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We assume that autonomous or highly automated driving (AD) will be accompanied by tough assur-
ance obligations exceeding the requirements of even recent revisions of ISO 26262 or SOTIF. Hence,
automotive control and safety engineers have to (i) comprehensively analyze the driving process and
its control loop, (ii) identify relevant hazards stemming from this loop, (iii) establish feasible auto-
mated measures for the effective mitigation of these hazards or the alleviation of their consequences.

By studying an example, this article investigates some achievements in the modeling for the
steps (i), (ii), and (iii), amenable to formal verification of desired properties derived from potential
assurance obligations such as the global existence of an effective mitigation strategy. In addition, the
proposed approach is meant for step-wise refinement towards the automated synthesis of AD safety
controllers implementing such properties.

1 Introduction

For many people, driving a car is a difficult task even after guided training and many years of driving
practice: This statement gets more tangible when driving in dense urban traffic, complex road settings,
road construction zones, unknown areas, with hard-to-predict traffic co-participants (i.e., cars, trucks,
cyclists, pedestrians), bothersome congestion, or driving a defective car. Consequently, hazards such as
drivers misjudging situations and making poor decisions have had a long tradition. Hence, road vehicles
have been equipped with many sorts of safety mechanisms, most recently, with functions for “safety
decision support” [7], driving assistance, and monitor-actuator designs, all aiming at reducing operational
risk or making a driver’s role less critical. In AD, more highly automated mechanisms will have to
contribute to risk mitigation at run-time and, thus, constitute even stronger assurance obligations [7].

In Sec. 1.1, we introduce basic terms for risk analysis and (run-time) mitigation (RAM) for automated
vehicles (AV) as discussed in this work. Sec. 1.2 elaborates some of these assurance obligations.

1.1 Background and Terminology

According to control theory, a control loop L comprises a (physical) process P to be controlled and
a controller C, i.e., a system in charge of controlling this process according to some laws defined by
an application and an operator [20]. The engineering of safety-critical control loops typically involves
reducing hazards by making controllers safe in their intended function (SOTIF), resilient (i.e., tolerate
disturbances), dependable (i.e., tolerate faults), and secure (i.e., tolerate misuse).

In automated driving, the process under consideration is the driving process which we decompose
into a set of driving situations S , see Sec. 2. Taxonomies of such situations have been published in, e.g.

http://dx.doi.org/10.4204/EPTCS.257.8
http://creativecommons.org
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[32]. Based on recommendations of SAE and U.S. DoT [27, 34], we distinguish the following modes
or levels (L) of automation for AD: AD assistance (ADAS, L1-2), highly automated (HAD, L3-4), and
fully automated or autonomous (FAD, L5). Yet, in level 4, a human driver is supposed to stay “weakly”
in-the-loop for an occasional machine-to-human hand over.

By the term causal factor (CF), we denote any concept ranging from a root cause to a hazard,
to a near-mishap.1 Causal factors can form causal chains describing effect propagation through L ,
particularly, a near-mishap can lead to another root cause.2 By causal factor model (also: hazard or risk
model), we refer to the collection of causal factor descriptions used for a RAM application.

A rare undesired event (RUE, also: hazardous event or situation) denotes any state of L (i) with
an occurrence of one or more causal factors and (ii) arguably increasing the risk of mishaps. Moreover,
by (operational) risk [19], we refer to the likelihood—quantitatively, the probability or frequency—of
reaching a specific set of RUEs from any current state. Then, a safe state is any state with acceptably
low risk—quantitatively, risk below a budget b. Although we use further information for the modeling
in RAM, any safe state can be transcribed into a corresponding behavioral invariant or a safety property
of L in the sense of [17, 23].

Elaborating on the notion of behavioral safety in [9], we consider two types of actions in L : endan-
germents are actions whose performance leads to RUEs, and mitigations are actions whose performance
represents countermeasures for specific sets of RUEs. For any causal factor cf , we consider two types of
endangerments: ecf denotes activation resulting in a change to phase cf (i.e., active), and ecf

m describes
any mishap cf potentially following cf . Furthermore, we consider three types of mitigations: mcf

s initi-
ates mitigation by a change to phase cf (i.e., mitigated), mcf

e completes mitigation by a change to phase
0cf (i.e., inactive), and mcf

c directly deactivates cf and completely restores its consequences, again by a
change to 0cf . Shown in Fig. 1, these notions lead to what we call phase model3 [11]. Phase models can
be composed. Then, by 0 we refer to the “safest” state in a model composed of phase models for several
causal factors, see Sec. 3.

