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Semi-autonomous vehicles are increasingly serving critical functions in various settings from mining
to logistics to defence. A key characteristic of such systems is the presence of the human (drivers)
in the control loop. To ensure safety, both the driver needs to be aware of the autonomous aspects of
the vehicle and the automated features of the vehicle built to enable safer control. In this paper we
propose a framework to combine empirical models describinghuman behaviour with the environment
and system models. We then analyse, via model checking, interaction between the models for desired
safety properties. The aim is to analyse the design for safe vehicle-driver interaction. We demonstrate
the applicability of our approach using a case study involving semi-autonomous vehicles where the
driver fatigue are factors critical to a safe journey.

1 Introduction

Human failure is often a cause of accidents. Increasing the level of automation while useful in many
cases, does not necessarily reduce the number of human failure related accidents. Standards such as ISO
26262 describe functional safety but do not explicitly describe the role of the human user. Most of the
research related to ISO 26262 focusses only on the reliability of the electronics and the human user is
often ignored. Reliable electronics is not sufficient to guarantee safety.

For such automation to be successful the human user must be aware of the automation and react
to it appropriately. In some cases it is not possible to fullyautomate the behaviour and the system has
to rely on humans exhibiting the right behaviour. Examples of such systems include Unmanned Aerial
Vehicle (UAV) guidance [9], health care especially patientsafety [7] and computer security [11]. Thus
it is important to understand the role of humans in such systems and analyse the “human in the loop”
behaviour [11].

Recent research effort in this direction has seen the choiceof various formal methods to model and
verify correctness with a view to also modelling human behaviour as it interacts with the system interface.
This is largely achieved for isolated behaviours and cognitive errors including mode confusion [28], post-
completion errors [12], error recovery [30] and automatic behaviour [8].

The modelling and analysis of such systems however is non-trivial. For instance, to analyse driver
interactions with a road vehicle requires knowledge of the vehicle (to model for vehicle dynamics), the
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environment (such as road conditions, weather, terrain andtraffic flow) and a model of the human factors
that affect the interaction with the vehicle such as levels of stress, expertise, attention and fatigue.

In this paper we present a modelling and analysis framework to model human behaviour and analyse
the interaction to determine if any safety conditions are violated. We model a semi-autonomous system
where the driver is part of the control system. Our approach allows us to incorporate human factors in the
controllability analysis of the system. Our focus is on the interaction between the user and the system;
we do not necessarily focus on the reliability of the system.

1.1 Rest of this paper

The rest of this paper is organised as follows. Section 2 provides motivation behind this work with a
view to limitations of some existing work in this area. Section 3 presents our approach and describes
how it serves to combine the individual strands of effort from Section 2 to provide for a basis for further
analysis. Section 3.1 is an attempt to describe our approachin brief formal terms.

Section 4 describes a case study that we use to demonstrate our contribution. The problem of driver
fatigue is well understood. Recent developments in driver assistance and adaptive systems means that
the safety risks that emerge as a result of interaction between drivers and increasingly semi-autonomous
vehicles is yet to be fully explored. System, behaviour and environment models are described in Sec-
tions 4.1, 4.2 and 4.3 respectively. The verification process is described in Section 4.4.

Section 5 presents the results of the application of our approach to this problem, with notable results
discussed in Sections 5.1 and 5.2. Section 6 concludes the paper with a brief comment on the contribution
made by this paper.

2 Motivation

There are potential economic, health and safety benefits of semi-autonomous vehicles in various indus-
trial applications (e.g., mining [21, 13]). Although the level of automation in mining is more advanced
than many other domains, human oversight and control is still necessary given various factors such as
legacy equipment, interoperability of hardware, and the ability to handle unforeseen circumstances. It is
essential to use virtual engineering environments to modelthe vehicle and environment which can then
be used to train drivers [21].

In addition to the known challenges, such as mode error wherethe driver cannot recall what state
the system is in, there are particular challenges posed by semi-autonomous vehicles that merit attention
including

- handoverbetween manual and automated control during a task [16, 37],which is critical as the
driver needs to be able to judge when to reclaim control or otherwise,

- inadequate feedbackfrom the vehicle to the driver [22], with the consequence that the system fails
on drivers’ expectations during a task and ultimately maximum benefit of the technology is not
derived, and

- a fundamental change of task for the driver as it changes from monitoring thesituation to moni-
toring thesituation and automation[17].

