f with fS(s1) = t1 and a weakly
connected domain of definition also relates s0 with t0, and the a-transitions. In particular, s2

c−→ s3 and
t2

c−→ t3 are not related by f , since that would make its domain of definition not weakly connected.
Note that for two states s, t, there can be more than one conflict compatibility morphism of interest,

particularly if there are multiple options to relate states and transitions.
In the remainder of this paper, each conflict compatibility morphism is the largest possible with a

weakly connected domain of definition, in the sense that no morphism can be constructed that contains
it and also has a weakly connected domain of definition.

Given s ∈ SLr0 and t ∈ SLr1 , we can now construct conflict compatibility morphisms f . From f , Lr0 ,
and Lr1 , we can construct a conflict situation. For this, we use m0, m1 to map Lr0 and Lr1 to isomorphic
LTS structures.

Definition 10 (Conflict Situation) Let f :Lr0→Lr1 be a conflict compatibility morphism, and m0(Lr0),
m1(Lr1) LTSs isomorphic to Lr0 and Lr1 , respectively. Then, a conflict situation LTS C f can be con-
structed as follows: first, determine the boundary B of f consisting of all states s ∈ Lr0 such that fS(s)
is defined, but for some transition s a−→Lr0 s′ (or s a←−Lr0 s′), fT(s

a−→Lr0 s′) (or fT(s
a←−Lr0 s′)) is not. Then,

L = m1(Lr1 \ f (Lr0))∪m1(f (B)) can be glued to m0(Lr0) by merging each state s ∈ m0(B) with the
corresponding state s′ ∈ m1(f (B)). The result is C f .

On the right of Figure 6, the conflict situation is presented which results from applying Def. 10 on
the conflict compatibility morphism between L0 and L1 given on the left in the figure. The boundary B
is defined as B = {s1}, since fS(s1) = t1, but fT(s1

b−→L0 s2) =⊥. Then, L is the LTS isomorphic to L1
without t0 and the a-transition between t0 and t1 (indicated in C f in the figure), and L is glued to an LTS
isomorphic to L0 by merging the states related to s1 and t1 (resulting in the square state in the figure).

4 Conflict Detection and Resolution Algorithms

The findings presented in Section 3 can be used to construct a new conflict detection algorithm. It is
presented in Alg. 1. Given two rules, the algorithm tries to determine whether there can be an LTS for
which it is possible to construct direct transformations that are in conflict. The decision procedures are
sorted by their complexity. If full analysis is needed, i.e. all possible conflict compatibility morphisms
have to be computed, then attempts can be restricted to those pairs of states s ∈ SLr0 , t ∈ SLr1 that share
an outgoing transition label, and for at least one of the two states, an outgoing transition with that label

A.J. Wijs 11

Algorithm 1 Conflict detection algorithm
Require: Rules r0 = 〈Lr0 ,Rr0 〉, r1 = 〈Lr1 ,Rr1 〉
Ensure: Returns set of conflicts between r0 and r1

C = /0
2: if ALr0 \Kr0 ∩ALr1 = /0 and ALr1 \Kr1 ∩ALr0 = /0 then

return /0 // Lemma 2
4: if Lr0 'Kr0 ∧Lr1 'Kr1 then

return /0 // See [12]
6: for all s ∈ SLr0 , t ∈ SLr1 do

if Aout(s)∩Aout(t) 6= /0 or Aout(s)∩Aout(t) 6= /0 then
8: for all conflict compatibility morphisms f : Lr0 → Lr1 with fS (s) = t do

if fT is defined for at least one transition then
10: add C f to C // Definition 9

return C

0

1

a

r0 0

1

b

0

1

a
r1 0

1

c

0

1

b

r2 0

1

c

Figure 7: A Critical Pair may be resolvable

will be removed when transforming. This directly follows from Lemma 1, which implies that in order
to have a conflict, at least one transition needs to be involved which is matched on by both rules r0
and r1 and removed by at least one of these rules. To formalise this, we use the following notation:
Aout(s) = {a ∈ ALr0 | ∃s a−→Lr0 s′} is the set of labels of outgoing transitions of s, and Aout(s) = {a ∈
ALr0 | ∃s a−→Lr0 s′. f−1

