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In monitoring, we algorithmically check if a single behavior satisfies a property. Here, we consider
monitoring for Multi-Lane Spatial Logic (MLSL). The behavior is given as a finite transition se-
quence of MLSL and the property is that a spatial MLSL formula should hold at every point in time
within the sequence. In our procedure we transform the transition sequence and the formula to the
first-order theory of real-closed fields, which is decidable, such that the resulting formula is valid iff
the MLSL formula holds throughout the transition sequence. We then assume that temporal data may
have an error of up to ε , and that spatial data may have an error of up to δ . We extend our procedure
to check if the MLSL formula ε-δ -robustly holds throughout the transition sequence.
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1 Introduction

Multi-Lane Spatial Logic (MLSL) comprises an abstract model of a motorway and a spatial logic to rea-
son about traffic configurations [11]. MLSL can be used to, e.g. analyse controllers of (semi) automated
driving systems.

In offline monitoring we are given a recorded behavior π , a specification ψ and we want to check if
π satisfies ψ , denoted as π |= ψ . In this work we perform monitoring for MLSL. While MLSL has been
extended with CTL-like branching time temporal modalities [15], they are not suitable for monitoring.
We formalise what it means for an MLSL formula φ to hold globally in linear time, where we denote
‘globally φ ’ as�φ . This means that here π is a transition sequence and we instantiate ψ with�φ , where
φ is an arbitrary MLSL formula.

We define a procedure to check if an MLSL formula holds globally in an MLSL transition sequence.
For this we adapt a procedure to check satisfiability of a restricted form of MLSL formulas [9]. In this
extension we transform the MLSL formula that should hold globally, and the transition sequence to the
first-order theory of real closed fields, which is decidable [21] (there called elementary algebra), such
that the transformed formula is valid iff π |=�φ holds.

However, it is idealistic to assume that the data we are working with is exact. Here, we consider
errors in positional data (spatial imprecision) and imprecisions of when reservations and claims are set
and withdrawn (temporal imprecision). For temporal robustness other approaches use that they have the
satisfaction of temporal atoms as a signal over time. Here, our temporal formula is �φ and φ is our
temporal atom. We do not have the truth value of φ as a signal over time. For this reason we decided
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to base the temporal aspect of MLSL on timed words [3], from which we then derive MLSL transition
sequences. Then we define temporal robustness by deviating the time stamps in a timed word. We
combine this temporal robustness with our previous work on spatial robustness [17] and define spatio-
temporal similarity with a metric. We then define what it means that an MLSL formula globally holds,
even if the transition sequence is subject to spatio-temporal perturbations. Lastly, we extend our previous
transformation to accomodate the spatio-temporal perturbations.

Related Work There is a lot of work on monitoring temporal properties in dense time formalisms. This
was then extended to checking how robustly (in the spatial sense) a signal satisfies a Metric Temporal
Logic formula [7, 6]. This was then extended to consider spatio-temporal robustness of Signal Temporal
Logic [5], a temporal logic that works with dense time and dense data. In [8] the authors considered
robust satisfaction of Duration Calculus. In all of these works the authors define a multi-valued semantics
for their temporal logic. For MLSL we have not been able to define a useful multi-valued semantics,
because the atoms do not have quantitative data, which is crucial in the works mentioned above. In [2]
the authors perform online monitoring of spatial properties for a driving car. In contrast to our work, they
take a very low level view (little abstraction) and they can not easily check arbitrary spatial properties. In
[19] the authors formalise traffic and traffic rules in a theorem prover. However, their goal is analysing
meta properties, such as ambiguity of traffic rules, rather than automation. Urban MLSL is an extension
of MLSL that allows for logical reasoning about traffic scenarios in an urban setting [12, 20].

2 Abstract Model for Motorways

We use an abstract formal model for motorway traffic [11], where the traffic configuration at a specific
point in time is given by a traffic snapshot. In a traffic snapshot the motorway is represented by two
dimensions, a discrete vertical dimension, which represents lanes and a continuous horizontal dimension,
which represents the position along a lane. Then a reservation of a car represents space the car physically
occupies plus some safety margin, which we assume to be the braking distance. When a car changes lanes
it may have multiple adjacent reservations. A claim of a car represents that the car would like to reserve
the claimed space. With claims we model the turn-signal of a real car. Additionally, a traffic snapshot has
information about the speed and acceleration of each car. The evolution of traffic over time is modelled
as a labelled transition system, where each state is a traffic snapshot. We give an example traffic snapshot
and MLSL formulas to develop some intuition for the formalism.

Example 2.1. MLSL Formulas are evaluated on a restricted area of a traffic snapshot called view. We
show an example traffic snapshot and view in Figure 1. In the traffic snapshot, with the given view, the
formula

〈freea re(e)a free〉
holds. Here, 〈·〉 is an abbreviation and means that the subformula holds somewhere in the view, a is
used to separate adjacent segments within the lane, free indicates that the lane segment is free of claims
and reservations and re(e) means that the segment has a reservation from car e. Note that in formulas we
use lower case letters to refer to cars. The formula

〈freea cl(e)a re(d)a freea re(c)a free〉

also is satisfied by the traffic snapshot and the view in Figure 1. With cl(e) we indicate that the lane
segment has a claim of car e. Note that cl(e) and re(d) are not exclusive, i.e. in the lane segment where
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Figure 1: Visualisation of a traffic snapshot, where car C has a reservation (solid line) and a claim (dashed
line), car D has two reservations and car E also has a reservation and a claim. The claim of car E and
a reservation of car D overlap. Additionally, we show a view (rectangle with thick line). Note that one
reservation of car D and the claim of car C are outside of the view.

the claim of E and the reservation of D overlap, both, cl(e) and re(d) are satisfied. We can stack formulas
to express that on the lower lane the lower formula holds, and that on the upper lane the upper formula
holds. That is, the formula

freea cl(e)a re(d)a freea re(c)a free

freea re(e)a free

is satisfied with the complete view, not just somewhere within the view. 4
Let I be a set of cars and L be a set of lanes let P(L) be the powerset over L. The composition of

data from the cars in I is a traffic snapshot. We add a function Ω, which gives the braking distance of a
car, to the traffic snapshot from [11].