Most of the work done so far in this area has addressed such challenges in isolation and at a high
abstract level [28, 12, 30, 8], has studied vehicle sensor data [37], driver feedback [17, 20, 36, 24, 38, 14]
(in a real or simulated environment) or performed physiological assessments [31, 32]. The latter two
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strands of work entirely focusses on driver perception and experience; moreover borrowing from separate
traditions of cognitive and physiological science.

Another approach to understand the interaction between these various systems is to conduct empir-
ical studies [5]. It is not possible to conduct an empirical study that includes all these parameters. So
most empirical psychological and ergonomic studies focus on a few parameters [9, 3, 26]. It is hard to
visualise a holistic model from such results. As full systeminteractive behaviour depends on a number of
parameters, it is important to have an analysis method that allows specification of all relevant parameters.

Hence the need to allow for more sophisticated models of driver behaviour and vehicle dynamics,
on the one hand, and derive such models from multiple disciplines, on the other, to capture the true
nature of the problem. The recognition that effective analysis could only be achieved as such is the main
motivation behind our work.

More recent work has acknowledged this. Oppenheim and Shinar [23] develop an approach to model
these various aspects that can enable such analyses. They identify a number of parameters for each model
that are important, which is addressed later in Section 5.

3 Approach

We adapt the standard discrete-event simulation [25] wherewe have inputs and outputs and the state of
the computation. We generalise the separation between plant and controller, and augment the controller
with a human operator allowing us to model systems that explicitly have human in the loop [11]. This
allows us to analyse the interaction between the human operator and the control system to achieve safe
behaviours. We use model-checking (and reachability analysis [2]) to determine the safety of the entire
system.

We propose asystem modelto represent the features and behaviours of the system that we deal with.
The importance of this model is argued by Bass et al. [4] as divergence between the state as described
by the system model and the user’s mental model is often the cause of unsafe behaviour.

This paper has a focus on semi-autonomous vehicles, and our representation allows for specifying
relevant driver control (acceleration and braking) and engine control unit features (odometer and service
meters) and chassis control data (vehicle handling and steering, and braking and stability sensors). As-
pects of autonomy (adaptive cruise control, lane discipline and navigation) can be factored in as part of
the system model.

A behaviour modelis then used to demonstrate user actions driven by cognitiveand emotional stim-
uli. The behaviour modelled is an abstraction of the user’s mental model and associated actions relevant
to the interaction with the system. Traditionally such models have been derived from cognitive sci-
ence [28, 12, 30, 8]. However it is increasingly feasible to look to human physiology to sense for driver
perception, stress and comfort given advances in sensors [31]. Recent work carried out quantitative phys-
iological assessment of human stress in response to vehicleinterface design (ranging from touch display,
voice to multimodal control) [32]. Such an approach provides for an objective assessment of the human
condition and further possibility of system adaptation forrefined interaction.

Ultimately, a model of behaviour could then be drawn from both branches of science to inform the
analysis. Our approach permits the integration of different models. We discuss this issue in our case
study section. It is important to note that we do not validatethe behaviour model. We only check if the
joint behaviour of the system – the control system and the human operator – is safe. One can view the
behavioural model as documenting the assumptions we make about the human user.

We also propose anenvironment modelto account for operational factors external to the system. Such
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factors are strictly beyond the control of the system or the user, and remain unaffected by any interaction
that results. This provides for a clear separation to study the potential impact on the driver and the system
as they interact with the environment individually or whileinteraction.

The various factors influencing each of the models are represented as a set of parameters. Some of
these parameters would be derived from the cognitive or physiological model underpinning the behaviour
model while others would be directly measured. Assuming there are no circular dependencies, based on
the inputs and the current state of the system the outputs andthe new state of the system is computed.

A schematic description of our approach is given in Figure 1 and the behaviour of the entire system is
expressed using the control loop shown in Figure 2. In our approach we assume that within one iteration
the environment can affect the system and the environment and system can affect the user’s behaviour.