T (s a−→Lr0 s′) =⊥} is the set of labels of outgoing transitions that are set for removal.
At line 2, the action sets are compared, which can be done in O(|A|) time, with A = ALr0 ∪ALr1 . At
line 4, we use a check from [12], based on the fact that two non-deleting rules can never be in conflict.
This can be determined in O(|S|+ |T|) time, with |S| and |T| the total number of states and transitions
in the two left rule patterns together. Next, full checking for conflict compatibility morphisms (lines
7-10) requires worst-case to compare the two left LTS patterns for all pairs of states, i.e. its complexity
is O(|S|2 · |T| · log |S|), since a comparison of two LTSs can be done in O(|T| · log |S|) time, using the
equivalence checking algorithm of Paige & Tarjan [18].

Compared to earlier work, our detection algorithm has a number of advantages. First of all, compar-
ison of the action sets can be done in linear time, and is, unlike other special case optimisations, such as
those in [12], also applicable when both r0 and r1 remove some transitions. Second of all, not all possi-
ble pairs of states s ∈ SLr0 , t ∈ SLr1 need to be considered in detail. Just by considering their outgoing
transitions first can we quickly resolve many combinations in practice. This exploits the fact that LTSs
are weakly connected, or more specifically, that most states have outgoing transitions.

It is a known fact in graph transformation that the existence of critical pairs does not guarantee that a
transformation system is not confluent. For example, consider the system in Figure 7. Rules r0 and r1 are
clearly in conflict, since they both concern an a-transition in their left pattern. They also define different
transformation results, namely a b- and a c-transition, respectively, so direct transformations on an LTS
G consisting of a transition s a−→G s′ constitute a critical pair. However, consider that there is a third rule
r2 in the system, which transforms b-transitions into c-transitions. Then G can be transformed to an LTS
consisting of a single c-transition either by first applying r0 and then r2, or by applying r1. The conflict
represented by the critical pair can be resolved.

Another example is the conflict situation in Figure 4. It cannot be resolved if the rule system only
consists of rules r0 and r1. Applying first the direct transformation of r1 removes the match of m0 on G,

12 Confluence Detection for Transformations of Labelled Transition Systems

0

1 2

aa
r0 0

1 2

ba

1 2

a b
c

⇐
r0 a a ⇒

r0

2 1

b a

c

Figure 8: The need for strong joinability

and applying first the direct transformation of r0, followed by the one of r1 leads to a different LTS, in
which instead of the b-transition there is now a c-transition.

Since the existence of critical pairs does not mean that a transformation system is not confluent, a
necessary condition needs to be found for a critical pair to actually be an example why a system is not
confluent. Plump [21] demonstrates that for so-called coverable transformation systems of hypergraphs,
i.e. graphs where the edges can be associated with multiple source and target vertices, it suffices to show
that all the critical pairs are strongly joinable, meaning that independent of which of the two involved
direct transformations is applied on the conflict situation, the system can transform the resulting graph to
a graph that is structurally equivalent to the graph that can be obtained if the other direct transformation
had been applied first. Since LTSs are a special kind of hypergraph, and since our LTSs are always
coverable (an important criterium is that LTSs can be extended with a cover consisting of transitions
with fresh labels), we can directly take the result from [21] for our setting. To define strong joinability
formally, we first need to define the notion of a track morphism, based on [20]. Such a morphism
explicitly involves relations between states based on the fact that they have been matched by the same
interface state.

Definition 11 (Track Morphism) Given a direct transformation G ⇒r,mH, the track morphism trG⇒H :
G →H is the partial LTS morphism defined by

trG⇒H(s) =
{

m′S(gS(f−1
S (m−1

S (s)))) if f−1
S (m−1

S (s)) is defined
⊥ otherwise

The morphisms m, m′, f and g are as shown in Figure 3. Track morphisms can be defined for
sequences of direct transformations in a similar way, where for two direct transformations G ⇒ H and
H⇒H′, trG⇒H⇒H′(s) is defined as trH⇒H′ ◦ trG⇒H(s).