Definition 2.2 (Traffic Snapshot). For every car C let lengthcar(C) be the physical length of C. Then a
traffic snapshot is defined as TS = (pos,Ω,spd,acc,res,clm), where pos : I→ R is the position of the
rear of a car, Ω : I→R>0 is the length of a reservation of a car including its physical length, spd : I→R
is the current speed, acc : I→ R is the current acceleration, res : I→P(L) is the set of reserved lanes.
clm : I→P(L) is the set of claimed lanes. 4

We model the evolution of traffic snapshots as labelled transitions, where we use discrete and contin-
uous transitions. The discrete transitions for a car C are to change the acceleration (a(C,a) with a ∈ R),
set a claim for a lane (c(C,n) with n ∈ L), change an existing claim into a reservation r(C)), withdraw
an existing claim (wd c(C)) and withdraw a reservation from a lane (wd r(C,n) with n ∈ L). The con-
tinuous transitions are similar to delay transitions in timed automata, i.e. we update the data affected by
time (here position, speed and the derived braking distance). To define the transitions we use substitution
and function overriding, i.e. let TS[ f/ f ⊕{C 7→ x}] be TS, except that the function f is replaced by
f ⊕{C 7→ x}, which maps C to the value x and agrees on everything else with f .

Definition 2.3 (Transitions). Let n,n′ ∈ L with n′ ∈ {n−1,n+1} and a,z ∈ R. Further, to compute the
braking distance of a car we assume a maximum deceleration value decmax that all cars are capable off.
We define

TS
a(C,a)−−−→ TS′ ⇐⇒ TS′ = TS[acc/acc⊕{C 7→ a}]

TS
c(C,n)−−−→ TS′ ⇐⇒ TS′ = TS[clm/clm⊕{C 7→ n}]∧ res(C) = {n′}∧ clm(C) = /0

TS
r(C)−−→ TS′ ⇐⇒ TS′ = TS[res,clm/res⊕{C 7→ res(C)∪ clm(C)},clm⊕{C 7→ /0}]
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TS
wd c(C)−−−−→ TS′ ⇐⇒ TS′ = TS[clm/clm⊕{C 7→ /0}]

TS
wd r(C,n)−−−−−→ TS′ ⇐⇒ TS′ = TS[res/res⊕{C 7→ {n}}]∧n ∈ res(C)

TS z−−→ TS′ ⇐⇒ TS′ = TS[pos,spd,Ω/pos′,spd′,Ω′] where

pos′ = {C 7→ pos(C)+ spd(C) · z+ 1
2

acc(C) · z2 |C ∈ I}
spd′ = {C 7→ acc(C) · z+ spd(C) |C ∈ I}

Ω
′ = {C 7→ (spd(C)+acc(C) · z)2

decmax
+ lengthcar(C)|C ∈ I} 4

While we give a definition of Ω for all cars, our results also hold with a different definition of Ω for
each car. Such an individual definition could depend on properties of the cars, e.g. one definition for light
cars and another for heavy cars. However, our results only hold when the function used is a polynomial,
i.e. we do not allow exponentiation and trigonometric functions.

Here we take the view that underlying a transition sequence, there is a timed word [3]. A timed word
is a sequence of events and time stamps.
Definition 2.4 (Timed Words). For a set of cars I and a car C ∈ I we denote the cars actions as ΣC =
{c(C,n), r(C),wd c(C),wd r(C,n),a(C,a) | n∈L,a∈R} and the set of actions of all cars as Σ=

⋃
C∈I ΣC.

The joint behavior of the cars in I is a timed word ρ = (σ ,τ) where σ ∈ Σ∗ and τ is a weakly monotonic
increasing sequence of time stamps over R≥0. We assume that all timed words have as their last element
in σ a special marker end 6∈ Σ. For a timed word ρ = (σ ,τ) with σ = σ1 . . .σn and τ = τ1 . . .τn we
denote the projection to Σ′ ⊆ Σ as ρ|Σ′ = (σ ′,τ ′) with σ ′ = σi1 . . .σik , τ ′ = τi1 . . .τik and 1≤ i1, . . . , ik ≤ n
such that σ ′ is the longest subsequence of σ that only has letters from Σ′ ∪ {end}. Let the span(ρ)
of a timed word ρ be the interval [0,τn]. We define the time-bounded prefix ρt with t ∈ span(ρ) as
(σ1,τ1) . . .(σi,τi)(end, t), where i is the largest index such that τi≤ t. Note that we might have τi = t. 4

We define that the application of a timed word to a traffic snapshot gives a transition sequence. The
idea is that we first let time advance to the ith time stamp and then perform the ith discrete action. Note
that we interpret ‘end’ as a delay of zero time.
Definition 2.5 (From Timed Words to Transition Sequences). Given a timed word ρ = (σ ,τ) with σ =
σ1 . . .σn−1end and τ = τ1 . . .τn and a traffic snapshot TS1, we define the transition sequence ρ(TS1) as

TS1
τ1−−→ TS2

σ1−−→ TS3
τ2−τ1−−−→ . . .

τn−1−τn−2−−−−−−→ TS2n−2
σn−1−−→ TS2n−1

τn−τn−1−−−−→ TS2n
0−−→ TS2n .

Further, for t ∈ span(ρ) we define the time-bounded transition sequence until t as ρt(TS) and we denote
the last traffic snapshot in ρt(TS) as ρ(TS)@t, i.e. ρ(TS)@t is the traffic snapshot at time t. 4

In the rest of this work we will only consider transition sequences that result from timed words,
and that satisfy the constraints from Definition 2.3. Additionally, we assume that all transitions labelled
with r(C),wd c(C),wd r(C,n) change the state, i.e. a car makes a reservation only if it has a claim, it
withdraws a claim only when it has a claim and it withdraws a reservation only if it has two reservations.