For the description of these concepts, we employ labeled transition system (LTS) modeling. An LTS
is a tuple (Σ,A ,∆) with a set of states Σ, a set of action labels A , and a transition relation ∆⊆Σ×A ×Σ.
For a transition (σ ,α,σ ′) ∈ ∆, we also say that the state σ ′ is the event observed from the performance
of the action α . We will work with the (usually dense) loop state space ΣL , the finite situation state
space ΣS , and the finite risk state space Σ. The symbols used to model CFs in Σ (Fig. 1) can refer to
predicates over ΣL . Further details on this terminology will follow in Secs. 2 and 3.

1.2 Motivation and Challenges

Let us take the viewpoint of a safety engineer dealing with the assurance of AVs not only compliant with
available standards (e.g. ISO 26262) but also trying to achieve the level of safety desired by any traffic
participant. What does that mean? Well, our engineer might try to argue towards the following claim
from manual driving:

Claim 1 The rational driver always tries to reach and maintain a safe state w.r.t. all RUEs recognizable
and reacted upon by the driver in any driving situation.

1For example, a road accident for which airbags successfully alleviated harm.
2This helps fixing the “Swiss cheese problem” raised by LEVESON [18].
3Gray transitions indicate that we might employ more expressive variants of this phase model as, e.g. discussed in [16]

for a different context. Operationally, the phase model would perform non-observable (also: silent) transitions if none of the
described actions is enabled. Similar abstractions are used for testing, e.g. in [33].
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Figure 1: Generic phase model for causal factors (a) exemplified for the causal factor W for badWeather (b).

The reader might not agree with this claim or require further claims to be established in this context.
However, for sake of simplicity, the following discussion is restricted to this claim. Next, we list three
tasks of our safety engineer responsible for RAM for AD:

Task S: investigate the domain of situations in the driving process,

Task E: investigate the domain of endangerments, identify causal factors and potential mishaps,

Task M: investigate the domain of mitigations, prepare effective countermeasures.

These tasks are error prone, largely subject to expert judgment and require rigorous method because
• driving is a complex task (see beginning of Sec. 1) • we aim at FAD,4 • we might need to automate
mitigations as well,5 • we have to argue that the measures developed (M) can mitigate the RUEs identi-
fied (E) in the considered driving process (S) and residual risk stays acceptably low, e.g. below an upper
bound b. We investigate these tasks using the notions from Sec. 1.1, discuss some challenges as well as
a RAM approach based on this model:

For Task S, we have to come up with a model of driving situations reflecting the driving process in
the road environment (see Sec. 2), abstract but comprehensive enough for RAM purposes.

Running Example Pt. 1 Throughout the paper, we will work with an example highlighting aspects
of RAM for AD. From our knowledge about the driving domain, we can quickly derive a large
number of situations such as, e.g. leaving a parking lot, entering a highway, halting somewhere,
driving through road construction zones, overtaking in urban traffic, and, more generally, AD at
level 4, called drivingAtL4Generic below.

For the automation of some analyses, we use a newly developed tool called YAP based on concepts
discussed in [9, 11]. YAP stands for “yet another planner.” The complete example for this paper, a
preliminary version of YAP, and a user’s manual are available online.6

Questions from Task S: (S1) Which situations form equivalence classes? (S2) Which situations do
we have to discriminate in our model? (S3) How are the discriminated situations related?

For Task E, given a set of situations from Task S, we have to understand how a safe state in each
situation looks like as well as all the undesirable ways of leaving this state,7 i.e., endangerments leading
to some RUE. Note that RUEs can model simultaneously occurring causal factors.

4See, e.g. http://www.cnbc.com/2017/06/07/robot-cars-cant-count-on-us-in-an-emergency.html.
5See, e.g. https://www.theguardian.com/technology/2017/apr/04/uber-google-waymo-self-driving-cars.
6Demonstration artifacts can be downloaded from http://gleirscher.de.
7For behavioral safety we have to deal with leaving safety invariants in many ways. Our interest, hence, lies on accepting

http://www.cnbc.com/2017/06/07/robot-cars-cant-count-on-us-in-an-emergency.html
https://www.theguardian.com/technology/2017/apr/04/uber-google-waymo-self-driving-cars
http://gleirscher.de
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Figure 2: Cutout of the risk state space Σ indicating endangerment complexity: nodes indicate RUEs to be regarded
in a situation; edges indicate potential endangerments leading to these RUEs.

Running Example Pt. 2 Safety engineers of the driving domain would derive many causal factors
such as, e.g. sensor fault, inattentive driver, electric power shortage, low fuel. For the situation
driveAtL4Generic, Fig. 2 depicts risk complexity in terms of RUEs hypothetically reachable and
predictable from the state 0 for which we might be required to provide mitigations in any AD mode.
Combining 10 causal factors (incl. the mentioned ones) using the phase model from Sec. 1.1, with
initial state 0, we get 7128 states reachable via 51984 transitions. By only regarding ways of how
we directly get into a RUE, we are left to consider 112 states and 372 transitions. Further details
see Secs. 3 and 4.