System Model

brake()

currentSpeed
safeStoppingDistance

accelerate()

Control Loop

override()

Behaviour Model

Submodel−1 Submodel−2

fatigue
hazardPerception

reactionTimefeedbackMode = {voice, haptic, text, mixed}
commandMode = {joystick, text}

Environment Model

terrain = {offRoad, onRoad}
curvature = [0..360]

drivingConditions = {wet, dry}

visibility = [0..10]

Sensing

Awareness

Indire
ctC

ommands

DirectCommands

Figure 1: Schematic Representation of Approach.

loop {

calculate values from the environmental model

calculate values from the system model

calculate values from the behavioural model

calculate the outputs

update the state of the system

update the state of the user

assert(properties)

generate the_outputs

}

Figure 2: Control Loop.
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The entire system is developed in C and we useCBMC (Bounded Model Checker)[10] to validate
the safety properties. Given that it is a bounded model-checker we either have to specify the number of
iterations that need to be explored or have to set up the system such that it can calculate the bound. Thus
when CBMC indicates that a system is safe, it is safe only within the bounds specified for the verification.
However, if it finds an error (that is, a counterexample that violates the assertion) we can be sure that the
system is unsafe.

Our approach allows us to explore various scenarios where safe interaction between the driver and
vehicle is critical. Given behaviour, vehicle and environment models, overall system states that lead to
safety violations would be explored. Specific scenarios canbe generated if the functions that represent
the calculation of the model values return a unique value. Wealso use the CBMC feature that allows a
function to return non-deterministic values which effectively allows us to analyse a class of behaviours.

3.1 Formal Structure

In this section we present some of the formal details associated with our models and the verification pro-
cess. While the exact details will depend on the system beingstudied, there are some general principles
that underly our approach. We focus on the behavioural and environment models. The system model is
straightforward – we assume there is a linear ordering of thevariables which is used by the control loop.

The environment model is to used to explore different scenarios. We can either set the variables in
the model to specific values or choose (non-deterministically) from a collection of possibilities.

The empirical results that we use are represented as tables.Thus the basic values in the behaviour
model are obtained via a table lookup. If there are multiple models that determine a particular value, one
has to define a suitable function that combines the values. Choosing this function non-deterministically
allows exploration of situations where empirical results are not available.

The environment model consists of variablesEI ,EO andES, the system model consists of variables
SI , SO andSS while the behaviour model consists of variablesBI , BO andBS. We use the subscriptsO, I
andS to denote output, input and state respectively.

There are two types of assignment statements. The first (of the formx= e) evaluates the expressione
and assigns the value to the variablex. The second (of the formx= nondet(P)) chooses a value from the
set of possibilities (P) and assigns tox. As we are using the CBMC model-checker to verify behaviours
this is equivalent to checking each and every value fromP.

The control loop (shown in Figure 2) for the system consists of the following steps.

1. E′

I = fEI(SO,ES) where fEI is a function that calculates the new input values for the environment
andE′

I denotes the new set of input values. The user can influence theenvironment only via the
system and hence the outputs of the behaviour model are not used in this calculation. The update
function may involve non-deterministic choices.

2. S′I = fSI(BO,EO,SS) and

3. B′

I = fBI(BS,EO,SO) are similar to the first step. The only restriction is that thesystem update
function is deterministic.

4. The next three steps calculate the outputs of the three models, viz.,

E′

O = fEO(E′

I ,ES),

S′O = fSO(S′I ,SS),

B′

O = fBO(B′

I ,BS).

5. The next three steps update the local state of the models. They are,
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E′

S= fES(E′

I ,ES),
S′S= fSS(S′I ,SS),
B′

S= fBS(B′

I ,BS).

6. Execute the assertions that encode the safety property.

The various functions shown above essentially capture the three models in our system.

4 Case Study: Driver Fatigue

Enhancing the driver experience through increasing autonomy has been of interest for well over a decade
now. Reduction in drive stress, freeing up limited attentional resources and improving road safety have
been the major goals of this effort. However, autonomy brings with it a variety of other challenges that
potentially risk road safety [33]. This could be due to sensor limitations, system design faults, error
inducing design, or inadequate driver training; these certainly are some of the lessons learned from the
introduction of autonomy in the aviation domain.

Of interest here is driver fatigue, which results in drowsiness and hypovigilance, particularly after
prolonged periods of driving and monotonous roadside experience through motorways [36]. This has
been confirmed by a number of studies [20, 18]. This is a major cause of accidents across the world,
with around 10-35% of all road accidents in the USA and several European countries estimated to be
fatigue and sleep related [1]. While manual strategies adopted by drivers to cope with this problem are
recognised [14], fatigue serves to be one of the main factorsfor increasing autonomy in vehicles [23].