We give an example of a timed word and how we create a transition sequence from it. In our examples
we give constants representing physical quantities always with their units, i.e. m for distances, s for time,
ms−1 for speed, and ms−2 for acceleration.
Example 2.6. Let us assume that the global, maximal deceleration constant is given as decmax = 12ms−2

and that each car has a physical length of 3m. Consider a timed word

ρ = (wd r(D,3),1s) (r(E),1.1s) (wd r(E,2),6.1s) (end,6.1s)
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Figure 2: Visualisation of the transition sequence in Example 2.6. Claims are shown with dashed and
reservations with solid lines. We do not show the last 0s transition to save space

and a traffic snapshot TS = (pos,Ω,spd,acc,res,clm) defined as

pos = {C 7→ 60m,D 7→ 16m,E 7→ 6m} acc = {C 7→ 0ms−2,D 7→ 0ms−2,E 7→ 0ms−2}
Ω = {C 7→ 6m,D 7→ 30m,E 7→ 15m} res = {C 7→ {2},D 7→ {2,3},E 7→ {1}}

spd = {C 7→ 6ms−1,D 7→ 18ms−1,E 7→ 12ms−1} clm = {C 7→ {3},D 7→ /0,E 7→ {2}}

Note that TS is a formulisation of the traffic snapshot from Figure 1. By applying ρ to TS, we get the
transition sequence

ρ(TS) = TS 1s−−→ TS2
wd r(D,3)−−−−−→ TS3

0.1s−−→ TS4
r(E)−−→ TS5

5s−−→ TS6
wd r(E,2)−−−−−→ TS7

0s−−→ TS7
0s−−→ TS7

depicted in Figure 2. Note that the two 0s delays in the timed word above result from the delay between
wd r(E,2) and ‘end’, and from our representation of ‘end’ in the transition sequence as a 0s delay. We
use this transition sequence as our running example in this work. 4

In MLSL we reason about traffic configurations from the local perspective of a car, called view.
Definition 2.7 (View). A view is a tuple V = (L,X ,E), where L = [l,n] ⊆ L is the interval of visible
lanes, X = [r, t]⊆ R is the extension of the visible lanes and E ∈ I is the owner of the view. We say that
V ′ = (L′,X ′,E) is a subview of V if L′ ⊆ L and X ′ ⊆ X , where we interpret [l′,n′] = /0 if l′ > n′ and /0⊆ L
for any set L. We define V L′ = (L′,X ,E) and VX ′ = (L,X ′,E). 4

Additionally, we assume a set of variables CVar ranging over I, a special variable ego and a variable
valuation ν : CVar∪{ego}→ I such that ν(ego) = E. We define that M = (TS,V,ν) is an MLSL model.

We lift transition sequences over traffic snapshots to transition sequences over models, as in [15] by
moving the view along with its owner. Let ρ be a timed word and TS1 a traffic snapshot with ρ(TS1) =

TS1
λ1−−→ . . .

λn−1−−→ TSn, where λ1, . . . ,λn−1 ∈ Σ∪R. For M1 = (TS1,V1,ν), V1 = (L, [r1, t1],E) we define

ρ(M1) = M1
λ1−−→ . . .

λn−1−−→Mn

with Mi = (TSi,Vi,ν), Vi = (L, [ri, ti],E) and ri+1 = r1 +(posi+1(E)−posi(E)), ti+1 = t1 +(posi+1(E)−
posi(E)).

The syntax of MLSL is

φ ::= γ = γ
′ | free | re(γ) | cl(γ) | `= q | ¬φ | φ ∧φ | ∃c.φ | φ a φ |

(φ

φ

)
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where γ,γ ′ ∈ CVar∪{ego} and q ∈ Q. We denote the set of all MLSL formulas with Φ. We briefly
sketch the idea of the logic: The atom re(γ) (resp. cl(γ)) is satisfied when the current view is filled by
the reservation (resp. claim) of the car that γ points to. The atom free is satisfied if the current view does
not have a subview where re(γ) or cl(γ) is satisfied for any car and ` = q is satisfied if the extension of

the current view has length q. The horizontal chop φ1 a φ2 (resp. vertical chop
(φ2

φ1

)
) is satisfied if we

can cut the current view into two horizontally (resp. vertically) adjacent subviews on which φ1 and φ2
are satisfied. In the semantics of the vertical chop operator we follow [9], i.e. we distinguish whether the
view contains any lanes before chopping.

Definition 2.8 (Semantics). Let c ∈ CVar, q ∈Q and γ,γ ′ ∈ CVar∪{ego}. Given a traffic snapshot TS,
a view V = ([l,n], [r, t],E) and a valuation ν with ν(ego) = E we define the satisfaction of a formula by
a model M = (TS,V,ν) as follows:

M |= γ = γ
′ iff ν(γ) = ν(γ ′)

M |= free iff (l 6∈ res(C)∪ clm(C) or [pos(C),pos(C)+Ω(C)]∩ (r, t) = /0)

for every C ∈ I, and l = n and r < t

M |= re(γ) iff l ∈ res(ν(γ)) and [r, t]⊆ [pos(ν(γ)),pos(ν(γ))+Ω(ν(γ))] and l = n and r < t

M |= cl(γ) iff l ∈ clm(ν(γ)) and [r, t]⊆ [pos(ν(γ)),pos(ν(γ))+Ω(ν(γ))] and l = n and r < t

M |= `= q iff t− r = q

M |= ¬φ iff M 6|= φ

M |= φ1∧φ2 iff M |= φ1 and M |= φ2

M |= ∃c.φ iff (TS,V,ν⊕{c 7→C}) |= φ , for some C in I
M |= φ1 a φ2 iff (TS,V[r,s],ν) |= φ1 and (TS,V[s,t],ν) |= φ2,

for some s, where r ≤ s≤ t

M |=
(φ2

φ1

)
iff l ≤ n implies

(TS,V [l,m],ν) |= φ1 and (TS,V [m+1,n],ν) |= φ2

for some m, where l−1≤ m≤ n, and

l > n implies (TS,V,ν) |= φ1 and (TS,V,ν) |= φ2 4

We use common abbreviations like true, false, ∨ and ∀. For an MLSL formula φ we also use the
spatial somewhere modality from [11] that is defined as

〈φ〉 ≡ truea

( true

φ

true

)
a true .