Definition 12 (Strong Joinability) Given a transformation system Σ, a critical pairH0⇐r0,m0 G ⇒r1,m1

H1 is strongly joinable if there are derivationsHi⇒∗Σ Xi, for i = 0,1, an isomorphism f : X0→X1, and
for each state s ∈ SG , if both trG⇒H0(s) and trG⇒H1(s) are defined (that is, s is persisting), then

1. trG⇒H0⇒∗ΣX0(s) and trG⇒H1⇒∗ΣX1(s) are defined;

2. fS(trG⇒H0⇒∗ΣX0(s)) = trG⇒H1⇒∗ΣX1(s).

Def. 12 not only expresses that the LTSs X0 and X1 need to be isomorphic, but besides that, that
the states that persist along direct transformations G ⇒r0,m0 H0, G ⇒r1,m1 H1, i.e. that are matched by
glue-states of both r0 and r1, are in the end still present in both X0 and X1, and relatable to themselves.
Consider the example in Figure 8. Rule r0 can be applied in two ways on the given input. The results are
isomorphic, but not in a bigger context (the dashed c-transition). To detect this, one should compare on
which states the glue-states are matched.

Plump [21] gives some suggestions how a transformation system can be equipped with a cover to
determine whether a critical pair is strongly joinable. Based on that, we use the following approach:
for a given critical pair, we define copies of r0 and r1 which we call r0

κ and r1
κ , respectively, and we

A.J. Wijs 13

Algorithm 2 Conflict resolution algorithm
Require: Conflicts in set C
Ensure: Returns false iff there exists a conflict in C that cannot be resolved, true otherwise

for all (H0⇐r0 ,m0 C f ⇒r1,m1 H1) ∈C do
2: apply C f ⇒r0

κ ,m0 H
κ
0 and C f ⇒r1

κ ,m1 H
κ
1

compute Hκs
0 and Hκs

1
4: apply Hκs

0 V
∗
Σ
X0 and Hκs

1 V
∗
Σ
X1

if X0 6'X1 or transformation failed then
6: return false

return true

extend both Rr0
κ

and Rr1
κ

such that for each state s in SKr0
κ (and likewise in SKr1

κ), we add a self-loop
transition with the fresh, unique label κ to gS(s). These selfloops, when the left pattern of r0

κ or r1
κ is

matched on part of the conflict situation, are therefore introduced when applying a direct transformation,
and then serve the purpose of marking the states that have been matched on glue-states. In this way, we
can obtain LTSs Hκ

0 and Hκ
1 , i.e. the LTSs H0 and H1 extended with the κ-selfloops. Once we have

these, we relabel the κ-selfloops inHκ
0 andHκ

1 , such that each state s has a selfloop labelled κs, and after
that, remove those κs-selfloops that do not appear in both LTSs, i.e. that are not associated with s in both
Hκ

0 andHκ
0 . We call the resulting LTSsHκs

0 andHκs
1 .

Subsequent matches for rules r ∈ Σ can only be established if they do not match a non-glue state on a
persisting state, since trying to do so would violate the gluing conditions w.r.t. the related κs-selfloop. If
it is detected that such a violating ‘match’ can be made, then the critical pair is not strongly joinable, and
the transformation fails. Besides that, each time a match has been established, we remove all κs-selfloops
of states s that have not been matched by any state.

In this way, states that persist along a sequence of direct transformations will still have their κs-
selfloop in both X0 and X1. Then, it suffices to check that X0 and X1 are isomorphic.