Questions from Task E: (E1) Which causal factors form equivalence classes? (E2) Which ones do we
have to include in our model? (E3) How can we further classify these factors? (E4) Which factors have
to be focused? (E5) How are the remaining factors related to each other?

For Task M, given the causal factors from Task E, we have to select and prepare optimal ways of
how each of the RUEs can be mitigated.

Questions from Task M: (M1) Which mitigation is required for which RUE in which situation? (M2)
How can we represent this in our model? (M3) Does it help to classify RUEs according to the available
mitigations? (M4) Can we construct mitigations applicable to classes of RUEs to get a minimal set of
effective mitigations for a given set of situations?

Aligned with the challenges summarized in [12], the questions S1-3, E1-5, and M1-4 define our
general research setting.

Contributions and Outline. We show how we get to a model for RAM for AD in a systematic way,
particularly, keeping a link to the detailed models used by control engineers for the controlled process.
We discuss • the modeling of the driving process as a controlled process over driving situations (Task S,
Sec. 2), • a refinement of the transition system model discussed in [11], • the classification and modeling
of multiple causal factors comprising RUEs in the AD control loop specific to a set of driving situations
(Secs. 2.2 and 3), • the state space exploration based on this model together with constraints for reducing
and shaping this state space (Task E, Secs. 3.4 and 4.2), • a taxonomy of mitigation actions (Sec. 4.1),

to leave an “inner invariant,” i.e., allowing causal factors to occur, and trying not to leave an “outer invariant,” i.e., reducing the
likelihood of an accident. This way, we employ LAMPORT’s [17] notion of safety property in a layered manner, similar to the
discussion of “safety envelopes” [14] or layer-of-protection analysis (LOPA) [1].
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(a) The generic control loop L including (i) a “monitor” acting
as our safety controller and mitigation planner and (ii) the con-
trolled process, in our case “driving.”

driveAtL4Generic

exitTunneldriveThroughCrossing

autoOvertake

steerThroughTrafficJam
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(b) Driving situations related to the situation
drivingAtL4Generic.

Figure 3: Generic structure of the control loop (a) and cutout of the abstraction of the controlled process (b).

and • the usage of this model for RAM (Task M, Sec. 4). We discuss related work in Sec. 5, further
issues and a research vision in Sec. 6, and conclude in Sec. 6.5.

2 Modeling Driving Situations, Processes, and Scenarios

Based on Sec. 1.1, we provide an abstraction of the driving process in L , and a notion of driving scenario
for the symbolic execution of this process as shown in Sec. 4.3.

2.1 Preliminaries on Driving Processes

State of the Control Loop. Given the process output y, reference r, and control input u, the process
P (open loop) can be described by ynew = P(y,u). We close this loop using u = C(e) for the controller
C, e = r− ynew for the error e. At this level, we have the state (r,u,y) ∈ ΣL , Rdim(r)+dim(u)+dim(y)

of the control loop L [20]. However, as shown in Fig. 3a, based on the controller-internal state xC,
controller-related causal factors dC, process-internal state xP, and process-related causal factors dP, we
get u = C(xC,e,dC) and state (r,xC,dC,u,xP,dP) which we can refine [4] to get u = A(xA,e, fs,dC)
for the actuator A with fs = M(xM,m1,2,3,r,e) for the monitor M. For the process, we then consider
ynew = P(xP,u,dP) with the loop state σL = (r,x′C,xA,xM,dC,u,xP,dP) where xP includes y and xC =
(x′C,xA,xM).

Driving Processes. Inspired by process algebra (see, e.g. [24, 13]), for a set of driving situations S ,
we represent driving processes S or T by expressions of the form

S,T ::= s | S‖T | S|T | S;T | S∗ (ordered by operator precedence) (1)

where s ∈S , S;T denotes the sequential composition of S and T , S|T non-deterministic choice between
S and T , S‖T their parallel composition, and, for convenience, S∗ the (possibly empty) repetition of
S. Given the set S ∗ of tuple8 sequences over S , a process S defines a set of driving scenarios (also:
situation traces or process runs) denoted by [[S]] and defined by

[[S]] = {S} ⇔ S ∈S [[S;T]] = {st ∈S ∗ | s ∈ [[S]]∧ t ∈ [[T]]}
[[S | T]] = [[S]]∪ [[T]] [[S ‖ T]] = {(s, t) ∈ [[S]]× [[T]] | (s, t) |= Φ} [[S∗]] = /0∪ [[S;S∗]]

8We use tuples to represent parallel composition.
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where Φ is a formula used to constrain [[S ‖ T]] to admissible sequences of situation tuples in S ∗. A
discussion of algebraic process properties and instances of Φ would go beyond the scope of this paper.