3 Monitoring Globally Properties

In this section we first formalise for an MLSL model M, a timed word ρ and an MLSL formula φ what
the statement ‘φ holds globally in ρ(M)’ means. The intuition is that we check for every point in time t
within the time span of ρ , whether the model in the transition sequence ρ(M) at time t satisfies φ , which
in symbols is ρ(M)@t |= φ . Afterwards, we define a transformation that takes as inputs ρ , M and φ ,
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and creates a formula ψ ≡ ψM ∧ψρ =⇒ ψφ from the first-order theory of real-closed fields [21] (there
called elementary algebra). In our transformation we mimic the afore mentioned intuition. The general
idea is that ψM represents the initial model, ψρ changes the transformed initial model and ψφ is checked
on the changed model. We use a universally quantified variable tf and freeze the transformed model at
the time given by the value assigned to tf and discard later changes. Then we check whether ψφ holds in
the frozen model. As tf is universally quantified and ranges over the time span of the timed word ρ , ψ is
valid iff φ holds globally in ρ(M).

In [15] the authors extend MLSL with branching CTL-like temporal modalities. As branching time
modalities are not suited for monitoring, we define a linear time globally modality, which is satisfied if
the subformula is satisfied at every point in time.

Definition 3.1 (Global Satisfaction). A transition sequence ρ(M) globally satisfies a spatial property φ

(denoted as ρ(M) |=seq �φ ) iff at every point in time t within the span of ρ the formula φ is satisfied.
Formally,

ρ(M) |=seq �φ iff ∀t ∈ span(ρ).ρ(M)@t |= φ . 4

We consider formulas from first-order theory of real-closed fields with the signature 〈R,+, ·,0,1,<,〉
and standard interpretation. The satisfiability problem of this logic is decidable [21]. We denote the set
of all formulas as Ψ and the set of real-valued variables as RVar. This logic shares symbols with MLSL,
such as =, ¬ and ∧. However, from the context it will be clear to which logic symbols belong. We denote
the variable assignment with J·K, which assigns variables a value.

varsd,E

varsd,D

varsd,C

varsd,init varsd,f

Figure 3: Visualisation of varsd structure
for the timed word from Example 2.6.
Only the first and the last column repre-
sent the system at the same point in time

In our transformation the state of a car C at a time
point is given by the variables from RVar in the tuple
(resC,i,res′C,i,posC,i,ΩC,i,clmC,i,accC,i,spdC,i). For any car
C and timed word ρ let ρC = (σC,τC) = ρ|ΣC. Now, let varsd
(d for data) be a list of length |I| such that it has for each car
C a list of length |σC|+ 1 and at varsd(C)(i) we have an
aforementioned tuple of variables. Note that the lists for the
cars may be of different lengths. We refer to the list that has
for each car the first (resp. final) entry with varsd,init (resp.
varsd,f).

Example 3.2. Consider the timed word ρ from Example 2.6.
Then let

ρC = ρ|ΣC = (end,6.1s)

ρD = ρ|ΣD = (wd r(D,3),1s)(end,6.1s)

ρE = ρ|ΣE = (r(E),1.1s)(wd r(E,2),6.1s)(end,6.1s)

For I= {D,C,E} and ρ we show the structure of varsd in Figure 3. 4
For real-valued variables, which we consider as not assigned, we introduce a special value • such

that • 6∈ L. Given a traffic snapshot TS we assume w.l.o.g. that for all cars C ∈ I we have res(C) = {n,•}
if C only reserves lane n ∈ L and clm(C) = {•} if C does not have a claim. Further, let varsd be globally
available.

Definition 3.3 (Transforming Initial Models). For a traffic snapshot TS over a set of cars I, let for a car
C nC ∈ L,n′C ∈ L∪{•} be the values in the set res(C) and n′′C ∈ L∪{•} be the value in the set clm(C).
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With the variables varsd,init we define

trinit(TS) :=
∧
C∈I

posC,1 = pos(C)∧ resC,1 = nC ∧ res′C,1 = n′C ∧

spdC,1 = spd(C)∧accC,1 = acc(C)∧ clmC,1 = n′′C ∧ΩC,1 = Ω(C) . 4

For each car C ∈ I the transformation of an action (tract) is split into a transformation of a delay action
(trdelay) and into a transformation of a discrete action (trd−act). We point out that we treat the ‘end’ marker
as an action that does not change anything.

Definition 3.4 (Transforming Actions). For some car C ∈ I and an index i ∈ N let σi ∈ ΣC ∪{end}. For
n ∈ L,a ∈ R and a variable z ∈ RVar indicating a delay we define

tract(σi,z, i,C) := trd−act(σi, i,C)∧ trdelay(z, i,C)

trd−act(σi, i,C) :=



clmC,i+1 = n∧ idC,i(res,res′,acc) if σi = c(C,n)
res′i+1 = clmC,i∧ clmC,i+1 = •∧ idC,i(res,acc) if σi = r(C)

resC,i+1 = n∧ res′C,i+1 = •∧ idC,i(clm,acc) if σi = wd r(C,n)
clmi+1 = •∧ idC,i(res,res′,acc) if σi = wd c(C)

accC,i+1 = a∧ idC,i(res,res′,clm) if σi = a(C,a)
idC,i(res,res′,clm,acc) if σi = end

trdelay(z, i,C) := posC,i+1 = posC,i + spdC,i · z+
1
2

accC,i · z2∧ spdC,i+1 = accC,i · z+ spdC,i

∧ΩC,i+1 =
(spdC,i +accC,i · z)2

decmax
+ lengthcar(C)

with idC,i(res) := resC,i+1 = resC,i and similar for the other variables. 4
Now we can define a transformation for the time-bounded prefix ρtf , where ρ is a timed word and

tf ∈ RVar. The model at time tf is stored in the variables varsd,f. To achieve this we ignore all changes
after time tf. To define our transformation of time-bounded prefixes, we assume a structure varst that has
entries tC,i ∈ RVar, similar to varsd. For a car C and a projected timed word ρ|ΣC = (σC,τC) we identify
time stamps with variables that have the constraint tC,i+1 = τC,i and tC,1 = 0.