We view each vehicle as a safety critical system where one should avoid accidents as well as complete
the mission. Even if the vehicle is unoccupied, a human will be involved in its control. The vehicles are
travelling in a convoy and it is important to maintain safe stopping distance. Otherwise, unexpected
environment events (like explosions) can cause the driver or human controller to accelerate and run into
the vehicle in front of the convoy. The case study studies theeffect of driver ability and input modes on
the desired vehicle separation for safety given a specific route.

The example we present here focusses on using different actual empirical results that are incorporated
into our behavioural models. For instance, the parameters for hazard perception are chosen from [6, 9].
Similarly, the parameters for the control mode are chosen from [3, 6] while the desired separation and
safe stopping distance are chosen from [6]. The function that calculates the reaction time from factors
such as fatigue is derived from [15, 3, 5]. Other factors suchas speed and route are generated (either
manually or non-deterministically) as part of the scenarioexploration experiment.

The use of sub-models requires us to experiment with hypothetical integration to achieve a single
behavioural model. We have to consider hypothetical integration due to lack of suitable models that
cover all aspects covered in the sub-models. This separation of actual models and hypothetical integration
documents the assumptions under which our analysis is valid. It also points to areas where more precise
cognitive models are required.

4.1 Structure of the ACC System Model

The system model has the key aspects of the ACC mainly the control system to maintain speed of the
various vehicles, the separation between them and a notion of safe stopping distance to prevent acci-
dents. The environment model has the terrain and hazards that are non-deterministically generated. The
behaviour model we consider is that of fatigue which is calculated from the duration the driver has been
in the vehicle and the complexity of the terrain. The driver’s cognitive ability is influenced by fatigue and
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hazard perception. This when combined with the mode to issuethe commands determines the reaction
time. The current speed of the vehicle and the reaction time of the driver will determine the safe stopping
distance.

Adaptive cruise control (ACC) is one of the mechanisms introduced to provide safe distance control
from lead vehicle in front: once engaged, the vehicle operates in a typical cruise controlled fashion with
the added feature of sensing the vehicle in front to adapt speed (if it slows down or speeds up) ensuring
a minimal safe distance at all times. Figure 3 below shows an algorithm for a simple implementation
of ACC. TheACC algorithm uses the vehicle’s on-board sensors to read in thegap from the vehicle in

void function ACC(dist_veh_in_front)

{

loop{

input current_dist_veh_in_front;

IF dist_veh_in_front == current_dist_veh_in_front

CALL Maintain_host_veh_speed;

END IF

IF dist_veh_in_front > current_dist_veh_in_front

CALL Decelerate_host_veh_speed;

END IF

IF dist_veh_in_front < current_dist_veh_in_front

CALL Accelerate_host_veh_speed;

END IF

}

}

Figure 3: Adaptive Cruise Control (ACC) algorithm in pseudocode

front. This is preset by the driver and passed onto the algorithm as a parameter. Once it enters the loop,
it strives to maintain this distance by continuing to maintain the vehicle speed if the gap to the vehicle
in front is the same, decelerating if the distance gets narrower than desired or accelerating if the gap is
wider.

Studies have demonstrated that ACC has the potential of causing delayed driver reaction [38], and
awkward handover and mode confusion with up to a third of drivers having forgotten at some stage
whether ACC was engaged or otherwise [17]. This has serious road safety risks and raises a question
whether the design of such mechanisms would ultimately serve to be detrimental to the intended goal. In
addition to the time on task effects, road conditions and terrain also significantly affect driver experience,
and contribute to fatigue [24]; difficult terrains require more frequent driver interventions [29] in semi-
autonomous vehicles.

The above points to a clear need to analyse the relationship between driver control and vehicles
offering semi-autonomous features such as ACC. The case study proposed to demonstrate the framework
presented in this paper revolves around how driver behaviour and perception is affected by fatigue which
itself is influenced by factors such as journey time. The behaviour model is influenced by parameters
including over time on task, fatigue and perception of ACC status. The system model is parameterised
to represent a vehicle equipped with ACC, ranging over speed, acceleration, distance to vehicle in front,
and ACC status.
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4.2 Structure of Behaviour Models

The sub-models associated with the behaviour model are now described. The fatigue is calculated using
the variables that are identified by Oppenheim and Shinar [23]. Although they do not present empirical
results they summarise results from other papers. These results are not specific to the military situation.
They are more from generic driving conditions. However, as that is the best data available we use it. Sim-
ilarly, the role of terrain is identified as an important factor [5, 27]. The role of terrain is explained only
in qualitative terms and neither present any concrete modelof how the terrain actually affects fatigue.
Therefore, there is no obvious way to create a unified behaviour model from the empirical results.