In Alg. 2, our conflict resolution algorithm is presented, which can be used to determine, based on
the constructed critical pairs, whether a transformation system is locally confluent, by establishing that
all critical pairs are strongly joinable. With V, we refer to applying a direct transformation after the
removal of κs-selfloops of all the states that are not matched by states of the related transformation rule.
The complexity of Alg. 2 depends on the complexity of graph transformation, which is performed in
lines 2 and 4, which in turn is dominated by the complexity of finding matches at line 4. In general,
the graph matching problem [2] is NP-complete. However, it has been shown in [2] that if the graphs
have a root, all states are reachable from that root, and each state has a bounded number b of outgoing
transitions, then the complexity is independent of the size of the input graph, instead only depending on
b and the number of transitions n in the left pattern of the transformation rule. The complexity is then
O(Σn

i=0bi). Since our LTSs are weakly connected, they meet these requirements. The other operations
at lines 3 and 5 in Alg. 2 can be performed in O(|S|+ |T|), since they require scanning all states and
transitions in the LTSs once.

It has to be noted that if conflict detection is performed before resolution, all possible critical pairs
need to be constructed. If instead, detection and resolution are mixed, i.e. each time a new critical pair
is detected, it is immediately tested for resolvability, then non-confluent transformation systems can be
identified as such as soon as a pair has been found that cannot be resolved. In practice, this means that
the construction of all possible critical pairs can often be avoided.

Following, a proof sketch is given to show correctness of the technique. Consider a transformation
system Σ that is not confluent. Therefore, there exists an LTS G such that there are two direct transforma-
tions H0⇐r0,m0 G ⇒r1,m1 H1 that are not parallel independent. By Lemma 1, this means that there must

14 Confluence Detection for Transformations of Labelled Transition Systems

be at least one transition x in G, say with label a, that is matched on by both m0 and m1, and at least one
of the two rules removes x. Let s and t be the source states of the transitions xs and xt in Lr0 and Lr1 that
match on x, respectively, and let r0 define that x must be removed. In Alg. 1, since a ∈ ALr0\Kr0 ∩ALr1 ,
line 3 is skipped, and since Lr0 6' Kr0 , line 5 is skipped. We have a ∈ Aout(s)∩Aout(t), hence at line 8,
conflict compatibility morphisms will be computed with fS(s) = t. Since we only consider the largest
possible conflict compatibility morphisms with a weakly connected domain of definition, we must have
that fT(xs) = xt . If not, then either the source or target states in Lr0 and Lr1 are not relatable via f ,
which would mean that there is a gluing condition violation (Defs. 4 and 9), but that would mean that
there can be no overlap of matches of r0 and r1 that involves xs and xt . This would be in contradic-
tion with the fact that there is a conflict between r0 and r1 involving x. By Def. 10, a conflict situation
C f =m0(Lr0)∪m1(Lr1) is constructed at line 10 in Alg. 1 with m0,T(xs) representing the overlap between
xs and xt . The subsequent inability to resolve the conflict using Alg. 2 can be proven along the lines of
the proof in [21].

The case that a given system is confluent can be proven as follows: in general, Alg. 1 will produce
some (possibly zero) conflicts. These conflicts, though, will be resolvable. This can be proven along the
lines of the proof in [21].

5 Conclusions

In this paper, we discussed how conflicts in LTS transformation systems can be efficiently detected and
resolved. For the detection, we proposed a novel approach that tries to construct partial morphisms be-
tween the involved rule patterns. In particular cases, the absence of conflicts can be determined in linear
time, for instance when one rule only removes transitions that another rule will never match on, because
it does not refer to the particular transition label(s). This is a big improvement over previous approaches,
like e.g. in [12], since it is also applicable for two deleting rules, i.e. rules that remove transitions. For
the resolution of conflicts, we have proposed an algorithm inspired by [21], but taylored to our particular
setting using LTSs. For future work, we will consider extensions, e.g. [8,11], to extend our framework in
comparable ways. Finally, for formal verification purposes, a hierarchy of different forms of confluence
(ranging from strong to weak) has been identified concerning the behaviour described by LTSs [15]. It
would be interesting to see how these relate to confluence variants in the setting of graph and model
transformation.