Definition 3.5 (Transforming Timed-Bounded Transition Prefixes). For C ∈ I let ρ = (σ ,τ), ρ|ΣC =
(σC,τC) and tf ∈ RVar. Then we define

trword(σ , tf) :=
∧
C∈I

trC−word(σC, tf,C)

trC−word(σ , tf,C) :=
∧

i∈{1,...,|σ |}

(tC,i ≤ tC,i+1 ≤ tf =⇒ tract(tC,i+1− tC,i,σi, i,C)) (1)

∧ (tC,i ≤ tf < tC,i+1 =⇒ tract(tf− tC,i,end, i,C)) (2)

∧ (tf < tC,i =⇒ tract(0s,end, i,C)) (3)

4
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The first implication (1) considers the case where the effect of the action takes place before or at
time tf. Hence, we completely represent the effect in our transformation. If the condition of the second
implication (2) is satisfied, we know that delaying by tC,i+1− tC,i time units takes us past tf. Hence,
we only delay by tf− tC,i time units, exactly to time point tf and do not transform σi. Instead of σi we
transform ‘end’, which ensures that all variables retain their values. The third implication (3) ensures
that we do not manipulate the model anymore, after time point tf. Note that in the conditions of the
implications for each i exactly one condition is satisfied.

We need a method to check if an MLSL model satisfies an MLSL formula. In [9] the authors defined
a transformation to check satisfiability of an MLSL formula φ that is restricted to a finitely bounded set
of cars (called well-scoped MLSL with scopes). Their transformation creates a quantified linear integer-
real arithmetic formula that is valid iff φ is satisfiable. We simplify their transformation to instead check
whether for a given model M it holds that M |= φ . The adapted transformation takes two parameters: the
first is a tuple ϒ = (CS, l,n,xf,l,xf,r,ν), defining the cars to consider (here we have CS = I), the current
lanes [l,n] with l,n ∈ N, the current extension as variables xl,xr ∈ RVar, and the valuation function ν .
The second parameter is the MLSL formula. The formula that trf creates is from the first-order theory of
real-closed fields and represents the semantics of MLSL. For this the formula creates suitable constraints
on varsd,f. Note that negation in MLSL is represented with trf by negation in the first-order theory of
real-closed fields, i.e. for all ϒ and MLSL formulas φ we have trf(ϒ,¬φ) = ¬trf(ϒ,φ). The following
claim states that we can algorithmically determine if an MLSL formula is satisfied by a model.

Claim 3.6. Let M = (TS,V,ν) with V = ([l,n], [r, t],E) and let for I the variables varsd,init be available.
We constrain xl,xr ∈ RVar with xl = r,xr = t and define ϒ = (I, l,n,xl,xr,ν). Then for any MLSL formula
φ we have

trinit(TS) =⇒ trf(ϒ,φ) is valid iff M |= φ ,

where trf(ϒ,φ) is evaluated on the variables varsd,init.

Now we can define our transformation to check globally properties. The intuition of the transforma-
tion is that it checks if we can stop the evolution of ρ(M) at all time points tf and store the model at that
time in the variables subscripted with ‘f’ and then evaluate φ on this stored model. Note that we use the
variables xf,l,xf,r to represent the extension at time tf.

Definition 3.7 (Transforming Globally Properties). Given a model M and a timed word ρ over a finite
set I we use the variables xf,l,xf,r ∈ RVar with the constraints xf,l = r+(posE,f− posE,1) and xf,r = t +
(posE,f−posE,1). Let ϒ = (I, l,n,xf,l,xf,r,ν), then for an MLSL formula φ we define

tr� (ρ,M,φ) := ∀tf ∈ span(ρ).(trword(σ , tf)∧ trinit(TS)) =⇒ trf(ϒ,φ) ,

where trf(ϒ,φ) is evaluated over varsd,f. 4
Claim 3.8. Given a timed word ρ , an MLSL model M and an MLSL formula φ

ρ(M) |=seq �φ iff tr� (ρ,M,φ) is valid .

The previous claim states that we can reduce checking ρ(M) |=seq �φ to checking tr� (ρ,M,φ) for
validity. This is equivalent to ¬tr� (ρ,M,φ) being unsatisfiable. As the satisfiability of first-order theory
of real closed fields is decidable [21], we get the following theorem, assuming that the above claim holds.

Theorem 3.9. It is decidable whether an MLSL formula holds globally in an MLSL transition sequence.
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trC−word(σC, 4s,C)

(0s ≤ 4s < 6.1s) =⇒
tract(4s, end, 1,C)

posC,2 = 60m + 6ms−1 · 4s

trD−word(σD, 4s,D)

(0s ≤ 1s ≤ 4s) =⇒
tract(1s,wd r(D, 3), 1,D)

posD,2 = 16m + 18m s−1 · 1s,
resD,2 = 3, res ′D,2 = •

(1s ≤ 4s < 6.1s) =⇒
tract(3s, end, 2,D)

posD,3 = 34m + 18m s−1 · 3s

Figure 4: Transformations of the words projected to actions from car C and car D

Example 3.10. Consider the timed word ρ and the traffic snapshot TS from Example 2.6 and the MLSL
formula no potential collision

npc≡ ∀c,c′.c 6= c′ =⇒ ¬〈(cl(c)∨ re(c))∧ (cl(c′)∨ re(c′))〉 ,

which is a generalisation of the potential collision formula from [11]. The formula npc states that
nowhere in the current view, there is an overlap of the claims or reservations from two different cars. Let
the view be V = ([1,3], [0,90],E) and the valuation be ν = {ego 7→ E}, then we define M = (TS,V,ν).
We give an overview of how our procedure works to find that ρ(M) |=seq �npc does not hold.

To test whether ‘there is never a potential collision’ holds in ρ(M) we check tr� (ρ,M,npc) for
validity. We show that tr� (ρ,M,npc) is not valid by giving a satisfying assignment for its negation. The
negation ¬tr� (ρ,M,npc) evaluates to

∃tf ∈ span(ρ). trword(σ , tf)∧ trinit(TS))∧¬trf(ϒ,npc) .

The formula npc is violated already in the initial model, because the claim of E overlaps with the
reservation of D (cf. Figure 2). However, to give a better insight into our construction we choose to show
that npc is violated during the transition from TS5 to TS6, at time JtfK = 4s.

We show the constraints generated by trword(σ ,4s) for the cars C,D in Figure 4. We see that the
position of C at time JtfK = 4s is its initial position, plus the distance covered in 4s, i.e. JposC,2K = 84m.
For car D we see that at time JtD,2K= 1s the withdrawal of a reservation is performed and that the position
of D is updated to JposD,2K= 34m. Then, at time JtfK= 4s car D is moved for 3s multiplied with its speed
to JposD,3K = 88m.