Thus we explicitly define an integrator function that will combine the variables and values indicated
in prior work [23, 5, 27]. As the behaviour of this function isnot available, we encode various candidate
functions. All candidate functions are automatically evaluated in the verification process. Technically,
this is achieved using non-deterministic choice in CBMC. Soif our analysis indicates that safe stopping
distance is always maintained, we can conclude that safety is independent of the candidate functions.

The reaction time calculation is from Baber et al. [3]. The reaction time depends on the mode of
communication between the driver and the vehicle control system as well as the derived value for the
fatigue factor. Baber et al. [3] present empirical results for mode of communication and reaction time.
Here again we rely on a non-deterministic choice of integrator functions to combine the model from
Baber et al. [3] and the calculated fatigue value. For the case study the interaction mode is a factor where
research shows that in certain circumstances the use of speech is better than using text while the use of
joystick or gamepad to control the system is often better than issuing text based commands.

For instance, the empirical results from Baber et al. [3] areencoded to calculate the reaction time
is shown in Figure 4. They function issetReactionTime which calculates a qualitative reaction time
based on the input mode and then invokeschangeReactionTime with the fatigue level to calculate a
quantitative value.

In general we represent the parameters in the various modelsas global variables and represent the
actual calculation of the the values as functions. For instance,timeDriven andterrain are global
integer values. As there are discrete levels of fatigue we use enums to represent the possible values
the global variabledriverFatigue can take. The functionsetDriverFatigue assigns a value to the
variabledriverFatigue based on the behaviour model.

The hazard perception is based directly on Chen [9]. As we areusing only a single model there is no
need to define an integrator for hazard perception. This ability includes the size of the hazard. In general
larger the hazard the easier it is to perceive. We use the variablehazardPerception to denote the user’s
ability to perceive hazards. This can be derived fromdriverFatigue. It is also possible for one to use
CBMC’s non-determinism to generate a value. An example is the following statement

hazardPerception = hpFunction(nondet_int());

where the functionhpFunction converts an integer to a suitable hazard perception value. The function
hpFunction is a part offBI in the formal model.

The structure of a non-deterministic integrator function is shown in Figure 5. The variableopChoice
represents the function to combine the values from the different models and its value is calculated non-
deterministically. The actual integration is performed bythe functionchoiceFunction which applies
the chosen function to the values from the sub-models to return the actual value for the joint model and
represents a specific instance offBS (i.e., the function that calculates the state associated with the user’s
behaviour).
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void setReactionTime(mode iM, fatigueLevel df)

/* mode is the input mode used by the driver and

fatigueLevel is a indication of the driver’s tiredness

we use symbolic values rather than concrete values for the reactionTime

*/

{

switch (iM) {

case GamePad: reactionTime = okay;

case Speech: reactionTime = slow;

case MultiModal: reactionTime = fast;

};

changeReactionTime(df);

}

void changeReactionTime(fatigueLevel df)

/* this function alters the reaction time based on the

level of tiredness. These factors can either be chosen from

empirical results or can be set non-deterministically

*/

{

switch (df) {

case Exhausted : reactionTime = reactionTime * eFactor;

case Tired : reactionTime = reactionTime * tFactor;

case Normal : reactionTime = reactionTime * nFactor;

};

}

Figure 4: Encoding of Human Factors.

4.3 Structure of Environmental Models

The environment model allows for variability in scenario tohelp analysis, including road conditions,
terrain or obstacles that result in manual driver interventions) and journey time. The travel scenario is
expressed as a sequence (i.e., an array) of route points where each route point has the relevant information
(and represented as a struct). A simple example of the structure of the route is shown in Figure 6.

The cause and effect relations, informed by the literature above, are explored to analyse for relative
safety thresholds that arise from the interaction of the three models. Potential safety violations in terms
of dangerous levels of fatigue and increased likelihood of mode confusion are studied.