References

[1] M. Amrani, L. Lucio, G. Selim, B. Combemale, J. Dingel, H. Vangheluwe, Y. Le Traon & J.R. Cordy (2012):
A Tridimensional Approach for Studying the Formal Verification of Model Transformations. In: ICST’12,
pp. 921–928, doi:10.1109/ICST.2012.197.

[2] M. Dodds & D. Plump (2006): Graph Transformation in Constant Time. In: ICGT’06, LNCS 4178, Springer,
pp. 367–382, doi:10.1007/11841883 26.

[3] H. Ehrig, K. Ehrig, J. de Lara, G. Taentzer, D. Varró & S. Varró-Gyapay (2005): Termination Criteria for
Model Transformation. In: FASE’05, LNCS 3442, Springer, pp. 49–63, doi:10.1007/978-3-540-31984-9 5.

[4] H. Ehrig, K. Ehrig, U. Prange & G. Taentzer (2006): Fundamentals of Algebraic Graph Transformation.
EATCS Monographs in Theoretical Computer Science, Springer, doi:10.1007/3-540-31188-2.

[5] L.J.P Engelen (2012): From Napkin Sketches to Reliable Software. Ph.D. thesis, Eindhoven University of
Technology, doi:10.6100/IR740040.

http://dx.doi.org/10.1109/ICST.2012.197
http://dx.doi.org/10.1007/11841883_26
http://dx.doi.org/10.1007/978-3-540-31984-9_5
http://dx.doi.org/10.1007/3-540-31188-2
http://dx.doi.org/10.6100/IR740040

A.J. Wijs 15

[6] L.J.P. Engelen & A.J. Wijs (2012): Incremental Formal Verification for Model Refining. In: MoDeVVa’12,
ACM Computer Society Press, pp. 29–34, doi:10.1145/2427376.2427382.

[7] L. Grunske, L. Geiger, A. Zündorf, N. Van Eetvelde, P. Van Gorp & D. Varró (2005): Using Graph Trans-
formation for Practical Model-Driven Software Engineering. In: Model-Driven Software Development,
Springer, pp. 91–118, doi:10.1007/3-540-28554-7 5.

[8] R. Heckel, J.M. Küster & G. Taentzer (2002): Confluence of Typed Attributed Graph Transformation Sys-
tems. In: ICGT’02, LNCS 2505, Springer, pp. 161–176, doi:10.1007/3-540-45832-8 14.

[9] G. Huet (1980): Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems. J.
ACM 27(4), pp. 797–821, doi:10.1145/322217.322230.

[10] M. Hülsbusch, B. König, A. Rensink, M. Semenyak, C. Soltenborn & H. Wehrheim (2010): Showing Full
Semantics Preservation in Model Transformation - A Comparison of Techniques. In: IFM’10, LNCS 6396,
Springer, pp. 183–198, doi:10.1007/978-3-642-16265-7 14.

[11] L. Lambers, H. Ehrig & F. Orejas (2006): Conflict Detection for Graph Transformation with Negative Appli-
cation Conditions. In: ICGT’06, LNCS 4178, Springer, pp. 61–76, doi:10.1007/11841883 6.

[12] L. Lambers, H. Ehrig & F. Orejas (2006): Efficient Detection of Conflicts in Graph-Based Model Transfor-
mations. In: GraMoT’05, ENTCS 152, pp. 97–109, doi:10.1016/j.entcs.2006.01.017.

[13] L. Lambers, H. Ehrig & F. Orejas (2008): Efficient Conflict Detection in Graph Transformation Systems by
Essential Critical Pairs. In: GT-VMT’06, ENTCS 211, pp. 17–26, doi:10.1016/j.entcs.2008.04.026.

[14] F. Lang (2005): EXP.OPEN 2.0: A Flexible Tool Integrating Partial Order, Compositional, and On-the-Fly
Verification Methods. In: IFM’05, LNCS 3771, Springer, pp. 70–88, doi:10.1007/11589976 6.

[15] R. Mateescu & A.J. Wijs (2012): Sequential and Distributed On-The-Fly Computation of Weak Tau-
Confluence. Science of Computer Programming 70(10,11), pp. 1075–1094, doi:10.1016/j.scico.2011.07.004.