We visualize a driving process S by a graph: Nodes represent situations and edges the successor
relation for envisaged transitions between such situations. Bidirectional edges abbreviate two corre-
spondingly directed edges. The anonymous initial situation is indicated by a gray dot. Such a graph can
visualize the execution of driving scenarios compliant with the successor relation.

Running Example Pt. 3 Fig. 3b shows driving situations related to situation drivingAtL4Generic.
Note that the model in Fig. 3b simplifies reality, e.g. halt can follow autoOvertake only indirectly
after visiting driveAtL4Generic for an instant. We do not consider this as a restriction of expressive-
ness.

2.2 Identification of Hazards for a Driving Situation

Knowing a fragment of the driving process, we can perform hazard identification and selection for the
situations we identified. We assume that early-stage and process-level forward and backward analysis [8]
can be applied, e.g. domain-specific checklists, hazard identification (HazId) or analysis (HazAn), hazard
operability study (HazOp), failure-mode and effects (FMEA), event-tree (ETA), fault-tree (FTA), cause-
consequence (CCA) [26], or system-theoretic process (STPA) [18] analysis.

Running Example Pt. 4 For the situation driveAtL4Generic, we conducted a light-weight, HazOp-
like forward and backward analysis resulting in 10 causal factors, e.g.

• noAutoPilot (nAP), denoting the class of failures of an “autopilot” function, and

• nearCollision (nC), denoting the event of a near-collision.

Based on σL (Sec. 2.1), nearCollision can be a predicate relating longitudinal and angular
acceleration and direction of the AV and distance between the AV and other objects nearby.

2.3 Grouping and Composing Driving Situations

Carrying on with process analysis can lead to a large S representing the driving process for which we
have to perform RAM. Hence, we group situations using regions. We call a process S a region (also:
aspect) if it superimposes (by ‖) properties of a causal factor model on a subset of S . Grouping criteria
can be (i) specific modes of vehicle operation, e.g. the level of automation at which the vehicle is operated
(see Sec. 1.1), (ii) situations across whom similar AD functions are used, e.g. requestTakeOverByDr,
(iii) equivalence classes over process parameters, e.g. xP.speed.

Running Example Pt. 5 Following Eq. (1), Fig. 4a models a driving process. Visualized in Fig. 4b,
regions are shown in gray. For the region containing supplyPower, we applied forward reasoning
(e.g. FMEA) to power-related vehicle components of the loop. We identified 3 sub-system failure
modes as causal factors:

• lowOrNo-Fuel (F), denoting low fuel level or no more fuel,

• lowOrNo-Energy (E), denoting reduced or outage of primary electric power supply, and

• lowOrNo-Battery (B), denoting reduced or outage of secondary electric power supply.

The results from FMEA provide information about the phases F ,E, and B of these phase models.
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P0≡ start;(basic ‖ supplyPower ‖ D1)

D1≡ (PP1 ‖ autoLeaveParkingLot);P1 | (PP1 ‖ leaveParkingLot);P2

P1≡ (PP2 ‖ driveAtL4Generic);D11

P2≡ (PP3 ‖ driveAtL1Generic);D12

D11≡ (PP2 ‖ (driveThroughCrossing | exitTunnel | autoOvertake));(P1 | P2) |
(PP2 ‖ halt);(P1 | P2 | (PP1 ‖ parkWithRemote;D1)) |
(PP1 ‖ steerThroughTrafficJam);P1

D12≡ P1 | (PP3 ‖manuallyOvertake);P2 | (PP1 ‖manuallyPark);D1

PP1≡ driveAtLowSpeed

PP2≡ drive ‖ driveAtL4 ‖ requestTakeoverByDr

PP3≡ drive ‖ driveAtL1 ‖ operateVehicle

(a) Despite “‖” precedes “|” and “|” precedes “;” we use parentheses for clarity.

basic || supplyPower

drive 

driveAtL4 || requestTakeOverByDr driveAtL1 || operateVehicle

driveAtLowSpeed

driveAtL4Generic

exitTunneldriveThroughCrossing

parkWithRemote

autoOvertake driveAtL1Generic

manuallyOvertake

autoLeaveParkingLot

manuallyPark

leaveParkingLot

steerThroughTrafficJam

halt

start

(b) In blue, the driving situations comprising the controlled process; in gray, re-
gions grouping properties of the causal factor model built for this example.