4.4 Verification Process

In the context of our framework (shown in Figure 1) the ACC is part of the control loop associated with
the system model. The user’s commands are, normally, filtered via the control loop except when the user
can override the ACC and issue commands directly to the system. This type of behaviour is typically
seen when the user is fatigued or encounters a hazardous situation.
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v1 = model1(p1); /* p1 represents the parameters used by

the first model */

v2 = model2(p2); /* p2 represents the parameters used by

the second model */

opChoice = nondet_uint() % choices;

return choiceFunction(opChoice,v1,v2);

Figure 5: Non-Deterministic Integrator Function

struct routePoints{

int obstacle; /* represents difficulty to overcome */

int distance; /* time to travel is calculated using the speed */

int terrain; /* represents offRoad, onRoad */

int curvature;

};

struct routePoints route[5]; /* there are 5 sections to travel */

Figure 6: Example of Route.

The behaviour of the system (i.e., the vehicle and the human operator) was analysed for under various
conditions (e.g., route choices, travelling speed). We were able to show that a small separation between
vehicles was safe if the driver was not too tired and the interaction mode involved game pads. We were
also able to show that even a large separation was unsafe if the driver was tired and the interaction mode
involved only speech. The safety conditions are written as assertions such as

assert(isOkay(driverFatigue,hazardPerception,safeStoppingDistance));

whereisOkay determines if the current separation is safe given the parameters from the behaviour model.
These are specific to the application being analysed.

In the functionmain we invoke the function associated with the control loop (shown in Figure 2)
with the various scenarios. By varying the variables that are assigned non-deterministic values, one can
explore the safety of different scenarios within a given model. We also use CBMC to calculate values
where failures occur. For instance, the following program fragment determines if there are any values of
driverFatigue that can lead to accidents.

int driverFatigue = nondet_uint()%numFatigueValues;

assert(isOkay(driverFatigue,hazardPerception,safeStoppingDistance));

CBMC will calculate a value fordriverFatigue that will violate the assertion. If CBMC cannot
find such a violation, we are sure that the composite behaviour represented by the models is safe.

5 Results of Case Study

We evaluate our approach to show how effective it is in capturing the interaction between the various
inputs provided to the sub-models. The resulting analysis should allow us to check whether the composite
system demonstrates safe behaviours. We consider three scenarios for analysis, which are essentially
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an exploration into the relationship between fatigue and the various parameters that can be influenced.
Evidence suggests that prolonged periods of driving contribute to an increase in fatigue [36, 20, 18] and
mechanisms such as ACC available to address such problems need to be evaluated for their effectiveness
and safety.

We recall a few select inputs and variables of the system of interest to us here.Routedenotes the
distance travelled by the vehicle over a given journey, andspeedis the speed of the vehicle travels
at. Thecontrol modeis used to signal whether the vehicle is driven manually or with ACC enabled.
The sa f e stopping distanceis the estimated safe distance between the host vehicle and the vehicle in
front under the conditions of fatigue. This is related todesired separationwhich is understood to be
the minimum safe distance (ranging over given vehicle speed). We represent the driver state using a
combination of variables includingf atigue to show the level of driver tiredness,hazard perception
to show the driver’s ability to perceive hazards encountered enroute, andreaction timeas a measure
of the time taken for the driver to respond. The variables aredefined in relative terms for symbolic
representation.

We manipulate the above parameters in different analyses byconfiguring them as constants where we
intend them to be fixed for the purpose of the scenario. To range over values, we use non-deterministic
assignment. In cases where values are determined by the respective models, we leave the variables
assigned accordingly, either as a result of a fixed model (where assignments are straightforward) or as a
result of sub-models combined using a variety of functions chosen non-deterministically.

Note that our implementation of the ACC is adapted to be sensitive to driver fatigue over the course
of a journey. Implicit here is that the speed of the vehicle isallowed to be adjusted and the desired
separation distance is also left for calculation accordingly. The rule is that as the journeys progresses,
the desired separation is extended to account for the increase in fatigue, which in turn contributes to
weakened hazard perception.

In all cases we analyse for two properties. First, that the desired separation is always maintained for
the given control mode and level of fatigue. Secondly, that the use of ACC does not result in an actual
increase of driver fatigue.

5.1 Lowered speed and increased fatigue

Our first scenario deals with an unexpected side-effect of the ACC operation whereby the ability to adapt
vehicle speed results in an increase in journey time, and hence fatigue.

We configure the system for a non-deterministic route, and leave the level of driver fatigue to be
derived by the system output. We want to check whether the driver fatigue goes past a threshold. The
control mode remains enabled for ACC, and the safe stopping and desired separation distances also
remain fixed. We let the speed of the vehicle adjusted as per the operation of the ACC.