We have ¬trf(ϒ,npc) = trf(ϒ,¬npc). The formula ¬npc is evaluated on varsd,f and the view updated
by the movement of E. After 4s car E has moved 12ms−1 ·4s = 48m. Hence, the updated left and right
extension of the view are Jxl,fK = 48m and Jxr,fK = 138m. Now we can check if ¬npc, which states
that there is a subview where the claims or reservations of two different cars overlap, is satisfied. As
C has a braking distance of JΩD,3K = 6m it claims the interval [84m,84m+ 6m] on lane 3. As car D
has a reservation on lane 3 and its position is within [84m,90m] the claim of C and the reservation of D
overlap. Thus, we have shown ρ(M) 6|=seq �npc. 4

4 Monitoring Globally Properties with Imprecise Information

In this section we extend our transformation to check, whether an MLSL formula holds globally in a
transition sequence with ε-δ -robustness. This allow us to check if, e.g. a behavior given as a transition
sequence is barely safe or if it is robustly safe.
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Here, we consider errors in positional data and imprecisions of when reservations and claims are set
and withdrawn. Similarity on timed words has originally been defined in [10]. However, usually the
requirement is imposed that the order of events is equal in similar words. For distributed systems this
requirement seems too strong. Here, we weaken this requirement and allow the order of independent
actions to change in similar words. For a single car C, setting and withdrawing claims and reservations
are independent of changing acceleration. Between different cars, all actions are independent. We first
define an independence relation for actions.
Definition 4.1 (Independence Relation). Let ΣC be the action alphabet for car C. We define the indepen-
dence relation as

IC = ({c(C,n), r(C),wd c(C),wd r(C,n) | n ∈ L}×{a(C,a) | a ∈ R})
∪ ({a(C,a) | a ∈ R}×{c(C,n), r(C),wd c(C),wd r(C,n) | n ∈ L})

I =
⋃

C,C′∈I,C 6=C′
(ΣC×ΣC′)∪

⋃
C∈I

IC 4

We define that two timed words have equal causality iff their untimed words are in the same equiva-
lence class in the sense of Mazurkiewicz traces [16]. Two words are in the same equivalence class iff we
can create one word from the other by repeatedly swapping letters that are adjacent and independent.
Definition 4.2 (Causality Equivalence). Let I be our independence relation. For two words σ ,σ ′ ∈ Σ∗

with σ = σ1 . . .σn we define that σ and σ ′ are in the same equivalence class (denoted σ ∈ [σ ′]) as

σ ∈ [σ ′] iff σ = σ
′ or there is σ

′′ ∈ Σ
∗ and i ∈ {1, . . . ,n} such that

(σi,σi+1) ∈ I and σ
′′ = σ1 . . .σi−1σi+1σiσi+2 . . .σn and σ

′′ ∈ [σ ′]

Two timed words ρ = (σ ,τ),ρ ′ = (σ ′,τ ′) are causally equivalent iff σ ∈ [σ ′]. 4
Example 4.3. Consider σ from Example 2.6 and σ1,σ2,σ3 shown below:

σ = wd r(D,3) r(E) wd r(E,2) end σ1 = r(E) wd r(D,3) wd r(E,2) end

σ2 = r(E) wd r(E,2) wd r(D,3) end σ3 = wd r(D,3) wd r(E,2) r(E) end

As (wd r(D,3), r(E)) ∈ I we have σ1 ∈ [σ ]. Further, (wd r(D,3) wd r(E,2)) ∈ I means that σ2 ∈ [σ1].
By transitivity, this implies σ2 ∈ [σ ]. However, (wd r(E,2), r(E)) 6∈ I, which means that σ3 6∈ [σ ]. 4

To formalise similarity usually metrics on a set are introduced to define distances between elements.
Then, similarity can be quantified with these metrics. To capture positional similarity of two models we
assign a distance of ∞ if any other data than position, extension or sensor function differ. Otherwise, we
assign the maximal difference of these values. The definition is taken from [17].
Definition 4.4 (Metric on MLSL Models). Given two models MLSL M,M′ we define dmodel(M,M′) :=∞

if res 6= res′ or clm 6= clm′ or L 6= L′ or ν 6= ν ′ and

dmodel(M,M′) := max
C∈I
{|pos(C)−pos′(C)|, |pos(C)+Ω(C)− (pos′(C)+Ω

′(C))|, |r− r′|, |t− t ′|}

otherwise. For δ ∈ R>0 we say that two models M,M′ are δ -similar, if dmodel(M,M′)≤ δ . 4
Additionally, we define a metric on timed words. We assume that between two similar timed words

the time stamps of all acceleration actions are equal. The reason for this restriction is that if we allow
acceleration time stamps to differ, perturbations may accumulate. In this work we do not consider such
issues. Furthermore, we require that the time span of two similar timed words is equal. This is a technical
restriction that likely can be removed.
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Definition 4.5 (Metric on Timed Words). Let Σa = {a(C,a) | C ∈ I,a ∈ R}. Given two timed words
ρ,ρ ′ we define dtime(ρ,ρ

′) = ∞ if they are not causally equal, ρ|Σa 6= ρ ′|Σa, or if span(ρ) 6= span(ρ ′).
Otherwise, for a car C let ρC = (σC,τC) = ρ|ΣC \Σa and ρ ′C = (σ ′C,τ

′
C) = ρ ′|ΣC \Σa, where σC,σ

′
C both

have length nC. We define

dtime(ρ,ρ
′) := max

C∈I
{dC(ρC,ρ

′
C)} and dC(ρC,ρ

′
C) := max

i∈{1,...,nC}
{|τC,i− τ

′
C,i|} . 4

Note that dC essentially is taken from [10]. Further, we point out that because ρ,ρ ′ in the above
definition are causally equivalent, for ρ|ΣC \Σa = (σC,τC) and ρ ′|ΣC \Σa = (σ ′C,τ

′
C) we have σC = σ ′C.

We lift the metric on timed words to a metric on transition sequences. For two models M,M′ we define
dseq(ρ(M),ρ ′(M′)) = ∞ if M 6= M′ and otherwise

dseq(ρ(M),ρ ′(M′)) := dtime(ρ,ρ
′) .

As for models, two transition sequences are ε-similar, if dseq assigns them a distance ≤ ε .
We define that a model δ -robustly satisfies a formula if all δ -similar models also satisfy the formula.