[16] A. Narayanan & G. Karsai (2008): Towards Verifying Model Transformations. In: GT-VMT’06, ENTCS
211, pp. 191–200, doi:10.1016/j.entcs.2008.04.041.

[17] M.H.A. Newman (1942): On Theories with a Combinatorial Definition of “Equivalence”. Annals of Math-
ematics 43(2), pp. 223–243, doi:10.2307/1968867.

[18] R. Paige & R.E. Tarjan (1984): A Linear Time Algorithm to Solve the Single Function Coarsest Partition
Problem. In: ICALP, LNCS 172, Springer, pp. 371–379, doi:10.1007/3-540-13345-3 33.

[19] D. Plump (1993): Hypergraph rewriting: Critical pairs and undecidability of confluence. In R. Sleep,
R. Plasmeijer & M. van Eekelen, editors: Term Graph Rewriting: Theory and Practice, chapter 15, John
Wiley, pp. 201–213.

[20] D. Plump (2005): Confluence of Graph Transformation Revisited. In: Processes, Terms and Cycles: Steps
on the Road to Infinity, LNCS 3838, Springer, pp. 280–308, doi:10.1007/11601548 16.

[21] D. Plump (2010): Checking Graph Transformation Systems for Confluence. In: Essays Dedicated to Hans-
Jörg Kreowski, ECEASST 26, EASST.

[22] L.A. Rahim & J. Whittle (2013): A Survey of Approaches for Verifying Model Transformations. Software
and Systems Modeling, doi:10.1007/s10270-013-0358-0.

[23] G. Taentzer, K. Ehrig, E. Guerra, J. de Lara, L. Lengyel, T. Levendovszky, U. Prange, D. Varró & S. Varró-
Gyapay (2006): Model Transformation by Graph Transformation: A Comparative Study. In: MTIP’05, pp.
71–80.

[24] A.J. Wijs (2013): Define, Verify, Refine: Correct Composition and Transformation of Concurrent System
Semantics. In: FACS’13, LNCS 8348, Springer, pp. 348–368, doi:10.1007/978-3-319-07602-7 21.

[25] A.J. Wijs & L.J.P. Engelen (2013): Efficient Property Preservation Checking of Model Refinements. In:
TACAS’13, LNCS 7795, Springer, pp. 565–579, doi:10.1007/978-3-642-36742-7 41.

[26] A.J. Wijs & L.J.P. Engelen (2014): REFINER: Towards Formal Verification of Model Transformations. In:
NFM’14, LNCS 8430, Springer, pp. 258–263, doi:10.1007/978-3-319-06200-6 21.

http://dx.doi.org/10.1145/2427376.2427382
http://dx.doi.org/10.1007/3-540-28554-7_5
http://dx.doi.org/10.1007/3-540-45832-8_14
http://dx.doi.org/10.1145/322217.322230
http://dx.doi.org/10.1007/978-3-642-16265-7_14
http://dx.doi.org/10.1007/11841883_6
http://dx.doi.org/10.1016/j.entcs.2006.01.017
http://dx.doi.org/10.1016/j.entcs.2008.04.026
http://dx.doi.org/10.1007/11589976_6
http://dx.doi.org/10.1016/j.scico.2011.07.004
http://dx.doi.org/10.1016/j.entcs.2008.04.041
http://dx.doi.org/10.2307/1968867
http://dx.doi.org/10.1007/3-540-13345-3_33
http://dx.doi.org/10.1007/11601548_16
http://dx.doi.org/10.1007/s10270-013-0358-0
http://dx.doi.org/10.1007/978-3-319-07602-7_21
http://dx.doi.org/10.1007/978-3-642-36742-7_41
http://dx.doi.org/10.1007/978-3-319-06200-6_21

	1 Introduction
	2 Background
	3 Conflicts Between Direct Transformations
	4 Conflict Detection and Resolution Algorithms
	5 Conclusions