Figure 4: A driving process constructed according to Eq. (1): recursive expressions (a) and their visualization (b).
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3 What Can Happen in a Specific Driving Situation?

In this section, we will investigate a structure for identifying and characterizing run-time risk.

3.1 Risk Structures

For any situation s ∈S , we use the LTS model (Sec. 1.1) to create a risk structure Rs = (Σs,As,∆s) [10,
11] from parallel composition of phase models for the set of causal factors factorizing risk in s. The
graphs in Figs. 1b, 2, and 5 show applications of the phase model:
• nodes depict risk states ⊆ Σs composed of phases, 0 denoting the “safest” state,

• red edges are transitions ⊆ ∆s to states of higher risk (endangerments ⊆As), particularly, from 0,

• green edges are transitions ⊆ ∆s to states of lower risk (mitigations ⊆As), preferably, towards 0.
In Rs, RUEs are states in Σs related with mishaps of high severity reached by corresponding combi-
nations of endangerments. Although we can apply both, backward and forward analysis, to construct
Rs using the phase model, this work goes along the lines of [11] and carries on with forward construc-
tion. For RAM, we consider this to be natural: We want to predict the step-wise approach of states of
higher risk reachable from any current state (usually 0) and identify early mitigation steps (i.e., points
of interception) rather than starting with mishap analysis (see, e.g. [31]).

Running Example Pt. 6 The situation drive represents a common situation composed in paral-
lel with the situations basic, supplyPower, and the process (driveAtL4 ‖ requestTakeoverByDr |
driveAtL1 ‖ operateVehicle)∗ including its subordinate driving situations. We can understand drive
as an aspect of these situations and, consequently, of the scenarios composed with drive. With drive,
we associate the following CFs: badWeather (W ), obstacleInTrajectory (O), nearCollision
(nC), and collision (C).

Fig. 5a depicts a constrained composition of the phase models for W,O,nC, and C. In the
following, particularly, in Sec. 3.4, we will discuss constraints that led to Rdrive.

3.2 Selecting Hazards According to Driving Situations

As we have already seen, situations help focus on a specific part of the controlled process and, con-
sequently, our hazard analysis. Particularly, situations can induce specific relationships between CFs.
Moreover, relationships between a fixed pair of CFs can change from one situation to another. However,
the final decision on the set of relevant CFs for a specific situation depends on many criteria addressed
by the techniques mentioned in Sec. 2.2.

Running Example Pt. 7 A CF stemming from undesired behavior of human operators only has in-
fluence on a driving situation where an operator is actually in the loop. In our model, the causal
factor dumbDriving (D) causes nC in any situation composed with the aspect operateVehicle, how-
ever, in any situation composed with the aspect driveAtL4, D is not part of the causes relationship
with nC.

3.3 Which Events Increase Risk? What is an Endangerment Comprised of?

Based on the model from Secs. 1.1, 2.1, and 3, risk is assumed to be only increased by endangerments.
Endangerments are those actions performed in L that result in activations of causal factors, i.e., exactly
those risk-increasing events we want our safety controller (Fig. 3a) to observe.
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Figure 5: The situation drive as an aspect: (a) The whole drive aspect, (b) endangerment paths in drive starting
from 0, (c) phase model for collision (C) and (d) for obstacleInTrajectory (O).

Running Example Pt. 8 Fig. 5b shows combinations of endangerments in the situation drive for
which the AV has to be prepared, e.g. when in 0. For example, the action eO

d performs the activation
of the causal factor O. Index d denotes that this action belongs to the class of disturbances.

Classifying Endangerments and Causal Factors. We classify a CF by the type of action that activates
it, associated with the part of L which performs this action. For this, we distinguish between
• failures ( f ), stemming from technical parts of the controller,

• disturbances (d), stemming from some parts of the controlled process,

• misuse (mu), stemming from anyone who has access to the controls (e.g. human operator), and

• near-mishap (nm), a special class used to model endangerments that lead to what we understand
as “a mishap for which we are able to prepare effective countermeasures.”

Running Example Pt. 9 In Fig. 5b, we can see actions of type d denoting disturbances, of type mu
denoting misuse, and of type nm. Here, collision is an nm-typed CF rather than an unacceptable
mishap because we assume to have an airbag Ab as a mitigation. In Fig. 5a, the action eC

nm leads to
a state with C activated.

3.4 Which Constraints Reduce the State Space Reachable by Endangerments?

The reader might have noticed that the unconstrained composition of the phase models for C, nC, O, and
W in Fig. 5a would have resulted in a much larger risk structure. In fact, we applied several constraints to
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our model to avoid the investigation of transitions irrelevant or not meaningful for designing mechanisms
for RAM (cf. Sec. 1.2 and Fig. 3a).