Definition 4.6 (Robust Satisfaction of MLSL Formulas). Given a model M, a desired error allowance
δ ∈ R>0 and a formula φ , we define that M satisfies φ with robustness δ as

M |=δ
φ iff ∀M′.dmodel(M,M′)≤ δ =⇒ M′ |= φ . 4

We define what it means for a transition sequence to robustly satisfy �φ .

Definition 4.7 (Robust Global Satisfaction). Let M be an initial model, and let ρ be a timed word. Then
for a formula φ , an allowed spatial error δ ∈ R>0 and an allowed temporal error ε ∈ R>0, we define

ρ(M) |=δ
seq �φ ⇐⇒ ∀t. t ∈ span(ρ) =⇒ ρ(M)@t |=δ

φ

ρ(M) |=ε,δ
seq �φ iff ∀ρ(M)′.dseq(ρ(M),ρ(M)′)≤ ε =⇒ ρ(M)′ |=δ

seq �φ 4

For example, with our notion of similarity the two timed words ρ = (a(C,5,1))(r(C),1.1) and ρ ′ =
(r(C),1)(a(C,5,1.1)) are 0.1-similar. However, in our transformation it is cumbersome to consider for a
single car different possible sequences of events. Hence, we assume that two discrete actions of the same
car are strictly more than 2ε time units apart. This assumption has the additional benefit that when we
consider two ε-similar timed words, they are causally equal because all dependent actions have the same
order in both timed words.

Assumption. For a timed word ρ and for any car C let ρC = (σC,τC) = ρ|ΣC and let σC be of length nC.
Then, for ε ∈ R>0 we assume

min
C∈I,i, j∈{1,...,nC} with i6= j

{|τC,i− τC, j|}> 2ε . 4

Note that this is not a discretisation, as, e.g. actions from different cars may still be arbitrary close.
Before we can define the transformation we introduce perturbed versions of varst and varsd,f, which

we call ṽarst and ṽarsd. We need to operate on the unperturbed, and the perturbed variables. To the
transformation from Section 3 we add d̃ to indicate that we operate on the perturbed data variables,
and d otherwise. Further, we do not need the unperturbed temporal variables, which we indicate with
t̃. With ∀ṽarst or ∀ṽarsd,f we mean that all variables in ṽarst or ṽarsd,f are universally quantified, and
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similar for ∃ṽarst or ∃ṽarsd,f. Additionally, we define for C ∈ I, i ∈ N that posΩC,i = posC,i +ΩC,i and

p̃osΩC,i = p̃osC,i + Ω̃C,i and for v,v′ ∈ RVar,r ∈ R let v ∈ v′± r = v′− r ≤ v≤ v′+ r.
To check if φ holds ε-δ -robustly we first perturb the timestamps of non-acceleration events (shakeε ).

Then we encode the temporally perturbed transition sequence (trd
init and trd,t̃

word), and finally we evaluate
the MLSL formula on the perturbed final model (shakeδ and trd̃

f ).
Definition 4.8 (Transforming Robust Globally Properties). For a timed word ρ and a car C let (σC,τC) =
ρ|ΣC with σC having length nC, Σa = {a(C,a) | a ∈ R}, x̃l,f, x̃r,f ∈ RVar and ∆E = posE,f−posE,1. Then,
given a model M = (TS,V,ν) with V = ([l,n], [r, t],E), a tuple ϒ = (I, l,n, x̃l,f, x̃r,f,ν) an MLSL formula
φ and ε,δ ∈ R>0 we define

trε,δ
� (ρ,M,φ) := ∀ṽarsd,f, x̃l,f, x̃r,f.∀ṽarst, tf ∈ span(ρ).

trd
init(TS)∧ shakeε(ρ)∧ shakeδ ∧ trd,t̃

word(σ , tf) =⇒ trd̃
f (ϒ,φ)

shakeε(ρ) :=
∧

C∈I,i∈{1,...,nC−1}
(σC,i 6∈ Σa =⇒ t̃C,i+1 ∈ τC,i± ε)∧ (σC,i 6∈ Σa =⇒ t̃C,i+1 = τC,i)

shakeδ :=
∧
C∈I

p̃osC,f ∈ posC,f±δ ∧ p̃osΩC,f ∈ posΩC,f±δ ∧ x̃l,f ∈ (r+∆E)±δ ∧

x̃r,f ∈ (t +∆E)±δ ∧ c̃lmC,f = clmC,f∧ r̃esC,f = resC,f∧ r̃es′C,f = res′C,f 4

Claim 4.9. Given a timed word ρ and an MLSL model M and an MLSL formula φ and ε,δ ∈ R>0 we
have

ρ(M) |=ε,δ
seq �φ iff trε,δ

� (ρ,M,φ) is valid .

From the previous claim it follows that ρ(M) |=ε,δ
seq �φ holds iff trε,δ

� (ρ,M,φ) is valid. This is equiv-
alent to ¬trε,δ

� (ρ,M,φ) being unsatisfiable. We assume that the above claim holds. Then, as satisfiability
is decidable for the first-order theory of real-closed fields [21], we get the following theorem.
Theorem 4.10. For ε,δ ∈ R>0 it is decidable whether an MLSL formula holds globally in an MLSL
transition sequence with ε-δ -robustness.

Example 4.11. Consider the timed word ρ = (σ ,τ) and traffic snapshot TS from Example 2.6 and the
initial model M = (TS,V,ν) with V = ([1,3], [0,90],E), ν = {ego 7→ E} from Example 3.10. We use the
formula

safe≡ ∀c,c′.c 6= c′ =⇒ ¬〈re(c)∧ re(c′)〉
from [11], which states that there do not exist two different cars with overlapping reservations. In the
following let ε = 0.1s and δ = 1m. To determine that �safe does not hold ε-δ -robustly in ρ(M), we
give a satisfying assignment for the formula ¬tr0.1s,1m

� (ρ,M,safe). This formula evaluates to

∃ṽarsd,f, x̃l,f, x̃r,f.∃ṽarst, tf ∈ span(ρ). trd
init(TS)∧ shake0.1s(ρ)∧ shake1m∧ trd,t̃

word(σ , tf)∧¬trd̃
f (ϒ,safe) ,

where ϒ = (I,1,3, x̃l,f, x̃r,f,ν). Further, we point out that similar to Example 3.10 we have ¬trd̃
f (ϒ,safe) =

trd̃
f (ϒ,¬safe).