Our analysis reveals that the scenario fails to satisfy the second property. To maintain the desired
separation distance the vehicle speed is reduced by the duration that increases. This leads to increased
driver fatigue. At the next point on the route the safe separation may need to be increased owing to
increased fatigue. This in turn further reduces the speed. After a few iterations the vehicle speed is
slowed to such a level that fatigue due to time on road becomesunacceptable.

5.2 Manual override and variable speed

An alternative scenario is where the driver’s ability to override ACC at any stage of the journey is ac-
knowledged. This is essentially to model for cases where driver actions may have undesired conse-
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quences.
We consider a fixed route, and the safe stopping and desired separation distances also remain fixed.

We allow for the control mode to be non-deterministic and have no control over the choice operated.
Driver fatigue is then a calculation based on various inputsfrom the behaviour and system models.
Speed is also dependent on the choice of control mode and ultimately the driver, and so are the rest of
the variables.

Our analysis reveals that the first property is violated. Counter examples are due to a case where
the driver is able to manually override ACC and increase vehicle speed, which results in unsafe distance
from the vehicle in front. A different possibility is where the driver switches over to manual mode and
ultimately reaches an unsafe state (due to fatigue for example). In one sense such a possibility is difficult
to avoid, unless speed or proximity alerts are modelled.

5.3 The ideal scenario

We consider a final scenario where we control the parameters for a best case scenario: the route and
control mode (ACC) are both fixed. Driver fatigue is calculated as influenced by a combination of
system, behaviour and environmental models. All other parameters are calculated from the relevant
model respectively.

We are able to confirm that both properties are satisfied. The fixed length of route means that journey
time is ultimately limited, even if speed is adapted (slowed) in response to driver fatigue as discussed in
Section 5.1. The fixed control mode helps to avoid any driver-led errors as in Section 5.2.

5.4 Discussion

For all scenarios, CBMC is able to verify the safety propertyor calculate a counter example in less than
five seconds on a low end machine (an Intel U1400 processor running at 1.2GHz with 1.0GB RAM
running Linux). Our typical loop unwinding parameter is 100which is enough to explore all behaviours.
Unfortunately, given the calculations involved CBMC is unable to prove the unwinding assertion.

There are two main limitations of this case study. The first isgetting an appropriate system model as
such models are largely proprietary. We have constructed this model from various published sources.

The second is the choice of “sensible” ways to combine sub-models. While our framework can
explore any function, it is not clear what classes of functions are close to reality. We have explored only
simple arithmetic operators for the two integrator functions mentioned earlier, namely, the safe stopping
distance and fatigue. These operators can be chosen non-deterministically. This is a clear limitation in
our case study. Technically the integrator functions need empirical validation but owing to the number
of parameters such validation studies are hard to perform.

6 Conclusion

The main contribution of this work is an approach to modelling and design of human in the loop systems.
The approach takes into account real systems as well as cognitive models that are supported by empirical
studies.

By expressing the models in the C programming language we areable to encode all empirical models
without compromising on numerical accuracy. We have had informal discussions with practising engi-
neers from the automotive domain and the general feed back isthat the approach is simple enough to be
used by them. Their models are expressed as code fragments that can be translated quite easily to C.
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We also avoid concurrency related issues using a standard sense-control cycle approach. This sim-
plification (which reduces the state space that needs to be explored) when combined with CBMC enables
us to handle larger realistic models. The only care requiredis the sequence in which the variables are
updated. Using C is an advantage of our approach over other approaches that use specific modelling
languages [12, 4].

This approach supports automatic verification of safety properties as well as systematic scenario ex-
ploration. The non-deterministic choices of the various functions in the behaviour sub-models document
the assumptions that we make on the interaction between different aspects. These interactions are not
supported by empirical studies but occur in real systems.

The case study was chosen to demonstrate our approach. Further work beyond this early explo-
ration would look to both adopt more mature models of behaviour with respect to semi-autonomous
vehicles [34, 35], and draw parallels to research that has addressed intricate problems in this area from
other domains [19] which have traditionally relied on driver experience and feedback to evaluate such
vehicles.

We are also currently exploring the encoding of more specificmodels, for instance, where the adap-
tive cruise control system is actually available (and hencewe do not need to model it) or automobiles
with in-wheel motors where the dynamics are more complex. The aim is to integrate the formal analysis
of user interaction with relevant standards for reliability including the automotive safety integrity level
requirements.
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