For any risk state σ ∈ Σ and causal factors cf 1,cf 2, we can apply the constraints:

• cf 1 requires cf 2 :⇔ cf 1 can only be activated if cf 2 has already been activated,

• cf 1 causes cf 2 :⇔ the activation of cf 1 is propagated to cf 2 (if not yet occurred),

• cf 1 denies cf 2 :⇔ the activation of cf 1 denies the activation of cf 2 (if not yet occurred), and

• cf 1 excludes cf 2 :⇔ factor cf 1 renders cf 2 irrelevant (cf 2 is deactivated by cf 1).

The usage of constraints will generally reduce Σ.9 The application of these constraints in a specific
causal factor model is based on, e.g. expert knowledge of our safety engineer and on results of system
identification experiments performed by control engineers. In particular, causes relationships might have
to be confirmed by, e.g. FMEA, requires relationships by, e.g. FTA.

4 Which Countermeasures Can We Employ At Run-Time?

In this section, we discuss the risk mitigation part of RAM based on the hazard analysis part of RAM
shown in Sec. 3.

4.1 Which Events Decrease Risk? What is a Mitigation Comprised of?

Based on the model in Sec. 1.1, risk is supposed to be decreased by mitigations. Mitigations are those
actions performed in L that result in a mitigation and, finally, in a deactivation of causal factors, i.e.,
exactly those risk-decreasing events we want our safety controller (Fig. 3a) to actuate.

Classifying Mitigations. We classify mitigations by the type of action that deactivates a CF. The fol-
lowing criteria contribute to a taxonomy of mitigations: (i) the type of endangerment (see Sec. 3.3),
(ii) L ’s mode of operation after mitigation (e.g. vehicle automation level, speed level), (iii) completion
of deactivation of a causal factor at run-time. According to this, we distinguish between

• fail-safe, encompassing reactions to AV failures by fail-silent or fail-operational behavior,

• deescalation, comprising mechanisms for rejecting disturbances (e.g. stabilization),

• protection, including failure-independent mechanisms for risk prevention or alleviation of harm,

• uncontrolled, representing mitigation mechanisms not in control of the AV,

• repair and maintenance, representing mechanisms capable of complete deactivation of a CF or
restoration of its undesired consequences, not necessarily at run-time.

Running Example Pt. 10 For C, our model contains the action prtC
alv which represents a protec-

tion mechanism resulting in the alleviation of any occurrence of C and its consequences. Finally,
Fig. 5c shows the parts of L embodying these actions, e.g. prtC

alv
Ab indicates that prtC

alv is going to be
conducted by an airbag Ab as the alleviating protection mechanism.

9This goes along the lines of state space reduction in model checking, see e.g. [3].
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4.2 Which Constraints Shape the State Space Reachable by Mitigations?

We can apply shaping directives for further reduction of Σ:

• cf direct: cf can be completely mitigated, intentionally at run-time (this corresponds to the action
mcf

c shown in Fig. 1a),

• cf offRepair: The change of cf to the phase inactive (0cf ) by an action mcf
e requires putting the

AV out of order.

Running Example Pt. 11 We use the following constraints and shaping directives for nC and C:

• nC requires O: We only consider worlds in which nearCollision events require obstacle-
InTrajectory events to occur in advance of and last until at least nC. Note that this con-
straint inhibits our CF model to be used for passive nearCollisions. This issue could be
addressed by introducing an extra causal factor.

• nC direct: Any implementation of a mitigation mechanism for nC performs a complete deac-
tivation of nC.

• C requires nC: We only consider worlds in which any nearCollision event precedes any
possible collision event.

• C excludes nC: Once a collision event happens we stop taking care about any further
nearCollisions.

• C offRepair: Our understanding of collisions in road traffic implies that a complete
restoration, if possible, has to take place off-line, i.e., not in the situations shown in Fig. 4b.
This way, the safety controller M knows that repair actions have to take place as soon as
possible. So, “emergency stop” and “limp home” might become the next run-time actions to
be performed by M.

4.3 Can Endangerments and Mitigations Change the Driving Situation?

In general, mitigations change ΣL , particularly, the state of the process P. Consequently, jumps from a
risk state of one driving situation into a specific risk state of another situation can occur in many cases.

Running Example Pt. 12 An emergency stop triggered by lowOrNo-Fuel in the situation auto-
Overtake would bring the loop into the situation halt or, possibly, into some yet unknown situation
in the region driveAtLowSpeed, while carrying on with further mitigations as required.

4.4 Towards Assessment by Symbolic Execution

By symbolic execution with YAP, we can assess our model for plausibility and refinement.