We give an explanation of how our construction works for this example. The perturbed variables
t̃D,2, t̃E,2 from ṽarst represent perturbations of the time stamps τD,1 = 1s and τE,1.1s. For the perturbed
variables we choose Jt̃D,2K= 1.1s and Jt̃E,2K= 1s. This ensures that the order of the perturbed time stamps
is switched. The resulting perturbed timed word is

ρ
′ = (r(E),1s) (wd r(D,3),1.1s) (wd r(E,2),6.1s) (end,6.1s) .
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When applying ρ ′ to TS we get a transition sequence where car D and car E both simultaneously have
two reservations for a duration of 0.1s.

We choose to evaluate ¬safe at JtfK = 1s, i.e. after E sets a new reservation and before D withdraws
it reservation, and discard all later changes. After 1s car D is at position JposD,fK = 34m and car E is at
position JposE,fK = 18m with a braking distance of JΩE,fK = 15m. We perturb posD,f by −1m and ΩE,f

by +1m. The other variables are not perturbed. We get Jp̃osD,fK = 33m and JΩ̃E,fK = 16m.
After moving the extension along with E and not perturbing it, we evaluate trd̃

f (ϒ,¬safe) with ϒ =
(I,1,3, x̃l,fx̃r,f,ν), Jx̃l,fK= 12m, Jx̃r,fK= 102m on the perturbed variables ṽarsd,f. The formula ¬safe states
that there is a subview where the reservations of two different cars overlap. As (after perturbation) car D
and car E both have a reservation on lane 2 and as the position of D (33m) is within the space reserved
by E ([18m,18m+16m]), the formula ¬safe is satisfied. Hence, ρ(M) |=ε,δ

seq �safe does not hold. 4

5 Discussion

Spatio-temporal robustness has been studied before for more abstract formalisms [5, 18]. However, here
the data for which we want to achieve robustness has a specific meaning, i.e. the underlying model of
MLSL is dedicated to modelling motorway traffic. To this end, we study spatio-temporal robustness,
taking the meaning of data into account.

In real-time systems we distinguish between time-driven and event-driven real-time systems [13]. In
MLSL we have two kinds of data values: the event-driven values clm, res and acc and the time-driven
values pos, spd and Ω. We study temporal robustness only for the event-driven values clm and res. For
this we use the methodology from timed languages, where time stamps are perturbed [10]. Additionally,
we study spatial robustness for the time-driven values pos and Ω in a static ‘timeless’ manner at the level
of traffic snapshots. In [7] such a ‘timeless’ approach to spatial robustness has been done for Metric
Temporal Logic.

One of the goals in the definition of MLSL was to reduce complexity of spatial reasoning by separat-
ing the spatial aspects from the car dynamics [11]. In this sense, the introduction of temporal robustness
by perturbing time stamps seems well suited for MLSL, because we separate temporal robustness from
spatial robustness, which simplifies reasoning.

A disadvantage of our approach is that at the linking of time-driven and event-driven values (here
acc values, as they are event-driven and affect future evolution of time-driven values) we do not achieve
temporal robustness, as it affects spatial robustness.

For our approach to temporal robustness we consider similarity of timed words. A common definition
to quantify similarity of timed words is defined in [10]. However, there the requirement is made that
timed words have an infinite distance if they do not agree on the order of events. In [1] the authors
define a quantitative notion of (bi)similarity. However, they define that the ith position in one sequence
is compared to the ith position in another sequence, i.e. they do not consider that the order of events
may not always be relevant. Here the timed words originate from a distributed system, which makes
it unreasonable to always consider the order of events as relevant. Hence, we define an independence
relation in the sense of [16] and in our quantification of similarity allow independent events to change
their order. To the best of our knowledge, a quantitative comparison of timed words under consideration
of causality has not been used before.

On the side of efficiency we add the following observation: If in the static MLSL formula φ all hori-
zontal chop operators are below an odd number of negations, then the arithmetic formulas ¬tr� (ρ,M,φ)

and ¬trε,δ
� (ρ,M,φ) only contain existentially quantified variables over the reals. If we use an SMT solver
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[4] to check satisfiability of the formulas, we can interpret all variables as uninterpreted constants, for
which the solver tries to find a satisfying assignment. This yields a significant speedup.

6 Conclusion

In this work we define a linear version of a dense-time globally operator for MLSL. While there has been
a temporal extension of MLSL [15], it is not suitable for monitoring, as it is a branching time temporal
extension. Our first main result is a transformation that takes an MLSL transition sequence ρ(M) and an
MLSL formula φ to create a formula from the decidable first-order theory of real-closed fields [21], such
that the resulting formula is valid iff φ holds globally in ρ(M).

We then extend our transformation to accomodate for imprecise spatio-temporal data. For this we
defined a causality respecting notion of spatio-temporal similarity, which we base on timed words. Our
second main result is a transformation that additionally to the transition sequence ρ(M) and the static
MLSL formula φ takes a maximal temporal error ε and a maximal spatial error δ , such that the resulting
formula is valid iff �φ holds ε-δ -robustly in ρ(M). Again, the resulting formula is from the first-order
theory of real-closed fields, and can algorithmically be checked for satisfiability.

Note that, while we consider only uni-directional traffic, our results easily extend to bi-directional
traffic. Speed and acceleration, the braking distance and the physical length of a car would then take
negative values for cars going in the other direction and need to be updated accordingly when a car starts
driving in the other direction.

In this work we define only a linear time globally operator for MLSL. For future work we would like
to define a fully fledged temporal extension of MLSL, where temporal operators are basically taken from
Metric Temporal Logic [14] and atoms are MLSL formulas. It is desirable to extend our transformation
to such an extended temporal version of MLSL.

We stated several claims in this work. However, we did not provide proofs for them. In future work
proofs for our claims are certainly desirable.

Another line of research is to create temporal signals for MLSL formulas. Such a temporal signal
then represents for every instant in time if the MLSL formula currently is satisfied. Then, we could use
the significant work done for monitoring of Metric Temporal Logic [7, 6, 5] and similar logics.
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