Running Example Pt. 13 Tab. 1 shows a driving scenario starting from the situation start with
brief statistics per situation describing the number of causal factors regarded in the current situation
(#CFs), the initial state to which the random execution jumps at every step (only listing activated
CFs), number of reachable risk states (particularly RUEs), and number of transitions (indicating
some choice among mitigation options for M). Tab. 2 shows another driving scenario from the
situation steerThroughTrafficJam. Both scenarios were cut after five steps.
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Step Driving Situation #CFs Initial State #States #Trans.

1 start
2 leaveParkingLot 3 B 9 17
3 driveAtL1Generic 10 nCoLI 502 2165
4 driveAtL4Generic 10 FEBWC 1323 5726
5 steerThroughTrafficJam 3 E 9 15

Table 1: Scenario ρ ∈ [[P0]] starting from situation start (cf. P0, Fig. 4a).

Step Driving Situation #CFs Initial State #States #Trans.

1 steerThroughTrafficJam 3 B 14 23
2 driveAtL4Generic 10 EBOWnAP 2190 8432
3 exitTunnel 10 BOWrA 3606 15337
4 driveAtL1Generic 10 EBOWnCI 276 868
5 manuallyOvertake 10 EO 756 2953

Table 2: Scenario ρ ∈ [[D11]] starting from situation steerThroughTrafficJam (cf. D11, Fig. 4a).

5 Synergies and Improvements Over Related Work

The questions S2 (Task S), E1-5 (Task E), and M1 (Task M) posed in Sec. 1.2 are typically addressed
by risk assessment techniques such as, e.g. FTA, FMEA [8]. However, because of the specifics of RAM
in AD, the performance of these techniques heavily depends on loop and causal factor models available
and employed for RAM. The mentioned techniques rarely supply specialized and formally verifiable
models. The causal factor model described in Sec. 1.1 incorporates the principle of “modeling what can
go wrong” as employed in practical risk models such as CORAS [19]. Similar to, e.g. FTA, FMEA,
and HazOp, the CORAS method itself is not specific to RAM for AD and the CORAS tool set has not
yet been equipped with automation support for generating and analyzing risk state spaces. However, we
consider a mapping from CORAS risk models into causal factor models and vice versa as a valuable
extension. Similarly, the constraints described in Secs. 3.4 and 4.2 resemble some gates known from
FTA, e.g. the AND gate can be modeled by a requires constraint.

Regarding the modeling of driving processes, [32] discusses a set of driving situations together with
a specific safety argument based on hazards relevant in each situation. The approach at hand allows to
transform such a situation taxonomy together with the arguments into a concise model.

For the generation of risk state spaces, we can mention several approaches: Volk et al. [35] provide
an efficient technique to generate sparse MARKOV automata from dynamic fault trees and for the synthe-
sis of parameters to calculate, e.g. the mean-time-to-failure measure. Regarding sparseness, YAP does
not yet implement partial-order reduction to a comparable extent [3]. Bäckström et al. [2] describe an
analytic approach to probabilistic, time-limited reachability of failure states based on continuous-time
MARKOV chains derived from static and dynamic fault trees. Similarly, based on stochastic timed au-
tomata (STA), Kumar and Stoelinga [16] propose a time- and budget-limited analysis of a combined
model of faults and attacks. They transform this model using event-class-specific STA templates rather
than having a single generic phase model (cf. Fig. 1a). However, modeling the controlled process by sit-
uations combined with run-time planning over situation-specific risk state spaces provides an appropriate
context for the employment of these algorithms and for quantitative assessment.

In the context of safety standards for unmanned aircrafts, [5] sketches a architecture where the
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main controller is protected by a safety monitor and a recovery control. Regarding controller synthesis,
Machin et al. [21] provide a systematic and formal procedure for the synthesis of intervention rules (i)
identified through a UML-based HazOp technique and (ii) implementing a robot safety monitor. The
rules are automatically verified based on (i) notions of warning and catastrophic states similar to our
generic phase model in Fig. 1a and (ii) a measure of permissiveness. Mitsch and Platzer [25] present
an intentionally similar approach, however, applicable to hybrid programs, a more expressive class of
control systems.

A more specific line of work deals with hybrid reachability analysis, e.g. [29], where reachable sets
are approximated over metric spaces. Such approaches are well-suited for performing optimal and safe
reach-avoid mitigations for endangerments like, e.g. nearCollisions. Our approach aims at a model
for developing mitigation strategies for multiple causal factors and performing mitigations including
both, hybrid control actions and actions performing over non-metric spaces.

6 Discussion

This section highlights several aspects of the presented approach to be pursued by further research.

6.1 Notes on the Formalization of Constraints

Let each phase label in Fig. 1a be an atomic proposition. Then, in a timed extension of linear time
temporal logic [22, 23, 15] and given causal factors cf 1 and cf 2,

• we translate requires into the formula �[cf 1→ �≤tcf 2]⇔�[¬cf 1W≤t cf 2],

• causes into �[cf 1→ ♦≤t(cf 2U¬cf 1)],

• denies into �[cf 1→ ♦≤t(¬cf 2U¬cf 1)],

• and excludes into �[cf 1→ ♦≤t(0cf 2U¬cf 1)].

By having one translation of these constraints into temporal formulas, we gain a way to translate (i) any
causal factor into a temporal formula by logical conjunction (∧), and, hence, (ii) the causal factor model
into a corresponding formula. The formula resulting from (ii) characterizes the risk state space Σ without
speaking of the action classes described in Secs. 3.3 and 4.1.

Furthermore, the requires constraint is a relaxed variant of the globally precedes pattern, e.g. dis-
cussed in [6]: cf 1 requires cf 2⇐

cf 2 globally precedes cf 1 ⇔ ♦cf 1→ (¬cf 1U(cf 2∧¬cf 1)) (2)

Eq. (2) does not hold for runs where cf 1 and cf 2 happen simultaneously and cf 2 is required to happen.

6.2 Towards a Research Vision

Methodically, for RAM, it is important to ask why we need a dedicated causal factor model for AD?
Well, let us refine Claim 1 from Sec. 1.2 by:

Claim 2 An optimal AV controller (AVC) always tries to reach and maintain a b-safe10 state w.r.t. RUEs
recognizable and acted upon by the AVC in any known and recognizable driving situation.

10b denotes a maximum “risk budget” to encode the notion of “acceptably safe,” see Sec. 1.1.
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From Claim 2 and the answers to question M4, we can derive planning procedures and verification
goals: are there (i) undesirable mitigations derivable from the model, (ii) undesirable combinations of
situations and mitigations? How can we minimize exposure to mitigation-endangerment cycles? Can
we prove from our model (given it is valid) the (global) existence of an (effective) mitigation strategy
incorporating mechanisms from several parts of L ? Technically, we aim at the instantiation of a monitor-
actuator pattern [28] based on the resulting model of L depicted in Fig. 3a.

6.3 About the Tasks S, E, and M

For Task S, we need to determine the physical events governing the driving process and its control, as
well as the internal events in the implementation of the controller. For Task E, a predictive model of
operational risk in any driving situation would be of great help. However, we only made a first step
into the direction of discrete event model-predictive control. For Task M, our mitigation strategy always
depends on the mechanisms and abilities feasible and controllable in L .

6.4 Notes on Terminology, Assumptions, and Limitations

Our assumption for FAD, worth mentioning, is that functional safety of the controller is not considered
in separation of overall safety of the control loop, which goes along the lines of [18]. It might seem
cumbersome to speak of “rare” undesired events. However, frequent undesired events might stem from
systematic defects or disturbances in the control loop for which general design-time measures might be
desired before applying the discussed RAM approach.

We excluded the consideration of probabilities of causal factors and transitions in the driving process.
However, stochastic reasoning helps in quantitative approximation for any planning algorithm employed
for Claim 2. Moreover, probabilities will play a role in quantifying to which extent the model from
Eq. (1) represents the controlled process. In Secs. 3.3 and 4.1, we left classifications of endangerments
and mitigations shallow, though, YAP already incorporates a slightly more elaborate taxonomy.

6.5 Summary and Future Work

In this paper, we discussed first steps of an approach to risk analysis and run-time mitigation (RAM)
suited for (i) the investigation of the driving process (Task S, S1-3), (ii) capturing multiple causal factors
forming a set of rare undesired events in the risk state space (Task E, E1-5), and (iii) designing run-time
mitigations to traverse the risk state space in a manner to establish Claims 1 and 2 (Task M, M1-4).
Our model supports safety engineering decision making and the transfer of such decisions into a safety
controller. This safety controller is supposed to implement the monitor in Fig. 3a as well as a strategic
mitigation planner for run-time risk mitigation.

Next Steps. For the formalization of the discussed concepts, one next step is to provide MARKOV de-
cision process semantics for the process model described in Sec. 2 and to map risk structures (i.e., the
situation-specific LTS models described in Secs. 1.1 and 3) into equivalent KRIPKE structures. Extend-
ing these structures, we aim to equip our RAM approach for continuous update of real-time determined
weights. Next, YAP which demonstrates part of the automated analyses for RAM (i.e., state space gener-
ation) has to be refined.Beyond these steps, we aim at the enhancement of the presented approach towards
a controller design method integrating run-time risk mitigation for automated individual and collective
driving.
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